
Pattern Matching in Trace Monoids�

Jochen Messner
Abt� Theoretische Informatik�

Universit�at Ulm�
����� Ulm� Germany

February 	
� 	���

Abstract

An algorithm is presented solving the factor problem in trace monoids�

Given two traces represented by words� the algorithm determines in

linear time whether the �rst trace is a factor of the second one� The

space used for this task is linear in the length of the �rst word� Similar

to the Knuth�Morris�Pratt Algorithm for the factor problem on words�
the algorithm simulates a �nite automaton determined by the �rst

word on the second word� To develop the algorithm� we examine

overlaps of two traces� and show that they form a lattice� Finally we

investigate the lattice of extensible trace pairs �which represent still

extensible pre�xes of a searched factor appearing in some other trace��

because of their close relations to the structures used by the algorithm�

� Introduction

The pattern matching problem in free monoids is an extensively studied
problem in computer science� For two words v� x � A� it is asked whether
there are words u� w � A� such that x � uvw� i�e�� it is asked whether v is
a factor of x� There are several linear time algorithms solving the problem�
The algorithm which was given by Knuth� Morris� and Pratt ���� has close
connections to the theory of 	nite automata
see ����� First from the 	rst
word v a so called failure function is computed as a table in time linear to
the length of v
 after this 	rst stage the failure function is used to simulate
on the second word in linear time a 	nite automaton accepting the language

�An extended abstract of this paper appears in �����

�

A� � v � A� � fuvw j u� w � A�g� Altogether the time used is linear in the
input size� and even does not depend on the size of the alphabet� because
the automaton is not constructed explicitly�

In this paper we use a quite similar approach to the factor problem in trace
monoids� Trace monoids� also called free partially commutative monoids�
have been studied in combinatorics in ���� In ���� Mazurkiewicz considered
them as a suitable mathematical model for concurrent systems� Given a 	nite
set of actions
an alphabet�� some of the actions are considered independent

e�g�� they may use di�erent resources�� Because the order of independent ac�
tions is irrelevant� one identi	es sequences of actions
i�e�� words� which can
be made equivalent by exchanging adjacent independent actions� This yields
an equivalence relation �I on those words which is� in fact� a congruence
 a
congruence class is called trace� consequently the monoid of the congruence
classes is called trace monoid� It is determined uniquely by the generat�
ing alphabet and the relation I of independent letters� The free monoid is
obtained as a special case� when all letters are dependent� Trace monoids
have been studied in many publications� Good starting points are ���� ����
and ����The factor problem in a trace monoid M is to decide for two words�
whether the trace l� represented by the 	rst word� is a factor of the trace t�
represented by the second word
where l is called factor of t� when t � pls
for some traces p� s�� A linear�time algorithm for the problem using space
linear in the input size was given in ����� This space�complexity is not al�
ways desirable� So� for example� a control component of a concurrent system
may need to recognize certain subsequences in a sequence of actions
modulo
independence� without remembering all executed actions� Therefore we con�
sider in this paper an approach more closely related to 	nite automata� From
the 	rst word v� in a 	rst stage� several structures are computed in linear
time� These structures are used in the second stage to simulate on the sec�
ond word a 	nite automaton recognizing the language fx � A� j x �I uvw
for some words u� wg which is the set of words representing the traces in
M � l �M � fpls j p� s � Mg� The time used for this simulation is linear
in the length of the second word such that altogether the algorithm needs
linear time� Because of the similarity we consider the presented algorithm as
a generalization of the Knuth�Morris�Pratt Algorithm to trace monoids� al�
though there is in general no correspondent to the failure function for traces

cf� ���� for related results�� Already in ���� Hashiguchi and Yamada had this
approach� However� the algorithm they proposed to solve the factor problem
produces an incorrect answer in some cases as we show by an example� The
observation of this error was the reason for the investigations presented in
this paper� And in fact� one may see our results as a correction of the results
of Hashiguchi and Yamada�

�

The organization of the paper is as follows� We 	rst introduce basic
notions� A representation of traces is obtained by the general embedding
theorem using projections� In Section � we study the set of pre	xes and
su�xes of some trace� Both sets form lattices with the pre	x
resp� su�x�
orders� We observe that projections are morphisms for those lattices which
allows us to deduce easily that the intersection of a set of pre	xes with a set
of su�xes
called overlaps of two traces� still forms a lattice� Using these
results� we 	nally develop a 	nite automaton recognizing the language of
traces containing a given trace l as a su�x� In Section � we present an
algorithm computing the transition function of this automaton which allows
us to simulate the automaton in linear time� This simulation solves the su�x
problem
the algorithm was already given in ����� we obtain an improved
time�complexity�� In Section � we obtain a 	nite automaton recognizing the
traces containing a given trace l as a factor� A linear�time simulation of this
automaton solves the factor problem� However� for some trace monoids the
simulation presented needs time and space exponential in the alphabet�size�
In Section � we investigate extensible trace pairs which have close relations to
the states reached in the automaton� We show that they form a lattice�an
observation which may lead to an improvement of the presented algorithm
remaining e�cient even when the alphabet is a part of the input�

Although the main purpose of this paper is the investigation of the factor
problem� the results obtained for overlaps
cf� ����� and extensible trace pairs

cf� ����� are interesting on their own�

� Preliminaries

In the following� the basic notions for trace monoids are given� A suitable
representation of traces is obtained by the embedding theorem� which allows
us to represent a trace uniquely by a tuple of words� We also give some
notations on 	nite automata and a very brief description of some properties
of the pattern�matching algorithm of Knuth� Morris� and Pratt� As we use
standard notions of ���� we give no introduction to lattice or poset theory�
here�

��� Free Partially Commutative Monoids

Let denote A a 	nite alphabet� A� the free monoid generated by A� and �
the empty word of A�� jAj denotes the number of letters in A� For any
word w � A�� jwj denotes its length� The alphabet of a word w is the set
alph
w� � fa � A j w � uavg of letters actually appearing in w�

�

By D � A�A we denote throughout this paper a re�exive and symmetric
dependence relation� Its complement I �
A�A��D is called independence
or commutation relation� The graph
A�D� is called dependence alphabet�
Let �I be the congruence over A� which is generated by the equivalences
ab �I ba for
a� b� � I� The monoid of the congruence classes is the free par�
tially commutative monoid M
A�D� � A�� �I � Following Mazurkiewicz ����
a congruence class t � M
A�D� is called a trace� consequently M
A�D� is also
called trace monoid� The neutral element� the class of the empty word� is
called empty trace and denoted by �� too
 a letter a � A may denote the
trace �a��I � The notions of the length and the alphabet of a word can be
transfered to traces� as they are invariant for words representing the same
trace� Traces t�� t� are said to be independent when alph
t��� alph
t�� � I

in this case t�t� � t�t�� For a subset B � A� D
B� � fa � A j
a� b� � D for
some b � Bg denotes the set of letters dependent from B
 for a � A we just
write D
a� instead of D
fag��

A trace l � M
A�D� is called factor of t � M
A�D�� when t � pls for
some traces p� s � M
A�D�
 l is called pre	x
su�x� of t when p
resp�
s� can be chosen to be �� The set of pre	xes
su�xes� of t is denoted
by Pre
t�
resp� Suf
t��� Levi�s Lemma on factorizations of words has the
following generalization for traces� For a proof of Proposition ��� see ���
Proposition ������
see also ����� Note as a consequence that trace monoids
are cancellative�

Proposition ��� Let p� s� p�� s� � M
A�D� with ps � p�s�� Then there are
uniquely determined traces x� y� y�� z � M
A�D� with alph
y� � alph
y�� � I
and p � xy� p� � xy�� s � y�z and s� � yz�

A graph H �
A��D�� is called subgraph of
A�D�� denoted by H �
A�D��
when A� � A� and D� � D is a re�exive and symmetric relation� Intersec�
tion and union of subgraphs is de	ned on the components� A family G of
subgraphs of
A�D� is called covering� when
A�D� �

S
G�G G� A subset S

of P
A�� where P
A� is the set of all subsets of A� may denote the family
f
B�DjB� j B � Sg and is called covering accordingly� Cliques are subgraphs
of the form
C�C � C� �
C�DjC� for some C � A� they are simply rep�
resented by the set C � A� A covering consisting only of cliques� is called
clique�covering� The set ffa� bg j
a� b� � Dg is a trivial clique�covering of

A�D��

For a subgraph H �
A��D�� of
A�D�� �H denotes the projection of
M
A�D� onto M
A��D��� i�e�� �H � M
A�D� � M
A��D�� is an homomorphism
such that for a � A� �H
a� � a if a � A�� and �H
a� � � else� For B � A� we
use �B to denote ��B�DjB�� where DjB � D �
B�B�� The a�length of a trace

�

t � M
A�D� is given by the length of its fag�projection� jtja � j�fag
t�j� for
a � A�

Proposition ��� is a generalization of ��� Proposition ���� given in ����
where it was called general embedding theorem� It allows us to represent
a trace t � M
A�D� uniquely by a tuple of traces containing fewer letters�Q

iMi denotes the direct product of the monoidsMi� An element of
Q

iMi is
uniquely denoted by
ti�i with ti �Mi
 the multiplication in

Q
iMi is de	ned

on the components�
ti�i �
si�i �
ti � si�i�

Proposition ��� Let G be family of subgraphs of
A�D�� G is a covering
if� and only if� the mapping � � M
A�D� �

Q
G�G M
G� de�ned by �
t� �

�G
t��G�G is an embedding �i�e�� an injective homomorphism��

For a covering G of
A�D� we call the tuple
�G
t��G�G the tuple�representative
of t � M
A�D�� Extending terminology of ���� a tuple which is a tuple�
representative of some trace is called reconstructible� Choosing G to be a
clique�covering� we obtain a version of Proposition ��� already given in ����
which allows us to represent a trace uniquely by a tuple of words� Clearly�
this tuple is computable in time linear to its size� given a word representing
the trace
as the model of computation we generally assume a RAM
see �����
with a uniform cost criteria� i�e�� space is determined by the number of used
registers and time is the number of operations executed� This is a realistic
assumption� as in all algorithms of this paper� the number stored in any
register is not bigger than the number of registers used by the algorithm�
For a 	xed alphabet A the presented algorithms can even be implemented
on a multi�tape Turing machine with the stated time� and space�bounds��

��� Automata

A
nondeterministic� 	nite automaton� shortly called automaton� is a tuple
A �
Q�A� �� q�� F � consisting of the 	nite state�set Q� the alphabet A� the
transition relation � � Q � A � Q� the initial state q� � Q� and the set of
	nal states F � Q� A can be seen as an edge�labeled graph with vertices
Q� where
p� a� q� � � is an edge from p to q labeled a� For w � A� we
write p w��

A
q� when in A there is a path from p to q labeled w
w � �

implies p � q�� A language L � A� is said to be recognized by A� when
L �

S
q�Ffw � A� j q�

w��
A
qg�

An automaton A is called M
A�D��automaton� when p w��
A
q implies

p v��
A
q for any v �I w� In this case we simply write p t��

A
q� where t � �w��I

is the trace represented by w� L �
S

q�Fft � M
A�D� j q�
t��
A
qg is the

trace language recognized by the M
A�D��automaton A� A trace language
L � M
A�D� is called recognizable� when L is recognized by some 	nite

�

M
A�D��automaton� For languages L�� L� � M
A�D�� the concatenation
L� � L� � fl�l� j l� � L� and l� � L�g is de	ned on the elements� We also
write L � l for L � flg� It is known that the concatenation of recognizable
trace�languages is constructively recognizable
see Theorem �����

See ���� for a de	nition of deterministic� complete� and minimal deter�
ministic automata�

��� The Algorithm of Knuth�Morris�Pratt

By the Algorithm of Knuth�Morris�Pratt
see ����� ���� it is decidable in
linear time� whether a word v � A� is a factor of the word w � A� using
O
jvj� space� The basis of the algorithm is the so called failure function
�v � Pre
v�� f�g � Pre
v�� where �v
p� is the longest word s 	� p which is
both� a pre	x and a su�x of p� The failure function �v can be calculated as a
table in time linear to jvj
notice� a pre	x p of v may be uniquely represented
by its length jpj��

The complete� deterministic automaton Av �
Pre
v�� A� �v� �� v�� where
for p � Pre
v�� a � A� �v
p� a� is the longest word in Pre
v�� Suf
pa�� is the
minimal automaton recognizing the language A� � v� Using the failure func�
tion �v� the transition function �v is computable e�ciently by the following
relationship

�v
p� a� �

��
�

pa if pa � Pre
v��
� if p � � and a �� Pre
v��
�v
�v
p�� a� else	

Using this relations the computation of �v
p� a� needs� for any pre	x p of v�
and any a � A� time linear to the number of times the failure function is
used in the computation� Because each use of �v shortens the input to �v�
the time used is linearly bounded by jpaj � j�v
p� a�j�

� Pre�xes and Su�xes

We examine now the set of pre	xes and the set of su�xes of some trace� For
l� t � M
A�D�� we write l
p t
l
s t�� when l is a pre	x
resp� su�x� of t�
It is clear that
s and
p are partial orders� See ���� for an investigation of
the poset
M
A�D��
p��

��� Pre�x and Su�x Lattices

Lemma ��� shows that the structures
Pre
l��
p� and
Suf
l��
s� are lattices
for any trace l� The statement for the pre	x�case can be found in ���� the

�

result for su�xes is obtained by symmetry�

Lemma ��� Let t� t� � M
A�D� both be pre�xes �su�xes� of the same trace�
Then there are uniquely determined traces x� y� y� � M
A�D� with alph
y� �
alph
y�� � I� t � xy� and t� � xy� �resp� t � yx� and t� � y�x�� Further�
x is the greatest lower bound for t and t� in the pre�x �resp� su�x� order
in M
A�D� and xyy� �resp� yy�x� is the least upper bound for t and t� in the
pre�x �resp� su�x� order�

In the following the least upper bound of t and t� in the pre	x
su�x� order
is denoted by t tp t

�
respectively t ts t
��� the greatest lower bound by t up t

�

respectively tus t
��� We say that ttp t

� is not de	ned� when there is no trace
s such that t
p s and t�
p s
similar for ts��

Because projections are monoid homomorphisms� they are poset mor�
phisms with respect to the pre	x and the su�x order� Also independence
of traces is preserved by projections� We obtain that projections are also
morphisms for the lattices of pre	xes
resp� su�xes��

Lemma ��� Let t� t� � M
A�D� such that ttp t
� �resp� tts t

�� is de�ned� Let
G �
A�D�� Then �G
ttp t

�� � �G
t�tp�G
t
��� and �G
tup t

�� � �G
t�up�G
t
��

�respectively� �G
t ts t
�� � �G
t� ts �G
t

�� and �G
t us t
�� � �G
t� us �G
t

����

Proof� Let x� y� y� � M
A�D� be such that t � xy� t� � xy� and alph
y� �
alph
y�� � I
by Lemma ��� these values exist if t tp t

� is de	ned�� Let G �

A��D�� �
A�D�� and I � �
A��A���D�� Because �G is an homomorphism� we
have �G
t� � �G
x��G
y�� and �G
t

�� � �G
x��G
y
��� Observe �G
y���G
y

�� �
IjA� � I �� Using Lemma ��� in the monoid M
G�� we obtain that �G
x� is
the greatest lower bound� and �G
x��G
y��G
y

�� is the least upper bound of
�G
t� and �G
t

�� in the pre	x order� Notice t tp t
� � xyy� and t up t

� � x�
Thus� �G
t� tp �G
t

�� � �G
t tp t
��� and �G
t� up �G
t

�� � �G
t up t
��� The

result for the su�x case is obtained analogously� �

Lemma ��� allows us� in combination with Proposition ���� to transfer
results for the pre	x and su�x orders in free monoids to trace monoids� See
the proof of Lemma ��� as an example� In a similar way� one could� for
example� show that
Pre
l��tp�up� is a distributive lattice which is a well
known fact
see e�g� ������

��� The Lattice of Overlaps

The traces in Pre
l��Suf
t� are called overlaps of l and t� We show that the
pre	x and su�x order coincides for the overlaps of two traces and that there
is a unique maximal overlap denoted by t
Pre
l� � Suf
t��� The notion of

�

overlap used here is a slight generalization of the same notion in ����� In ����
sets Pre
x� � Suf
x� for some trace x were examined and it was shown that
such a set forms a lattice� This lattice is equal to
Pre
l� � Suf
t��
p� when
choosing x � t
Pre
l� � Suf
t��� Compared to ���� we obtain a very short
proof� due to Lemma ����

Observe for words u� v � A� that u tp v
resp� u ts v� is just the longest
word of both
if de	ned�� Thus� if utpv and utsv both exist� utpv � utsv�
and u up v � u us v� We get the same result for traces�

Lemma ��� Let l� t � M
A�D�� let r� s � Pre
l��Suf
t�� Then rtps � rtss
and r up s � r us s�

Proof� Let C be a clique�covering of
A�D� and let � � M
A�D� �
Q

C�CC
�

be an embedding like in Proposition ���� We have by Lemma ���

�
r tp s� �
�C
r tp s��C�C �
�C
r� tp �C
s��C�C � and

�
r ts s� �
�C
r ts s��C�C �
�C
r� ts �C
s��C�C 	

Note that for each clique C � C both suprema �C
r� tp �C
s� and �C
r� ts

�C
s� are de	ned and thus equal� as �C
r�� �C
s� � Pre
�C
l���Suf
�C
t�� is
implied by the assumption r� s � Pre
l� � Suf
t�� We obtain

�
r tp s� � �
r ts s�	

Because � is injective� this yields the equality of r tp s and r us s� To obtain
a proof for the in	mum case� replace t by u in the formulas above� �

Due to Lemma ���� we may just write t for the su�x
resp� pre	x�
supremum in sets Pre
l��Suf
t�� We say that x is an overlap of y� and write
x
o y� when x
p y and x
s y� It is clear that
M
A�D��
o� is a poset�
As a corollary of Lemma ��� we obtain

Theorem ��� Let l� t � M
A�D�� Then

Pre
l� � Suf
t��
p� �
Pre
l� � Suf
t��
s� �
Pre
l� � Suf
t��
o��

and the poset of overlaps
Pre
l� � Suf
t��
o� is a lattice�

It is now obvious that Pre
l��Suf
t� � Pre
l��Suf
p� � Pre
p��Suf
p�
when p � t
Pre
l� � Suf
t��� So each overlap of l and t is an overlap of p�
and vice versa�

�

��� An Automaton Recognizing M�A�D
 � l

We present now a minimal deterministic automaton recognizing the language
M
A�D� � l � ft � M
A�D� j l
s tg� Clearly� l is a su�x of t if� and only if�
l � t
Pre
l� � Suf
t��� Examine the extension of t by a letter a�

Lemma ��� Let a � �� t� l � M
A�D� and p � t
Pre
l� � Suf
t��� Then

t
Pre
l� � Suf
ta�� � t
Pre
l� � Suf
pa��	

Proof� We show Pre
l� � Suf
ta� � Pre
l� � Suf
pa�� First let r � Pre
l� �
Suf
ta�� Either r � r�a with r� � Pre
l� � Suf
t�� or r � Pre
l� � Suf
t�
and alph
r� � fag � I� In the 	rst case� if r � r�a� r� is an overlap of p�
therefore r � r�a � Suf
pa� � Pre
l�� In the second case� r is an overlap of
p� Clearly� r is also su�x of pa as r is independent from a� This implies
r � Suf
pa��Pre
l�� Hence� the inclusion Pre
l��Suf
ta� � Pre
l��Suf
pa�
results� The opposite inclusion Pre
l��Suf
ta� � Pre
l��Suf
pa� is obvious�
since p
s t� �

By induction we obtain�

Theorem ��� Let l � M
A�D�� Let �l � Pre
l�� A� Pre
l� be de�ned by

�l
p� a� � t
Pre
l� � Suf
pa��	

Then Al �
Pre
l�� A��l� �� flg� is a minimal M
A�D��automaton recognizing
M
A�D� � l�

For p� p� � Pre
l� it holds p t��
Al
p� if� and only if� p� � t
Pre
l��Suf
pt���

Proof� We 	rst show by induction on jwj that p w��p� implies p� � t
Pre
l��
Suf
pt��� where t is the trace represented by w� For w � � this is obvious�
Now let w� � wa� a � A� w � A� representing the trace t � M
A�D�� and t� �
ta be the trace represented by w�� We have p w�

��p� if� and only if� p w��q a��p�

for some q � Pre
l�� By the inductive hypothesis� q � t
Pre
l� � Suf
pt���
By the de	nition of �l� p

� � t
Pre
l��Suf
qa�� Using Lemma ��� we obtain
p� � t
Pre
l� � Suf
pta���

Because Al is complete this implies that Al is an M
A�D��automaton�
Notice also that a trace t is accepted by Al if� and only if� l � t
Pre
l� �
Suf
�t��� which is the case if� and only if� l is a su�x of t� It remains to
show that Al is a minimal automaton� Let p� q � Pre
l�� we show that p � q
if p r��l and q r��l for all r � M
A�D�� Let r� s � M
A�D� be such that
l � pr � qs� It is clear that p r��l and q s��l� Assume additionally q r��l
and p s��l� This is the case only if l is a su�x of qr and also a su�x of
ps� Thus qs is a su�x of qr and pr is a su�x of ps which implies r � s

�

to see this� let C be a clique�covering� Now for any clique C � C� the word
�C
q��C
s� is a su�x of the word �C
q��C
r�� and the word �C
p��C
r� is
a su�x of the word �C
p��C
s� which implies �C
s� � �C
r��� We obtain
p � q� �

Let in the following �l and Al refer to the notions given in the theorem�

� An Algorithm for the Su�x Problem

In this section we present an algorithm computing the transition function of
Al� On input p � Pre
l� and a � A the algorithm outputs �l
p� a� in time
linear to jpaj� j�l
p� a�j� This time complexity yields linear time complexity
when simulating the automaton Al on some input x � a� 	 	 	 an� Therefore
one obtains a linear�time algorithm for the su�x problem in M
A�D� which
is to decide on input of two words v� x � A�� whether the trace l represented
by v is a su�x of the trace t represented by x� Implicitly� the computation of
�l was already given in ���� Algorithm ����� We improve the time�complexity
of this algorithm from O
jAj� � jvxj�
���� Theorem ����� to O
jAj � jvxj� in
Theorem ����

A state p � Pre
l� will be uniquely represented by its tuple�representative�
We give some preliminary results on this representation� Let C be a covering
of
A�D�
not necessarily a clique�covering�� Extending terminology of ��� a
tuple
uC�C�C is said to be quasi�reconstructible� when juC ja � juC�ja for any
C�C � � C� a � C � C �� Where� for a subgraph H �
A��D�� of
A�D�� we
write a � H when a � A�� Proposition ��� is a slight generalization of ����
Proposition ���
ii���

Proposition ��� Let C be a covering of
A�D�� t � M
A�D�� A tuple

uC�C�C �

Q
C�C M
C� represents a pre�x �su�x� of t if� and only if�

�i� it is quasi�reconstructible and

�ii� uC is a pre�x �resp� su�x� of �C
t� for all C � C�

Proof� We show the statement for the pre	x case� A proof for the su�x
case is obtained by symmetry� The only�if part is clear� as
�C
p��C�C is
reconstructible for each trace p� and �C
p�
p �C
l� is implied by p
p l� The
proof for the if�part is by induction on jtj� For t � � the statement is clear�
Let t� � at with a � A� Let
u�C�C�C be a quasi�reconstructible tuple such
that u�C is a pre	x of �C
t

�� for all C � C� Assume 	rst alph
u�C�� fag � I
for some C � C with a � C� Because the tuple is quasi�reconstructible
this implies ju�Cja � � for all C � C� From u�C
p a�C
t� for any C � C
with a � C� we deduce that u�C is independent of a in M
C�� Thus uC is a

��

pre	x of �C
t� for each C � C which by the inductive hypothesis implies that

u�C�C�C represents a pre	x p of t� Observe that p is independent of a� if a
were dependent of p then� as C is a covering of
A�D�� a were dependent of
�C
p� in M
C� for some C � C with a � C which is a contradiction� Thus
in this case the trace p represented by the tuple
u�C�C�C is also a pre	x of
t� Assume now alph
u�C� � fag 	� I for all C � C with a � C� This implies
that a is a pre	x of u�C for all C � C with a � C� For C � C de	ne uC such
that u�C � auC if a � C and uC � u�C otherwise� Clearly� the tuple
uC�C�C
is also quasi�reconstructible and uC is a pre	x of �C
t� for each C � C� By
the inductive hypothesis�
uC�C�C represents a pre	x p of t� Notice now that

u�C�C�C represents the pre	x p� � ap of t�� �

As a direct consequence one obtains a useful tool to prove a pre	x
resp�
su�x� relation between two traces�

Corollary ��� Let C be a covering of
A�D�� p� t � M
A�D�� Then p is a
pre�x �su�x� of t if and only if �C
p� is a pre�x �resp� su�x� of �C
t� for
all C � C�

In the following C denotes a clique�covering of
A�D�
we consider 	rst a
trivial one which can be computed in time O
jDj��� A state p � Pre
l� is rep�
resented by its tuple�representative
�C
p��C�C
to be more precise� a pre	x
of the word �C
l� is represented by its length�� To obtain this representation
we need to obtain
�C
l��C�C in a 	rst phase� Also the failure functions ��C�l�
for C � C have to be calculated� These initializations can be done in time
linear to

P
C�C j�C
l�j
 jAj � jlj
we assume here and in the following that

the clique�covering has been chosen reasonably� i�e�� each letter appears in at
most jAj cliques�� The structure
pC�C�C with pC � Pre
�C
l�� will be de�
noted C�tuple� While computing �l the C�tuple p may not be reconstructible�
but this will hold before and after any call to �l� So we will in most cases
identify a C�tuple with the represented pre	x� We give the algorithm here

remember that ��C�l� can be computed using ��C�l�� for each C � C��

function �l
p � C�tuple� a � letter� � C�tuple 	� p � Pre
l� �

for each C � C with a � C do pC �� ��C�l�
pC � a�
I �� fC � C j �C � � C� �b � C � C � jpC jb
 jpC� jbg
while I 	�
 do
for some C � I do pC �� ��C�l�
pC�
I �� fC � C j �C � � C� �b � C � C � jpC jb
 jpC�jbg

endwhile
return p�

Lemma ��� re�ects the basic considerations for the correctness of the

��

algorithm� We formulate the lemma for arbitrary coverings as this will be
useful later� For traces p� q we write p �o q� when p
o q and p 	� q�

Lemma ��� Let l� t � M
A�D�� p � t
Pre
l� � Suf
t��� and let C be a
covering of
A�D�� For each C � C let pC be a pre�x of �C
l� and a su�x of
�C
t� such that �C
p�
o pC � Then �i� and �ii� holds�

�i� �C
p� � pC for all C � C if� and only if� the tuple
pC�C�C is quasi�
reconstructible�

�ii� If jpC�jb � jpC jb for some b � C � C �� C�C � � C� then �C
p� �o pC�

Proof� The only�if�part of the 	rst statement is clear� For the if�part�
we obtain by Proposition ��� that the tuple
pC�C�C is reconstructible and
represents a pre	x q of l which is by Corollary ��� also a su�x of t� From
�C
p�
o pC � �C
q� for each C � C one deduces p
o q� Because p is the
maximal element in Pre
l�� Suf
t�� we obtain p � q� �C
p� � �C
q� � pC for
C � C�

Assume now jpC�jb � jpC jb for some b � C�C �� C�C � � C� We have jpjb

jpC�jb� as �C�
p� is by assumption an overlap of pC� � Clearly� jpjb � j�C
p�jb
for any C � C with b � C� Thus jpjb � jpC jb� �C
p� 	� pC � �

Let p� � t
Pre
l� � Suf
pa��� the value which has to be computed� For
the while�loop of the above algorithm we obtain the invariant

�C
p
��
o pC for all C � C	
��

After the for�loop pC is for each C � C assigned to the value t
Pre
�C
l�� �
Suf
�C
pa���
where here p denotes the original value of p�� Thus� as �C
p

��
is a member of the set Pre
�C
l�� � Suf
�C
pa���
�� holds before entering
the while�loop� Now assume that
�� holds before executing the body of the
while�loop which means that the conditions of Lemma ��� hold
it is easy to
see that pC � Pre
�C
l���Suf
�C
ta�� is also an invariant of the while�loop��
We deduce by case
ii� of Lemma ��� that �C
p

�� �o pC for each C � I� Now�
�C
p

�� �o pC for a clique C if� and only if� �C
p
��
o ��C�l�
pC�� Thus
�� still

holds after executing the body of the while�loop� The while�loop terminates
if� and only if� the tuple
pC�C�C is quasi�reconstructible which allows us to
apply Lemma ���
i� to deduce that �C
p

�� � pC for all C � C which implies
the correctness of the computation�

Because each application of some failure function ��C�l� shortens the value
of pC � in the computation of �l
p� a� all failure functions are applied at mostP

C�C jpC�C
a�j�jp
�
C j
 jAj �
jpaj�jp�j� times altogether� which gives a time

bound for the algorithm
see below how the set I can be maintained within
the given complexity bounds��

��

Theorem ��� After preprocessing
A�D� in time O
jDj�� and a word v rep�
resenting the trace l � M
A�D� in time O
jAj�jlj�� the computation of �l
p� a�
needs� for any pre�x p of l� and any a � A� at most c �
jpaj � j�l
p� a�j� ��
time for some c � O
jAj��

To maintain I within the given bound� we represent sets over a given
universe by a structured data type which allows to perform the question
whether a given element is in the set� the operations of inclusion and exclusion
of some element from the universe in constant time� Further it should be
possible to access some
say the 	rst� element in a nonempty set in constant
time� These requirements can be ful	lled by using a doubly linked list of the
elements which are in the set together with an array which assigns to each
element of the universe a pointer to its representation in the list
elements
not in the set obtain the special value nil�� Attached to a C�tuple p �
pC�C�C
keep for each C � C and each a � C counters recording the value jpC ja� for
each a � A the integer value ma� the set Sa � fC � C j a � Cg� and for each
C � C a set RC � C� These structures are designated to obey
for a � A
and C � C� the invariants

ma � minfjpCja j C � C� a � Cg�

Sa � fC � C j a � C� jpCja � mag�

RC � fa � C j jpC ja
 mag�

I � fC � C j jpC ja � mag	

��

Thus� outside the computation of �l we have jpja � ma � jpC ja for
a � C� Sa � fC � C j a � Cg for a � A� RC �
 for C � C� and I ��

as then� the C�tuple p is reconstructible� While computing �l basically two
operations a�ect these structures� the application of some failure function�
and the concatenation of a to some pC with a � C� We show how the given
structures can be updated after each operation such that the invariants still
hold and the time needed for all updates while computing �l
p� a� is linear inP

C�C j�C
pa�j � j�C
�l
p� a��j� First examine the application of some failure
function ��C�l� to pC 	� �� We will call this operation shorten pC!�

shorten pC �
Let q � C� be such that ��C�l�
pC�q � pC
pC �� ��C�l�
pC�
for each b � alph
q� do

determine jpC jb to jpC jb � jqjb
if jpC jb � mb then
I ��
I � Sb� n fCg

��

for each C � � Sb n fCg do RC� �� RC� � fbg
Sb �� fCg
 RC �� RC n fbg
mb �� jpC jb

else if jpCjb � mb then
Sb �� Sb � fCg
 RC �� RC n fbg
if RC �
 then I �� I n fCg

Notice that an execution of shorten pC! preserves the invariants in
���
For time�complexity observe that it su�ces to count the number of changes to
some RC� plus the length of q
the time needed is linear in this value�� During
an execution there may be up to jalph
q�j�jCj inclusions to some RC� � however�
there are at most jalph
q�j
 jqj exclusions
namely from RC�� As in the

intended� computation of �l for any C

� � C the value of RC� equals
 before
and after the computation� the total number of exclusions equals the total
number of inclusions such that it su�ces to count the exclusions� This yields
that the total time needed for all executions of the above routine during the
computation of p� � �l
p� a� is bounded linearly by

P
C�C j�C
pa�j � j�C
p

��j

 � �
jpaj � jp�j��

We give a more detailed formulation of the algorithm for the computation
of �l�

function �l
p � C�tuple� a � letter� � C�tuple 	� p � Pre
l� �

	� ma � jpja and Sa � fC � C j a � Cg for a � A �

	� RC �
 for C � C and I ��
 �

for each C � C with a � C do
while pC 	� � and pCa �� Pre
�C
l�� do shorten pC
if pCa � Pre
�C
l�� then pC �� pCa

endfor
if pC � � for some C � Sa then 	� it holds ma � � �

for each C � Sa do pC �� �

else ma �� ma � �
while I 	�
 do shorten pC for some C � I
return p�

To examine the correctness of the modi	cations� 	rst assume that the
if�statement in the 	rst for�loop would not be present� Then the for�loop
would preserve the invariants in
��� When the if�statement is present the
invariants may be violated� However we are able to reestablish them after
the for�loop� There are two cases� First assume that for some C � C with
a � C� a was not appended to pC � Then we know pC � � and we are� by
Proposition ���� able to deduce that after a correct computation of �l
p� a��
pC � � for any C with a � C � Notice that C � Sa implies pC � � or pC � a�
Only the C � Sa with pC � a violate the invariants� By setting pC � �

��

for those C we are able to reestablish
��� In the second case a had been
appended to each pC with C � fC � C j a � Cg which implies pC 	� � for
those C� In this case it su�ces to add one to ma to reestablish
���

The total time needed for the processing of both if�statements is bounded
linearly by jfC � C j a � Cgj �

P
C�C j�C
a�j
 jAj� We obtain altogether

that the time needed for the computation of p� � �l
p� a� is bounded linearly
by
P

C�C j�C
paa�j � j�C
p��j
 jAj �
jpaj � jp�j� ���
Given the computation of �l it is easy to deduce an algorithm for the su�x

problem� One just has to simulate the automaton Al� where l is determined
by the 	rst input word v� on the second word x� In a 	rst phase the structures
depending from v and
A�D� have to be computed
see above�� Let x �
a� 	 	 	 an with ai � A for �
 i
 n� Set p� � �� and compute successively
the values pi � �l
pi��� ai� for i � � to n� Test 	nally whether pn � l�

The time used for the second phase is bounded above by
Pn��

i�� c�
jpiai��j�
jpi��j��� for some c � O
jAj�� This equals c�
�n�jpnj� which is inO
jAj�jxj��

In ���� Algorithm ���� the loop is only repeated when pi 	� l� Thus the
algorithm decides whether l is a su�x of a trace represented by some pre	x
a� 	 	 	 ai of x� The comparison pi � l can be done in constant time when a
set fC � C j pi�C 	� �C
l�g is maintained� which needs altogether the time
O
jAj � jvxj�� This way we obtain the same complexity for this modi	ed
algorithm�

Theorem ��� On input of
A�D�� and v� x � A� it is decidable in time
linear to jAj � jvxj� jDj using space linear to jAj � jvj� jDj� whether the trace
l � M
A�D� represented by v is a su�x of a trace represented by x �resp�
whether l is a su�x of a trace represented by some pre�x of x��

It is sometimes even better to compute a covering of
A�D� by maximal
cliques� i�e�� cliques which don�t remain cliques when including some other
letter� which can be done by an e�cient greedy algorithm� In this case� af�
ter calculating the covering� one even obtains the time�complexity O
jvxj��
when M
A�D� is a free monoid� Notice that the above observations about
complexity hold for any reasonable clique�covering� So the time�complexity
gets never worse than O
jAj � jvxj� when using arbitrary reasonable cov�
erings
not considering the time used for the calculation of the covering��
A slight improvement is also obtained by considering independent compo�
nents of the dependence graph independently� Let
A�D� be the union of
several subgraphs Hi �
Ai�Di� such that Ai � Aj �
 for �
 i � j
 k�
Then every tuple
ui���i�k with ui � M
Hi� is quasi�reconstructible� So by
Proposition ���� to determine whether l is su�x of t it su�ces to determine
independently whether �Ai
l� is a su�x of �Ai
t� for �
 i
 k� which can be

��

done in time
Pk

i�� jDij� jAij � jvxj� When D �
� i�e�� when M
A�D� is a free
commutative monoid� one obtains time�complexity O
jAj� jvxj� this way�

In a free monoid an automaton for the su�x�language can easily be trans�
formed to an automaton for the factor�language
just stay in the 	nal state�
when it is reached once�� However� in a free partially commutative monoid
this is not so easy�

Example � Assume a monoid M
A�D� with a� b� c � A and
a� b� � D�

b� c� � I� Let l � ac � M
A�D� and x � abc � A�� Because x �I acb� l is
a factor of the trace represented by x� However� l is not a su�x of a trace
represented by some pre	x f�� a� ab� abcg of x�

� Solving the Factor Problem

We 	rst construct
for l � M
A�D�� a 	nite M
A�D��automaton recognizing
M
A�D� � l � M
A�D� using a known result about the concatenation of rec�
ognizable trace�languages� Then we give an algorithm which simulates this
automaton in linear time for 	xed
A�D��

��� Recognizing M�A�D
 � l �M�A�D

The concatenation of recognizable trace languages is constructively recogniz�
able by Theorem ���
the construction was given in the proof of ��� Proposi�
tion ��������

Theorem ��� For i � f�� �g let Ai �
Qi� A� �i� q�i� Fi� be a �nite M
A�D��
automaton recognizing Li � M
A�D�� Then the trace�language L� � L� is
recognized by the nondeterministic �nite M
A�D��automaton

A �
Q� � P
A��Q�� A� ��
q���
� q���� F� � P
A�� F���

where

p� B� q�� a�
p�� B�� q��� � � �for B�B� � A� if� and only if�

�i� p� � p � Q�� B� � B � fag�
q� a� q�� � ��� or

�ii� q� � q � Q�� B� � B� a �� D
B��
p� a� p�� � ��	

The constructed automaton is a product automaton of A� and A�� On each
input letter it is nondeterministically chosen� whether A� or A� consumes it�
In the alphabetic component the letters already read by A� are remembered�
A� may only consume letters independent of this set� It holds

p� B� q� t��
A

p�� B�� q��

��

if� and only if� for some r� s � M
A�D� such that t � rs� and alph
r��B � I�

p r��
A�
p�� q s��

A�
q�� and B� � B � alph
s�	

We already know the automaton Al recognizing M
A�D� � l� M
A�D� itself� is
recognized by the trivial automaton
fqg� A� f
q� a� q� j a � Ag� q� fqg�� Using
the construction in Theorem ��� we obtain the state set Pre
l��P
A��fqg�
The third component can be omitted� as it is unique� The set of 	nal states
is then flg � P
A�� Notice now that a 	nal state
l� B�� is reachable from a
state
p� B� � Pre
l� � P
A� by a trace t only if �D�B�
p� � �D�B�
l�� This
yields

Theorem ��� The trace language M
A�D� � l �M
A�D� is recognized by the
nondeterministic �nite M
A�D��automaton Nl �
Sl� A� ��
��
�� flg �
P
A��� where

Sl � f
p� B� � Pre
l�� P
A� j �D�B�
p� � �D�B�
l�g�

and

p� B�� a�
p�� B��� � � if� and only if�
p� B��
p�� B�� � Sl� and either

�i� p� � p� B� � B � fag� or

�ii� p� � �l
p� a�� B� � B� a �� D
B�	

In the following we denote by Sl and Nl the notions given above� For a
trace t let Sl
t� � fq � Sl j
��
�

t��
Nl
qg� From the construction of Nl we

obtain

Lemma ��� Let l� t � M
A�D�� Then
p� B� � Sl
t� if� and only if�
p� B� �
Sl and for some traces r� s	 t � rs� p � t
Pre
l��Suf
r��� and B � alph
s�	

��� An Algorithm for the Factor Problem

We give some preliminary results�

Lemma ��� Let l� t � M
A�D�� p � t
Pre
l�� Suf
t��� and let fH�Gg be a
covering of
A�D�� If �H
p� � �H
l� then �G
p� � t
Pre
�G
l���Suf
�G
t���	

Proof� Let pG � t
Pre
�G
l�� � Suf
�G
t���� Observe that �G
p�
o pG and
that
pG� �H
p�� is quasi�reconstructible� because jljb � jpbj
 jpGjb
 jljb for
any b � H �G� By Lemma ���
i� �G
p� � pG� �

The following lemma shows that if
p� B� � Sl
t� then p is uniquely de�
termined by D
B� and some su�x of �D�A�D�B��
t�� As a consequence there
is at most one p such that
p� B� � Sl
t� for a given B � A� Thus� if
A�D�
is 	xed� the set Sl
t� of states reachable in Nl by t has constant size for any
l� t � M
A�D��

��

Lemma ��� Let l� t � M
A�D�� Let
p� B� � Sl
t�� and " � D
A�D
B���
then �D�B�
p� � �D�B�
l� and ��
p� � t
Pre
��
l�� � Suf
��
t���� Hence� for
any B � � there is at most one p such that
p� B� � Sl
t��

Proof� By Lemma ��� there are some traces r� s � M
A�D� such that t � rs�
p � t
Pre
l� � Suf
p��� and B � alph
s�� Because
p� B� � Sl� we have
�D�B�
p� � �D�B�
l�� Observe that f"� D
B�g is a covering of
A�D�� By
Lemma ��� ��
p� is the greatest overlap of ��
l� and ��
r�� We need to
show ��
s� � � which implies ��
r� � ��
t�� But this is clear� because
B � D
A � D
B�� �
 for symmetric D � A � A� Notice 	nally� that for

p�� B��
p�� B� � Sl
t�� p� � p� is implied by Proposition ��� using the equali�
ties �D�B�
p�� � �D�B�
l� � �D�B�
p�� and ��
p�� � t
Pre
��
l���Suf
��
t�� �
��
p��� �

We de	ne a notation for the corresponding su�xes and give some other
notations which will be useful for the construction of the algorithm�

De�nition ��� For l� t � M
A�D�� B � A� let

zB
l� t� � t
Pre
�B
l�� � Suf
�B
t����

B
l� t� � fB � A j
p� B� � Sl
t�g�

"
B� � D
A�B�	

Let further� for a family B � P
A�� D
B� � fD
B� j B � Bg�

By Lemma ���� the tuple
z��D�B��
l� t�� �D�B�
l�� is a tuple�representative
of p� when
p� B� � Sl
t�� The result is visualized in Figure �� In the picture�
the alphabet ranges on the vertical axis� the dotted line is drawn where D
B�
and "
D
B�� intersect�

Figure �� Location of p
in t when
p� B� � Sl
t��

� ��

H
H
H
H
H
H
H
H
H

H
H
H
H

p

t
�D�B�
l�

z��D�B��
l� t�

D
B�

"
D
B��

To decide whether a trace t is accepted by Nl� i�e�� whether l is a factor
of t� it su�ces to examine if there is a B � B
l� t� such that z��D�B��
l� t� �
���D�B��
l�� Lemma ��� shows how the set D
B
l� ta�� can be computed from
D
B
l� t��� a � A� and some z��D�B��
l� t� for B � A�

Lemma ��� Let l� t � M
A�D�� a � A� #� � P
A�� Then #� � D
B
l� ta��
if� and only if� there is a # � D
B
l� t�� such that either

�i� #� � # �D
a� and jz����
l� t�jb � jljb for all b � D
a��#� or

�ii� a �� #� � #� and the tuple
��
l�� z����
l� ta�� is quasi�reconstructible�

��

Proof� If #� � D
B
l� ta�� then there is a pair
p�� B�� � Sl
ta� such that
#� � D
B��� Then� by de	nition of Sl
ta�� there is a state
p� B� � Sl
t� with

p� B� a��

Nl

p�� B��� Either B� � B�fag and p � p� or B � B� and a �� D
B���

With # � D
B� this means either #� � # � D
a� or a �� #� � #� As by
Lemma ��� the tuple
���
l�� z�����
l� ta�� represents p� it is reconstructible�
Thus in the case a �� #� � #
ii� is necessary� In the case #� � # � D
a�
with p � p� we have� because
p�� B�� � Sl� jpjb � jp�jb � jljb for b � #�� Thus�
in this case� jz����
l� t�jb � jpjb � jljb for b � #� �# � D
a��# � "
#��

Let us now show su�ciency� Let # � D
B
l� t��� let
p� B� � Sl
t� be such
that # � D
B�� By Lemma ��� �����
p� � z����
l� t�� Thus jz����
l� t�jb � jljb
for b � D
a��# implies jpjb � jljb for all b � # �D
a�
remember ��
p� �
��
l�� as
p� B� � Sl�� This implies
p� B � fag� � Sl and� by the de	nition
of Nl�
p� B � fag� � Sl
ta�� Thus� if
i� holds� we have #� � # � D
a� �
D
B
l� ta��� Assume now that
ii� holds� Let p� � t
Pre
l� � Suf
pa��� We
show
p�� B� � Sl which implies # � D
B
l� ta��� By Lemma ��� z����
l� t� �
�����
p�� thus by Lemma ���� z����
l� ta� is the greatest overlap of �����
l� and
�����
pa� which implies that �����
p

�� is an overlap of z����
l� ta�� Notice also
��
pa� � ��
p� � ��
l�� because a �� # and
p� B� � Sl� thus ��
p

��
o

��
l�� As the tuple
��
l�� z����
l� ta�� is required to be quasi�reconstructible�
we can apply Lemma ���
i� on the covering f#�"
#�g to deduce that the
tuple is� in fact� a tuple�representative of p�� i�e�� �����
p

�� � z����
l� ta� and
��
p

�� � ��
l�� Note that the latter implies
p�� B� � Sl� �

Theorem ��
 On input v� x � A� it is decidable in time linear to jvxj using
space linear in jvj� whether the trace l � M
A�D� represented by v is a factor
of the trace t � M
A�D� represented by x�

Proof� First preprocess v like in the proof of Theorem ���� Let x � a� 	 	 	 an
with ai � A for �
 i
 n� Let B� � f
g
� D
B
l� ����� Now proceed in n
stages� for �
 i
 n� � let Bi�� be the union of the two sets

i� f# �D
ai� j # � Bi� and jz�����ijb � jljb for all b � D
a��#g

ii� f# � Bi j a �� #� and
��
l�� z�����i��� is quasi�reconstructibleg�

where the values z�����i are for # � D
P
A�� obtained by z������ � �� and

z�����i�� �

�
�������l�
z�����i� ai��� if a � "
#��

z�����i else	

Finally test� whether there exists a # � Bn such that z�����n � �����
l��

��

Using Theorem ��� one deduces z�����i � z����
l� a� 	 	 	 ai�� The correctness
of the algorithm is thus due to Lemma ��� which implies by induction on i
that Bi � D
B
l� a� 	 	 	 ai�� for �
 i
 n�

Examine now complexity� Notice that a set Bi � D
P
A�� has constant
size� as
A�D� is constant� Thus Bi�� can be computed from Bi in constant
time using z�����i and z�����i�� for # � Bi� The successive computation of
z�����i� when done for �
 i
 n� takes time linear to jxj for each # �
D
P
A��� as can be seen by the considerations in the proof of Theorem ����
Together with the preprocessing of v this yields the time�complexity O
jvxj��
For space�complexity notice that between stage i and i�� only the values of
Bi� and z�����i for # � D
P
A�� have to be remembered� This needs constant
space in addition to the O
jvj��size structures depending from v� �

The set D
B
l� t�� may equal D
P
A��� so that the time�complexity of
the given algorithm is� in general� exponential in jAj when
A�D� is consid�
ered as a part of the input� However� if we have an upper bound k for the
shortest path between any two vertices in
A�D�
consider only connected

A�D��� the algorithm remains e�cient� Notice� in this case jD
P
A��j

� �

Pk��
i��

�
jAj
i

�

 � � jAjk�� which yields the time bound O
jAjk � jvxj� when

using a trivial clique�covering� In the free monoid� for example� we have
D
P
A�� � f
� Ag and the time bound O
jAj � jvxj�� Similar to what was
said to the algorithm for the su�x problem it is better to consider indepen�
dent
i�e�� not connected� components of
A�D� independently� This way one
obtains the time�complexity O
jvxj� when D �
� i�e�� when
A�D� is a free
commutative monoid�

If one adjusts ���� Algorithm ���� to our framework� one could roughly
say that in that algorithm� between stage i and stage i��� there is only one
B � A remembered
which should be maximal in B
l� a� 	 	 	 ai��� However�
we are able to show that this information does not su�ce to determine the
next state correctly�

Example � Let A � fa� b� c� d� eg� and let the dependence relation D be the
re�exive and symmetric closure of f
d� a��
a� b��
b� c��
c� e��
e� b�g�
A�D� is
graphically represented by

d a b

e

c

�
�
�
�

b
b
b
b

Let l � adce� t � acebcecn��� and t� � acebecn for some n � �� Then
B
l� t� � f
� fcg� fb� c� egg� and B
l� t�� � f
� fb� c� egg thus in both sets B �

��

fb� c� eg is maximal
notice also zB
l� t� � zB
l� t
�� for B � A which is due

to the fact that zC
l� t� � zC
l� t
�� for all trivial cliques C of
A�D��� But

B
l� ta� � f
� fcgg� and fcg �� B
l� t�a� � f
g�

� Extensible Trace Pairs

Extensible pairs were introduced in ���� to investigate the factor problem�
They allow us to study the automaton Nl and the algorithm for the factor
problem in a less technical way�

De�nition ��� Let l� t � M
A�D�� An extensible trace pair �short� extensible
pair� of
l� t� is a pair
p� s� � Pre
l��Suf
t� with ps
s t� and alph
p��l��
alph
s� � I� where p��l denotes the unique su�x of l with p
p��l� � l�

Clearly� alph
p��l� � alph
s� � I if� and only if� ��
p� � ��
l� for # �
D
alph
s��� Therefore we obtain the following alternative de	nition of ex�
tensible pairs�

The pair
p� s� is an extensible pair of
l� t� if� and only if� ps
s t
and
p� alph
s�� � Sl�

Surprisingly the extensible pairs of
l� t� form a sublattice of the direct
product of the lattices
Pre
l��
p� and
Suf
t��
s��

Theorem ��� Let
p�� s�� and
p�� s�� be both extensible pairs of
l� t�� Then

p� tp p�� s� ts s�� and
p� up p�� s� us s��

are extensible pairs of
l� t�� too� Further it holds

p�s� ts p�s� �
p� tp p��
s� ts s��� and

p�s� us p�s� �
p� up p��
s� us s��	

Proof� Let
p�� s�� and
p�� s�� be both extensible pairs of
l� t�� Let p �
p� tp p� and s � s� ts s�� Because projections are lattice morphisms� jpjb �
max
jp�jb� jp�jb� � jljb� for each b � D
alph
s�� � D
alph
s�� � alph
s����
This implies
p� alph
s�� � Sl� We now show ps � p�s� ts p�s� which implies
ps
s t� thus
p� s� is an extensible pair of
l� t�� Let C be a clique�covering of

A�D�� By Proposition ��� it su�ces to show for each C � C that the words
�C
ps� and �C
p�s�tsp�s�� are equal� To do this� we heavily use the fact that
projections are monoid and lattice morphisms
see Lemma ����� Let C � C�
Assume by symmetry that the word �C
p�s�� is not longer than �C
p�s���
i�e��

�C
p�s��
s �C
p�s���
��

��

thus �C
p�s� ts p�s�� � �C
p�s��� We now show that
�� implies �C
p��
p

�C
p�� and �C
s��
s �C
s�� from which one deduces �C
ps� � �C
p�s��� If
�C
s�� 	� � then �C
p�� � �C
l�� because C � D
alph
s���
remember C is
a clique in
A�D��� Therefore� using the assumption
��� �C
s�� 	� � and
�C
p�� � �C
l� too� which implies �C
s��
s �C
s�� � Let now �C
s�� � ��
If �C
s�� 	� � then �C
p��
p �C
p�� � �C
l�� If �C
s�� � � then by
��
�C
p��
s �C
p�� which implies �C
p��
p �C
p���

A proof for the in	mum is obtained in similar way� Let p � p� up p��
s � s� us s�� First observe
p� alph
s�� � Sl because jljb � jp�jb � jp�jb � jpjb
for b � D
alph
s�� � D
alph
s��� �D
alph
s���� Now we show ps � p�s� us

p�s� using projections to free monoids C�� we show that for an arbitrary
clique C of
A�D�� �C
ps� � �C
p�s� us p�s��� By symmetry we assume
�C
p�s��
s �C
p�s��� which implies �C
p��
p �C
p�� and �C
s��
 �C
s��
as we saw above� Therefore �C
p� � �C
p��� and �C
s� � �C
s�� which
implies �C
ps� � �C
p�s�� � �C
p�s� us p�s��� �

Theorem ��� was inspired by ���� Theorem ���
��� which erroneously states
that for two extensible pairs
p�� s���
p�� s�� there is an extensible pair
p� s�
with s�� s�
s s and p�� p�
o p� Let s � s� ts s� and let r � M
A�D� be
such that t � rs� In the proof of ���� Theorem ���
��� it was misleadingly
assumed that �C
pi� is a su�x of �C
r� for any trivial clique C and i � f�� �g�
However� this need not to be true for C � D
alph
s�� and C 	� D
alph
s����
The only thing one could say in this case is that �C
p�� � �C
l� is a su�x of
�C
r�� and that �C
p�� is a pre	x of �C
l� and a su�x of �C
t�� However� this
allows not to deduce that �C
p�� is a su�x of �C
l�� We exploit this error
in the following counterexample which can be generalized easily to any trace
monoid which is not a free commutative monoid
and also to cases where p�
and p� are incomparable via
p��

Example � Let M
A�D� be the free monoid fa� bg�� Let l � ab� t � aba�
The extensible pairs of
l� t� are
ab� a��
a� ��� and
�� ��� Let now
p�� s�� �

ab� a�� and
p�� s�� �
a� ��� Observe that there is no extensible pair
p� s�
of
l� t� such that p� and p� is a su�x of p�

A pair
p� B� � Pre
l� � P
A� is called extensible trace�alphabet�pair of

l� t� if
p� s� is an extensible pair of
l� t� for some s
s t with B � alph
s��
It is easy to see how Theorem ��� is transfered to extensible trace�alphabet�
pairs to show that they form a sublattice of the direct product of
Pre
l��
p�
and
P
A����� Lemma ��� gives the relationship between extensible trace�
alphabet�pairs of
l� t� and the states reachable in the automaton Nl by t�
The elements of Sl
t� are those extensible trace�alphabet�pairs
p� B� of
l� t�
whose 	rst component p is maximal with respect to the extensible trace�
alphabet�pairs having the same second component B�

��

Lemma ��� Let l� t � M
A�D�� It holds �i� and �ii��

�i� The pair
p� B� is an extensible trace�alphabet�pair of
l� t� if� and only
if�
p� B� � Sl� and p
o q for a trace q such that
q� B� � Sl
t�

�ii�
q� B� � Sl
t� if� and only if�
q� B� is an extensible trace�alphabet�pair
of
l� t�� and� for any p such that
p� B� is an extensible trace�alphabet�
pair of
l� t�� p
o q�

Proof� Let
p� s� be an extensible pair of
l� t�� and B � alph
s�� It is
clear that
p� B� � Sl and p
s r for a trace r such that t � rs� Let
q � t
Pre
l� � Suf
r��� thus p
o q� and further
q� B� � Sl� This allows Nl

the transitions
��
� r��
Nl

q�
� s��

Nl

q� B�� thus
q� B� � Sl
t� which proves

the only�if�part of
i�� Let now
q� B� � Sl
t�� By Lemma ��� there are
traces r� s such that t � rs� q
s r� and alph
s� � B� Thus qs is a su�x of
t� Clearly� p
o q implies that ps is a su�x of t and p is a pre	x of l� This
proves the if�part of the 	rst statement�

The second statement is corollary of the 	rst one� Let 	rst
q� B� � Sl
t��
By the if�part of
i�
q� B� is an extensible trace�alphabet�pair of
l� t�� By the
only�if�part of
i�� for any p such that
p� B� is an extensible trace�alphabet�
pair of
l� t� there is a q� such that p
o q

� and
q�� B� � Sl
t�� However by
Lemma ��� all those q� are equal to q� Let now
q� B� be an extensible trace�
alphabet�pair of
l� t� such that for any p such that
p� B� is an extensible
trace�alphabet�pair of
l� t�� p
o q� By the only�if�part of
i� there is a q�

such that
q�� B� � Sl
t� and q
o q
�� However by the if�part of
i��
q�� B�

is an extensible trace�alphabet�pair of
l� t� which by the assumption implies
q�
o q� thus q � q�� �

This observation yields Theorem ���� It is obtained immediately from
the following Lemma ��� which implies that B
l� t� is a lattice� Because
B
l� t� � P
A� it is clear that the lattice is distributive�

Theorem ��� Let l� t � M
A�D�� Then
B
l� t�� �� �� is a distributive lat�
tice�

Lemma ��� Let l� t � M
A�D�� Let
p�� B���
p�� B�� � Sl
t�� Then

p� up p�� B� � B��� and
p� B� �B�� for some p �p p� tp p�

are elements of Sl
t�� too�

Proof� By Lemma ��� and Theorem ��� we deduce that if
p�� B��� and

p�� B�� are both elements of Sl
t� then there are extensible trace�alphabet�
pairs
p�tp p�� B��B�� and
p� up p�� B��B�� of
l� t�� Again by Lemma ���

��

there are p� q � Pre
l� such that p� tp p�
p p� p� up p�
p q� and
p� B� �
B���
q� B��B�� � Sl
t�� Clearly
q� B��B�� is an extensible trace�alphabet�
pair of
l� t�� By Theorem ���
qtpp�� B�� is an extensible trace�alphabet�pair
of
l� t�� too� By Lemma ��� q tp p�
o p� which implies q
p p�� Similarly
one obtains q
o p�� Therefore q � p� up p� �

It is an open question whether
p�� B���
p�� B�� � Sl
t� implies
p� tp

p�� B� �B�� � Sl
t�� Although the author does not believe that this is likely�
he was not able to 	nd a counterexample�

In the following we show that we can represent a set Sl
t� by not more
than jAj of its elements� This greatly reduces the number of states reachable
in the subset automaton of Nl� The result is obtained using Lemma ��� and
the observations in ���� chapter III� x �� We recall the de	nition of meet�
irreducible elements in ����

De�nition ��� Let
L�u�t� be lattice� An element x of L� which is not a
greatest element in L� is called meet�irreducible if x � y u z implies y � x or
z � x for all elements y and z of L�

Let l� t � M
A�D�� Let M
l� t� denote the set of meet�irreducible elements
of B
l� t� together with the greatest element� i�e��

M
l� t� � fB � B
l� t� j B� �B� 	� B for all B�� B� � B
l� t� n fBgg	

Let Sl
t� denote the corresponding elements in Sl
t�� i�e��

Sl
t� � f
p� B� � Sl
t� j B � M
l� t�g	

One now obtains

Lemma ��� Let l� t � M
A�D�� Each element
p� B� � Sl
t� is the meet of
the greater elements in Sl
t�� I�e�� let Sl
t��B � f
q� E� � Sl
t� j B � Eg�
then

p� B� � uSl
t��B�

where
q�� E�� u
q�� E�� is de�ned by
q� up q�� E� � E���

Proof� Let
p� B� � Sl
t�� let M
l� t��B � fE � M
l� t� j B � Eg� We
	rst observe that B � �M
l� t��B� Clearly� B � �M
l� t��B� we show the
opposite inclusion by induction� If B � M
l� t� the statement is clear� If
B �� M
l� t� there are B�� B� � B
l� t� such that B � B� �B� and B� 	� B 	�
B�� i�e�� B�� B� � B� Assume Bi � �M
l� t��Bi for i � f�� �g� Then B �

�M
l� t��B�� �
�M
l� t��B�� � �
M
l� t��B� �M
l� t��B�� � �M
l� t��B�
This implies that the statement holds for the second component� i�e�� there

��

is a q � Pre
l� such that
q� B� � uSl
t��B� By Lemma ���
q� B� � Sl
t��
by Lemma ��� q � p� �

Lemma ��� implies that the set Sl
t� is fully determined by the elements
in Sl
t�� From Lemma � in ���� chapter III� x � one deduces that a sublattice
of P
A� has at most jAj � � meet�irreducible elements� Therefore there are
at most jAj elements in M
l� t� and thus in Sl
t��

Clearly� the elements in Sl
ta� can be computed
ine�ciently� from the
elements in Sl
t��
A�D�� a � A� and l by reconstructing all elements in
Sl
t� computing Sl
ta� and 	nally determining the meet�irreducible elements
in Sl
ta�� If one does not keep all elements in Sl
t� simultaneously in the
memory� and computes them only when needed�
and similar for the elements
in Sl
ta�� this computation can be performed using only O
jAjkjvj� space for
some k � �� Clearly� time complexity is not improved by this approach�

It is an open question whether Sl
ta� can be computed e�ciently from
Sl
t��
A�D�� a � A� and l � M
A�D�� A positive answer immediately yields
an O
jAjkjvjk

�
jwj��time algorithm for the factor problem for some k� k�� To

obtain an O
jAjkjvwj��time algorithm for the factor problem� the computa�
tion should only use amortized constant time in the length of l
i�e�� time
O
jAjk���

	 Conclusion

We have shown that the pattern matching problem in trace monoids is solv�
able in linear time using an approach where a 	nite automaton which is
determined by the searched pattern is simulated on the trace where the pat�
tern is searched in� This approach has the advantage that the search�space�
i�e� the trace where the pattern is searched in� can be read as a stream of
symbols� and has not to be stored in memory� One step of this 	nite au�
tomaton can be simulated in amortized constant time� where space linear
in the size of the pattern is needed to represent the actual state� However�
this is only true when considering a 	xed trace monoid� If the dependence
alphabet
A�D� is a part of the input� the time and the space complexity of
the presented algorithm is exponential in the size of the dependence alpha�
bet
A�D�� This complexity is clearly not desirable when considering parallel
systems with many di�erent actions� As we discussed� a polynomial space
complexity of the algorithm can be achieved
 each state of the automaton can
be represented by a structure of size polynomial in the size of the dependence
alphabet and the pattern� It is not clear how this observation can be used
to obtain an e�cient simulation of the automaton� However� we conjecture
that this is possible� An even better result� which one could expect� would

��

be an e�cient simulation of the automaton using amortized time depending
only on the size of the alphabet and not on the size of the pattern� Clearly�
it is an open question whether this is possible�

 Acknowledgments

The author wishes to thank V� Diekert� A� Muscholl� and J� Tor$an for their
advice when preparing the paper� and K� Hashiguchi for a discussion about
the problem�

References

��� Alfred V� Aho� John E� Hopcroft� and Je�rey D� Ullman� The Design
and Analysis of Computer Algorithms� Addison Wesley� Reading� Mass��
�����

��� Garrett Birkhof� Lattice Theory� volume XXV of Colloquium Publica�
tions� American Mathematical Society� Providence� Rhode Island� ��
edition� �����

��� Pierre Cartier and Dominique Foata� Probl
emes combinatoires de com�
mutation et r�earrangements� Number �� in Lecture Notes in Mathemat�
ics� Springer� Berlin�Heidelberg�New York� �����

��� Robert Cori and Yves M$etivier� Recognizable subsets of some partially
abelian monoids� Theoretical Computer Science� ����������� �����

��� Robert Cori� Yves M$etivier� and Wies%law Zielonka� Asynchronous map�
pings and asynchronous cellular automata� Information and Computa�
tion� ������������ �����

��� Robert Cori and Dominique Perrin� Automates et commutations par�
tielles� R�A�I�R�O� � Informatique Th�eorique et Applications� ���������
�����

��� Volker Diekert� Combinatorics on Traces� Number ��� in Lecture Notes
in Computer Science� Springer� Berlin�Heidelberg�New York� �����

��� Volker Diekert and Yves M$etivier� Partial commutation and traces� In
G� Rozenberg and A� Salomaa� editors� Handbook on Formal Languages�
volume III� Springer� Berlin�Heidelberg�New York� To appear�

��

��� Volker Diekert and Grzegorz Rozenberg� editors� The Book of Traces�
World Scienti	c� Singapore� �����

���� Christine Duboc� On some equations in free partially commutative
monoids� Theoretical Computer Science� ����������� �����

���� Samuel Eilenberg� Automata� Languages� and Machines� volume A� Aca�
demic Press� New York and London� �����

���� Paul Gastin and Brigitte Rozoy� The poset of in	nitary traces� Theo�
retical Computer Science� ������������ �����

���� Kosaburo Hashiguchi and Kazuya Yamada� String matching problems
over free partially commutative monoids� Information and Computation�
������������ �����

���� Donald E� Knuth� James H� Morris� Jr�� and Vaughan R� Pratt� Fast
pattern matching in strings� SIAM Journal on Computing� ����������
�����

���� Hai�Ning Liu� Celia Wrathall� and Kenneth Zeger� E�cient solution of
some problems in free partially commutative monoids� Information and
Computation� ����������� �����

���� Antoni Mazurkiewicz� Concurrent program schemes and their interpre�
tations� DAIMI Rep� PB ��� Aarhus University� Aarhus� �����

���� Jochen Messner� Pattern matching in trace monoids� In R� Reischuk�
editor� Proceedings of the
�th Annual Symposium on Theoretical As�
pects of Computer Science
���� Lecture Notes in Computer Science�
Berlin�Heidelberg�New York� ����� Springer� To appear�

���� Friedrich Otto and Celia Wrathall� Overlaps in free partially commu�
tative monoids� Journal of Computer and System Sciences� �����������
�����

���� Karl R&udiger Reischuk� Einf�uhrung in die Komplexit�atstheorie�
Leitf&aden und Monographien der Informatik� Teubner� Stuttgart� �����

��

