A nonadaptive NC Checker for

Permutation Group Intersection

V. Arvind Jacobo Toran
Institute of Mathematical Sciences Theoretische Informatik
C. L. T. Campus Universitat Ulm
Madras 600 113, India D-89069 Ulm, Germany

November 28, 1996

Abstract

In this paper we design a nonadaptive NC checker for permutation group intersec-
tion, sharpening a result from Blum and Kannan [3]. This is a consequence of two
results. First we show that a nontrivial permutation in the intersection of two given
permutation groups (described by lists of generators) can be computed by an NC algo-
rithm with one round of parallel queries to the Group Intersection problem. Next we
design a two-round interactive proof system for the complement of the Group Intersec-
tion problem, for which the honest prover can be simulated by an NC algorithm with
one round of parallel queries to Group Intersection. As a consequence we also have
nonadaptive NC checkers for some related group-theoretic problems.

On the technical side, we define a generalization of wreath products of permutation
groups. This product plays a crucial role in the design of the nonadaptive checkers.

1. Introduction

Motivated by the problem of program correctness and reliability, Blum and Kannan intro-
duced in [3] the concept of program checking. Rather than trying to prove a given program
correct for all inputs (which is the approach taken in the area of Program Verification), the
approach of program checking is to test and certify a given program for a given input instance.
More precisely, a program checker for a given program P is another program that for any
instance x of P decides whether the output of P on « is correct or whether P has errors (the
formal definition is given later in Section 2). In the course of checking P on x, the program
checker might also query the program P on instances different from =z.

Blum and Kannan in [3] and subsequent researchers, e.g. [4] have shown that this is a
fundamental concept. In [3, 4] and several other papers, efficient (in an appropriate sense
depending on the problem) checkers have been designed for several nontrivial problems. In-
teresting connections between program checking and various other concepts in complexity
theory like, for example, interactive proof systems and random-self-reducibility [3, 7] have
also been established. In particular, the following basic theorem is in [3].

Theorem 1 (Checker Characterization Theorem.) [3] If a decision problem A and its comple-
ment have both interactive proof systems, in each of which the honest prover can be simulated
in polynomial time with queries to A, then A has a polynomial-time program checker.

Together with known results on interactive proofs [16, 5] it follows that all the problems
that are complete for the classes PSPACE, PP or MODP have polynomial-time checkers.

It 1s required of the checker that it be significantly more efficient than the program that
is being checked. This is a crucial aspect stressed by Blum and Kannan in [3]. In this paper
we concentrate on two parameters for measuring the efficiency of a program checker: first, its
running time (not counting the time spent in calls to the program), and next, the number of
adaptive calls made by the checker to the program. Ideally, we would like to design a checker
minimizing both these parameters. In particular, we consider nonadaptive NC checkers. L.e.,
the program checker is a polynomial size circuit of polylogarithmic depth, with query gates at
each of which a call is made to the program being checked. The additional ‘nonadaptiveness’
property is that on every path from an input to the output gate in the circuit, there is at
most one query gate. Alternatively, and more suitable for the description of algorithms,
such program checkers can be seen as computed by synchronous PRAMs with a polynomial
number of processors in polylogarithmic time. Moreover, each processor is allowed to make
just one query to the program being checked, at a specific computation step, all at the same
time. The notion of NC checkers was also first studied in [3]. In fact, in [3] it is shown that
every P-complete problem has nonadaptive NC checkers.

When do problems have nonadaptive NC checkers? We state below a sufficient condition
which can be derived easily by adapting the above Checker Characterization Theorem.

Theorem 2 If a decision problem A and its complement have both 2-round interactive proof
systems with randomized NC' verifiers, in each of which the honest prover can be simulated
in NC with nonadaptive queries to A, then A has a nonadaptive NC program checker.

The NC checkers in this paper are essentially designed by applying this theorem. As
the main result in this paper, we design a nonadaptive NC program checker for the Group
Intersection problem for permutation groups, and some other related permutation group
problems. Group Intersection is the following decision problem: given generator sets for two
permutation groups A < 5, and B < 5, for some n, decide if there is a nontrivial permutation
in AN B.

Formally, the language associated with the problem is:

GINT = {(A, B,n)| A,B C S, and (A) N (B) £ {id}}.

As our main results, we present an NC algorithm which takes as input an instance (A4, B, n)
of GIN'T and with one round of queries to GZANT it computes a nontrivial permutation in
(AY N (B) (in case one exists). We also design a 2-round interactive protocol for GZN'T in
which the honest prover can be simulated by an NC algorithm with one round of queries to
GIN'T. These results combined with Theorem 2 directly yields a nonadaptive NC checker
for GIN'T.

In Blum and Kannan [3] the authors design a polynomial-time, adaptive program checker
for a different version of this problem. We will refer to the problem they consider as Group
Intersection Generators defined as follows:

Given generator sets for two permutation groups A < 5, and B < 5,, for some n, compute a
generator set for AN B.

It is easy to see that Group Intersection Generators is computationally harder prob-
lem than Group Intersection (Group Intersection is easily reducible to Group Intersection
Generators). However, as we see in this paper, designing a nonadaptive checker for Group
Intersection 1s more involved than for Group Intersection Generators. There is a heuristic
explanation for this phenomenon given in [3]. It is argued that often it is easier to design
a checker for an extension of the problem than the problem itself. The extension problem,
although usually harder than the problem itself, is easier to check because there is more
information produced by the program output for the problem. Notice that this is precisely
the case with Group Intersection and Group Intersection Generators (which can be seen as
the extension problem in this case). In fact, in [3] the authors highlight this point with a
different important example, namely, the GCD problem. They show in a few lines that the
‘Extended GCD’ problem has an NC checker, leaving open the question whether GCD has
an NC checker. Indeed, only recently an NC checker has been designed for GCD based on
nontrivial number theory in [1].!

Likewise, since the problem Group Intersection Generatorsis an extension of Group In-
tersection, these problems also fall into a similar pattern. Indeed, as we show in this paper,
it turns out that we need some nontrivial permutation group theory in order to design a
nonadaptive NC checker for Group Intersection. In particular, in Section 4. we introduce a
novel notion of m-wreath product of permutation groups generalizing the well-known wreath
product [12]. Using m-wreath products we are also able to design a nonadaptive NC checker
also for Group Intersection Generators, improving the result in [3].

1n [1], actually an efficient ‘constant-query’ sequential checker is designed, which also turns out to be
implementable in NC.

We now summarize the plan of the paper. In Section 2 we give necessary definitions, and
in Section 3 we show that the search problem for GZNT can be solved in parallel with non-
adaptive queries. In Section 4 we describe the above-mentioned 2-round interactive protocol
for GINT. Finally, in Section 5 we give nonadaptive NC checkers for Group Intersection
Generators and other related group problems.

2. Preliminaries and Notation

We denote the cardinality of a finite set X by || X||. Let N denote the set of natural numbers.
We denote by [n] the initial segment {1,2,---,n} of N.

This paper uses basic complexity-theoretic concepts like many-one reducibility, truth-table
reducibility, and interactive prootf systems. These can be found in standard textbooks like,
for example, [2, 15]. A reducibility that is not standard, but will be useful for our proofs, is
the NC truth-table reducibility:

Definition 3 For two sets, A, B C ¥*, we say that A is NC truth-table reducible to B,
(A <}Y B) if A can be computed by a uniform family of NC circuits with query gates for B,
with the additional property that on every path from an input to the output gate, there is
at most one query gate. If A <N¢ B and B <N¢ A, we say that A and B are NC truth-table
equivalent.

We now formally define program checkers.

Definition 4 [3] Let A be a decision problem, a program checker for A, Cy4, is a (probabilis-
tic) algorithm that for any program P (supposedly for A) that halts on all instances, for any
instance « of A, and for any positive integer k (the security parameter) presented in unary:

i. If P is a correct program, that is, if P(x) = A(x) for all instances x, then with proba-
bility > 1 — 27%, C (=, P, k)=Correct.

ii. If P(x) # A(x) then with probability > 1 — 2% C4(z, P, k)=Incorrect.

The probability is computed over the sequences of coin flips that C4 could have tossed.
Also Cy is allowed to make queries to the program P on some instances.

We recall some group-theoretic definitions and fix the notation. Details can be found, for
example, in [10] or any other text on group theory.

We denote groups by upper case letters and elements of the groups by lower case letters.
If X is a finite set, the symmetric group of X, Sy denotes the set of permutations of elements
of X. If || X|| = n then Sx can be identified with the group S, of all permutations on [n]. The
identity permutation is denoted by id (we use id to denote the identity of all groups). For
A C S, the permutation group generated by A is the smallest subgroup of 5, that contains
A and is denoted by (A). In algorithmic group theory an input group G < S, is usually
presented by a set of generators A C 5,,, where, in turn, each generator ¢» € A is represented
as a list of n pairs (1, 7) € [n] X [n], describing it as a permutation on [n].

Let G and H be two groups. The expression H < G denotes that H is a subgroup of G.
If ¢ is an element of G then the set Hy = {mp : 7 € H} is a subset of G called a right coset

4

of H in G. Two right cosets Hyy, Hp, are either disjoint or equal, thus G can be partitioned
into right cosets of H in G. This is written as G = Hpy + Hps + ... + Hypy.

The cardinality of any right coset of H is equal to the order of H and the set
{1,902, .., pr} is called a complete right transversal for H in G.

If X C[n]and G < S, then the setwise stabilizer of X in G (denoted by Gx) is the set of
permutations in G mapping points in X to points in X, Gx ={p € G : Ve € X, ¢(x) € X}.

The pointwise stabilizer of [i] in G (denoted by G) is the set of permutations in G which
fix each element of [i], i.e., GO = {p € G : VY € [1], ¢(x) = z}.

Clearly, for any X C [n] and for any i € [n] the sets Gx and G) are subgroups of
G. In particular, pointwise stabilizers play an important role in the design algorithms for
permutation group problems. A fundamental structure that is often exploited is the following
chain of stabilizers subgroups in G.

{id} = G« g » gV @O =@,

A crucial property is that the union of complete right transversals T} for the groups G
in GU=Y,1 < 4 < n, forms a generator set for G. Such a generator set is called a strong
generator set for G [9]. A major result which we will use is that given a permutation group G
presented by a generator set, testing the membership of any permutation in G can be done

in NC [6]. This theorem is stated below.

Theorem 5 [6] Let G < S, given by a generating set K. There is an NC algorithm for
computing a strong generator set Ko = U/, T;, where T; is a complete right transversal for
G in GU=Y 1 < i <n such that the following hold.

i. every element m € G can be expressed uniquely as a product 1 = p1p2...p, with
Ps S Ti;

1. Giwen Ky, membership in G of a given permutation can be tested in NC.

A generator set Ky given by the above theorem is referred to as an NC-efficient strong
generator set.

Another property of strong generator sets that we need is the following. Given a strong
generator set for a group G there is a randomized NC algorithm for sampling elements of G
uniformly at random. The algorithm works as follows: given a strong generator set for G, an
element m € GG can be generated uniformly at random by picking one element ¢; uniformly
at random from each right transversal T; and defining 7 as the product of all the ¢;’s. This
provides a uniform generation procedure because, as stated in Theorem 5, every element of G
is uniquely expressible as such a product of elements from the strong generator set. Clearly,
this can be easily implemented by a randomized NC algorithm in logarithmic time.

We next recall two notions of group products which will be used in the proofs of our results:
the direct sum of permutation groups, and the wreath product of permutation groups.

Definition 6 [11] Let G; < Sx,,Gy < Sx,,---,Gr < Sx, be k permutation groups. The
direct sum of the groups Gy, Gy, -+ Gy denoted by BF_ G, is a permutation group that acts
on the disjoint union UY_, X;, and whose elements are written as k-tuples (g1, gz, ..., gx), for

gi € Gi, i € [k]. An element x in U, X; is permuted by (g1, ¢a,..., k) according to the
following rule:

(917927 s 7gk)(x) = g](l') fo € Xj

It is easy to check that Y G, is indeed a permutation group. As a useful example, let
G < S, be a permutation group, and for some X C [n], let Gx denote the setwise stabilizer of
X in G. Then Gx can be expressed as the intersection of GG with the direct sum Sx & S, x)-
We next define the wreath product of any group G < §,, with the permutation group 5.2

Definition 7 [12] Let G < S, be some permutation group. The wreath product of G and S5,
which we denote by 7(G) is a permutation group that acts on the set [n] x [2]. The elements
of T(G) are written as 7(g1, g2,%) for g1,92 € G and b € Sy, where the permutation defined
by 7(g1,92,%) on the set [n] x [2] is as below:

i. If ¢ =1id then 7(g1,92,0)(1,7) = (g;(2),), ¥Yi € [n],5 € [2].
i. Ifvp = (1 2) then 7(g1, g2, ¥) (i, 1) = (¢1(2), 2) and 7(g1, 92, ¥)(1,2) = {g2(2), 1), Vi € [n].

Remark Notice that given any group G < §,, presented by a generator set A, the following
set is a generator set for 7(G):

{7(917927¢) | 91,92 € A777Z) S 52}

It is easy to design a logarithmic space machine® that takes A as input and outputs the above
generator set for 7(G).

3. Nonadaptive witness search

In this section we show that the GZNT search problem can be solved by an NC algorithm
doing parallel queries to GZNT.

We first need the following useful generalization of the Group Intersection problem, namely
the Multiple Group Intersection problem: given the generator sets of Ay, ..., A C 9, of some
k subgroups of S, decide whether N, 4; # {id}.

MULTINT ={(A1,..., Ap,n) | Ay, ... A C S, N, A £ {id)).

We first show that MULTINT is log-space many-one equivalent to GZNT. In order to

prove this result we need a new definition.

Definition 8 Let G be a subgroup of S,,. Then, for a positive integer k, the diagonal subgroup
Diagi(G) of Skn induced by G is the set of permutations

Diag(G) ={(91,92,---,9x) € @LG | dg e G: Vie[k] g, =g}

2We do not give the general definition of wreath product between any two groups because we do not
require it and it is notationally elaborate. It can be found, for example, in [12].

3At various places in this paper, instead of showing NC computability we show the stronger logarithmic
space computability, for reasons of convenience.

It is easy to check that Diagy(G) is indeed a subgroup of Sk,,.
Lemma 9 MULTIN'T is log-space many-one equivalent to GINT .

Proof
Let (Ay,..., A, n) be an instance of MULTINT. Let G denote the subgroup G5 (A;)
of Sy, and let H denote the subgroup Diagy(Sy) of Skn.

Claim. (Ay,...,Ax,n) € MULTINT iff GNH # {id}.

Proof of Claim. If v € N (A4;) is a nontrivial element, then consider the element
T = (Y1,¢%2,...,) € Diagi(S,) where Vi € [k] ¢; = . It is easy to verify from the
definition of the direct sum ¥, (A;) that 7 € G.

Conversely, if there is an element 7 € G N H, then by definition of Diagy(S,) there is
a permutation ¢» € S, such that 7 = (¢1,¢2,...,), where Vi € [k] ¢, = ¢, and by the
definition of G, v € NI, (A4;). This completes the proof of the claim. O

To establish the desired reduction it is enough to show that generator sets for the two
groups G and H can be computed from the instance (Ay, ..., Ag,n) in logarithmic space.

For each A; C S, we define a set of permutations A} C Sy, as follows.

A; = {(77/)1,77/)2, e ,77/)]@) € @leSn | 77/), € A, and 77/)]‘ =1d fOI’j 7£ Z}

Let A= Ule Al Clearly A is a generator set for G.

Next pick a standard generator set S for S,, say, S = {m,n2} with n = (1 2) and
ne = (12---n)}. It is easy to see that H = Diagy(95,) is generated by the two elements ¢4
and 2 of Sk,, where 1 = (91,71, ...,m1) and @3 = (2,12, - ., N2).

Notice that the generator sets A and {1, p2} can be constructed in logarithmic space
with respect to the input size. Thus the reduction maps the instance (Ag,..., Ag,n) to
(A, {¢1,92}, kn). This completes the proof. |

We show now how to find a permutation in the intersection of two groups, G N H by
an NC algorithm which makes one round of parallel queries to GZNT. For this we use the
wreath products 7(G) and 7(H) acting on the set of pairs [n] x [2].

Lemma 10 Let G, H < S, and suppose GO N HD = {id} and GV~ N HE=Y £ {id}. In
this case there is a unique permutation in GU= N HU=Y mapping i to some j > 1 if and only

if T(GU) N (HED) N 7 (Sn) iy iy N T(Sn) i)y 7 {id}.

Proof First, observe that since GV~ N HU=Y £ {id} there is a permutation » € Gt~ N
HUY and some j > i such that (1) = 7. We claim that ¢ is the only permutation in
GU=Y N H=Y such that ¢(i) = j, for if 7 were another such permutation, then for every
k<i, 77 (k) = k, implying that 77 'p € GO N HY = {id}, and hence 7 = ¢.

Next, suppose ¢ is in GV~ N HE=Y such that (i) = j, for some j > i. Then consider
the permutation 7(¢, ™", (1 2)) in 7(S,). Clearly, 7(¢,¢~", (1 2)) € 7(GU=Y) N 7(HEY)

*Recall from the definitions that 7(Sn){(s,1),(j,2)) 15 the setwise stabilizer of {(i,1),(j,2)} in 7(5,) and
similarly (5%) {(i,2),(,1)} -

and 7(p, 97" (1 2)) maps (i,1) to (5,2) and maps (i,2) to (5,1). Thus 7(p, ™", (1 2)) is a
permutation in 7(S5,) that stabilizes both the sets {(z,1),(7,2)} and {(z,2), (j,1)}.

For the other direction, suppose there is a nontrivial permutation 7(¢1,92,%) in
(G N r(HDY N T(Sn)in.G.2y N 7(Sn) 2y, Notice that 7(pq, @2, %) must map
(1,1) to (j,2) and (1,2) to (j,1). For otherwise ¢ is fixed by both ¢ and ¢, forcing them both
to belong to G N HW = {id}. Furthermore, since ¢ is also forced to be id we have that
(1, @2,%) = @d, which is a contradiction. Therefore, it follows that ¢;(¢) = 7, and hence ¢4

is a nontrivial permutation in GU=Y N H-Y]

By following a similar argument as in Lemma 10 we can easily prove the following lemma.

Lemma 11 Let GO N HY = {id} and GV 0 HEY £ {id}. Then for any three elements
3, k.1 > 1, there is a (unique) permutation in GU=Y N HG=Y that maps i to j and k to I, if
and only if T(GU"V) N r(HOD) 07 (S iy 0 7(Sn)ii.2) Gy N 7 (Sn) k.-

Notice also that generator sets for the last two groups are easy to obtain, and by Theorem
5 we can obtain NC-efficient generator sets for G and H. From these generator sets it is easy
to compute generator sets for (G¢~Y)? and for (H(~Y)? in NC. The next theorem formalizes
these ideas.

Theorem 12 Given the groups G, H < S,,, described by generator sets, with GN H # {id},
a permutation ¢ 1 G N H different from the identity can be found by an NC algorithm that
makes one round of parallel queries to GINT .

Proof Suppose GN H # {id}, an algorithm to compute a permutation in the intersection
of the two groups works as follows: for every 4-tuple (i, 7, k, 1) with 1 <i < n,j > k> 1,
[> 1 and [# j, a bunch of processors checks whether

(G (B N (S iy 0 T((Sn) iy Gayy N 7(Sn) (ey.0.20}

is nontrivial.

We first compute NC-efficient generator sets for groups G and H. Now it is easy to
compute generator sets for each of the five groups in the above intersection in NC. Next, the
algorithm can check whether the intersection of these five groups is nontrivial by making a
suitable query to MULTINT. By Lemma 9, this query can be converted in logarithmic
space (and hence in NC) to a single query to GZNT. Let us fix the correct value of i
satisfying GO N H = {id} and GU=Y N HG=Y £ {id}. This value can easily be computed
since it is the largest value of ¢ such that a query (i, 7, k,[) for some value of j, k and [is
answered positively. The answer to the query (i, j, k,[) tells whether there is a permutation in
G N HE=Y mapping 7 to j and k to [. By Lemma 10, in case there is such a permutation
it must be unique, and therefore from the answers to all the queries (1, j, k,[) (for the fixed 7)
a permutation in G¢=Y N H=Y can be obtained. Notice that the algorithm actually needs
to makes these queries to MULTINT for all possible values of . Moreover, it can make
all the above-mentioned queries to MULTINT nonadaptively. It is not hard to see that
a nontrivial element in the intersection of G N H can be recovered from the query answers.
Notice that the algorithm makes in all O(n*) nonadaptive queries to GZNT and the rest of
its computation is in NC. |

4. Nonadaptive checking

For this section we introduce the following generalization of the wreath product of permuta-
tion groups.

Definition 13 Let G < S, for n € N be a permutation group and let m1 € S, be some
permutation. The m-wreath product 7.(G) is a permutation group of degree 2n acting on the
set [n] x [2]. Each element 7(g1, g2,) in 7=(G) is defined by elements g1, g2 € G and ¢ € S3.
The action of the permutation 7.(g1,¢92,¢) on [n] X [2] is defined as follows:

i. if o =1d then (g1, 92, 9){(i,1) = (¢1(7),1).

ii. if ¢ = id then Tx(g1, g2, 9){1,2) = (mgam™'(7),2).
dii. if o = (1 2) then 7(g1, 92, 9)(i, 1) = (mg1(7),2).
w. if o = (1 2) then (g1, g2, 9){1,2) = {gam~'(3), 1).

Notice that by setting 7 = id the m-wreath product gives us the usual wreath product
7(G) of G with S,.

Lemma 14 For any permutation group G < S,, and permutation m € S,
i. the set 7.(G) is indeed a subgroup of San.

it. The subgroup {7:(g1,92,1d) | 1,92 € G} of 7(G), when restricted to [n] x {1} is the
same as the group G, and when restricted to the set [n]x {2} is the same as the conjugate
group TGr~L.

Proof Since 7.(G) is clearly a subset of Sy,, we only need to show that 7.(G) is closed
under composition to prove that it is a group. Let 7.(x1,y1, 1) and 7-(22,y2, ¢2) be two
elements of 7.(G). We have to consider the following cases:

i. Suppose @1 = ¢y = td. Then 7.(x1,y1,0d)Tr (22, y2,1d){1, 1) = To(x1, 11, 1d)(22(2),1) =
(2122(1),1) = To(@122, Y12, 1d)(1, 1). Similarly, 7o (1, y1,1d) (22, Yo, id)(1, 2) =
Te(@1, g1, id)(myom™H(i), 2) = (my1y2m™ (1), 2) = Ta(@122, Y12, 1d)(i, 2).
It follows that 7 (@1, y1,id) (22, Y2, 1d) = To(T122, Y1y2, 1d).

ii. Suppose ¢1 = @y = (1 2). Then we have, 7.(x1,y1,(1 2))7r(22,y2, (1 2))(i,1) =
Tr(21, y1, (1 2))(mae(i),2) = (y122(0),1) = 7o(y122, ¥1y2,¢d){z,1). Similarly, we have,
To(T1,y1, (1 2)) (22, y2, (1 2))(1,2) = Tolzy,y1, (1 2)yem 1 (2), 1) = (ma1yen™,2) =
Tr (Y1, T1y2,1d) {1, 2).

It follows that 7 (@1, y1, (1 2))7e(22, Y2, (1 2)) = 7r (Y12, ¥1y2,id).

iii. We next consider the case p; = id and @z = (1 2).

Tﬂ'(xlvylvid)Tﬂ'(x%yZ?(l 2))<Z71> = Tﬂ(xlvylvid)<7rx2(i)72> = <7Ty1$2 J 72> Similarle
Tﬂ'(xlvylvid)Tﬂ'(x%yZ? (1 2))<Z72> = Tﬂ(xlvylvid)<y27r_1(i)7 1> = <$1y27T_1(i), 1>
It follows that 7. (@1, y1,id) (22, Y2, (1 2)) = T(vr122, 21Y2, (1 2)).

Similarly, the other case is symmetric and we have after working out that
Tﬂ'(xlv Y1, (1 2))7’,1-(1'2, Y2, Zd) = Tﬂ'(xlx% Y1y2, (1 2))

Thus, by the above calculations we have established that 7,.(G) is a subgroup of Sa,.
The second part of the lemma follows directly from the definition of 7.(G). 1

Let A C S, be a generator set for a group G < §,, and © € 5,, be some permutation.
We claim that a logarithmic space machine can compute from A and 7 a generator set for
7r((A)). To see this notice that a generator set for 7.((A4)) is

A = {791, 92,9) | g1, 92 € AU {id}, ¢ € So}.

Furthermore, notice that a logarithmic space machine can, for each element 7,.(¢g1, g2, ¢),
which is a permutation on [n] x [2], list out the 2n pairs of elements of [n] x [2] describing the
permutation 7:(g1, g2,). (The logarithmic space machine simply writes out the pairs using
Definition 13.) Thus a generator set for 7.({A)) can be computed in logarithmic space.

Now, in order to give an interactive proof system for GZNT we will make use of the Coset
Intersection problem.

COSET ={(A,B,m,n) | {r},A,BC S, m(A)N(B) #£ 0}.

The corresponding Coset Intersection Search problem is: given an instance (A, B,m,n),
if (A,B,m,n) € COSET, find ¢ € (A) such that m¢ € (B).

In particular, we need the ‘unique’ version of COSET , namely, the problem defined as:
UCOSET ={(A,B,m,n)|{r},A,BCS,,||=(A)N(B)|| =1}.

In the interactive proof system for GZN’T we give below, the prover has to actually solve
instances of the UCOSET problem. It turns out, as we show in the next results, that solving
the search problem for UCOSET can be reduced to GINT. We now prove the crucial result

of this section.

Theorem 15 There is a log-space computable function f such that if (A, B,m,n) € UCOSET
then f(A,B,m,n) = (C,D,m) € GINT such that (C) N (D) has ezactly one nontrivial
element. Moreover, given that nontrivial element in (C) N (D) the unique element in w(A) N
(B) can be computed in logarithmic space.

Proof
Let (A, B, m,n) be an instance of UCOSET . Let G denote (A) and H denote (B) respec-
tively. Consider the subgroups 7.(G) and 7(H) of S3, Then in holds:

Claim. (A,B,m,n) € UCOSET if and only if GN H = {id}, nGr~' N H = {id} and
(G)N7(H) # {id}.

10

Proof of Claim. We show first the direction from left to right. Suppose (A, B,m,n) €
UCOSET , this means that that there is a unique element ¢ € G and such that 7g = h € H.
For any element ¢ € G N H we have mg¢ = h¢. Since there is a unique element in 7G N H,
g¢ = g and it follows ¢ = id. Similarly, for an element ¢ € 7Gr~' N H, for some element
¢ € G it holds p = mg'm~!. Since mg = h we can substitute © by hg™! in the above equality
and obtain ¢g~'¢'g = h™'ph. Therefore h='ph belongs to GN H = {id} and it follows p = id.

We claim that the element 7,(g,¢7", (1 2)) € 7.(G) and 7(h,h7" (1 2)) € 7(H) are
the same element different from the identity in Sy, and therefore 7.(G) N 7(H) # {ud}.
In order to see this first notice that clearly both 7.(¢,¢7 ", (1 2)) and 7(h,h™* (1 2)) are
different from 2d because they map points with second component 1 to points with second
component 2 and vice-versa. Also, since 7g = h (and equivalently g~'7=* = h™'), we have
To(g, 071 (1 2)){(i, 1) = (mg(i),2) = (h(:),2) = 7(h, L' (1 2)){4, 1), for all i € [n]. Similarly,
(9,971 (1 2))(i,2) = (g7 77 (4),1) = (h7'(d),1) = 7(h, k™', (1 2)){(z,2), for all i € [n].
Thus 7(g,¢7*, (1 2)) = 7(h,h™*, (1 2)).

For the direction from right to left, let us suppose G N H = {id}, nGr~* N H = {id}
and 7.(G) N 7(H) # {id}. Observe first that 7G N H has at most one element since in case
there were two different elements hy,hy € H for which 7g; = h; and 7wg, = hy for some
elements ¢;, g, € G, we would have that hy'hy = ¢g;'¢y is a nontrivial element of G N H,
contradicting the hypothesis. Secondly, since we are supposing 7.(G) N 7(H) # {id} there
must be a nontrivial element 7(g1, g2, ¢) = 7(h1, h2,¢) in the intersection. We claim that ¢
cannot be the identity in Sy since if this were the case, then by the second part of Lemma 14
considering the action of the elements 7.(g1, g2, ¢) and 7(hq, h2, @), restricted to [n] x {1} and
[n] x {2} respectively, we get elements each in the group G N H and 7Gr~' N H respectively.
More precisely, we get g1 = hy € GNH and 7gon™! = hy € tGr 1N H, and by the hypothesis
we obtain the contradiction 7(¢1,¢92,%) = 7(h1, ha,¢) = td. Thus ¢ must be (1 2). Now, the
equality 7-(g1,92,¢) = T(h1, he,) immediately yields 7:(g1, g2, 9)(t,1) = 7(h1, ha,©){i,1)
which in turn implies 7g1(7) = hq(7) for all ¢ € [n], which shows that #G N H # (. This
proves the claim. a

Continuing with the proof of the theorem, we prove now that if (4, B,m,n) € UCOSET
then 7.(G)N7(H) has a unique nontrivial element from which the unique element in TAN B
can be obtained in logarithmic space. Observe that from this result, and the fact that
generator sets for 7.(G) and 7(H) can be computed from generator sets for G and H in
logarithmic space, the theorem follows.

In the above Claim we have seen that if there is a unique pair g € G, h € H with m1g = h
then GN H = {id}, nGr='* N H = {id}, and 7:(g,97",(1 2))r = 7(h, A7, (1 2)). If we are
given this element in 7.(G) N 7(H), we can easily read off (in logarithmic space) both ¢ and
h.

Therefore, we need to show that this is the only nontrivial element in 7.(G) N 7(H). Let
us suppose that there is another nontrivial element 7.(g1, 92, ¢) = 7(h1, ha, ¢). By the proof
of the above lemma we also know that ¢ must be the permutation (1 2). (g1, 92, ¢){(i,1) =
T(hi, ha, ©)(1,1) yields mg1(i) = hy(i) for all i € [n], and 7+(g1, 92,){t,2) = 7(h1, h2,9){1,2)
vields gom (i) = ha(7) for all i € [n]. Thus we have g, = h; and gom ' = hy. From this it
follows that ¢, = g and g, = ¢~ !, thus showing that 7,,(G)N7(H) contains a unique nontrivial

11

element. |

Notice that the Claim in Theorem 15 actually shows a logspace truth-table reduction
from UCOSET to GINT. Observe also that (A, B,n) € GIN'T if and only if (A4, B,id,n) ¢
UCOSET. We deduce the following corollary. The next corollary follows directly from the
firstone, Theorems 12 and 15.

Corollary 16 UCOSET is NC truth-table equivalent to GZNT.

Corollary 17 The search problem for UCOSET can be solved by an NC algorithm making
nonadaptive queries to GINT.

We now describe the interactive protocol for GINT.

Theorem 18 There is a two round interactive proof system for GINT with an NC verifier
and for which the honest prover can be simulated by an NC algorithm making one round of

parallel queries to GINT.

Proof

We first describe a two-round interactive proof system for GZN'T. Then we show for this
two-round interactive proof system, that it suffices to have a prover which is NC truth-table
reducible to GZNT.

Protocol for GINT:

i. Input (A4, B,n) (an instance of GZN'T).
ii. Verifier

(a) Compute NC-efficient strong generator sets A’ for (A) and B’ for (B) (using the
NC algorithm of [6]).

(b) Using private coins uniformly randomly pick # € (A’) and y € (B’) and send yx
to the prover.

iii. Prover: Solve the Coset Intersection Search problem for the instance (A, B',yx,n),
and send back a solution ¢ € (A').

iv. Verifier: Accept iff ¢ = y.

Observe first that all permutations of the form ny with n € (A)N(B) are solutions for the
COSET instance (A, B',yx,n). If (A) N (B) # {id} then the prover has to choose between
at least 2 equally likely possible solutions and the probability that ¢ = y is at most 1/2.
As in the Graph-Nonisomorphism protocol, this probability can be made exponentially small
by parallel repetition. On the other hand, for input instances (A, B,n) in GZIN'T, since
(AYyN(B) = {ud}, it holds for every x € (A) and y € (B) that (A, B,yx,n) is a ‘yes’ instance
of COSET with the additional property that ||yz(A’)N(B’)|| = 1. Thus, if (A)N(B) = {id},
it holds that (A, B, yx,n) is in UCOSET . From Corollary 17 it is clear that the prover can be
simulated by an NC algorithm with one round of parallel queries to GZA 7. This completes
the proof. |

12

Theorems 2 and 15, and the interactive protocol of Theorem 18 yield the following corol-
lary.

Corollary 19 GZINT has nonadaptive NC checkers.

5. Nonadaptive NC checkers for related problems

As mentioned in the introduction, in [3] an adaptive polynomial-time checker for Group
Intersection Generators is given. Using m-wreath products we prove in the following theorem
that the checker given in [3] can be modified to obtain a nonadaptive NC checker.

First notice that the polynomial-time adaptive checker described in [3] is developed in
two steps: first the authors give a 2-round IP protocol for the Group Intersection Generators
problem. In their protocol the prover is essentially the Group Factorization Search problem.
To complete the design of the checker it is shown in [3], using a result of [12], that the prover
in the above protocol can be simulated in polynomial-time with adaptive queries to Group
Intersection Generators. Furthermore, it can be seen that the verifier in [3] is essentially an
NC verifier.

Thus in order to get a nonadaptive NC checker from the above interactive protocol, it
suffices to show that the honest prover can be simulated by an NC algorithm with one round
of queries to Group Intersection Generators. We prove this below. More precisely, we show
that the verifier can in fact ask one (functional) query to Group Intersection Generators.”

The Group Factorization Search problem is defined as follows:

Given as input (A, B,m,n), where A, B C S, and 7 € S, if 7 € (A)(B) then output a
factorization m = ab, where a € (A) and b € (B), else output that = ¢ (A)(B).

We obtain the nonadaptive NC checker for Group Intersection Generators as a direct

consequence of the following result which is of independent interest.

Lemma 20 There is a log-space computable function f that maps an instance (A, B,m,n) of
Group Factorization Search to an instance f(A, B,m,n) = (X,Y,m) of Group Intersection
Generators such that, given a generator set S for (X)N(Y), it can be decided in logarithmic
space if m € (AY(B), and if so, a factorization of m in (A)(B) can also computed in NC.

Proof Let (A, B,m,n) be an instance of Group Factorization Search. Let G = (A) and
H = (B). Consider the m-wreath product 7.(H) and the wreath product 7(G) of H and
G respectively with Sy (as defined in Section 4.). Notice that both 7.(H) and 7(G) are
subgroups of 95,.

Claim. Let S be any generator set of 7.(H) N 7(G). Then, 7 € GH iff the generator set
S has an element b = To(h1, ha, @) = T(91,92,¢), where ¢ = (1 2). Moreover, for any such
generator in S, m has the factorization ™ = g.h".

Proof of Claim. Clearly, if the generator set S has an element v = 7,(hy,ha, @) =
7(g1, 92, 9), where ¢ = (1 2) then it follows by the definition of these elements that 7 = g;h7".
Conversely, suppose m € GH. Let m = gh be a factorization of w. Consider the element

>We are essentially exploiting the fact that Group Intersection Generators is a functional problem.

13

Y =71, (h7' 1y (1 2)) in 7 (H). It is easy to check that v = 7(g,¢7*, (1 2)) € 7(G). Hence it
follows that ¢ € 7,(H)N7(G). Now, since we have exhibited an element ¢ = 7,(h™", h, (1 2))
in 7.(H)N7(G), it is not possible that for all generators 7(h1, h2,¢) in S ¢ = id. Thus there
is some generator 7.(hy, ha,) = 7(g1, 92, ¢) in S with ¢ = (1 2). O

The required function f is now defined as follows: it maps the instance (A, B,m,n) to
(X,Y,2n) where X and Y are generator sets for 7.(H) and 7(G) respectively. It is easy to
see that f is logspace computable. It is also easy to see that, given a generator set S for
7-(H) N 7(G), we can pick an appropriate generator from it and compute a factorization of
7 in NC : each generator in S can be examined in parallel. And as explained in the above
claim, one of the generators in S will yield a factorization of m. The factorization itself can
be also easily computed in NC. This proves Lemma 20. |

Theorem 21 Group Intersection Generators has a nonadaptive NC' checker.

Proof It clearly suffices to see that we can transform the interactive protocol for Group
Intersection Generators given in [3] as follows: instead of the checker adaptively querying
the program in order to solve the search problem for Group Factorization, the checker (by
using the logspace computable function of Lemma 20) can solve the same search problem in
NC by making just one query to the purported program for Group Intersection Generators.
Furthermore, as observed in Lemma 20 the checker can also extract the solution to the search
problem in NC. Combining these components, we obtain the desired nonadaptive NC checker
for Group Intersection Generators. |

Remark. Notice that the above NC checker for Group Intersection Generators has the
property that it makes only a constant number queries (indeed just one query) to the program
being checked. Constant query checkers are highlighted in [1] as a notion of program checking
that are practically significant. As already mentioned, it is shown in [1] that GCD has
a constant query checker. The NC checker for Group Intersection Generators is another
nontrivial example of a constant query checker.

The following theorem, which is a technical adaptation of Corollary 4.1.2 in [3], immedi-
ately yields nonadaptive NC checkers for some problems that are NC truth-table equivalent
to GINT.

Theorem 22 Let A and B be two decision problems. If A and B are equivalent under NC
truth-table reductions and A has nonadaptive NC program checkers, then so does B.

In particular, from Corollary 16 we know that UCOSET is NC truth-table equivalent to
GINT. Another related problem is Unique Group Factorization: UFACT = {(A, B, m,n) |
{r},A,BC S,3 unique a € A,b € B: 7 = ab}. It is easy to see that (A, B,m,n) € UFACT
if and only if (B, A,m,n) € UCOSET . It follows that both problems are logspace many-one
equivalent.

Corollary 23 UCOSET and UFACT have nonadaptive NC program checkers.

14

6. Discussion

We have obtained nonadaptive NC program checkers for Group Intersection, Group Intersec-
tion Generators and some other related problems.

It is interesting to observe that for the Coset Intersection and Group Factorization prob-
lems, that are probably harder than GZN T, but easier than Group Intersection Generators,
we have nonadaptive NC checkers for their ‘unique’ solution versions. For the general ver-
sions, only adaptive program checkers are known [3]. The situation is summarized in the
next table. Group Intersection is nonadaptively reducible to Group Factorization and this
problem is in turn reducible to Group Intersection Generators. Nonadaptive reductions in
the other directions are not known.

‘ Problem ‘ Program Checkers ‘
Group Intersection nonadaptive, NC
Group Factorization adaptive, P [3]
Group Intersection Generators | (constant query) nonadaptive, NC

Finally, we note the striking similarity between the results of this paper and the check-
ability of Graph Automorphism, Graph Isomorphism and Graph Automorphism Generators:
from the results of [3] it follows that program checkers for all three problems exist. However,
a nonadaptive checker is only known for Graph Automorphism [14] (also see [8]). It is also
easy to show that Graph Automorphism Generators is nonadaptively NC checkable. Design-
ing a nonadaptive checker for Group Factorization (or Graph Isomorphism) appears to be a
challenging open question.

References

[1] L. A. ApLEmMAN, H. Huana, K. KompELLA, Efficient checkers for number-theoretic compu-
tations, Information and Computation, 121, 93-102, 1995.

[2] J. L. BALCAZAR, J. Diaz, J. GABARRO, Structural Complexity I & II, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, 1989.

[3] M. BrLumM, S. KanNaN, Designing programs that check their work, Journal of the ACM, 43
269-291, 1995.

[4] M. Brum, M. M. LuBy aND R. RUBINFELD, Self-testing/correcting with applications to
numerical problems, J. Comput. Syst. Sci. 47, 73-83, 1993.

[5] L. BaBAI AND L. ForRTNOW, Arithmetization: a new method in structural complexity theory,
Comput. Complexity 1 41-66, 1991.

[6] L. BaBar, E. LUKS AND A. SERrEss, Permutation Groups in NC, in Proc 19th ACM Sympo-
sium of Theory of Computing, 409-420, 1987.

15

[7] J. FEIGENBAUM, Locally random reductions in interactive complexity, in Advances of Com-
plexity Theory, DIMACS Series in Discrete Math. and Theoretical Computer Science, vol. 13,
73-98, AMS, Providence, 1993.

[8] L. ForTNOow S. KANNAN AND S. MAHANEY, Personal communication, 1993.

[9] M. FursT, J. HopcrorT, E. LuKks, Polynomial time algorithms for permutation groups, in
Proc. 21st IEEE Symposium on Foundations of Computer Science, 1980, 36—41.

[10] M. HaLL, The Theory of Groups, Macmillan, New York, 1959.
[11] F. HarRARY, Graph Theory, Addison Wesley, Reading, 1969.

[12] C. HOoFFMANN, Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Com-
puter Science #136, Springer, 1982.

[13] J. KOBLER, U. SCHONING, AND J. TORAN, Graph Isomorphism: its Structural Complexity,
Birkhiuser, Boston, 1992.

[14] A. LozaNo AND J. TORAN, On the nonuniform complexity of the graph isomorphism problem,
in Proceedings of the Structure in Complexity Theory Conference, 118-129, 1992.

[15] C. PapapimiTrRIOU, Computational Complexity, Addison Wesley, 1994.

[16] A. SHAMIR, IP=PSPACE, Journal of ACM, 39(4), 869-877, 1992.

16

