*

Pattern Matching in Trace Monoids

Jochen Messner
Abt. Theoretische Informatik,
Universitat Ulm,
89069 Ulm, Germany

February 13, 1997

Abstract

An algorithm is presented solving the factor problem in trace monoids.
Given two traces represented by words, the algorithm determines in
linear time whether the first trace is a factor of the second one. The
space used for this task is linear in the length of the first word. Similar
to the Knuth-Morris-Pratt Algorithm for the factor problem on words,
the algorithm simulates a finite automaton determined by the first
word on the second word. To develop the algorithm, we examine
overlaps of two traces, and show that they form a lattice. Finally we
investigate the lattice of extensible trace pairs (which represent still
extensible prefixes of a searched factor appearing in some other trace),
because of their close relations to the structures used by the algorithm.

1 Introduction

The pattern matching problem in free monoids is an extensively studied
problem in computer science. For two words v,z € A* it is asked whether
there are words u, w € A* such that x = uvw, i.e., it is asked whether v is
a factor of x. There are several linear time algorithms solving the problem.
The algorithm which was given by Knuth, Morris, and Pratt [14] has close
connections to the theory of finite automata (see [1]): First from the first
word v a so called failure function is computed as a table in time linear to
the length of v; after this first stage the failure function is used to simulate
on the second word in linear time a finite automaton accepting the language

*An extended abstract of this paper appears in [17].

A* v A" = {uvw | u,w € A*}. Altogether the time used is linear in the
input size, and even does not depend on the size of the alphabet, because
the automaton is not constructed explicitly.

In this paper we use a quite similar approach to the factor problem in trace
monoids. Trace monoids, also called free partially commutative monoids,
have been studied in combinatorics in [3]. In [16] Mazurkiewicz considered
them as a suitable mathematical model for concurrent systems. Given a finite
set of actions (an alphabet), some of the actions are considered independent
(e.g., they may use different resources). Because the order of independent ac-
tions is irrelevant, one identifies sequences of actions (i.e., words) which can
be made equivalent by exchanging adjacent independent actions. This yields
an equivalence relation ~; on those words which is, in fact, a congruence; a
congruence class is called trace, consequently the monoid of the congruence
classes is called trace monoid. It is determined uniquely by the generat-
ing alphabet and the relation I of independent letters. The free monoid is
obtained as a special case, when all letters are dependent. Trace monoids
have been studied in many publications. Good starting points are [8], [9],
and [7].The factor problem in a trace monoid M is to decide for two words,
whether the trace [, represented by the first word, is a factor of the trace t,
represented by the second word (where [is called factor of ¢, when ¢ = pls
for some traces p, s). A linear-time algorithm for the problem using space
linear in the input size was given in [15]. This space-complexity is not al-
ways desirable. So, for example, a control component of a concurrent system
may need to recognize certain subsequences in a sequence of actions (modulo
independence) without remembering all executed actions. Therefore we con-
sider in this paper an approach more closely related to finite automata. From
the first word v, in a first stage, several structures are computed in linear
time. These structures are used in the second stage to simulate on the sec-
ond word a finite automaton recognizing the language {x € A* | x ~; uvw
for some words w,w} which is the set of words representing the traces in
M-1-M = {pls | p,s € M}. The time used for this simulation is linear
in the length of the second word such that altogether the algorithm needs
linear time. Because of the similarity we consider the presented algorithm as
a generalization of the Knuth-Morris-Pratt Algorithm to trace monoids, al-
though there is in general no correspondent to the failure function for traces
(cf. [18] for related results). Already in [13] Hashiguchi and Yamada had this
approach. However, the algorithm they proposed to solve the factor problem
produces an incorrect answer in some cases as we show by an example. The
observation of this error was the reason for the investigations presented in
this paper. And in fact, one may see our results as a correction of the results
of Hashiguchi and Yamada.

The organization of the paper is as follows: We first introduce basic
notions. A representation of traces is obtained by the general embedding
theorem using projections. In Section 3 we study the set of prefixes and
suffixes of some trace. Both sets form lattices with the prefix (resp. suffix)
orders. We observe that projections are morphisms for those lattices which
allows us to deduce easily that the intersection of a set of prefixes with a set
of suffixes (called overlaps of two traces) still forms a lattice. Using these
results, we finally develop a finite automaton recognizing the language of
traces containing a given trace [as a suffix. In Section 4 we present an
algorithm computing the transition function of this automaton which allows
us to simulate the automaton in linear time. This simulation solves the suffix
problem (the algorithm was already given in [13], we obtain an improved
time-complexity). In Section 5 we obtain a finite automaton recognizing the
traces containing a given trace [as a factor. A linear-time simulation of this
automaton solves the factor problem. However, for some trace monoids the
simulation presented needs time and space exponential in the alphabet-size.
In Section 6 we investigate extensible trace pairs which have close relations to
the states reached in the automaton. We show that they form a lattice—an
observation which may lead to an improvement of the presented algorithm
remaining efficient even when the alphabet is a part of the input.

Although the main purpose of this paper is the investigation of the factor
problem, the results obtained for overlaps (cf. [18]) and extensible trace pairs
(cf. [13]) are interesting on their own.

2 Preliminaries

In the following, the basic notions for trace monoids are given. A suitable
representation of traces is obtained by the embedding theorem, which allows
us to represent a trace uniquely by a tuple of words. We also give some
notations on finite automata and a very brief description of some properties
of the pattern-matching algorithm of Knuth, Morris, and Pratt. As we use
standard notions of [2], we give no introduction to lattice or poset theory,
here.

2.1 Free Partially Commutative Monoids

Let denote A a finite alphabet, A* the free monoid generated by A, and A
the empty word of A*. |A| denotes the number of letters in A. For any
word w € A*, |w| denotes its length. The alphabet of a word w is the set
alph(w) = {a € A | w = uav} of letters actually appearing in w.

3

By D C Ax A we denote throughout this paper a reflexive and symmetric
dependence relation. Its complement I = (A x A) — D is called independence
or commutation relation. The graph (A4,D) is called dependence alphabet.
Let ~; be the congruence over A* which is generated by the equivalences
ab ~ ba for (a,b) € I. The monoid of the congruence classes is the free par-
tially commutative monoid M(A,D) = A*/ ~;. Following Mazurkiewicz [16]
a congruence class t € M(A,D) is called a trace, consequently M(A,D) is also
called trace monoid. The neutral element, the class of the empty word, is
called empty trace and denoted by A, too; a letter a € A may denote the
trace [a].,. The notions of the length and the alphabet of a word can be
transfered to traces, as they are invariant for words representing the same
trace. Traces t1,ts are said to be independent when alph(¢;) x alph(ty) C I;
in this case ¢ty = tat;. For a subset B C A, D(B) = {a € A (a,b) € D for
some b € B} denotes the set of letters dependent from B; for a € A we just
write D(a) instead of D({a}).

A trace | € M(A,D) is called factor of t € M(A,D), when ¢t = pls for
some traces p,s € M(A,D); [is called prefix (suffix) of ¢ when p (resp.
s) can be chosen to be A. The set of prefixes (suffixes) of ¢ is denoted
by Pre(t) (resp. Suf(¢)). Levi’s Lemma on factorizations of words has the
following generalization for traces. For a proof of Proposition 2.1 see |7,
Proposition 1.3.1] (see also [6]). Note as a consequence that trace monoids
are cancellative.

Proposition 2.1 Let p,s,p, s’ € M(A,D) with ps = p's. Then there are
uniquely determined traces x,y,y’z € M(A,D) with alph(y) x alph(y’) C I
andp =zy, p =xy', s=y'z and s’ = yz.

A graph H = (A'D’) is called subgraph of (A,D), denoted by H C (A,D),
when A" C A, and D' C D is a reflexive and symmetric relation. Intersec-
tion and union of subgraphs is defined on the components. A family G of
subgraphs of (A,D) is called covering, when (A4,D) = [Jgc; G. A subset S
of P(A), where P(A) is the set of all subsets of A, may denote the family
{(B, D) | B € S} and is called covering accordingly. Cliques are subgraphs
of the form (C,C x C) = (C, D|¢) for some C C A, they are simply rep-
resented by the set C' C A. A covering consisting only of cliques, is called
clique-covering. The set {{a,b} | (a,b) € D} is a trivial clique-covering of
(A,D).

For a subgraph H = (A'D’) of (A,D), m; denotes the projection of
M(A,D) onto M(A"D"), i.e., 7y : M(A,D) — M(A’D’) is an homomorphism
such that for a € A, m,(a) = aif a € A’ and 7, (a) = A else. For B C A, we
use 75 to denote T(5,0|5): where Dy = DN (B x B). The a-length of a trace

4

t € M(A,D) is given by the length of its {a}-projection, |t|, = |74, (t)|, for
a € A,

Proposition 2.2 is a generalization of [6, Proposition 1.1] given in [7],
where it was called general embedding theorem. It allows us to represent
a trace t € M(A,D) uniquely by a tuple of traces containing fewer letters.
[I; M; denotes the direct product of the monoids M;. An element of [[, M, is
uniquely denoted by (t;); with t; € M;; the multiplication in [[, M; is defined
on the components: (;); - (s;); = (i - i)

Proposition 2.2 Let G be family of subgraphs of (A,D). G is a covering
if, and only if, the mapping © : M(A,D) — [[neq M(G) defined by m(t) =
(7a(t))geg is an embedding (i.e., an injective homomorphism,).

For a covering G of (A,D) we call the tuple (7 (t))geg the tuple-representative
of t € M(A,D). Extending terminology of [4], a tuple which is a tuple-
representative of some trace is called reconstructible. Choosing G to be a
clique-covering, we obtain a version of Proposition 2.2 already given in [10]
which allows us to represent a trace uniquely by a tuple of words. Clearly,
this tuple is computable in time linear to its size, given a word representing
the trace (as the model of computation we generally assume a RAM (see [19])
with a uniform cost criteria, i.e., space is determined by the number of used
registers and time is the number of operations executed. This is a realistic
assumption, as in all algorithms of this paper, the number stored in any
register is not bigger than the number of registers used by the algorithm.
For a fixed alphabet A the presented algorithms can even be implemented
on a multi-tape Turing machine with the stated time- and space-bounds).

2.2 Automata

A (nondeterministic) finite automaton, shortly called automaton, is a tuple
A =(Q,A,0d, q,F) consisting of the finite state-set), the alphabet A, the
transition relation 6 C) x A x @), the initial state ¢y € Q, and the set of
final states FF C). A can be seen as an edge-labeled graph with vertices
Q, where (p,a,q) € ¢ is an edge from p to ¢ labeled a. For w € A* we
write p—-,¢, when in A there is a path from p to ¢ labeled w (w = X
implies p = ¢). A language L C A* is said to be recognized by A, when
L =Uerfw € A" | g0}

An automaton A is called M(A,D)-automaton, when p—=,q implies
p—L3,q for any v ~; w. In this case we simply write p—, ¢, where ¢ = [w].,
is the trace represented by w. L = {Jp{t € M(4,D) | qo—3.q} is the
trace language recognized by the M(A,D)-automaton A. A trace language
L C M(A,D) is called recognizable, when L is recognized by some finite

5

M(A,D)-automaton. For languages Ly, Ly C M(A,D), the concatenation
Ly Ly ={lily | I} € Ly and Iy € Ly} is defined on the elements. We also
write L - [for L - {l}. It is known that the concatenation of recognizable
trace-languages is constructively recognizable (see Theorem 5.1).

See [11] for a definition of deterministic, complete, and minimal deter-
ministic automata.

2.3 The Algorithm of Knuth-Morris-Pratt

By the Algorithm of Knuth-Morris-Pratt (see [14], [1]) it is decidable in
linear time, whether a word v € A* is a factor of the word w € A* using
O(Jv|) space. The basis of the algorithm is the so called failure function
by : Pre(v) — {\} — Pre(v), where ¢,(p) is the longest word s # p which is
both, a prefix and a suffix of p. The failure function ¢, can be calculated as a
table in time linear to |v| (notice, a prefix p of v may be uniquely represented
by its length [p]).

The complete, deterministic automaton A, = (Pre(v), A, ¢,, A, v), where
for p € Pre(v), a € A, p,(p, a) is the longest word in Pre(v) N Suf(pa), is the
minimal automaton recognizing the language A* - v. Using the failure func-
tion ¢,, the transition function ¢, is computable efficiently by the following
relationship

pa if pa € Pre(v),
op(p,a) = A if p= A and a ¢ Pre(v),
©u(Pu(p),a) else.
Using this relations the computation of ¢,(p, a) needs, for any prefix p of v,
and any a € A, time linear to the number of times the failure function is

used in the computation. Because each use of ¢, shortens the input to ¢,,
the time used is linearly bounded by |pa| — |¢,(p, a)|.

3 Prefixes and Suffixes

We examine now the set of prefixes and the set of suffixes of some trace. For
[,t € M(A,D), we write | <, t (I <, t), when [is a prefix (resp. suffix) of t.
It is clear that <, and <, are partial orders. See [12] for an investigation of
the poset (M(A,D), <,).

3.1 Prefix and Suffix Lattices

Lemma 3.1 shows that the structures (Pre(l), <,) and (Suf(l), <;) are lattices
for any trace [. The statement for the prefix-case can be found in [5], the

6

result for suffixes is obtained by symmetry.

Lemma 3.1 Let t,t' € M(A,D) both be prefizes (suffizes) of the same trace.
Then there are uniquely determined traces x,y,y € M(A,D) with alph(y) X
alph(y') C I, t = xy, and t' = zy' (resp. t = yx, and t' = y'x). Further,
x 18 the greatest lower bound for t and t' in the prefiz (resp. suffiz) order
in M(A,D) and zyy' (resp. yy'x) is the least upper bound for t and t' in the

prefiz (resp. suffiz) order.

In the following the least upper bound of ¢ and ¢’ in the prefix (suffix) order
is denoted by ¢ LI, ' (respectively ¢ LI, t'), the greatest lower bound by ¢, ¢
(respectively tMMs¢"). We say that ¢L,¢" is not defined, when there is no trace
s such that t <, s and # <, s (similar for Ll,).

Because projections are monoid homomorphisms, they are poset mor-
phisms with respect to the prefix and the suffix order. Also independence
of traces is preserved by projections. We obtain that projections are also
morphisms for the lattices of prefixes (resp. suffixes):

Lemma 3.2 Let t,t' € M(A,D) such that tU,t" (resp. tUst') is defined. Let
G C (A,D). Then ma(tUpt") = me(t)Upyma(t'), and me(tM,t") = mq () M, ma(t)
(respectively, mq(t Ust") = mq(t) Us me(t') and mg(t Mg t') = me(t) Mg ma(t')).

Proof. Let z,y,y" € M(A,D) be such that t = zy, t' = zy’ and alph(y) x
alph(y') C I (by Lemma 3.1 these values exist if ¢ LI, t' is defined). Let G =
(A'D") C (A,D),and I' = (A’x A")—D'. Because 7 is an homomorphism, we
have 74 (t) = g (2)76(y), and 74 (t') = me(x)me(y'). Observe mq(y)xme(y') C
I,y C I'. Using Lemma 3.1 in the monoid M(G), we obtain that 7 (z) is
the greatest lower bound, and 74 (x)7s(y)7(y') is the least upper bound of
7o (t) and 7, (t') in the prefix order. Notice ¢ L, t' = zyy' and t M, t' = x.
Thus, 74(t) U, m(t') = ma(t U, t'), and mg(t) M, 7 (t') = me(t M, t'). The
result for the suffix case is obtained analogously. 0

Lemma 3.2 allows us, in combination with Proposition 2.2, to transfer
results for the prefix and suffix orders in free monoids to trace monoids. See
the proof of Lemma 3.3 as an example. In a similar way, one could, for
example, show that (Pre(l),U,,M,) is a distributive lattice which is a well
known fact (see e.g. [18]).

3.2 The Lattice of Overlaps

The traces in Pre(l) NSuf(¢) are called overlaps of [and t. We show that the
prefix and suffix order coincides for the overlaps of two traces and that there
is a unique maximal overlap denoted by LI(Pre(l) N Suf(¢)). The notion of

7

overlap used here is a slight generalization of the same notion in [18]. In [18§]
sets Pre(x) N Suf(z) for some trace = were examined and it was shown that
such a set forms a lattice. This lattice is equal to (Pre(l) N Suf(¢), <,) when
choosing x = U(Pre(l) N Suf(t)). Compared to [18] we obtain a very short
proof, due to Lemma 3.2.

Observe for words u,v € A* that u L, v (resp. u U v) is just the longest
word of both (if defined). Thus, if ull,v and ull;v both exist, ull,v = ull;v,
and u M, v =u Mg v. We get the same result for traces.

Lemma 3.3 Letl,t € M(A,D), letr,s € Pre(l)NSuf(t). ThenrU,s =rls
and r,s=rs.

Proof. Let C be a clique-covering of (4,D) and let 7 : M(A,D) — [[,c.C”
be an embedding like in Proposition 2.2. We have by Lemma 3.2

w(ru,s) = (me(ry, 5))Cec = (mo(r) U, WO(S))CGC , and
m(rUss) = (Ta(r Us 5)) oee = (Ta(r) Us Te(5)) pec -
Note that for each clique C' € C both suprema 7. (r) U, 7 (s) and 7 (r) Us

7o (s) are defined and thus equal, as 7. (r), 7o (s) € Pre(m (1)) NSuf (74(t)) is
implied by the assumption r, s € Pre(l) N Suf(¢). We obtain

m(ru,s) =m(russ).

Because 7 is injective, this yields the equality of r LI, s and r My s. To obtain
a proof for the infimum case, replace U by M in the formulas above. O

Due to Lemma 3.3, we may just write Ll for the suffix (resp. prefix)
supremum in sets Pre(l) N Suf(¢). We say that z is an overlap of y, and write
z <, ¥y, when z <, y and x <, y. It is clear that (M(A,D), <,) is a poset.
As a corollary of Lemma 3.3 we obtain

Theorem 3.4 Let l,t € M(A,D). Then
(Pre(l) N Suf (t), <p) = (Pre(l) N Suf (t), <) = (Pre(l) 0 Suf (1), <,),
and the poset of overlaps (Pre(l) N Suf(t), <,) is a lattice.
It is now obvious that Pre(l) NSuf(¢) = Pre(l) N Suf(p) = Pre(p) N Suf(p)

when p = U(Pre(l) N Suf(¢)). So each overlap of [and ¢ is an overlap of p,
and vice versa.

3.3 An Automaton Recognizing M(A,D) -1

We present now a minimal deterministic automaton recognizing the language
M(A,D) -1 = {t € M(A,D) | | <, t}. Clearly, [is a suffix of ¢ if, and only if,
[= U(Pre(l) N Suf(¢)). Examine the extension of ¢ by a letter a:

Lemma 3.5 Let a € 3, t,l € M(A,D) and p = U(Pre(l) N Suf (t)). Then
U(Pre(l) N Suf (ta)) = U(Pre(l) N Suf (pa)).

Proof. We show Pre(l) N Suf(ta) = Pre(l) N Suf(pa). First let r € Pre(l) N
Suf(ta). Either r = r’a with ' € Pre(l) N Suf(¢), or r € Pre(l) N Suf(?)
and alph(r) x {a} C I. In the first case, if = 7’a, 1’ is an overlap of p,
therefore r = r'a € Suf(pa) N Pre(l). In the second case, r is an overlap of
p. Clearly, r is also suffix of pa as r is independent from a. This implies
r € Suf(pa) NPre(l). Hence, the inclusion Pre(l) NSuf(ta) C Pre(l) NSuf(pa)
results. The opposite inclusion Pre(l) NSuf(ta) O Pre(l) NSuf(pa) is obvious,
since p <, t. [

By induction we obtain:

Theorem 3.6 Let | € M(A,D). Let ®;: Pre(l) x A — Pre(l) be defined by
®y(p,a) = U(Pre(l) N Suf (pa)).

Then A; = (Pre(l), A, @, A, {I}) is a minimal M(A,D)-automaton recognizing
M(A,D) - 1.
Forp,p" € Pre(l) it holds pigllp’ if, and only if, p' = U(Pre(l)NSuf (pt)).

Proof. We first show by induction on |w| that p—~p’ implies p’ = U(Pre(l)N
Suf(pt)), where ¢ is the trace represented by w. For w = X this is obvious.
Now let w' = wa, a € A, w € A* representing the trace t € M(A,D), and t' =
ta be the trace represented by w’. We have pL,>p’ if, and only if, p—>q¢—2>p'
for some ¢ € Pre(l). By the inductive hypothesis, ¢ = U(Pre(l) N Suf(pt)).
By the definition of ®;, p' = U(Pre(l) N Suf(ga). Using Lemma 3.5 we obtain
p' = U(Pre(l) N Suf(pta)).

Because A; is complete this implies that A; is an M(A,D)-automaton.
Notice also that a trace t is accepted by A, if, and only if, [= L(Pre(l) N
Suf(At)), which is the case if, and only if, [is a suffix of ¢. It remains to
show that A; is a minimal automaton. Let p, ¢ € Pre(l), we show that p = ¢
if p—1 and ¢—=I for all » € M(A,D). Let r,s € M(A,D) be such that
[= pr = ¢s. It is clear that p—/=[and ¢—=>[. Assume additionally ¢—>[
and p—-[. This is the case only if [is a suffix of ¢r and also a suffix of
ps. Thus ¢s is a suffix of ¢r and pr is a suffix of ps which implies r = s

9

(to see this, let C be a clique-covering. Now for any clique C' € C, the word
7e(q)me(s) is a suffix of the word 7. (q)m(r), and the word mq(p)me(r) is
a suffix of the word 7. (p)7(s) which implies 7. (s) = 7.(r)). We obtain
pP=4q. O

Let in the following ®; and A, refer to the notions given in the theorem.

4 An Algorithm for the Suffix Problem

In this section we present an algorithm computing the transition function of
A;. On input p € Pre(l) and a € A the algorithm outputs ®;(p,a) in time
linear to |pa| — |®;(p, a)|. This time complexity yields linear time complexity
when simulating the automaton A; on some input x = a;...a,. Therefore
one obtains a linear-time algorithm for the suffix problem in M(A,D) which
is to decide on input of two words v, x € A*, whether the trace [represented
by v is a suffix of the trace t represented by x. Implicitly, the computation of
®; was already given in [13, Algorithm 5.2]. We improve the time-complexity
of this algorithm from O(|AJ? - |vz|) ([13, Theorem 5.1]) to O(|A] - |vz]) in
Theorem 5.8.

A state p € Pre(l) will be uniquely represented by its tuple-representative.
We give some preliminary results on this representation. Let C be a covering
of (A,D) (not necessarily a clique-covering). Extending terminology of [4] a
tuple (uc)cec is said to be quasi-reconstructible, when |uc|, = |ucr|, for any
C,C" € C, a € CNC'. Where, for a subgraph H = (A'D") of (A,D), we
write @ € H when a € A’. Proposition 4.1 is a slight generalization of [10,
Proposition 1.6 (ii)].

Proposition 4.1 Let C be a covering of (A,D), t € M(A,D). A tuple
(uc)cee € [loee M(C) represents a prefiz (suffiz) of t if, and only if,
(1) it is quasi-reconstructible and

(ii) uc is a prefic (resp. suffiz) of mc(t) for all C € C.

Proof. We show the statement for the prefix case. A proof for the suffix
case is obtained by symmetry. The only-if part is clear, as (7m¢(p))cec is
reconstructible for each trace p, and 7. (p) <, m(() is implied by p <, [. The
proof for the if-part is by induction on [¢|. For t = A the statement is clear.
Let ¢’ = at with a € A. Let (ug)cec be a quasi-reconstructible tuple such
that uy, is a prefix of 7. (t') for all C' € C. Assume first alph(uy) x {a} C I
for some C' € C with a € C. Because the tuple is quasi-reconstructible
this implies |up|, = 0 for all C' € C. From up, <, anc(t) for any C' € C
with a € C, we deduce that u, is independent of a in M(C). Thus uc is a

10

prefix of 7. (t) for each C' € C which by the inductive hypothesis implies that
(ur)cec represents a prefix p of ¢. Observe that p is independent of a: if a
were dependent of p then, as C is a covering of (A4,D), a were dependent of
7e(p) in M(C) for some C' € C with a € C' which is a contradiction. Thus
in this case the trace p represented by the tuple (uf)cec is also a prefix of
t. Assume now alph(uy) x {a} € I for all C' € C with a € C. This implies
that a is a prefix of uy, for all C' € C with a € C. For C' € C define u¢ such
that uy, = auc if @ € C' and ue = ug otherwise. Clearly, the tuple (uc)cec
is also quasi-reconstructible and u¢ is a prefix of 7. (t) for each C € C. By
the inductive hypothesis, (u¢)cec represents a prefix p of t. Notice now that
(uf)cec represents the prefix p' = ap of ¢'. a

As a direct consequence one obtains a useful tool to prove a prefix (resp.
suffix) relation between two traces.

Corollary 4.2 Let C be a covering of (A,D), p,t € M(A,D). Then p is a

prefic (suffiz) of t if and only if mo(p) is a prefiz (resp. suffiz) of n.(t) for
all C €C.

In the following C denotes a clique-covering of (A,D) (we consider first a
trivial one which can be computed in time O(|D])). A state p € Pre(l) is rep-
resented by its tuple-representative (7.(p))cec (to be more precise, a prefix
of the word 7(l) is represented by its length). To obtain this representation
we need to obtain (7.(l))cec in a first phase. Also the failure functions ¢,
for C' € C have to be calculated. These initializations can be done in time
linear to Y .cc |To(l)| < |A] - |l] (we assume here and in the following that
the clique-covering has been chosen reasonably, i.e., each letter appears in at
most |A| cliques). The structure (pc)cec with po € Pre(me(l)) will be de-
noted C-tuple. While computing ®; the C-tuple p may not be reconstructible,
but this will hold before and after any call to ®;. So we will in most cases
identify a C-tuple with the represented prefix. We give the algorithm here
(remember that ¢,) can be computed using ¢, for each C € C):

function ®,(p : C-tuple, a : letter) : C-tuple (* p € Pre(l) *)
for each C € C with a € C do pc :=) (e, a)
1= {C eC | aC’ e C,dbe cnc’ |pc|b > |pC’|b}
while Z # () do
for some C' € Z do pc := ¢,y (pc)
1= {C eC | dC" e, dbeCnC’ |pc|b > |pc/|b}
endwhile
return p.

Lemma 4.3 reflects the basic considerations for the correctness of the

11

algorithm. We formulate the lemma for arbitrary coverings as this will be
useful later. For traces p, ¢ we write p <, ¢, when p <, ¢ and p # q.

Lemma 4.3 Let I,t € M(A,D), p = U(Pre(l) N Suf(t)), and let C be a
covering of (A,D). For each C € C let pc be a prefix of no(l) and a suffix of
7o (t) such that o (p) <, pc. Then (i) and (ii) holds.

(i) me(p) = pe for all C € C if, and only if, the tuple (pc)cec is quasi-
reconstructible.

(i1) If |pcr |y < |pcly for somebe CNC', C,C" € C, then m.(p) <, pc-

Proof. The only-if-part of the first statement is clear. For the if-part,
we obtain by Proposition 4.1 that the tuple (pc)cec is reconstructible and
represents a prefix ¢ of [which is by Corollary 4.2 also a suffix of . From
7e(p) <, pc = me(q) for each C' € C one deduces p <, gq. Because p is the
maximal element in Pre(l) N Suf(¢), we obtain p = ¢, 7. (p) = 7c(q) = pc for
C eC.

Assume now |per|y < |pelp for some b € CNC', C,C" € C. We have |p|, <
Ipcr |y, as mer (p) is by assumption an overlap of por. Clearly, |ply = |7c(p)]s
for any C' € C with b € C. Thus |p|y < |pc|s, 7c(p) # pe- O

Let p' = U(Pre(l) N Suf(pa)), the value which has to be computed. For
the while-loop of the above algorithm we obtain the invariant

7e(p') <, pc forall C € C. (1)

After the for-loop pc¢ is for each C' € C assigned to the value Li(Pre(m (1)) N
Suf (7o (pa))) (where here p denotes the original value of p). Thus, as 7. (p")
is a member of the set Pre(n.(l)) N Suf(7.(pa)), (1) holds before entering
the while-loop. Now assume that (1) holds before executing the body of the
while-loop which means that the conditions of Lemma 4.3 hold (it is easy to
see that pc € Pre(m. (1)) NSuf (7 (ta)) is also an invariant of the while-loop).
We deduce by case (ii) of Lemma 4.3 that 7 (p') <, pc for each C' € Z. Now,
7o (p') <o pe for a clique C'if, and only if, 7¢(p') <o dryy(Pc). Thus (1) still
holds after executing the body of the while-loop. The while-loop terminates
if, and only if, the tuple (pc)cec is quasi-reconstructible which allows us to
apply Lemma 4.3(i) to deduce that 7 (p') = pc for all C' € C which implies
the correctness of the computation.

Because each application of some failure function ¢ shortens the value
of pc, in the computation of ®;(p, a) all failure functions are applied at most
Y cec lpeme(a)| = |pe| < |A]-(|pa| —[p'[) times altogether, which gives a time
bound for the algorithm (see below how the set Z can be maintained within
the given complexity bounds).

12

Theorem 4.4 After preprocessing (A,D) in time O(|D]), and a word v rep-
resenting the trace | € M(A,D) in time O(|A|-|l|), the computation of ®;(p, a)
needs, for any prefic p of I, and any a € A, at most ¢ - (|pa| — |P(p,a)| + 1)
time for some ¢ € O(|A]|).

To maintain Z within the given bound, we represent sets over a given
universe by a structured data type which allows to perform the question
whether a given element is in the set, the operations of inclusion and exclusion
of some element from the universe in constant time. Further it should be
possible to access some (say the first) element in a nonempty set in constant
time. These requirements can be fulfilled by using a doubly linked list of the
elements which are in the set together with an array which assigns to each
element of the universe a pointer to its representation in the list (elements
not in the set obtain the special value nil). Attached to a C-tuple p = (pc)cec
keep for each C' € C and each a € C counters recording the value |p¢|,, for
each a € A the integer value m,, the set S, C {C € C | a € C'}, and for each
C € C aset Rc C C. These structures are designated to obey (for a € A
and C € C) the invariants

m, = min{|pc|, | C €C,a € C},

S, {CecClaeC,|pcla=ma}, (2)
Re = {aeC||pcla >ma},

I = {CeC|lpcle <ma}

Thus, outside the computation of ®; we have |p|, = m, = |pcl|, for
aeC,S,={CeC|laeC}foraec A Rc=0for C €C,and Z := 10
as then, the C-tuple p is reconstructible. While computing ®; basically two
operations affect these structures: the application of some failure function,
and the concatenation of a to some po with a € C'. We show how the given
structures can be updated after each operation such that the invariants still
hold and the time needed for all updates while computing ®;(p, a) is linear in
Y cec |me(pa)| = |7me(®i(p, a))|. First examine the application of some failure
function ¢, to pc # A. We will call this operation “shorten pc”.

shorten p¢:
Let ¢ € C* be such that ¢ (pc)q = pc
Po = $ro(n)(Po)
for each b € alph(g) do
determine |pc|y to [pcls — |qlb
if [pc |y < my then
I:=((ZUSy\{C}

13

for each C' € Sy \ {C} do R := Rev U {b}
Sy :={C}; Rc:= Rc \ {b}
my == |pcls
else if |pc|, = my then
Sb = Sb U {O}, RC = RC \ {b}
if Re =0 thenZ:=7\ {C}

Notice that an execution of “shorten pc” preserves the invariants in (2).
For time-complexity observe that it suffices to count the number of changes to
some R¢r plus the length of ¢ (the time needed is linear in this value). During
an execution there may be up to |alph(q)|-|C| inclusions to some R¢r, however,
there are at most |alph(q)| < |¢| exclusions (namely from Rc). As in the
(intended) computation of ®; for any C’ € C the value of R equals () before
and after the computation, the total number of exclusions equals the total
number of inclusions such that it suffices to count the exclusions. This yields
that the total time needed for all executions of the above routine during the
computation of p’ = ®(p, a) is bounded linearly by Y ... |71c(pa)| — 7o (p')]
<3+ (|pa| — |p'])-

We give a more detailed formulation of the algorithm for the computation
of ®;:

function ®,(p : C—tuple, a : letter) : C—tuple (* p € Pre(l) *)

(x* mg=1plgand S, ={C e€ClacC}forac A x)

(* Ro =0 for C € C and Z := () %)

for each C € C with a € C do
while pc # A and pca ¢ Pre(n.(l)) do shorten pe
if pca € Pre(n (1)) then pc := pca

endfor

if pc = A for some C € S, then (* it holds m, =0 *)
for each C' € S, do p¢c := A

else m, :=m, +1

while 7 # () do shorten po for some C' € 7

return p.

To examine the correctness of the modifications, first assume that the
if-statement in the first for-loop would not be present. Then the for-loop
would preserve the invariants in (2). When the if-statement is present the
invariants may be violated. However we are able to reestablish them after
the for-loop. There are two cases: First assume that for some C' € C with
a € C, a was not appended to pc. Then we know po = A and we are, by
Proposition 4.1, able to deduce that after a correct computation of ®;(p, a),
pc = A for any C with a € C'. Notice that C' € S, implies pc = A or pc = a.
Only the C' € S, with pc = a violate the invariants. By setting pc = A

14

for those C' we are able to reestablish (2). In the second case a had been
appended to each pc with C' € {C € C | a € C} which implies pc # A for
those C. In this case it suffices to add one to m, to reestablish (2).

The total time needed for the processing of both if-statements is bounded
linearly by [{C € C | a € C}| = > e Imo(a)] < |A]l. We obtain altogether
that the time needed for the computation of p’ = ®;(p, a) is bounded linearly
by > cec Ime(paa)| = [me(p)| < |A]- (Ipal = [p'] +1).

Given the computation of @, it is easy to deduce an algorithm for the suffix
problem. One just has to simulate the automaton A;, where [is determined
by the first input word v, on the second word z: In a first phase the structures
depending from v and (A,D) have to be computed (see above). Let x =
ai...a, with a; € A for 1 <i < n. Set py = A, and compute successively
the values p; = ®;(p;_1, a;) for i = 1 to n. Test finally whether p, = [.

The time used for the second phase is bounded above by S0 ¢-(|pia 1| —
|piy1|+1) for some ¢ € O(|A|). This equals c-(2n— |p,|) which is in O(|A[-|z|).

In [13, Algorithm 5.2] the loop is only repeated when p; # [. Thus the
algorithm decides whether [is a suffix of a trace represented by some prefix
ay...a; of x. The comparison p; = [can be done in constant time when a
set {C' € C | pic # 7m(l)} is maintained, which needs altogether the time
O(|A| - |vz|). This way we obtain the same complexity for this modified
algorithm.

Theorem 4.5 On input of (A,D), and v,z € A* it is decidable in time
linear to |A|- |vx| 4+ | D] using space linear to |A| - |v|+ |D|, whether the trace
[€ M(A,D) represented by v is a suffix of a trace represented by x (resp.
whether | is a suffiz of a trace represented by some prefix of x).

It is sometimes even better to compute a covering of (A,D) by maximal
cliques, i.e., cliques which don’t remain cliques when including some other
letter, which can be done by an efficient greedy algorithm. In this case, af-
ter calculating the covering, one even obtains the time-complexity O(|vz|),
when M(A,D) is a free monoid. Notice that the above observations about
complexity hold for any reasonable clique-covering. So the time-complexity
gets never worse than O(|A]| - |vz|) when using arbitrary reasonable cov-
erings (not considering the time used for the calculation of the covering).
A slight improvement is also obtained by considering independent compo-
nents of the dependence graph independently: Let (A,D) be the union of
several subgraphs H; = (A;,D;) such that 4, NA; =0 for 1 <i < j <k
Then every tuple (u;)i1<;<; with u; € M(H;) is quasi-reconstructible. So by
Proposition 4.1, to determine whether [is suffix of ¢ it suffices to determine
independently whether 7, ([) is a suffix of 7, (¢) for 1 <7 <k, which can be

15

done in time 3% | |Dy| +|A;] - [vx|. When D = 0), i.e., when M(A,D) is a free
commutative monoid, one obtains time-complexity O(|A| + |vz|) this way.

In a free monoid an automaton for the suffix-language can easily be trans-
formed to an automaton for the factor-language (just stay in the final state,
when it is reached once). However, in a free partially commutative monoid
this is not so easy.

Example 1 Assume a monoid M(A,D) with a,b,¢ € A and (a,b) € D,
(b,c) € I. Let | = ac € M(A,D) and x = abc € A*. Because x ~; acb, [is
a factor of the trace represented by x. However, [is not a suffix of a trace
represented by some prefix {\, a, ab, abc} of z.

5 Solving the Factor Problem

We first construct (for [€ M(A,D)) a finite M(A,D)-automaton recognizing
M(A,D) -1 - M(A,D) using a known result about the concatenation of rec-
ognizable trace-languages. Then we give an algorithm which simulates this
automaton in linear time for fixed (A4,D).

5.1 Recognizing M(A,D) -1 - M(A,D)

The concatenation of recognizable trace languages is constructively recogniz-
able by Theorem 5.1 (the construction was given in the proof of [7, Proposi-
tion 2.2.1]).

Theorem 5.1 Fori e {1,2} let A; = (Qy, A, i, qui, F;) be a finite M(A,D)-
automaton recognizing L; € M(A,D). Then the trace-language Ly - Ly is
recognized by the nondeterministic finite M(A,D)-automaton

A = (Q1 xP(A) x Q2, A, 0, (901,90, qo2), F1 x P(A) x Fy),

where ((p, B,q),a,(p',B',q")) € § (for B,B' C A) if, and only if,
(Z) pl =p € Qla B, = BU {a}a (q7 a, ql) € 627 or
(ii)) ¢ =q€ @y, B = B,ad¢ D(B), (p,a,p) € d.

The constructed automaton is a product automaton of A; and A,. On each
input letter it is nondeterministically chosen, whether A; or A, consumes it.
In the alphabetic component the letters already read by A, are remembered.
A; may only consume letters independent of this set. It holds

(p,B,q) -4, (0, B,q)

16

if, and only if, for some r, s € M(A,D) such that ¢ = rs, and alph(r) x B C I:
p—, P, ¢4, and B'= BUalph(s).

We already know the automaton A, recognizing M(A4,D)-l. M(A,D) itself, is
recognized by the trivial automaton ({¢}, A, {(¢,a,q) | a € A}, ¢, {q}). Using
the construction in Theorem 5.1 we obtain the state set Pre(l) x P(A) x {¢}.
The third component can be omitted, as it is unique. The set of final states
is then {/} x P(A). Notice now that a final state (I, B) is reachable from a
state (p, B) € Pre(l) x P(A) by a trace t only if 7, (p) = 7pws)(l). This
yields

Theorem 5.2 The trace language M(A,D) -1 - M(A,D) is recognized by the
nondeterministic finite M(A,D)-automaton N; = (S;, A, 0, (\,0), {I} x
P(A)), where

St = {(p,B) € Pre(l) x P(A) | o (p) =7pi (D)},
and ((p, B),a, (p/, B")) € ¢ if, and only if, (p, B), (p', B') € S;, and either
(i) p' = p, B'= BU/{a}, or
(ii)) p' = ®(p,a), B'= B, a¢ D(B).
In the following we denote by S; and N, the notions given above. For a

trace ¢ let S;(t) = {qg € S| (), @)ﬂlq}. From the construction of N; we
obtain

Lemma 5.3 Let [t € M(A,D). Then (p, B) € S(t) if, and only if, (p, B) €
S and for some traces r,s: t =rs, p = U(Pre(l)NSuf(r)), and B = alph(s).

5.2 An Algorithm for the Factor Problem

We give some preliminary results.

Lemma 5.4 Let [,t € M(A,D), p =U(Pre(l) N Suf(t)), and let {H,G} be a
covering of (A,D). If my(p) = mu (1) then mq(p) = U(Pre(me (1)) NSuf (m¢(t)))-

Proof. Let pg = LU(Pre(ms (1)) NSuf(ws(t))). Observe that 7 (p) <, pe and
that (pg, 74 (p)) is quasi-reconstructible, because |l|, = [ps| < |pals < |I|p for
any b € HNG. By Lemma 4.3(1) 74(p) = pa- O

The following lemma shows that if (p, B) € S;(¢) then p is uniquely de-
termined by D(B) and some suffix of m,4_p(s(t). As a consequence there
is at most one p such that (p, B) € S;(t) for a given B C A. Thus, if (A,D)
is fixed, the set Sj(t) of states reachable in N; by ¢ has constant size for any
l,t € M(A,D).

17

Lemma 5.5 Let l,t € M(A,D). Let (p,B) € Si(t), and T' = D(A — D(B)),
then Tp)(p) = Tpws (1) and m(p) = U(Pre(mr(l)) N Suf (7(t))). Hence, for
any B C X there is at most one p such that (p, B) € Si(t).

Proof. By Lemma 5.3 there are some traces r, s € M(A4,D) such that ¢ = rs,
p = U(Pre(l) N Suf(p)), and B = alph(s). Because (p, B) € S;, we have
Tow (D) = Tpw (l). Observe that {I', D(B)} is a covering of (A,D). By
Lemma 5.4 7(p) is the greatest overlap of 7.(l) and 7.(r). We need to
show m(s) = A which implies 7.(r) = 7r(t). But this is clear, because
BN D(A— D(B)) = 0 for symmetric D C A x A. Notice finally, that for
(p1, B), (p2, B) € Si(t), p1 = po is implied by Proposition 2.2 using the equali-
ties Tpm) (P1) = Tos) (1) = Tos) (p2) and 7 (p1) = U(Pre(m(1))NSuf (7 (¢)) =
71'F(p?)-]

We define a notation for the corresponding suffixes and give some other
notations which will be useful for the construction of the algorithm:

Definition 5.6 Forl,t € M(A,D), B C A, let
z(l,t) = U(Pre(ms(1)) N Suf (m4(t))),
B(l,t) ={B < A|(p,B) € Si(1)},
I'(B) =D(A- B).
Let further, for a family B C P(A), D(B) ={D(B) | B € B}.

By Lemma 5.5, the tuple (205 (l,1t), T (1)) is a tuple-representative
of p, when (p, B) € S;(t). The result is visualized in Figure 1. In the picture,
the alphabet ranges on the vertical axis, the dotted line is drawn where D(B)
and T'(D(B)) intersect.

p

T (1) D(B)

zroesy (L 1) | T(D(B))

Figure 1: Location of p
in t when (p, B) € S(t).

To decide whether a trace t is accepted by NN, i.e., whether [is a factor
of ¢, it suffices to examine if there is a B € B(l,t) such that zr s, (I, 1) =

Troesy (1), Lemma 5.7 shows how the set D(B(I,ta)) can be computed from
D(B(l,t)), a € A, and some 2z ps)(l,t) for B C A.

Lemma 5.7 Let [,t € M(A,D), a € A, A" € P(A). Then A" € D(B(l,ta))
if, and only if, there is a A € D(B(I,t)) such that either

(i) A'"= AU D(a) and |zria (L, t)|, = |l for all b € D(a) — A, or
(i) a ¢ A=A, and the tuple (mo(l), 20 (I, ta)) is quasi-reconstructible.

18

Proof. If A’ € D(B(I,ta)) then there is a pair (p/, B') € Sj(ta) such that
A’ = D(B'). Then, by definition of S;(ta), there is a state (p, B) € S;(t) with
(p, B)—*%, (¢, B'). Either B' = BU{a} andp = p' or B = B and a ¢ D(B’).
With A = D(B) this means either A’ = AU D(a) or a ¢ A’ = A. As by
Lemma 5.5 the tuple (7w (1), 2rr ([, ta)) represents p' it is reconstructible.
Thus in the case a ¢ A’ = A (ii) is necessary. In the case A’ = A U D(a)
with p = p" we have, because (p/, B') € S, |ply = |p'|s = |l| for b € A’. Thus,
in this case, |zra (l,E)|p = |plp = |I|p for b € A" — A = D(a) — A CT'(A).
Let us now show sufficiency. Let A € D(B(l,t)), let (p, B) € S;(t) be such
that A = D(B). By Lemma 5.5 0, (p) = 2ra) (1, t). Thus |zra (1 6) |5 = |1]b
for b € D(a) — A implies |p|, = |l|, for all b € AU D(a) (remember 7, (p) =
ma(l), as (p, B) € S;). This implies (p, BU {a}) € S, and, by the definition
of Ny, (p, BU{a}) € Si(ta). Thus, if (i) holds, we have A’ = AU D(a) €
D(B(l,ta)). Assume now that (ii) holds. Let p’ = U(Pre(l) N Suf(pa)). We
show (p', B) € S; which implies A € D(B(l,ta)). By Lemma 5.5 zp4(l,1) =
Tra (p), thus by Lemma 3.5, zra ([, ta) is the greatest overlap of 7, (l) and
Tr)(pa) which implies that 74, (p') is an overlap of zp, ([, ta). Notice also
ma(pa) = wa(p) = wa(l), because a ¢ A and (p, B) € S, thus 7A(p) <,
7a(l). As the tuple (m5(l), 2ra) (I, ta)) is required to be quasi-reconstructible,
we can apply Lemma 4.3(i) on the covering {A,I'(A)} to deduce that the
tuple is, in fact, a tuple-representative of p', i.e., T, (p') = 2ra ([, ta) and
7a(p') = ma(l). Note that the latter implies (p/, B) € S). O

Theorem 5.8 On input v,x € A* it is decidable in time linear to |vzx| using
space linear in |v|, whether the trace | € M(A,D) represented by v is a factor
of the trace t € M(A,D) represented by x.

Proof. First preprocess v like in the proof of Theorem 4.4. Let x = a; ... a,
with a; € A for 1 <i < n. Let By = {0} (= D(B(l,)))). Now proceed in n
stages: for 0 < ¢ < n —1 let B;;; be the union of the two sets

(1) {A U D(az) | A€ BZ', and |ZF(A),1‘ p = |l|b for all b € D(a) — A}

(ii)) {AeB; | a¢ A, and (ma(l), 2ra).i41) 1S quasi-reconstructible},

where the values zp,,, are for A € D(P(A)) obtained by zp,0 = A, and

@”F(A)(l)(zr(m,n a;v1) ifaeTl(A),
Zrayidl — 1
Zr(a),i else.

Finally test, whether there exists a A € B,, such that 2y, = 7Trn)(0)-

19

Using Theorem 3.6 one deduces zr,; = 2zra(l, a1 ... a;). The correctness
of the algorithm is thus due to Lemma 5.7 which implies by induction on ¢
that B; = D(B(l,a;...a;)) for 0 <i < n.

Examine now complexity. Notice that a set B; C D(P(A)) has constant
size, as (A,D) is constant. Thus B;;; can be computed from B; in constant
time using zra),; and zra .4 for A € B;. The successive computation of
Zrayi, When done for 1 < i < n, takes time linear to |z| for each A €
D(P(A)), as can be seen by the considerations in the proof of Theorem 4.5.
Together with the preprocessing of v this yields the time-complexity O(|vz|).
For space-complexity notice that between stage ¢ and 7 + 1 only the values of
B;, and zp,; for A € D(P(A)) have to be remembered. This needs constant
space in addition to the O(|v]|)-size structures depending from v. O

The set D(B(l,t)) may equal D(P(A)), so that the time-complexity of
the given algorithm is, in general, exponential in |A| when (A,D) is consid-
ered as a part of the input. However, if we have an upper bound k for the
shortest path between any two vertices in (A,D) (consider only connected
(A,D)), the algorithm remains efficient. Notice, in this case |D(P(A))| <
24 Sk} (‘?') < 2+ |A|*=! which yields the time bound O(|A|* - |vz|) when
using a trivial clique-covering. In the free monoid, for example, we have
D(P(A)) = {0, A} and the time bound O(|A] - |vz|). Similar to what was
said to the algorithm for the suffix problem it is better to consider indepen-
dent (i.e., not connected) components of (4,D) independently. This way one
obtains the time-complexity O(|vz|) when D = (), i.e., when (4,D) is a free
commutative monoid.

If one adjusts [13, Algorithm 6.2] to our framework, one could roughly
say that in that algorithm, between stage ¢ and stage i + 1, there is only one
B C A remembered (which should be maximal in B(l,a; ...a;)). However,
we are able to show that this information does not suffice to determine the
next state correctly:

Example 2 Let A = {a,b,¢,d, e}, and let the dependence relation D be the
reflexive and symmetric closure of {(d, a), (a,b), (b,¢), (c,e),(e,b)}. (A,D) is
graphically represented by

Let | = adce, t = acebcec™™ !, and t' = acebec” for some n > 2. Then

B(l,t) = {0,{c},{b,c,e}}, and B(l,t") = {0, {b,c,e}} thus in both sets B =

20

{b,c,e} is maximal (notice also z5(l,t) = z5(l,t') for B C A which is due
to the fact that z.(l,t) = z.(l,t') for all trivial cliques C of (A,D)). But
B(l,ta) = {0,{c}}, and {c} ¢ B(l,t'a) = {0}.

6 Extensible Trace Pairs

Extensible pairs were introduced in [13] to investigate the factor problem.
They allow us to study the automaton N; and the algorithm for the factor
problem in a less technical way.

Definition 6.1 Letl,t € M(A,D). An extensible trace pair (short, extensible
pair) of (I,t) is a pair (p,s) € Pre(l) x Suf (t) with ps <, t, and alph(p~'1) x
alph(s) C I, where p~l denotes the unique suffiz of | with p(p~—tl) = 1.

Clearly, alph(p~'l) x alph(s) C I if, and only if, 7m5(p) = ma(l) for A =

D(alph(s)). Therefore we obtain the following alternative definition of ex-
tensible pairs:

The pair (p, s) is an extensible pair of ([, ?) if, and only if, ps < ¢
and (p, alph(s)) € S;.

Surprisingly the extensible pairs of ([,¢) form a sublattice of the direct
product of the lattices (Pre(l), <,) and (Suf(t), <).

Theorem 6.2 Let (p1, s1) and (pa, s2) be both extensible pairs of (I,t). Then

(p1 Up p2, 51 Ug s2) and (p1 My pa, 51 My S2)

)
are extensible pairs of (l,t), too. Further it holds
(

DP15S1 Us p2so p1 Up p2)(s1 Us s2), and
151 s pase = (p1 My p2) (51 Ms S2).

Proof. Let (pi,s1) and (py, s2) be both extensible pairs of (I,¢). Let p =
p1 U, pe and s = 51 Ly so. Because projections are lattice morphisms, |p|, =
max(|p1p, |p2|s) = |l|p, for each b € D(alph(s)) = D(alph(s;) U alph(sy)).
This implies (p, alph(s)) € S;. We now show ps = p;s1 L p2s2 which implies
ps < t, thus (p, s) is an extensible pair of ([,). Let C be a clique-covering of
(A,D). By Proposition 2.2 it suffices to show for each C' € C that the words
7o (ps) and 7q (p1s1Us pasy) are equal. To do this, we heavily use the fact that
projections are monoid and lattice morphisms (see Lemma 3.2). Let C' € C.
Assume by symmetry that the word 7 (p2s2) is not longer than 7. (p;si),
ie.,

To(p2s2) <s Te(p151), (3)

21

thus 7o (p1s1 Us p2s2) = me(p1s1). We now show that (3) implies 7 (p2) <,
7e(p1) and 7o (s2) <s mo(s1) from which one deduces 7. (ps) = wo(p1sy). If
7e(s2) # A then 7. (p2) = 7 (), because C' C D(alph(sy)) (remember C' is
a clique in (A,D)). Therefore, using the assumption (3), 7o(s;) # A and
7e(p1) = me(l) too, which implies 7 (s2) <5 ma(s1) . Let now m(s2) = A
If mo(s1) # A then mo(p2) <, me(p1) = mo(l). If mo(s1) = A then by (3)
71'0(192) <s 7Tc(pl) which implies 7"'0(192) <p 71'(7(191)-

A proof for the infimum is obtained in similar way: Let p = p; I, pa,
s = s1 MMy so. First observe (p,alph(s)) € S; because |l|, = |p1|p = |p2|s = [Pl
for b € D(alph(s)) C D(alph(s;)) N D(alph(sy)). Now we show ps = pys; M
p2So using projections to free monoids C*: we show that for an arbitrary
clique C of (A,D), mo(ps) = me(p1s1 Ms p2s2). By symmetry we assume
To(p2s2) <s Te(p1s1), which implies 7o (p2) <, e (p1) and mo(s2) < 7mo(s1)
as we saw above. Therefore 7. (p) = 7o(p2), and 7o (s) = mo(s2) which
implies 7. (ps) = ma(p2s2) = 7 (p1s1 M P2Sz). O
Theorem 6.2 was inspired by [13, Theorem 4.1 (1)] which erroneously states
that for two extensible pairs (p1, 1), (p2, s2) there is an extensible pair (p, s)
with s1,s0 <y s and py,ps <, p. Let s = 57 L5 so and let r € M(A,D) be
such that t = rs. In the proof of [13, Theorem 4.1 (1)] it was misleadingly
assumed that 7. (p;) is a suffix of 7 (r) for any trivial clique C' and i € {1, 2}.
However, this need not to be true for C' C D(alph(s;) and C' € D(alph(s,)).
The only thing one could say in this case is that 7. (p;) = 7 (l) is a suffix of
7o (r), and that 7. (ps) is a prefix of 7. (l) and a suffix of 7. (¢). However, this
allows not to deduce that 7. (p2) is a suffix of 7 (l). We exploit this error
in the following counterexample which can be generalized easily to any trace
monoid which is not a free commutative monoid (and also to cases where p;
and p, are incomparable via <,).

Example 3 Let M(A,D) be the free monoid {a,b}*. Let [= ab, t = aba.
The extensible pairs of (I,t) are (ab,a), (a,A), and (A, A). Let now (p1,s1) =
(ab,a), and (py,se) = (a,). Observe that there is no extensible pair (p, s)
of (I,1) such that p; and p is a suffix of p.

A pair (p, B) € Pre(l) x P(A) is called extensible trace-alphabet-pair of
(1,t) if (p, s) is an extensible pair of (I,t) for some s <; ¢t with B = alph(s).
It is easy to see how Theorem 6.2 is transfered to extensible trace-alphabet-
pairs to show that they form a sublattice of the direct product of (Pre(l), <,)
and (P(A), C). Lemma 6.3 gives the relationship between extensible trace-
alphabet-pairs of (/,¢) and the states reachable in the automaton N; by t:
The elements of S;(t) are those extensible trace-alphabet-pairs (p, B) of (I, 1)
whose first component p is maximal with respect to the extensible trace-
alphabet-pairs having the same second component B.

22

Lemma 6.3 Let [,t € M(A,D). It holds (i) and (ii).

(i) The pair (p, B) is an extensible trace-alphabet-pair of (1,t) if, and only
if, (p, B) € S}, and p <, q for a trace q such that (q, B) € S(t)

(i1) (¢, B) € Si(t) if, and only if, (¢, B) is an extensible trace-alphabet-pair
of (I,t), and, for any p such that (p, B) is an extensible trace-alphabet-

pair of (1,t), p <, q.

Proof. Let (p,s) be an extensible pair of (I,¢), and B = alph(s). It is
clear that (p,B) € S, and p <, r for a trace r such that ¢ = rs. Let
q = U(Pre(l) N Suf(r)), thus p <, ¢, and further (¢, B) € S;. This allows N,
the transitions (A, 0)—=, (¢,0)—%, (¢, B), thus (¢, B) € Si(t) which proves
the only-if-part of (i). Let now (¢, B) € S;(t). By Lemma 5.3 there are
traces r, s such that t = rs, ¢ <, r, and alph(s) = B. Thus ¢s is a suffix of
t. Clearly, p <, q implies that ps is a suffix of £ and p is a prefix of [. This
proves the if-part of the first statement.

The second statement is corollary of the first one. Let first (¢, B) € Sj(t).
By the if-part of (i) (¢, B) is an extensible trace-alphabet-pair of (I,¢). By the
only-if-part of (i), for any p such that (p, B) is an extensible trace-alphabet-
pair of ([,t) there is a ¢’ such that p <, ¢’ and (¢/, B) € S)(t). However by
Lemma 5.5 all those ¢' are equal to ¢. Let now (g, B) be an extensible trace-
alphabet-pair of ([,¢) such that for any p such that (p, B) is an extensible
trace-alphabet-pair of (I,t), p <, ¢. By the only-if-part of (i) there is a ¢’
such that (¢', B) € Si(t) and ¢ <, ¢’. However by the if-part of (i), (¢', B)
is an extensible trace-alphabet-pair of (,¢) which by the assumption implies
q <, q, thus ¢ = ¢, [

This observation yields Theorem 6.4. It is obtained immediately from
the following Lemma 6.5 which implies that B(l,t) is a lattice. Because
B(l,t) C P(A) it is clear that the lattice is distributive.

Theorem 6.4 Let I,t € M(A,D). Then (B(l,t), N, U) is a distributive lat-
tice.

Lemma 6.5 Let [,t € M(A,D). Let (p1, B1), (p2, B2) € Si(t). Then
(p1 My p2, B1 N Ba), and (p, By U By) for some p >, p1 Uy po
are elements of Si(t), too.

Proof. By Lemma 6.3 and Theorem 6.2 we deduce that if (p;, By), and
(p2, B2) are both elements of S;(¢) then there are extensible trace-alphabet-
pairs (py Uy, pa, By U Bg) and (py My, pa, B1 N By) of (I,t). Again by Lemma 6.3

23

there are p,q € Pre(l) such that p; U, p2 <, p, p1 My p2 <, ¢, and (p, By U
By), (¢, BiN By) € Si(t). Clearly (¢, B; N By) is an extensible trace-alphabet-
pair of (/,t). By Theorem 6.2 (¢Ll,p1, By) is an extensible trace-alphabet-pair
of (I,t), too. By Lemma 6.3 ¢ LI, p; <, p; which implies ¢ <, p;. Similarly
one obtains ¢ <, ps. Therefore ¢ = p; I, po O

It is an open question whether (py, By), (p2, B2) € Si(t) implies (p; L,
P2, By U By) € Si(t). Although the author does not believe that this is likely,
he was not able to find a counterexample.

In the following we show that we can represent a set S;(t) by not more
than |A| of its elements. This greatly reduces the number of states reachable
in the subset automaton of N;. The result is obtained using Lemma 6.5 and
the observations in [2], chapter III, § 3. We recall the definition of meet-
irreducible elements in [2].

Definition 6.6 Let (L,M,U) be lattice. An element x of L, which is not a
greatest element in L, is called meet-irreducible if x = y Mz implies y = x or
z = for all elements y and z of L.

Let l,t € M(A,D). Let M(l,t) denote the set of meet-irreducible elements
of B(l,t) together with the greatest element, i.e.,

M(l,t) = {B € B(l,t) | BN By # B for all By, By € B(l,t) \ {B}}.
Let §,(t) denote the corresponding elements in Si(t), i.e.,
Si(t) = {(p, B) € Si(t) | B € M(l,1)}.

One now obtains

B) € Si(t) is the meet of

Lemma 6.7 Let [,t € M(A,D). Each element (p,

the greater elements in S;(t). Le., let S;(t)>p
then

(p, B) = NSi(t)>s,

where (g1, E1) N (g, E2) is defined by (¢1 M, g2, E1 N Ey).

Proof. Let (p,B) € Si(t), let M(l,t)sp = {E € M(l,t) | B C E}. We
first observe that B = NM(l,t)>p. Clearly, B C NM(l,t)>p, we show the
opposite inclusion by induction. If B € M(l,t) the statement is clear. If
B ¢ M(l,t) there are By, By € B(l,t) such that B = By N By and By # B #
By, ie., Bi,By D B. Assume B; = NM(l,t)>p, for i € {1,2}. Then B =
(NM(L, 8)>p,) N (MM(L 1) >5,) = DML E)>p, UM(L,E)>p,) 2 NM(L,1)>p.

This implies that the statement holds for the second component, i.e., there

24

is a ¢ € Pre(l) such that (¢, B) = NS;(t)>p. By Lemma 6.5 (¢, B) € S(t),

by Lemma 5.5 ¢ = p. 0

Lemma 6.7 implies that the set S;(¢) is fully determined by the elements
in §;(t). From Lemma 2 in [2], chapter III, § 3 one deduces that a sublattice
of P(A) has at most |A| — 1 meet-irreducible elements. Therefore there are
at most |A| elements in M([,t) and thus in S;(t).

Clearly, the elements in S;(ta) can be computed (inefficiently) from the
elements in Si(t), (4,D), a € A, and [by reconstructing all elements in
Si(t) computing Sj(ta) and finally determining the meet-irreducible elements
in Si(ta). If one does not keep all elements in Sj(¢) simultaneously in the
memory, and computes them only when needed, (and similar for the elements
in Sy(ta)) this computation can be performed using only O(]A|*|v|) space for
some k > 1. Clearly, time complexity is not improved by this approach.

It is an open question whether S;(ta) can be computed efficiently from
Si(t), (A,D), a € A, and [€ M(A,D). A positive answer immediately yields
an O(|A|*|v|¥ |w]|)-time algorithm for the factor problem for some k&, k’. To
obtain an O(|A[F|vw|)-time algorithm for the factor problem, the computa-
tion should only use amortized constant time in the length of [(i.e., time

O(|A]%)).

7 Conclusion

We have shown that the pattern matching problem in trace monoids is solv-
able in linear time using an approach where a finite automaton which is
determined by the searched pattern is simulated on the trace where the pat-
tern is searched in. This approach has the advantage that the search-space,
i.e. the trace where the pattern is searched in, can be read as a stream of
symbols, and has not to be stored in memory. One step of this finite au-
tomaton can be simulated in amortized constant time, where space linear
in the size of the pattern is needed to represent the actual state. However,
this is only true when considering a fixed trace monoid. If the dependence
alphabet (A,D) is a part of the input, the time and the space complexity of
the presented algorithm is exponential in the size of the dependence alpha-
bet (A,D). This complexity is clearly not desirable when considering parallel
systems with many different actions. As we discussed, a polynomial space
complexity of the algorithm can be achieved; each state of the automaton can
be represented by a structure of size polynomial in the size of the dependence
alphabet and the pattern. It is not clear how this observation can be used
to obtain an efficient simulation of the automaton. However, we conjecture
that this is possible. An even better result, which one could expect, would

25

be an efficient simulation of the automaton using amortized time depending
only on the size of the alphabet and not on the size of the pattern. Clearly,
it is an open question whether this is possible.

8

Acknowledgments

The author wishes to thank V. Diekert, A. Muscholl, and J. Toran for their
advice when preparing the paper, and K. Hashiguchi for a discussion about
the problem.

References

[1]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison Wesley, Reading, Mass.,
1974.

Garrett Birkhof. Lattice Theory, volume XXV of Colloquium Publica-
tions. American Mathematical Society, Providence, Rhode Island, 3.
edition, 1967.

Pierre Cartier and Dominique Foata. Problémes combinatoires de com-
mutation et réarrangements. Number 85 in Lecture Notes in Mathemat-
ics. Springer, Berlin-Heidelberg-New York, 1969.

Robert Cori and Yves Métivier. Recognizable subsets of some partially
abelian monoids. Theoretical Computer Science, 35:179-189, 1985.

Robert Cori, Yves Métivier, and Wiestaw Zielonka. Asynchronous map-
pings and asynchronous cellular automata. Information and Computa-
tion, 106:159-202, 1993.

Robert Cori and Dominique Perrin. Automates et commutations par-
tielles. R.A.I.R.O. — Informatique Théorique et Applications, 19:21-32,
1985.

Volker Diekert. Combinatorics on Traces. Number 454 in Lecture Notes
in Computer Science. Springer, Berlin-Heidelberg-New York, 1990.

Volker Diekert and Yves Métivier. Partial commutation and traces. In
G. Rozenberg and A. Salomaa, editors, Handbook on Formal Languages,
volume III. Springer, Berlin-Heidelberg-New York. To appear.

26

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces.
World Scientific, Singapore, 1995.

Christine Duboc. On some equations in free partially commutative
monoids. Theoretical Computer Science, 46:159-174, 1986.

Samuel Eilenberg. Automata, Languages, and Machines, volume A. Aca-
demic Press, New York and London, 1974.

Paul Gastin and Brigitte Rozoy. The poset of infinitary traces. Theo-
retical Computer Science, 120:101-121, 1993.

Kosaburo Hashiguchi and Kazuya Yamada. String matching problems
over free partially commutative monoids. Information and Computation,
101:131-149, 1992.

Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast
pattern matching in strings. SIAM Journal on Computing, 6:323-350,
1977.

Hai-Ning Liu, Celia Wrathall, and Kenneth Zeger. Efficient solution of
some problems in free partially commutative monoids. Information and
Computation, 89:180-198, 1990.

Antoni Mazurkiewicz. Concurrent program schemes and their interpre-
tations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

Jochen Messner. Pattern matching in trace monoids. In R. Reischuk,
editor, Proceedings of the 14th Annual Symposium on Theoretical As-
pects of Computer Science 1997, Lecture Notes in Computer Science,
Berlin-Heidelberg-New York, 1997. Springer. To appear.

Friedrich Otto and Celia Wrathall. Overlaps in free partially commu-
tative monoids. Journal of Computer and System Sciences, 42:186—198,
1991.

Karl Ridiger Reischuk. Einfihrung in die Komplexitatstheorie.
Leitfaden und Monographien der Informatik. Teubner, Stuttgart, 1990.

27

