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Abstract

The development of Small Span Theorems for various complexity classes and re-
ducibilities plays a basic role in (resource bounded) measure-theoretic investigations
of efficient reductions. A Small Span Theorem for a complexity class C and reducibil-
ity <, is the assertion that, for all sets A in C, at least one of the cones below or
above A is a negligible small class with respect to C, where the cones below or above
A refer to the sets {B:B <, A} and {B:A <, B}, respectively. That is, a Small
Span Theorem rules out one of the four possibilities of the size of upper and lower
cones for a set in C.

Here we use the recent formulation of resource-bounded measure of Allender and
Strauss which allows meaningful notions of measure on polynomial-time complexity
classes. We show two Small Span Theorems for polynomial-time complexity classes
and sublinear-time reducibilities, namely a Small Span Theorem for P and Dlogtime-
uniform NC°-computable reductions, and for PNP and Dlogtime-transformations.
Furthermore, we show that, for every fixed k, the hard set for P under Dlogtime-
uniform ACP°-reductions of depth & and size n* is a small class. In contrast, we show
that every upper cone under P-uniform NC-reductions is not small.

1 Introduction

Resource-bounded measure [18] provides a tool to investigate abundance phenomena in
complexity classes. Besides insights in the measure-theoretic structure of complexity
classes, resource-bounded measure also enriches the measure-theoretic investigations of
efficient reductions with its origin in the work of Bennet and Gill [13, 19, 14, 4, 6]

A unifying theme in this area is the development of Small Span Theorems for various
complexity classes and reducibilities. A first Small Span Theorem for EXP and polynomial-
time many-one reductions was shown by Juedes and Lutz [17], and has subsequently ex-
tended to other reducibilities (e.g. [9, 20]). Briefly, a Small Span Theorem for a complexity
class C is the assertion that, for all sets A in C, at least one of the cones below or above A
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1s a negligible small class with respect to C, where the cones below or above A refer to the
sets reducible to A, and the sets to which A can be reduced, respectively. That is, a Small
Span Theorem rules out one of the four possibilities of the size of upper and lower cones
for a set in C. As an immediate consequence, the hard sets for C is a negligible small class
with respect to C. Furthermore, there are sets for all of the three possibilities not ruled
out by a Small Span Theorem, which has been further studied in [10, 15, 8, 23]. (For a
recent overview, we refer to [7, 21].)

The formulation of resource-bounded measure given by Lutz applies only to complexity
classes at least containing E. Recently, Allender and Strauss [4, 5, 3] provided meaningful
notions of measure on P. Here we concentrate on the most restricted notion, the con-
servative ['(P)-measure. Though some of intuitively small subclasses of P are in fact not
measurable, notably the p-printable sets and hence all sparse sets in P, it satisfies all basic
properties required by a reasonable notion of measure in P. In particular, it is possible to
define pseudo-random sets and to show that the majority of sets in P is pseudo-random
[3]. Furthermore, all proofs in this context relativize, that is, the definitions immediately
apply to classes like PN,

In order to have a non-trivial degree structure in P without unproven assumptions we
consider reductions computed by Dlogtime-uniform constant depth circuits (see e.g. [1]).
We show a Small Span Theorem for Dlogtime-uniform NC%reductions in P. In contrast,
we show that every upper cone under P-uniform NC%reductions is not small. It follows
that a Small Span Theorem for P-uniform NC°-reductions does not hold.

A consequence of the Small Span Theorem is that the hard sets for P under Dlogtime-
uniform NC%reductions is a small class. We also show that this can be improved to a
restricted version of Dlogtime-uniform AC°reductions of depth k.

As in the proofs in [17, 9] the main technical step in the proof of the Small Span Theorem
is to show that every reduction from a pseudo-random set can not decrease the length of its
value to much. In the case of polynomial-time reductions and exponential-time classes this
involves inverting polynomial-time functions, which can be done in exponential time. But
even Dlogtime-uniform NC%-computable functions can not be inverted in polynomial time,
unless P = NP. Thus, we merely explore the fact that for a NC-computable function there
is some constant ¢ such that each output bit depends on at most ¢ different input bits. In
contrast, we use the exponential lower bound on the size of a constant depth circuit for the
parity function [25, 16] to show the result concerning the hard sets for P under (restricted)
AC%reductions.

However, in the presence of an NP-oracle, Dlogtime-transformations are invertible. This
allows us to show a Small Span Theorem for Dlogtime-transformations within PNY with
an adaption of the proofs in [17, 9].



2 Preliminaries

A circuit family is a sequence {C,}, n € N where each C,, is an acyclic circuit with n
Boolean inputs xy,..., 2, (as well as the constants 0 and 1 allowed as inputs) and some
number of output gates y1,... ,ym. {Cn} has size s(n) if each circuit C,, has at most s(n)
gates; it has depth d(n) if the length of the longest path from input to output in C,, is at
most d(n). A family {C,} is uniform if the function n — C,, is easy to compute in some
sense. We will consider Dlogtime-uniformity [12] and P-uniformity [2].

A function f is said to be AC°-computable if there is a circuit family {C,,} of polynomial
size and constant depth consisting of unbounded fan-in AND and OR and NOT gates such
that for each input « of length n, the output of C, on input x is f(x).

A function f is said to be NC°-computable if there is a circuit family {C,,} of polynomial
size and constant depth, consisting of fan-in two AND and OR and NOT gates. Note that
for any NCY circuit family, there is some constant ¢ such that each output bit depends on
at most ¢ different input bits.

Note that a NC°-(AC%)-computable function f satisfies the restriction that |z| =

lyl = [f(2)] = 1£(y)l.

A function g is an inverse of a function f, if, for all strings y, y € range f = f(g(y)) =
y. A proof of the following can be found in e.g. [1].

1. Proposition. P = NP if and only if every length increasing Dlogtime-uniform NC°-
computable function has a polynomial-time computable inverse.

A set A is NC°-(AC°-)reducible to a set B if A is many-one reducible to B via a
polynomially length bounded NC°-(AC-)computable function.

A function f is a Dlogtime-transformation if f is polynomially length bounded and the
set {(x,1,b) :the ¢-th bit of f(x)is b € {0,1} } is decidable in logarithmic time.

A set A is r-printable if there is a function computable within the resources specified
by r, which, on input 0", prints out the whole set of strings in A up to length n.

3 Measure on P

In order to define a reasonable notion of measure within subexponential time classes, Allen-
der and Strauss [4, 5] consider sublinear computations. Here the underlying computation
model is a Turing machine with random-access to its input via a special index tape. When
M enters a special query state, M receives the i-th bit of the input, where ¢ is the content
of the index tape. Furthermore, M is given both w and the length of w as the input.

Given such a machine M and a string w, let Ins(w) denote the set of bits queried by M
to the input w. We assume that M queries the bits of the input w in parallel, that is, the
bits queried by M do not depend on the actual input w but only on the length |w|. Define
the dependency set Dy(w) C {0,1,...,n} be the unique minimal set containing In/(w)



and satisfying
i € Dy(w) = Inp(w[0..7]) € Dps(w)

Note that the queries to the length of w are not content of the dependency set.

A function f is I'(n®)-computable if it is computable by a machine M such that M runs
in time O(log® |w|) and has dependency sets Dys(w) with size bounded by O(log® |w]). A
function f : ¥* — ¥* is I'(P)-computable if f is I'(n)-computable for some ¢ € N.

A martingale is a function d : 2<¥ — R* satisfying the average law d(20) + d(z1) =
2d(x) for all € 2<¥. A martingale succeeds on a set A C ¥* if limsup,, d(A|z,) = c0. A
class X' is a I'(n®)-nullset if there is a ['(n®)-computable martingale d which succeeds on
every set in X. A class X' is a ['(P)-nullset if X' is a I'(n®)-nullset for some ¢ € N.

Allender and Strauss show that the ['(P)-nullsets define a reasonable notion of nullsets.
That is, the ['(P)-measure corresponds to P in the sense that all singletons of P are I'(P)-
nullsets, but the whole space P is not a I'(P)-nullsets. Moreover, the collection of I'(P)-
nullsets is closed under subsets, finite unions, and arbitrary unions over the sub-collection
of I'(n®)-nullsets.

The latter permits the definition of pseudo-random sets as the “typical” sets within P in
the sense of [24]. More precisely, define a set A to be I'(n®)-random if no I'(n®)-computable
martingale succeeds on A. Equivalently, A is I'(n®)-random if and only if the singleton { A}
is a I'(n®)-nullset. Then, for each fixed ¢, all sets in P but a I'(P)-nullset are I'(n¢)-random,

but no I'(n®)-random set possesses any property which is specific for only a I'(n®)-nullset.

This gives us the following characterization of I'(P)-nullsets in terms of I'(n®)-random
sets.

2. Proposition. Let X any class of sets. The following are equivalent.

1. X is a T'(P)-nullset.

2. For some ¢ > 1, X contains no I'(n®)-random set.

Mayordomo [22] showed that, for every fixed ¢, the class of non-Dtime(n®)-bi-immune
sets 1s small in exponential time. The same proof can be used to show the following.

3. Proposition. If A is a ['(n®)-random set then A is bi-immune for the class of
Dtime(n®)-printable sets.

4 The Small Span Theorem

4. Lemma. Let A be a T'(n®)-random set reducible to some set B via a function f com-
putable by a Dlogtime-uniform NC°-circuit family of depth d. Then |f(x)| > |=|/2.

Proof. Suppose f maps strings of length n to strings of length less than n/2¢ for infinitely
many n. Fix such an n. Then there is at least one input bit which is ignored by the circuit
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computing f. Let y be the string of length n, where all the ignored bits are set to 1, and
the remaining bits are set to 0. Then f(0") = f(y), and therefore, A(0") = A(y), that is,
the membership of y in A can be predicted from the membership of 0" in A. Since y can
be computed in time O(nlogn), it follows that there is a I'(n?)-martingale which succeeds

on A. O

5. Theorem. Let A be a T'(n®)-random set in Dtime(n®), for some ¢ > 1. Let A be
reducible to some set B via a Dlogtime-uniform NC°-reduction f. Then B has an infinite
Dtime(n“t3)-printable subset.

Proof. Since A is T'(n®)-random, A N 0* is infinite. Hence, by Lemma 4, f(AN0*) is a
infinite Dtime(n“t?)-printable subset of B. O

6. Corollary (Small Span Theorem). For cvery set A in P, either its upper or its
lower cone under Dlogtime-uniform NC°-reductions is a ['(P)-null set.

Proof. Fix a set A in P. If the lower cone of A is a I'(P)-nullset then the assertion follows
vacuously. So assume that the lower cone of A is not a I'(P)-nullset. Hence, by Proposition
2, the lower cone of A contains a ['(n?)-random set in Dtime(n¢), for some ¢ > 1. From
Proposition 3, Theorem 5 and the transitivity of uniform projections, it follows that the
upper cone of A contains no I'(n°t3)-random set. Hence, again by Proposition 2, the upper

cone of A is a ['(P)-null set. I

7. Remark. We note that there are sets in P for all three cases not ruled out by the
Small Span Theorem. First, every set in NC can be reduced to all sets, hence its upper
cone is not small. Second, the lower cone of any complete set in P is not small. Finally,
consider the set A = {z:|z| =2¥ k> 1, and = has an even number of 1’s}. Using similar
arguments as in Lemma 4 and Theorem 5 its not hard to see that the upper cone of A
is small. Moreover, for every set B reducible to A, 02" € B is decidable in linear time,
whence B is not bi-immune for the class of Dtime(n)-printable sets. Hence the lower cone
of A is small as well.

8. Theorem. (1) Every upper cone under P-uniform NC°-computable reductions is not a
['(P)-nullset.
(2) Every degree under P-uniform AC-computable reductions is not a T'(P)-nullset.

Proof. Fix any set A. In order to proof that the p-printable sets do not form a I'(P)-nullset
Allender and Strauss [4] show the following.

Let d be a I'(P)-martingale. Then there are p-printable sets D and D, with D; C D,
such that, for all set B, if B satisfies # € D = B(a) = D;(x) then d does not succeed
on B.

Since D is sparse, for every n there is some string x of length n such that {yz,:|z| =
ly| = n}ND = 0. Let z,, be the smallest such x. Since D is p-printable, z,, can be obtained
from n in time polynomial in n.



Define a set A’ by

P ZEDl leED
z€ A <= .
z=yrpandy e A ifz¢ D

By the definition, d does not succeed on A’. The set A is reducible to A’ via a P-uniform
NC°-function y + yx,. This shows (1).

For (2) note that A’ is reducible to A via a P-uniform AC - function. O

9. Remark. Let A be a complete for P under P-uniform NC%reductions. Then the lower
cone of A is P, hence not a I'(P)-nullset. By Theorem 8§, the upper cone of A is not a
I'(P)-nullset as well. Thus, in contrast to Dlogtime-uniform NC°-reductions, a Small Span
Theorem for P and P-uniform NC%reductions does not hold.

In the following we show that each output-bit of a reduction may depend on all of the
input-bits when considering only the hard sets for P.

Let us call a AC’function k-bounded if the circuit computing f has depth < k, and
every output-bit is determined by a circuit of size < n*.

10. Theorem. Let k& > 1 some fized constant. The upper cone of PARITY wunder
Diogtime-uniform k-bounded AC°-reductions is a T'(P)-nullset.

Proof. Let PARITY be reducible to some set B via a function f computable by an AC®
circuit of depth k.

Let C, be the circuit which, for strings « of length n, compares f(x) with all strings of
length |f(x)| and accepts « if and only if f(x) € B. Since f is a reduction from PARITY
to B, C, computes the parity function. The size of C, is O(n* + 2(®1). From the lower
bound 2%*"'* on the PARITY function [25, 16], it follows that |f(z)| > |2|(/®) where ¢
can be chosen independently of B and f.

Hence, f(1-0%) is an infinite Dtime(n°**?)-printable subset of B. The assertion follows
from Proposition 2. O

5 A Small Span Theorem in PF

As already observed in [4] all basic properties hold also in the presence of an NP oracle, if
we consider I'(n®)NP-computable functions where the machine computing f may ask queries

to SAT of length bounded by O(log® n).

As in [17, 10] we adapte the version of the strongly P-bi-immune sets [11] in order to
proof the following lemma.

11. Lemma. There is a constant ¢ > 1 such that, if A is a T(n)**T-random set reducible

to some set B via a Dlogtime-transformation f, then |f(x)| > |x| for infinitely many x.



Proof. Define f’s collision set Cy C ¥* x ¥* by
Cy=A{(w,y):x <yand f(x) = f(y)},

and its bounded collision set C'f C¥* x ¥* by

N

Cr={(z,y):x <yand f(z) = f(y) and |f(y)| < |y[}.

First we show that if the bounded collision set C; is finite, then | f(z)| > |z| for infinitely
many x. Consider the following two cases:

e If the collision set Cy is finite, then |f(x)| > |2| i.0. follows from an easy counting
argument.

e Otherwise the collision set Cy is infinite. Since C'f C Cy and C'f is finite, for almost
all pairs (z,y) in Cy, |f(y)| > |yl

Thus it suffices to show that f’s bounded collision set C'f is finite. So assume that C'f
is infinite. Hence there are infinitely many n and pairs (x,,y,) such that y, is the lex.
smallest string of length n such that there is some string @’ < y with f(2') = f(y), and
&, is the lex smallest such a’. Every pair (a,,y,) can be generated by prefix search and
O(n) adaptive queries to an NP oracle. Since f(x,) = f(yn), A(z,) = A(yn). It follows
that there is a martingale succeeding on A which is I'(n®)-computable relative to SAT, for
some ¢ which can be chosen independently of the transformation f. O

12. Theorem. There are constants c,c’ > 1 such that, if A is a ['(n®)**T-random set
in Dtime(n?)%AT reducible to some set B via a Dlogtime-transformation f, then B is not

bi-immune for the class of sets Dtime(n™*( D) printable relative to SAT.

Proof. Let ¢ be as in Lemma 11. Let I be the infinite set of strings x such that z is the lex
smallest string of the strings @’ of length || with |f(2")| > |2/|. Then f(INA)or f(INA)
is a infinite set of B or B, respectively, which is printable in time O(nmax(cl’d))
SAT, where ¢’ can be chosen independently of the transformation f. O

relative to

PNP

13. Corollary. For every set A in , either its upper or its lower cone under Dlogtime-

transformations is a ['(PNY)-nullset.
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