
A nonadaptive NC Checker for

Permutation Group Intersection

V� Arvind Jacobo Tor�an

Institute of Mathematical Sciences Theoretische Informatik

C� I� T� Campus Universit�at Ulm

Madras ��� ���	 India D
����� Ulm	 Germany

November �	 ����

Abstract

In this paper we design a nonadaptive NC checker for permutation group intersec�
tion� sharpening a result from Blum and Kannan ���� This is a consequence of two
results� First we show that a nontrivial permutation in the intersection of two given
permutation groups �described by lists of generators	 can be computed by an NC algo�
rithm with one round of parallel queries to the Group Intersection problem� Next we
design a two�round interactive proof system for the complement of the Group Intersec�
tion problem� for which the honest prover can be simulated by an NC algorithm with
one round of parallel queries to Group Intersection� As a consequence we also have
nonadaptive NC checkers for some related group�theoretic problems�

On the technical side� we de
ne a generalization of wreath products of permutation
groups� This product plays a crucial role in the design of the nonadaptive checkers�

�

�� Introduction

Motivated by the problem of program correctness and reliability� Blum and Kannan intro�
duced in ��� the concept of program checking� Rather than trying to prove a given program
correct for all inputs �which is the approach taken in the area of Program Veri	cation
� the
approach of program checking is to test and certify a given program for a given input instance�
More precisely� a program checker for a given program P is another program that for any
instance x of P decides whether the output of P on x is correct or whether P has errors �the
formal de	nition is given later in Section �
� In the course of checking P on x� the program
checker might also query the program P on instances di�erent from x�

Blum and Kannan in ��� and subsequent researchers� e�g� �� have shown that this is a
fundamental concept� In ��� � and several other papers� e�cient �in an appropriate sense
depending on the problem
 checkers have been designed for several nontrivial problems� In�
teresting connections between program checking and various other concepts in complexity
theory like� for example� interactive proof systems and random�self�reducibility ��� �� have
also been established� In particular� the following basic theorem is in ����

Theorem � �Checker Characterization Theorem�� ��� If a decision problem A and its comple�
ment have both interactive proof systems� in each of which the honest prover can be simulated
in polynomial time with queries to A� then A has a polynomial�time program checker�

Together with known results on interactive proofs ���� �� it follows that all the problems
that are complete for the classes PSPACE� PP or MODkP have polynomial�time checkers�

It is required of the checker that it be signi	cantly more e�cient than the program that
is being checked� This is a crucial aspect stressed by Blum and Kannan in ���� In this paper
we concentrate on two parameters for measuring the e�ciency of a program checker� 	rst� its
running time �not counting the time spent in calls to the program
� and next� the number of
adaptive calls made by the checker to the program� Ideally� we would like to design a checker
minimizing both these parameters� In particular� we consider nonadaptive NC checkers� I�e��
the program checker is a polynomial size circuit of polylogarithmic depth� with query gates at
each of which a call is made to the program being checked� The additional �nonadaptiveness�
property is that on every path from an input to the output gate in the circuit� there is at
most one query gate� Alternatively� and more suitable for the description of algorithms�
such program checkers can be seen as computed by synchronous PRAMs with a polynomial
number of processors in polylogarithmic time� Moreover� each processor is allowed to make
just one query to the program being checked� at a speci	c computation step� all at the same
time� The notion of NC checkers was also 	rst studied in ���� In fact� in ��� it is shown that
every P�complete problem has nonadaptive NC checkers�

When do problems have nonadaptive NC checkers� We state below a su�cient condition
which can be derived easily by adapting the above Checker Characterization Theorem�

Theorem � If a decision problem A and its complement have both ��round interactive proof
systems with randomized NC veri�ers� in each of which the honest prover can be simulated
in NC with nonadaptive queries to A� then A has a nonadaptive NC program checker�

�

The NC checkers in this paper are essentially designed by applying this theorem� As
the main result in this paper� we design a nonadaptive NC program checker for the Group
Intersection problem for permutation groups� and some other related permutation group
problems� Group Intersection is the following decision problem� given generator sets for two
permutation groups A � Sn and B � Sn for some n� decide if there is a nontrivial permutation
in A �B�

Formally� the language associated with the problem is�

GINT � f�A�B� n
j A�B � Sn and hAi � hBi �� fidgg�

As our main results� we present an NC algorithmwhich takes as input an instance �A�B� n

of GINT and with one round of queries to GINT it computes a nontrivial permutation in
hAi � hBi �in case one exists
� We also design a ��round interactive protocol for GINT in
which the honest prover can be simulated by an NC algorithm with one round of queries to
GINT � These results combined with Theorem � directly yields a nonadaptive NC checker
for GINT �

In Blum and Kannan ��� the authors design a polynomial�time� adaptive program checker
for a di�erent version of this problem� We will refer to the problem they consider as Group
Intersection Generators de	ned as follows�
Given generator sets for two permutation groups A � Sn and B � Sn for some n� compute a
generator set for A �B�

It is easy to see that Group Intersection Generators is computationally harder prob�
lem than Group Intersection �Group Intersection is easily reducible to Group Intersection
Generators
� However� as we see in this paper� designing a nonadaptive checker for Group
Intersection is more involved than for Group Intersection Generators� There is a heuristic
explanation for this phenomenon given in ���� It is argued that often it is easier to design
a checker for an extension of the problem than the problem itself� The extension problem�
although usually harder than the problem itself� is easier to check because there is more
information produced by the program output for the problem� Notice that this is precisely
the case with Group Intersection and Group Intersection Generators �which can be seen as
the extension problem in this case
� In fact� in ��� the authors highlight this point with a
di�erent important example� namely� the GCD problem� They show in a few lines that the
�Extended GCD� problem has an NC checker� leaving open the question whether GCD has
an NC checker� Indeed� only recently an NC checker has been designed for GCD based on
nontrivial number theory in �����

Likewise� since the problem Group Intersection Generators is an extension of Group In�
tersection� these problems also fall into a similar pattern� Indeed� as we show in this paper�
it turns out that we need some nontrivial permutation group theory in order to design a
nonadaptive NC checker for Group Intersection� In particular� in Section � we introduce a
novel notion of ��wreath product of permutation groups generalizing the well�known wreath
product ����� Using ��wreath products we are also able to design a nonadaptive NC checker
also for Group Intersection Generators� improving the result in ����

�In ���� actually an e�cient �constant�query	 sequential checker is designed� which also turns out to be
implementable in NC

�

We now summarize the plan of the paper� In Section � we give necessary de	nitions� and
in Section � we show that the search problem for GINT can be solved in parallel with non�
adaptive queries� In Section we describe the above�mentioned ��round interactive protocol
for GINT � Finally� in Section � we give nonadaptive NC checkers for Group Intersection
Generators and other related group problems�

�� Preliminaries and Notation

We denote the cardinality of a 	nite set X by jjXjj� Let N denote the set of natural numbers�
We denote by �n� the initial segment f�� �� � � � � ng of N�

This paper uses basic complexity�theoretic concepts like many�one reducibility� truth�table
reducibility� and interactive proof systems� These can be found in standard textbooks like�
for example� ��� ���� A reducibility that is not standard� but will be useful for our proofs� is
the NC truth�table reducibility�

De�nition � For two sets� A�B � ��� we say that A is NC truth�table reducible to B�
�A �NC

tt B
 if A can be computed by a uniform family of NC circuits with query gates for B�
with the additional property that on every path from an input to the output gate� there is
at most one query gate� If A �NC

tt B and B �NC
tt A� we say that A and B are NC truth�table

equivalent�

We now formally de	ne program checkers�

De�nition � ��� Let A be a decision problem� a program checker for A� CA� is a �probabilis�
tic
 algorithm that for any program P �supposedly for A
 that halts on all instances� for any
instance x of A� and for any positive integer k �the security parameter
 presented in unary�

i� If P is a correct program� that is� if P �x
 � A�x
 for all instances x� then with proba�
bility � � � ��k � CA�x� P� k
�Correct�

ii� If P �x
 �� A�x
 then with probability � �� ��k� CA�x� P� k
�Incorrect�

The probability is computed over the sequences of coin �ips that CA could have tossed�
Also CA is allowed to make queries to the program P on some instances�

We recall some group�theoretic de	nitions and 	x the notation� Details can be found� for
example� in ���� or any other text on group theory�

We denote groups by upper case letters and elements of the groups by lower case letters�
If X is a 	nite set� the symmetric group of X� SX denotes the set of permutations of elements
of X� If jjXjj � n then SX can be identi	ed with the group Sn of all permutations on �n�� The
identity permutation is denoted by id �we use id to denote the identity of all groups
� For
A � Sn� the permutation group generated by A is the smallest subgroup of Sn that contains
A and is denoted by hAi� In algorithmic group theory an input group G � Sn is usually
presented by a set of generators A � Sn� where� in turn� each generator � � A is represented
as a list of n pairs hi� ji � �n�	 �n�� describing it as a permutation on �n��

Let G and H be two groups� The expression H � G denotes that H is a subgroup of G�
If � is an element of G then the set H� � f�� � � � Hg is a subset of G called a right coset

of H in G� Two right cosets H��� H�� are either disjoint or equal� thus G can be partitioned
into right cosets of H in G� This is written as G � H�� �H�� � � � ��H�k�

The cardinality of any right coset of H is equal to the order of H and the set
f��� ��� � � � � �kg is called a complete right transversal for H in G�

If X � �n� and G � Sn� then the setwise stabilizer of X in G �denoted by GX
 is the set of
permutations in G mapping points in X to points in X� GX � f� � G �
x � X� ��x
 � Xg�

The pointwise stabilizer of �i� in G �denoted by G�i�
 is the set of permutations in G which
	x each element of �i�� i�e�� G�i� � f� � G �
x � �i�� ��x
 � xg�

Clearly� for any X � �n� and for any i � �n� the sets GX and G�i� are subgroups of
G� In particular� pointwise stabilizers play an important role in the design algorithms for
permutation group problems� A fundamental structure that is often exploited is the following
chain of stabilizers subgroups in G�

fidg � G�n� � G�n��� � � � � � G��� � G��� � G�

A crucial property is that the union of complete right transversals Ti for the groups G�i�

in G�i���� � � i � n� forms a generator set for G� Such a generator set is called a strong
generator set for G ���� A major result which we will use is that given a permutation group G
presented by a generator set� testing the membership of any permutation in G can be done
in NC ���� This theorem is stated below�

Theorem � ��� Let G � Sn given by a generating set K� There is an NC algorithm for
computing a strong generator set K� �

Sn
i�� Ti� where Ti is a complete right transversal for

G�i� in G�i���� � � i � n such that the following hold�

i� every element � � G can be expressed uniquely as a product � � ���� � � � �n with
�i � Ti�

ii� Given K�� membership in G of a given permutation can be tested in NC�

A generator set K� given by the above theorem is referred to as an NC�e	cient strong
generator set�

Another property of strong generator sets that we need is the following� Given a strong
generator set for a group G there is a randomized NC algorithm for sampling elements of G
uniformly at random� The algorithm works as follows� given a strong generator set for G� an
element � � G can be generated uniformly at random by picking one element �i uniformly
at random from each right transversal Ti and de	ning � as the product of all the �i�s� This
provides a uniform generation procedure because� as stated in Theorem �� every element of G
is uniquely expressible as such a product of elements from the strong generator set� Clearly�
this can be easily implemented by a randomized NC algorithm in logarithmic time�

We next recall two notions of group products which will be used in the proofs of our results�
the direct sum of permutation groups� and the wreath product of permutation groups�

De�nition � ���� Let G� � SX�
� G� � SX�

� � � � � Gk � SXk
be k permutation groups� The

direct sum of the groups G�� G�� � � �Gk denoted by �k
i��Gi is a permutation group that acts

on the disjoint union
Sk

i��Xi� and whose elements are written as k�tuples �g�� g�� � � � � gk
� for

�

gi � Gi� i � �k�� An element x in
Sk
i��Xi is permuted by �g�� g�� � � � � gk
 according to the

following rule

�g�� g�� � � � � gk
�x
 � gj�x
 if x � Xj

It is easy to check that �k
i��Gi is indeed a permutation group� As a useful example� let

G � Sn be a permutation group� and for some X � �n�� let GX denote the setwise stabilizer of
X in G� Then GX can be expressed as the intersection of G with the direct sum SX�S��n��X��

We next de	ne the wreath product of any group G � Sn with the permutation group S���

De�nition 	 ���� Let G � Sn be some permutation group� The wreath product of G and S��
which we denote by � �G
 is a permutation group that acts on the set �n�	 ���� The elements
of � �G
 are written as � �g�� g�� �
 for g�� g� � G and � � S�� where the permutation de�ned
by � �g�� g�� �
 on the set �n�	 ��� is as below

i� If � � id then � �g�� g�� �
hi� ji � hgj�i
� ji�
i � �n�� j � ����

ii� If � � �� �
 then � �g�� g�� �
hi� �i � hg��i
� �i and � �g�� g�� �
hi� �i � hg��i
� �i�
i � �n��

Remark Notice that given any group G � Sn presented by a generator set A� the following
set is a generator set for � �G
�

f� �g�� g�� �
 j g�� g� � A�� � S�g�

It is easy to design a logarithmic space machine	 that takes A as input and outputs the above
generator set for � �G
�

�� Nonadaptive witness search

In this section we show that the GINT search problem can be solved by an NC algorithm
doing parallel queries to GINT �

We 	rst need the following useful generalization of theGroup Intersection problem� namely
theMultiple Group Intersection problem� given the generator sets of A�� � � � � Ak � Sn of some
k subgroups of Sn decide whether

Tk
i��Ai �� fidg�

MULT INT � f�A�� � � � � Ak� n
 j A�� � � � � Ak � Sn�
Tk
i��Ai �� fidgg�

We 	rst show that MULT INT is log�space many�one equivalent to GINT � In order to
prove this result we need a new de	nition�

De�nition
 Let G be a subgroup of Sn� Then� for a positive integer k� the diagonal subgroup
Diagk�G
 of Skn induced by G is the set of permutations

Diagk�G
 � f�g�� g�� � � � � gk
 � �
k
i��G j �g � G �
i � �k� gi � gg�

�We do not give the general de�nition of wreath product between any two groups because we do not
require it and it is notationally elaborate
 It can be found� for example� in ����

�At various places in this paper� instead of showing NC computability we show the stronger logarithmic
space computability� for reasons of convenience

�

It is easy to check that Diagk�G
 is indeed a subgroup of Skn�

Lemma � MULT INT is log�space many�one equivalent to GINT �

Proof

Let �A�� � � � � Ak� n
 be an instance of MULT INT � Let G denote the subgroup �k
i��hAii

of Skn and let H denote the subgroup Diagk�Sn
 of Skn�

Claim� �A�� � � � � Ak� n
 � MULT INT i� G �H �� fidg�

Proof of Claim� If � �
Tk

i��hAii is a nontrivial element� then consider the element
� � ���� ��� � � � � �k
 � Diagk�Sn
 where
i � �k� �i � �� It is easy to verify from the
de	nition of the direct sum �k

i��hAii that � � G�
Conversely� if there is an element � � G � H� then by de	nition of Diagk�Sn
 there is

a permutation � � Sn such that � � ���� ��� � � � � �k
� where
i � �k� �i � �� and by the
de	nition of G� � �

Tk
i��hAii� This completes the proof of the claim� �

To establish the desired reduction it is enough to show that generator sets for the two
groups G and H can be computed from the instance �A�� � � � � Ak� n
 in logarithmic space�

For each Ai � Sn we de	ne a set of permutations A�
i � Skn as follows�

A�
i � f���� ��� � � � � �k
 � �k

i��Sn j �i � Ai and �j � id for j �� ig�
Let A �

Sk
j��A

�
i� Clearly A is a generator set for G�

Next pick a standard generator set S for Sn� say� S � f	�� 	�g with 	� � �� �
 and
	� � �� � � � � n
g� It is easy to see that H � Diagk�Sn
 is generated by the two elements ��

and �� of Skn� where �� � �	�� 	�� � � � � 	�
 and �� � �	�� 	�� � � � � 	�
�
Notice that the generator sets A and f��� ��g can be constructed in logarithmic space

with respect to the input size� Thus the reduction maps the instance �A�� � � � � Ak� n
 to
�A� f��� ��g� kn
� This completes the proof�

We show now how to 	nd a permutation in the intersection of two groups� G � H by
an NC algorithm which makes one round of parallel queries to GINT � For this we use the
wreath products � �G
 and � �H
 acting on the set of pairs �n�	 ����

Lemma � Let G�H � Sn and suppose G�i� � H�i� � fidg and G�i��� �H�i��� �� fidg� In
this case there is a unique permutation in G�i����H�i��� mapping i to some j
 i if and only
if � �G�i���
 � � �H�i���
 � � �Sn
fhi��i�hj��ig � � �Sn
fhi��i�hj��ig �� fidg�

Proof First� observe that since G�i��� �H�i��� �� fidg there is a permutation � � G�i��� �
H�i��� and some j
 i such that ��i
 � j� We claim that � is the only permutation in
G�i��� � H�i��� such that ��i
 � j� for if � were another such permutation� then for every
k � i� �����k
 � k� implying that ���� � G�i� �H�i� � fidg� and hence � � ��

Next� suppose � is in G�i��� � H�i��� such that ��i
 � j� for some j
 i� Then consider
the permutation � ������� �� �

 in � �Sn
� Clearly� � ������� �� �

 � � �G�i���
 � � �H�i���

�Recall from the de�nitions that � Sn�fhi��i�hj��ig is the setwise stabilizer of fhi� �i� hj� �ig in � Sn� and
similarly � Sn�fhi��i�hj��ig

�

and � ������� �� �

 maps hi� �i to hj� �i and maps hi� �i to hj� �i� Thus � ������� �� �

 is a
permutation in � �Sn
 that stabilizes both the sets fhi� �i� hj� �ig and fhi� �i� hj� �ig�

For the other direction� suppose there is a nontrivial permutation � ���� ��� �
 in
� �G�i���
 � � �H�i���
 � � �Sn
fhi��i�hj��ig � � �Sn
fhi��i�hj��ig� Notice that � ���� ��� �
 must map
hi� �i to hj� �i and hi� �i to hj� �i� For otherwise i is 	xed by both �� and �� forcing them both
to belong to G�i� � H�i� � fidg� Furthermore� since � is also forced to be id we have that
� ���� ��� �
 � id� which is a contradiction� Therefore� it follows that ���i
 � j� and hence ��

is a nontrivial permutation in G�i��� �H�i����

By following a similar argument as in Lemma �� we can easily prove the following lemma�

Lemma �� Let G�i� �H�i� � fidg and G�i��� �H�i��� �� fidg� Then for any three elements
j� k� l
 i� there is a �unique� permutation in G�i��� �H�i��� that maps i to j and k to l� if
and only if � �G�i���
 � � �H�i���
 � � �Sn
fhi��i�hj��ig � � �Sn
fhi��i�hj��ig � � �Sn
fhk��i�hl��i�

Notice also that generator sets for the last two groups are easy to obtain� and by Theorem
� we can obtain NC�e�cient generator sets for G and H� From these generator sets it is easy
to compute generator sets for �G�i���
� and for �H�i���
� in NC� The next theorem formalizes
these ideas�

Theorem �� Given the groups G� H � Sn� described by generator sets� with G�H �� fidg�
a permutation � in G �H di�erent from the identity can be found by an NC algorithm that
makes one round of parallel queries to GINT �

Proof Suppose G �H �� fidg� an algorithm to compute a permutation in the intersection
of the two groups works as follows� for every �tuple hi� j� k� li with � � i � n� j
 i� k
 i�
l � i and l �� j� a bunch of processors checks whether

� �G�i���
 � � �B�i���
 � � �Sn
fhi��i�hj��ig � � ��Sn
fhi��i�hj��ig � � �Sn
fhk��i�hl��ig

is nontrivial�
We 	rst compute NC�e�cient generator sets for groups G and H� Now it is easy to

compute generator sets for each of the 	ve groups in the above intersection in NC� Next� the
algorithm can check whether the intersection of these 	ve groups is nontrivial by making a
suitable query to MULT INT � By Lemma �� this query can be converted in logarithmic
space �and hence in NC
 to a single query to GINT � Let us 	x the correct value of i
satisfying G�i� �H�i� � fidg and G�i��� �H�i��� �� fidg� This value can easily be computed
since it is the largest value of i such that a query hi� j� k� li for some value of j� k and l is
answered positively� The answer to the query hi� j� k� li tells whether there is a permutation in
G�i��� �H�i��� mapping i to j and k to l� By Lemma ��� in case there is such a permutation
it must be unique� and therefore from the answers to all the queries hi� j� k� li �for the 	xed i

a permutation in G�i��� � H�i��� can be obtained� Notice that the algorithm actually needs
to makes these queries to MULT INT for all possible values of i� Moreover� it can make
all the above�mentioned queries to MULT INT nonadaptively� It is not hard to see that
a nontrivial element in the intersection of G �H can be recovered from the query answers�
Notice that the algorithm makes in all O�n

 nonadaptive queries to GINT and the rest of
its computation is in NC�

�

�� Nonadaptive checking

For this section we introduce the following generalization of the wreath product of permuta�
tion groups�

De�nition �� Let G � Sn for n � N be a permutation group and let � � Sn be some
permutation� The ��wreath product ���G
 is a permutation group of degree �n acting on the
set �n�	 ���� Each element ���g�� g�� �
 in ���G
 is de�ned by elements g�� g� � G and � � S��
The action of the permutation ���g�� g�� �
 on �n�	 ��� is de�ned as follows

i� if � � id then ���g�� g�� �
hi� �i � hg��i
� �i�

ii� if � � id then ���g�� g�� �
hi� �i � h�g�����i
� �i�

iii� if � � �� �
 then ���g�� g�� �
hi� �i � h�g��i
� �i�

iv� if � � �� �
 then ���g�� g�� �
hi� �i � hg�����i
� �i�

Notice that by setting � � id the ��wreath product gives us the usual wreath product
� �G
 of G with S��

Lemma �� For any permutation group G � Sn and permutation � � Sn

i� the set ���G
 is indeed a subgroup of S�n�

ii� The subgroup f���g�� g�� id
 j g�� g� � Gg of ���G
� when restricted to �n� 	 f�g is the
same as the group G� and when restricted to the set �n�	f�g is the same as the conjugate
group �G����

Proof Since ���G
 is clearly a subset of S�n� we only need to show that ���G
 is closed
under composition to prove that it is a group� Let ���x�� y�� ��
 and ���x�� y�� ��
 be two
elements of ���G
� We have to consider the following cases�

i� Suppose �� � �� � id� Then ���x�� y�� id
���x�� y�� id
hi� �i � ���x�� y�� id
hx��i
� �i �
hx�x��i
� �i � ���x�x�� y�y�� id
hi� �i� Similarly� ���x�� y�� id
���x�� y�� id
hi� �i �
���x�� y�� id
h�y�����i
� �i � h�y�y�����i
� �i � ���x�x�� y�y�� id
hi� �i�

It follows that ���x�� y�� id
���x�� y�� id
 � ���x�x�� y�y�� id
�

ii� Suppose �� � �� � �� �
� Then we have� ���x�� y�� �� �

���x�� y�� �� �

hi� �i �
���x�� y�� �� �

h�x��i
� �i � hy�x��i
� �i � ���y�x�� x�y�� id
hi� �i� Similarly� we have�
���x�� y�� �� �

���x�� y�� �� �

hi� �i � ���x�� y�� �� �

hy�����i
� �i � h�x�y����� �i �
���y�x�� x�y�� id
hi� �i�

It follows that ���x�� y�� �� �

���x�� y�� �� �

 � ���y�x�� x�y�� id
�

�

iii� We next consider the case �� � id and �� � �� �
�

���x�� y�� id
���x�� y�� �� �

hi� �i � ���x�� y�� id
h�x��i
� �i � h�y�x��i
� �i� Similarly�
���x�� y�� id
���x�� y�� �� �

hi� �i � ���x�� y�� id
hy�����i
� �i � hx�y�����i
� �i�

It follows that ���x�� y�� id
���x�� y�� �� �

 � ���y�x�� x�y�� �� �

�

Similarly� the other case is symmetric and we have after working out that
���x�� y�� �� �

���x�� y�� id
 � ���x�x�� y�y�� �� �

�

Thus� by the above calculations we have established that ���G
 is a subgroup of S�n�
The second part of the lemma follows directly from the de	nition of ���G
�

Let A � Sn be a generator set for a group G � Sn and � � Sn be some permutation�
We claim that a logarithmic space machine can compute from A and � a generator set for
���hAi
� To see this notice that a generator set for ���hAi
 is

A� � f���g�� g�� �
 j g�� g� � A fidg� � � S�g�

Furthermore� notice that a logarithmic space machine can� for each element ���g�� g�� �
�
which is a permutation on �n�	 ���� list out the �n pairs of elements of �n�	 ��� describing the
permutation ���g�� g�� �
� �The logarithmic space machine simply writes out the pairs using
De	nition ���
 Thus a generator set for ���hAi
 can be computed in logarithmic space�

Now� in order to give an interactive proof system for GINT we will make use of the Coset
Intersection problem�

COSET � f�A�B� �� n
 j f�g� A�B � Sn� �hAi � hBi �� �g�
The corresponding Coset Intersection Search problem is� given an instance �A�B� �� n
�

if �A�B� �� n
 � COSET � 	nd � � hAi such that �� � hBi�
In particular� we need the �unique� version of COSET � namely� the problem de	ned as�

UCOSET � f�A�B� �� n
 j f�g� A�B � Sn� jj�hAi � hBijj � �g�

In the interactive proof system for GINT we give below� the prover has to actually solve
instances of the UCOSET problem� It turns out� as we show in the next results� that solving
the search problem for UCOSET can be reduced to GINT � We now prove the crucial result
of this section�

Theorem �� There is a log�space computable function f such that if �A�B� �� n
 � UCOSET
then f�A�B� �� n
 � �C�D�m
 � GINT such that hCi � hDi has exactly one nontrivial
element� Moreover� given that nontrivial element in hCi � hDi the unique element in �hAi �
hBi can be computed in logarithmic space�

Proof

Let �A�B� �� n
 be an instance of UCOSET � Let G denote hAi and H denote hBi respec�
tively� Consider the subgroups ���G
 and � �H
 of S�n Then in holds�

Claim� �A�B� �� n
 � UCOSET if and only if G � H � fidg� �G��� � H � fidg and
���G
 � � �H
 �� fidg�

��

Proof of Claim� We show 	rst the direction from left to right� Suppose hA�B� �� ni �
UCOSET � this means that that there is a unique element g � G and such that �g � h � H�
For any element � � G �H we have �g� � h�� Since there is a unique element in �G �H�
g� � g and it follows � � id� Similarly� for an element � � �G��� � H� for some element
g� � G it holds � � �g����� Since �g � h we can substitute � by hg�� in the above equality
and obtain g��g�g � h���h� Therefore h���h belongs to G�H � fidg and it follows � � id�

We claim that the element ���g� g
��� �� �

 � ���G
 and � �h� h��� �� �

 � � �H
 are

the same element di�erent from the identity in S�n and therefore ���G
 � � �H
 �� fidg�
In order to see this 	rst notice that clearly both ���g� g��� �� �

 and � �h� h��� �� �

 are
di�erent from id because they map points with second component � to points with second
component � and vice�versa� Also� since �g � h �and equivalently g����� � h��
� we have
���g� g

��� �� �

hi� �i � h�g�i
� �i � hh�i
� �i � � �h� h��� �� �

hi� �i� for all i � �n�� Similarly�
���g� g��� �� �

hi� �i � hg������i
� �i � hh���i
� �i � � �h� h��� �� �

hi� �i� for all i � �n��
Thus ���g� g��� �� �

 � � �h� h��� �� �

�

For the direction from right to left� let us suppose G � H � fidg� �G��� � H � fidg
and ���G
 � � �H
 �� fidg� Observe 	rst that �G �H has at most one element since in case
there were two di�erent elements h�� h� � H for which �g� � h� and �g� � h� for some
elements g�� g� � G� we would have that h��

� h� � g��
� g� is a nontrivial element of G � H�

contradicting the hypothesis� Secondly� since we are supposing ���G
 � � �H
 �� fidg there
must be a nontrivial element ���g�� g�� �
 � � �h�� h�� �
 in the intersection� We claim that �
cannot be the identity in S� since if this were the case� then by the second part of Lemma �
considering the action of the elements ���g�� g�� �
 and � �h�� h�� �
� restricted to �n�	f�g and
�n�	f�g respectively� we get elements each in the group G�H and �G��� �H respectively�
More precisely� we get g� � h� � G�H and �g���� � h� � �G����H� and by the hypothesis
we obtain the contradiction ���g�� g�� �
 � � �h�� h�� �
 � id� Thus � must be �� �
� Now� the
equality ���g�� g�� �
 � � �h�� h�� �
 immediately yields ���g�� g�� �
hi� �i � � �h�� h�� �
hi� �i
which in turn implies �g��i
 � h��i
 for all i � �n�� which shows that �G � H �� �� This
proves the claim� �

Continuing with the proof of the theorem� we prove now that if hA�B� �� ni � UCOSET
then ���G
� � �H
 has a unique nontrivial element from which the unique element in �A�B
can be obtained in logarithmic space� Observe that from this result� and the fact that
generator sets for ���G
 and � �H
 can be computed from generator sets for G and H in
logarithmic space� the theorem follows�

In the above Claim we have seen that if there is a unique pair g � G� h � H with �g � h
then G � H � fidg� �G��� � H � fidg� and ���g� g��� �� �

� � � �h� h��� �� �

� If we are
given this element in ���G
 � � �H
� we can easily read o� �in logarithmic space
 both g and
h�

Therefore� we need to show that this is the only nontrivial element in ���G
 � � �H
� Let
us suppose that there is another nontrivial element ���g�� g�� �
 � � �h�� h�� �
� By the proof
of the above lemma we also know that � must be the permutation �� �
� ���g�� g�� �
hi� �i �
� �h�� h�� �
hi� �i yields �g��i
 � h��i
 for all i � �n�� and ���g�� g�� �
hi� �i � � �h�� h�� �
hi� �i
yields g�����i
 � h��i
 for all i � �n�� Thus we have �g� � h� and g��

�� � h�� From this it
follows that g� � g and g� � g��� thus showing that ���G
�� �H
 contains a unique nontrivial

��

element�

Notice that the Claim in Theorem �� actually shows a logspace truth�table reduction
from UCOSET to GINT � Observe also that �A�B� n
 � GINT if and only if �A�B� id� n
 ��
UCOSET � We deduce the following corollary� The next corollary follows directly from the
	rstone� Theorems �� and ���

Corollary �� UCOSET is NC truth�table equivalent to GINT �

Corollary �	 The search problem for UCOSET can be solved by an NC algorithm making
nonadaptive queries to GINT �

We now describe the interactive protocol for GINT �

Theorem �
 There is a two round interactive proof system for GINT with an NC veri�er
and for which the honest prover can be simulated by an NC algorithm making one round of
parallel queries to GINT �

Proof

We 	rst describe a two�round interactive proof system for GINT � Then we show for this
two�round interactive proof system� that it su�ces to have a prover which is NC truth�table
reducible to GINT �

Protocol for GINT �

i� Input �A�B� n
 �an instance of GINT
�

ii� Veri�er

�a
 Compute NC�e�cient strong generator sets A� for hAi and B� for hBi �using the
NC algorithm of ���
�

�b
 Using private coins uniformly randomly pick x � hA�i and y � hB�i and send yx
to the prover�

iii� Prover� Solve the Coset Intersection Search problem for the instance �A�� B�� yx� n
�
and send back a solution � � hA�i�

iv� Veri�er� Accept i� � � y�

Observe 	rst that all permutations of the form 	y with 	 � hAi�hBi are solutions for the
COSET instance �A�� B �� yx� n
� If hAi � hBi �� fidg then the prover has to choose between
at least � equally likely possible solutions and the probability that � � y is at most ����
As in the Graph�Nonisomorphism protocol� this probability can be made exponentially small
by parallel repetition� On the other hand� for input instances �A�B� n
 in GINT � since
hAi � hBi � fidg� it holds for every x � hAi and y � hBi that hA�B� yx� ni is a �yes� instance
of COSET with the additional property that jjyxhA�i�hB�ijj � �� Thus� if hAi�hBi � fidg�
it holds that hA�B� yx� ni is in UCOSET � From Corollary �� it is clear that the prover can be
simulated by an NC algorithm with one round of parallel queries to GINT � This completes
the proof�

��

Theorems � and ��� and the interactive protocol of Theorem �� yield the following corol�
lary�

Corollary �� GINT has nonadaptive NC checkers�

�� Nonadaptive NC checkers for related problems

As mentioned in the introduction� in ��� an adaptive polynomial�time checker for Group
Intersection Generators is given� Using ��wreath products we prove in the following theorem
that the checker given in ��� can be modi	ed to obtain a nonadaptive NC checker�

First notice that the polynomial�time adaptive checker described in ��� is developed in
two steps� 	rst the authors give a ��round IP protocol for the Group Intersection Generators
problem� In their protocol the prover is essentially the Group Factorization Search problem�
To complete the design of the checker it is shown in ���� using a result of ����� that the prover
in the above protocol can be simulated in polynomial�time with adaptive queries to Group
Intersection Generators� Furthermore� it can be seen that the veri	er in ��� is essentially an
NC veri	er�

Thus in order to get a nonadaptive NC checker from the above interactive protocol� it
su�ces to show that the honest prover can be simulated by an NC algorithm with one round
of queries to Group Intersection Generators� We prove this below� More precisely� we show
that the veri	er can in fact ask one �functional
 query to Group Intersection Generators��

The Group Factorization Search problem is de	ned as follows�
Given as input �A�B� �� n
� where A�B � Sn and � � Sn� if � � hAihBi then output a
factorization � � ab� where a � hAi and b � hBi� else output that � �� hAihBi�

We obtain the nonadaptive NC checker for Group Intersection Generators as a direct
consequence of the following result which is of independent interest�

Lemma � There is a log�space computable function f that maps an instance �A�B� �� n
 of
Group Factorization Search to an instance f�A�B� �� n
 � �X�Y�m
 of Group Intersection
Generators such that� given a generator set S for hXi � hY i� it can be decided in logarithmic
space if � � hAihBi� and if so� a factorization of � in hAihBi can also computed in NC�

Proof Let �A�B� �� n
 be an instance of Group Factorization Search� Let G � hAi and
H � hBi� Consider the ��wreath product ���H
 and the wreath product � �G
 of H and
G respectively with S� �as de	ned in Section �
� Notice that both ���H
 and � �G
 are
subgroups of S�n�

Claim� Let S be any generator set of ���H
 � � �G
� Then� � � GH i� the generator set
S has an element � � ���h�� h�� �
 � � �g�� g�� �
� where � � �� �
� Moreover� for any such
generator in S� � has the factorization � � g�h

��
� �

Proof of Claim� Clearly� if the generator set S has an element � � ���h�� h�� �
 �
� �g�� g�� �
� where � � �� �
 then it follows by the de	nition of these elements that � � g�h

��
� �

Conversely� suppose � � GH� Let � � gh be a factorization of �� Consider the element

�We are essentially exploiting the fact that Group Intersection Generators is a functional problem

��

� � ���h��� h� �� �

 in ���H
� It is easy to check that � � � �g� g��� �� �

 � � �G
� Hence it
follows that � � ���H
�� �G
� Now� since we have exhibited an element � � ���h��� h� �� �

in ���H
�� �G
� it is not possible that for all generators ���h�� h�� �
 in S � � id� Thus there
is some generator ���h�� h�� �
 � � �g�� g�� �
 in S with � � �� �
� �

The required function f is now de	ned as follows� it maps the instance �A�B� �� n
 to
�X�Y� �n
 where X and Y are generator sets for ���H
 and � �G
 respectively� It is easy to
see that f is logspace computable� It is also easy to see that� given a generator set S for
���H
 � � �G
� we can pick an appropriate generator from it and compute a factorization of
� in NC � each generator in S can be examined in parallel� And as explained in the above
claim� one of the generators in S will yield a factorization of �� The factorization itself can
be also easily computed in NC� This proves Lemma ���

Theorem �� Group Intersection Generators has a nonadaptive NC checker�

Proof It clearly su�ces to see that we can transform the interactive protocol for Group
Intersection Generators given in ��� as follows� instead of the checker adaptively querying
the program in order to solve the search problem for Group Factorization� the checker �by
using the logspace computable function of Lemma ��
 can solve the same search problem in
NC by making just one query to the purported program for Group Intersection Generators�
Furthermore� as observed in Lemma �� the checker can also extract the solution to the search
problem in NC� Combining these components� we obtain the desired nonadaptive NC checker
for Group Intersection Generators�

Remark� Notice that the above NC checker for Group Intersection Generators has the
property that it makes only a constant number queries �indeed just one query
 to the program
being checked� Constant query checkers are highlighted in ��� as a notion of program checking
that are practically signi	cant� As already mentioned� it is shown in ��� that GCD has
a constant query checker� The NC checker for Group Intersection Generators is another
nontrivial example of a constant query checker�

The following theorem� which is a technical adaptation of Corollary ���� in ���� immedi�
ately yields nonadaptive NC checkers for some problems that are NC truth�table equivalent
to GINT �

Theorem �� Let A and B be two decision problems� If A and B are equivalent under NC
truth�table reductions and A has nonadaptive NC program checkers� then so does B�

In particular� from Corollary �� we know that UCOSET is NC truth�table equivalent to
GINT � Another related problem is Unique Group Factorization� UFACT � f�A�B� �� n
 j
f�g� A�B � Sn� unique a � A� b � B � � � abg� It is easy to see that �A�B� �� n
 � UFACT
if and only if �B�A� �� n
 � UCOSET � It follows that both problems are logspace many�one
equivalent�

Corollary �� UCOSET and UFACT have nonadaptive NC program checkers�

�

�� Discussion

We have obtained nonadaptive NC program checkers for Group Intersection� Group Intersec�
tion Generators and some other related problems�

It is interesting to observe that for the Coset Intersection and Group Factorization prob�
lems� that are probably harder than GINT � but easier than Group Intersection Generators�
we have nonadaptive NC checkers for their �unique� solution versions� For the general ver�
sions� only adaptive program checkers are known ���� The situation is summarized in the
next table� Group Intersection is nonadaptively reducible to Group Factorization and this
problem is in turn reducible to Group Intersection Generators� Nonadaptive reductions in
the other directions are not known�

Problem Program Checkers

Group Intersection nonadaptive� NC
Group Factorization adaptive� P ���

Group Intersection Generators �constant query
 nonadaptive� NC

Finally� we note the striking similarity between the results of this paper and the check�
ability of Graph Automorphism� Graph Isomorphism and Graph Automorphism Generators�
from the results of ��� it follows that program checkers for all three problems exist� However�
a nonadaptive checker is only known for Graph Automorphism ��� �also see ���
� It is also
easy to show that Graph Automorphism Generators is nonadaptively NC checkable� Design�
ing a nonadaptive checker for Group Factorization �or Graph Isomorphism
 appears to be a
challenging open question�

References

��� L� A� Adleman� H� Huang� K� Kompella� E�cient checkers for number�theoretic compu�
tations� Information and Computation� ���� ������ ���

��� J� L� Balc�azar� J� D��az� J� Gabarr�o� Structural Complexity I � II� EATCS Monographs
on Theoretical Computer Science� Springer�Verlag� ���

��� M� Blum� S� Kannan� Designing programs that check their work� Journal of the ACM� ��

������ ���

��� M� Blum� M� M� Luby and R� Rubinfeld� Self�testing�correcting with applications to
numerical problems� J� Comput� Syst� Sci� ��� ������ ���

��� L� Babai and L� Fortnow� Arithmetization� a new method in structural complexity theory�
Comput� Complexity � ������ ���

��� L� Babai� E� Luks and �A� Seress� Permutation Groups in NC� in Proc ��th ACM Sympo�

sium of Theory of Computing� ������� ����

��

��� J� Feigenbaum� Locally random reductions in interactive complexity� in Advances of Com�

plexity Theory� DIMACS Series in Discrete Math� and Theoretical Computer Science� vol� ���
����� AMS� Providence� ���

��� L� Fortnow S� Kannan and S� Mahaney� Personal communication� ���

�� M� Furst� J� Hopcroft� E� Luks� Polynomial time algorithms for permutation groups� in
Proc� ��st IEEE Symposium on Foundations of Computer Science� ���� ������

���� M� Hall� The Theory of Groups� Macmillan� New York� ���

���� F� Harary� Graph Theory� Addison Wesley� Reading� ���

���� C� Hoffmann� Group�Theoretic Algorithms and Graph Isomorphism� Lecture Notes in Com�
puter Science ����� Springer� ����

���� J� K�obler� U� Sch�oning� and J� Tor�an� Graph Isomorphism	 its Structural Complexity�

Birkh�auser� Boston� ���

���� A� Lozano and J� Tor�an� On the nonuniform complexity of the graph isomorphism problem�
in Proceedings of the Structure in Complexity Theory Conference� ������� ���

���� C� Papadimitriou� Computational Complexity� Addison Wesley� ���

���� A� Shamir� IP�PSPACE� Journal of ACM� ���	� ������� ���

��

