
A Distributed Execution Environment

for Large�Scale Work�ow Management Systems

with Subnets and Server Migration

Thomas Bauer� Peter Dadam
Dept� of Databases and Information Systems

University of Ulm
fbauer� dadamg�informatik�uni�ulm�de

Abstract

If the number of users within a work�ow management system �WFMS� increases� a central

work�ow server �WF�server� and a single local area network �LAN� may become overloaded�

The approach describes an execution environment which is able to manage a growing number

of users by adding new servers and subnets� The basic idea is to decompose processes into

parts which are controlled by di�erent WF�servers� That is� during execution of a work�ow

instance its execution �step� control may migrate from one WF�server to another� By select	

ing the appropriate physical servers �for hosting the WF�servers� in the appropriate LANs�

communication costs and individual WF�server workload can be reduced signi
cantly�

� Introduction

Since a couple of years there is a growing interest in using WFMS for implementing process�

oriented application systems� As the bene
t of such application systems increases with the

number of applications being serviced� the number of work�ow applications and WFMS users

within a company will signi
cantly grow year by year once it has started to go that way� Thus�

the question arises how to manage large numbers of users �may be even tens of thousands

�KAGM��� and high volume data transfer �e�g� in conjunction with multi�media applica	

tions� within a WFMS�

Most existing systems use a central WF�server� It is easy to see that it becomes a bottleneck

and will be overloaded under a high load� To reduce the load of the WF�server it can be

replicated� This method can be used in combination with our approach �section ���� and is

used in �AKA���� �see section ��� for example� But there remains a bottleneck� namely the

band�width of the subnet of the WF�server�

To see that a LAN really may become a bottleneck� let us perform a little numerical exercise�

Let us assume that ��� users are working concurrently� each of them needing � minutes �� ���



seconds� in the average to perform one �work�ow� step� This means� that in the average one

step is executed per second� Let us further assume� that in the average ��� of all users

have the appropriate role to execute a certain step� That is� this step should appear in the

worklist of these users� Assuming a packet size of ��� byte� we will need approx� � packets for

transmitting the worklist entries and respective acknowledgements� in total �� � � � ��� byte �

�� KB per second� If we further assume that the selection and execution of one step requires

the transmission of ��� KB of input data and produces the same amout as output� then ��

KB � �� KB � �� KB � ��� megabits of pure data per second have to be transferred in

the average� Taking all the additional overhead into account this would already lead to an

overload for a simple Ethernet�based LAN� In general� due to the potentially large number

of individual messages� even very expensive high�speed LANs may become overloaded for a

larger number of users�

Our approach to solve this problem is to distribute the load by using several subnets� Not

every decomposition of a single LAN into subnets leads to the desired result� however� In


gure �a� for example� three subnets are used� Because all WF�servers are in LAN �� this

subnet is burdened with the full communication load� The existence of the other subnets

�LAN � and LAN �� does not lead to any load reduction for LAN �� The same problem

appears� if we assume that in 
gure �b WF�server S� has all of its clients in subnet LAN �

and WF	server S� has all its clients in subnet LAN �� In this case both� LAN � and LAN �

have to take the full communication load as if they were in a single LAN� On the other hand�

if in the scenario illustrated in 
gure �b WF�server S� has all its clients in LAN �� S� in

LAN �� and S� in LAN �� then all communication can take place locally within the individual

subnet� In this case we achieve a signi
cant decrease in communication load per subnet�

�� �� ��

�� �� ��

���

�	���
�	

�	 
�

� �� �� 
����

� �� ���

�� ��

���

�	

���

���� �

�� ��

�	

���

����� �����

�����

�����

����������

�

Figure � Structure of networks �S� WF�server� Cl� client� GW� gateway �router�� DB� database�

external data source��

These examples show that the introduction of subnets can help to reduce the communication

load per subnet� but it also shows that the WF�servers and clients must be in the �right�

subnet to achieve the desired load reduction� As we will see later� it will not be su�cient to

consider work�ows as a whole �each of it being controlled by a single WF�server�� but that we

have even to split work�ows into parts each of it being controlled by another WF�server to


nd satisfying solutions� The development of criteria for �good� and �bad� distributions� for

splitting work�ows into parts� as well as the presentation of a corresponding design method

�



for WF networks are the main issues of this paper�

The remainder of the paper is organized as follows� In section � the optimization problem

and in section � the problem solution are described� Section � analyzes the e�ciency of

our approach� especially the creation of subnets and decomposition of work�ows� Section �

discusses related approaches and section  concludes with a summary and an outlook�

� Problem Description

The optimization problem can be sketched as follows� Given a set of processes consisting of

several steps� 
nd a distribution of processes to WF�servers such that the communication load

in the subnets is minimized under the restriction that no subnet� WF�server� and gateway is

overloaded� Until further notice we assume that the users �clients� can be distributed to the

subnets in any way� Restrictions are discussed in section ������

The communication costs for each WF�step are caused by�

� step o�ering �SOk��� the transmission of the information about the step to all users

resp� clients with an appropriate role and their acknowledgement�

� step selection �SSk�� the transmission of the information to the server that a certain

user has selected the step and the transmission of the the input parameters for this step

to the corresponding client�

� worklist refresh �WRk�� sending a delete	message for that step to the other clients to

bring their worklists up�to�date and transmitting their acknowledgements�

� result transfer �RTk�� the transmission of the output parameters of an activity to the

server and transmitting its acknowledgement�

� migration costs �MIm�� transmitting �transfering� work�ow control information from

one server to another �see section ��� for details�

In our approach� the unit of distribution are not complete processes but single steps� This

makes sense� because the sum of the communication costs is smallest if all steps are allocated

at the optimal WF�server �and not only the process as a whole�� Therefore it may become

necessary to decompose a process into parts which are managed by di�erent WF�servers as

illustrated in 
gure �� That is� during execution a process �resp� its control� may migrate

from one WF�server to another� If this happens� all data of this process instance is copied to

the subsequent WF�server and deleted at the previous one �see section ��� for further details��

For estimating the load of each component we make two simplifying assumptions at the

moment�� Firstly� the executions of steps takes place equally distributed during time period

T � Secondly� each user with an appropriate role has the same probability �independent of its

subnet� for selecting a step� Concerning the WF�model itself� we do not make any restricting

assumptions� That is� the model may contain AND�branches� OR�branches� iterations etc�

�SOk are the costs for maintaining the worklist of one user for step k�
�For a more sophisticated model see section ����

�



�

�

� � �

�

�

��

��

������������� ��������� ��!"��#!��$�

%��"�!��$ %��"�!��$

Figure � The steps of the process are assigned with the WF�servers A and B� The system decomposes

the process in a part forWF�server A and one for WF�server B� At the points the control changes

between the servers� migration steps are inserted�

We only assume resp� require� that Ek� the number of executions of step k during a time

period T � can be estimated �e�g� based on statistical information��

Let uk denote the number of appropriate users for step k� Thus the step appears in uk

worklists� Once one user has decided to execute the step� it has to be removed from uk � �

worklists�� We now consider the average communication load resulting from the execution of

step k� At 
rst we look at the load C
Sk
k in the subnet where the WF�server �Sk� resides�

C
Sk
k � Ek

T
�
�
uk � SOk � SSk � �uk � �� �WRk � RTk

�
�F��

The load in the other subnets can be estimated as follows� In total we have uk users which

qualify to execute step k� If uxk of these users �clients� belong to another subnet x �which

does not contain Sk�� the probability of step k to be executed in subnet x is
ux
k

uk
� If the step is

executed in subnet x� the parameters have to be transmitted to that client �SSk �RTk�� but

there is no need to refresh its worklist ��WRk�� Thus the communication load for step k in

subnet x can be approximated as follows�

Cx
k � Ek

T
�
�
uxk � �SOk �WRk� �

uxk
uk

� �SSk �RTk �WRk�
�

�F��

The total load which a process P creates in subnet N is the sum of the step execution load

and the migration load for the migration steps m� MINm speci
es the migration costs for step

m� They are zero� if the subnet N is not a�ected by this migration� Thus we get�

CN
P �

P
k

CN
k �

P
m

Em
T

�MINm �F��

The total load of a subnet N is CN �
P
P

CN
P � �F��

The load of the WF�servers and gateways is calculated in a similar way�

�The item can be removed from the worklist of the user that has selected this step without further

communication�

�



� Derivation of Appropriate Network Topologies and Work�

�ow Designs

��� Basic Idea

To minimize communication costs� the control of each step should be allocated in the subnet

with the highest probability for executing this step� By doing so� the probability that all

communication remains inside this subnet becomes very high� The probability for a certain

step to be executed in a certain subnet can be approximated using the distribution of the

users�

We introduce a weight gxi �� � gxi � �� for each user i and subnet x which corresponds to the

probability that this user chooses a step� The weight is used to describe the relative amount

of time the user spends in working with the WFMS in this subnet� It is usually �� but can

be smaller if the users has only a part time job or if the user works in several subnets� for

example�

The weights are used for calculating the probability that a step is executed in a certain subnet�

In a WFMS only users owning one of the roles of a certain step are allowed to execute this

step and the step appeares only in their worklists� In our model the subnet of each user is

known� With this information it is possible to calculate for each step how many �full� users

exist in each subnet by computing the sum of the weights of the appropriate users for step k�

uxk �
P
i

gxi �

��� Design of Processes

So far we have explained the problem and the characteristics of good solutions� In this section

we show how such good distributions can be achieved� The problem can be solved by using

a closed mathematical optimization approach� similar to some of the solutions proposed in

distributed database for 
nding an optimal distribution of fragment relations �ML��� �OV���

Dad��� Taking this approach� one can 
nd a optimal solution� in principle� The WF designer�

however� has to speci
y a lot of �rather uncertain� parameter and constraint values which

makes this approach rather expensive and thus unattractive� �And the practical value of the

computed result is questionable� too��

We� therefore� are in favour of an interactive and iterative approach� It starts modeling an

�initial� distribution of users and WF�servers� and by analyzing the resulting load iteratively

and interactively improving the modeling until an acceptable solution is found�

����� Modeling and Analysis

In our approach� a WF design iterates through the following steps�

�� The WF designer is modelling the processes like in a central WFMS �describing orga	

nization� data� processes� cf� upper part of 
gure ���

�



�� The WF design system proposes an initial distribution of users and WF�servers�

�� The WF design system computes the resulting load for each component �subnet� WF�

server� gateway� ���� using the model and additional statistical information�

�� If the load of all component is within the target range� the design is completed and sent

to the a�ected WF�servers�

�� If a component is overloaded the model is modi
ed by the WF designer using the

outcome of the user distribution analysis �see �Assigning Users to Subnets�� and by

computing �assisted by the system� the consequences of decomposing processes �see

�Distribution of Step Control��� The design process is continued at step ��

Note� that this analysis is completely done at build time� That is� it does not disturb running

processes� After WF design has been completed� the process execution model is generated�

it is decomposed into parts and complemented with migration steps �if a decomposition had

been selected by the WF designer�� and transmitted to the a�ected WF�servers�

$����"&
$���� $���� $����

$����

�"��$�'����$�("������$��#��"�

���� �"�������

Figure � Modeling of processes �only partially drawn��

����� Algorithms

The WF design system proposes �initial� distributions of users and step control� The under	

lying analyses and algortihms are explained in the following�

Assigning Users to Subnets

The following algorithm assumes that the processes as well as the users and their roles are

known� It computes �clusters� of users who can perform the same �or a similar� collection of

steps� These clusters are candidates for building respective subnets� The algorithm implicitly





assumes that one starts from scratch� that is users are not yet assigned to subnets �see

�Applicability� for further comments��

The problem is similar to the distribution of attributes at vertical partitioning in distributed

database systems� For this reason the following algorithm is adopted from this research

area �NCWD��� NR���� First we sketch the algorithm then we explain its meaning and the

meaning of the symbols used�

�� create the user step matrix use�ki
�� standardize use�ki to useki
�� compute the user a�nity matrix affij using useki
�� use the known algorithms to 
nd clusters in affij

�� while �there is a cluster that is too large�

decompose that cluster

� assign the clusters to the subnets �more than one cluster per subnet is allowed�

�� change �manually� the assignment of users to subnets if necessary �and possible�

The user step matrix use�ki contains the weights of the users �gi�
� with respect to their ability

of executing a certain step�

use�ki �

�
gi if user i can execute step k
� otherwise

e�g� use� user
� � � �

step � � � � ���
� � � � �
� � � � ���

Then this matrix becomes standardized so that it contains the probability that a user will

execute a certain step� The divisor of the fraction will be unequal to �� because �j � use�kj � �

would mean that no user is allowed to execute this step�

useki �
use�kiP
j

use�kj

use user
� � � �

step � � � � � � �
� � � � � � �
� � � � � � � �

Now the user a�nity matrix can be created� It contains the degree of the connection between

users� If a cluster of users has high values in this matrix� they have common steps and should

be in the same subnet� Such clusters of users can be found with the algoritms described in

�NCWD��� and �with a better complexity� in �NR����

affij �
P
k

useki � usekj �Ek

Frequency of step k�
k � � �
Ek ��� � ��

aff � � � �
� ����� � � �����
� � �� �� ���
� � �� �� ���
� ����� ��� ��� �����

In this example one cluster would consist of the users � and � and another of the users �

and �� Each of these clusters could be allocated in one subnet of their own� The algorithm

�There is no upper index for g� because until now no subnet is assigned to this user�

�



does not take into account the �quality� of the clusters� That is� clusters may be suggested

which are too large and thus would lead to a high load in the respective subnet� In such

cases clusters have to be decomposed manually into appropriate parts �subnets� to achieve

the desired result� If there are more clusters than subnets� several small clusters must be

assigned to one subnet� and if the physical location of a user prevents him from being in the

proposed cluster� it has to be assigned to another cluster�

Applicability

This simple algorithm presented here� assumes that the WF design is starting from scratch�

that is users are not yet assigned to subnets� But even if it is used in an existing WFMS envi	

ronment where users are already assigned to subnets� the results can give valuable suggestions

for improvements concerning the choice of WF servers and the decomposition of processes�

Distribution of the Step Control

As already mentioned above� work�ows are assigned to WF�servers at the granularity of

single steps instead of complete work�ows� The calculation of the optimal distribution of the

step control would have exponential complexity� because every step can be controlled by each

WF�server� Our greedy algorithm discussed below will not always 
nd the optimal solution�

but it will deliver a good result for the common cases and has polynomal complexity�

The idea is to select at 
rst the optimal subnet for every step without considering the mi	

gration costs� Then for each single step in a subnet it is checked if it is cheaper to save the

migration costs �MIm� and to assign the step to the WF�server of the step before or after

the current one� with higher costs for step execution �SSk� RTk� and worklist maintenance

�SOk� WRk�� This is also done for all groups of �� ��� � � steps controlled by one and the same

WF�server� The algorithm can be sketched as follows�

for each step� assign the WF�server of the subnet with the most appropriate users

for i � �� �� � � �

for each group with i steps in one subnet�

check if it is cheaper to control the step by the WF�server before or after the current one

if yes� assign the step�s� to that WF�server

��� Re�nements

Our method achieves scalability by distributing the steps of the processes among the WF�

servers� If there is only one relevant process with only one step� however it is not possible to

distribute anything� because one step can only be controlled by one WF�server� Even though

this is not a typical scenario for a WFMS� there are several solutions �besides using future

hardware and or futur networks��

One solution consists of splitting the process into several processes� If a process has to serve

customers� one could e�g� assign the customers with names A � � �M to process P� and N � � � Z

to another process P�� P� and P� can then be controlled by di�erent WF�servers�

�



Another solution is to extend our approach with WF�server replication� Instead of one WF�

server for each step� several are used in di�erent subnets� Only one of them can be in the

optimal subnet� however� the others have to be in less suitable subnets� But even in this case

the load can be reduced �see section ����� if it is distributed equally among the WF�servers�

This is possible e�g� by randomly choosing one of these servers for starting or migrating the

processes�

The external data sources shown in 
gure � are a performance�critical aspect� too� They also

can become a bottleneck� Therefore they have to be taken into account during the analysis�

For this purpose the amount of communication with them has to be estimated for each step�

It can be reasonable �where applicable�� to use several �independent� databases in order to

keep communication local to a subnet as often as possible�

� E�ciency Analysis

In the subsequent two sections we will analyze the communication costs in di�erent scenarios�

At 
rst we consider the case that processes are not decomposed� i�e� no process migration

takes place� This means that� all steps of a process are controlled by one and the same

WF�server� Subsequently we will analyze scenarios with process migration�

��� Using Multiple Servers without Process Migration

In the following� we analyze the communication tra�c in the subnets which is caused by the

maintenance of worklists �SOk� WRk� and the transfer of parameter data �SSk� RTk�� We

assume that the processes do not migrate �i�e� they are controlled by one WF�server from

their beginning until their termination� which approximates also the case that migration costs

are small compared with the step execution costs�

In the sequel� we analyse three interesting cases� Some related cases are mentioned� others

can be easily derived in the same way�

Case �� All clients are located in the subnet of the corresponding WF�server�

Case �� The majority of the clients is located in the �right� subnet�

Case �� The majority of the clients is located in the �wrong� subnet�

For each of these cases we compare two scenarios� In the 
rst scenario we have only one

subnet with one central WF�server� In the other scenario we have two subnets� each with a

WF�server� connected by a gateway� This is a scenario� as described in section �� For reasons

of simplicity we consider only two subnets� but the results would be the same for any number

of subnets�

To simplify our analysis we ignore the weights for a moment and assume that every client

having the appropriate role has the same probability for executing the step� Since the data

exchanged with each client has the same volume �because SOk� SSk� WRk� RTk are equal for

�The load in the subnets would also be the same� if there is more than one WF�server in each subnet�

�



all users�� there is no need for counting messages or data packets� To compare the load in

the di�erent subnets� it is su�cient to count how many clients are involved in the execution

of how many steps for a given set of processes� Figure �	�a illustrates the case where two

processes� each involving two clients �discriminated by solid and dotted lines�� are executed

by one server� In this case we count � �connections� in this subnet in total� Opposed to that�

two servers� each executing one process� are used in 
gure �	�b� In this case we have only �

�connections� in each subnet�

To simplify the comparison� we assume that the total number of processes to be served is

equally distributed among the servers� This leads to equal loads for all WF�servers and

subnets and it becomes possible to compare the subnet load in the two scenarios�

Case �� Each client is located in the same subnet as the WF�server of the corresponding

steps� In this case the gateway need not to be used and � as each WF�server serves ��� of

the processes � the communication in each subnet is halved� This is the best case because

all communication is completely taking place inside the subnets� Figure �	�a shows that in

the scenario with one LAN there are � connections between WF�server and clients� while in


gure �	�b there are only � connections per subnet� If there would be n subnets instead of

two� the load would be �
n
th of the not distributed case�

Case �� Here the majority� but not all clients are in the �right� subnet� It is evident that

this also leads to an improvement compared to having only one net �see 
gure �	��� There are

� clients in the subnet of the WF�server and � in the other one� This leads to � connections

instead of �

If there would be as many clients in the subnet of the WF�server as in the other one� we

would save ��� of the communication� One can demonstrate this in 
gure �	� by deleting

the connection to Cl� and Cl�� In this case� there remain � ��a� resp� � ��b� connections�

The saving of ��� is achieved because in the case of a communication with a client in the

own subnet ���� of the cases� the other subnet ���� of the subnets� is not used�

Case �� Here most of the clients are located in the �wrong� subnet� Even in this case we

save communication as demonstrated in 
gure �	�� In this example only � client is in the

subnet of the WF�server but � clients are in the other one� Even in this unfavorable scenario

only � connections are needed instead of � The saving exists as long as there are clients in

the subnet of the WF�server� because for communication with these clients the other subnet

is not used�

The worst case is� if all clients are in the �wrong� subnet� Even in this case� however�

the subnet load is not higher than in the single net version� All subnets are used for all

communications� but this case should never occur in practice� One always could distribute

the processes in another way� so that at least for some steps there is a user in the �right�

subnet� For more than two subnets in a completely intermeshed network there are always

subnets with a reduced load� Even if all clients are in �wrong� subnets there are always subnets

which are not involved in communication for certain steps because there is no through tra�c�

Therefore our approach is also eligible for unfavorable distributions of users�

��



�� ���

�	

���

�� ��� ��)

� ��� ��� ��� ��)

�� ���

�	

���

�� ��� ��)

� ��� ��� ��� ��)

�� ���

�	

���

�� ��� ��)

� ��� ��� ��� ��)

��

��

��

��

��

��

Figure � Comparison of scenarios with one and two subnets for di�erent communication patterns�

To achieve the best e�ciency the users and the control of steps must be distributed in such

a way that as many users as possible are in the same subnet as the WF�server that controls

their steps�

��� Using Multiple Servers with Process Migration

In this section we consider the case that � due to the distribution of users � no single WF�

server does really optimally 
t for controlling a given process� In such cases it may be better

to decompose the process into parts such that each of it can be controlled by the optimal

WF�server� That is� we consider the case that after execution of a set S� of steps in subnet

N�� the process control is migrated to another WF�server in subnet N� which controls the

execution of the remaining set S� of steps� The crucial question is whether the reduction in

communication load due to the migration is counterbalancing the migration costs� We can

discriminate three cases�

� ideal case

� mixed positive case

� negative case

Ideal case� In this case� after migration all clients are in the same subnet �N�� as the new

WF�server� Thus� after migration� subnet N� has no communication load for the remaining

steps any more and the load in subnet N� is the same as without migration� Given the load

��



resulting from the migration �CMI �
Em
T
�MI� � which we have to count two times because

it occurs in both the �sender� and the �receiver� subnet � and using formula �F�� we can

compute� how many remaining steps �� S�� are needed to make a migration rewarding� This

is the case� if the following unequation is satis
ed�

� � CMI �
P
k�S�

C
N�

k

where
P
k�S�

CN�

k describes the savings in subnet N�� if the control for the steps S� �

fs�� � � � �s�ng is migrated to the WF�server in the other subnet�

Mixed positive case� In this case� after migration most � but not all � clients related to

the remaining steps �� S�� are in the �right� subnet �uN�

k � uN�

k �� This means that we

achieve some saving in subnet N� because some of the communication load is now completely

handled in subnet N�� In subnet N�� however� the load is higher than without migration�

because this subnet is now also burdened with the communication with the clients in subnet

N�� The decision problem can be formulated as follows� The migration is rewarding if the

following unequation holds�

� � CMI �
P
k�S�

�
�CSk

k � CN�

k �� �z �
savings in N�

� �CSk
k � CN�

k �� �z �
additional load in N�

�

� � � CMI �
P
k�S�

�CN�

k � C
N�

k �� �z �
���

�F��

As we consider here the case that uN�

k � u
N�

k � expression ��� will always be positive� That

means� having enough steps in S�� migration is rewarding�

Negative case� In this case� after migration most clients are in the �wrong� subnet �uN�

k 	

u
N�

k �� The analysis is the same like in the previous case and thus also leads to the same

unequation �F��� In this case� however� expression ��� can never become positive and thus

migration is never rewarding �as expected��

The circumstances under which migration is rewarding are demonstrated in the following

numerical example� We assume equal steps in S� with the same frequency for each step �Ek�

and for the migration step �Em�� They shall have the following characteristics�

input parameter volume� INk � ��� KB

output parameter volume� OUTk � ��� KB

total process instance data� INST � ���� KB

data transmitted for a worklist entry� WL � ��� KB

data transmitted for an acknowledgement� Ack � ��� KB �minimal packet size�

appropriate users in subnet N�� u
N�

k � ��

appropriate users in subnet N�� u
N�

k � ���� altogether uk � ���

With this information values for the variables in the formulas in section � can be calculated

as follows�

��



SOk � WL� Ack � ��� KB

SSk � WL� INk � ����� KB

WRk � WL� Ack � ��� KB

RTk � OUTk �Ack � ����� KB

MI � INST � Ack � ������ KB

Now �F�� can be used to calculate the load in the subnet in which the WF�server is located�

C
Sk
k � Ek

T
� ���� � ��� � ����� � ��� � ��� � ������ KB � Ek

T
� ��� KB

If the WF�server is located in N� the resulting load in subnet N� can be calculated with �F���

C
N�

k � Ek

T
� �� KB

If the WF�server is located in the �wrong� subnet N�� the load in N� is much higher�

C
N�

k � Ek

T
� �� KB

Using formula �F�� we can calculate that the migration is rewarding if
Em
T

� � � ������ KB �
P
k�S�

Ek
T

� ���� ��� KB

With Ek � Em follows �jS�j is the number of steps in S���

������ � jS�j � ���

Therefore the migration is rewarding if there are at least � steps in S��

	 Related Work

The approach described in this paper concentrates on the reduction of communication load

in large�scale WFMS environments� To achieve this goal� we use subnets as well as the de	

composition and distributed control �via process migration� of processes� For this type of

application scenario we are only interested in process�oriented systems �as opposed to e�g�

Lotus Notes�� because in large scale environments the corresponding functionality is needed�

Most process�oriented systems use a central WF�server and are therefore not �directly� suit	

able for our target environment� In the following we discuss some distributed approaches�

FlowMark �IBM��� is a system with a central WF�server� but it is possible to execute a

�subprocess� in another FlowMark system �domain�� If process control shall be distributed�

the concept of subprocesses has to be used� because subprocesses can be executed at remote

servers� The logic is comparable to a remote procedure call� That is control returns to the

caller after completion of the subprocess�

Exotica �AKA���� uses so called �clusters� to achieve parallelism� A cluster consists of one

WF�database and replicated WF�servers� The user has to connect with one WF�server of

each cluster� By replication� load reduction is achieved for the WF�servers within a cluster�

The control of a process instance stays in the cluster in which the process was started� By

selecting an appropriate cluster� load balancing among the clusters can be achieved� but it

may cause long distance communications to the users�

In MOBILE �HS�� server replication is used� too� The WF�model is separated into several

perspectives �organization structure� control �ow� etc�� each with its own database and its own

��



server� If one of these servers is overloaded it becomes replicated� Static data of these servers

are replicated� dynamic are partitioned and assigned to only one server� Scalability is achieved

under the assumption that there exist independent partitions �e�g� for di�erent departments��

Both approaches �Exotica and MOBILE� do not consider subnet load� Therefore� process

instance migration is not used�

There are several approaches which do not use WF�servers at all� They have in common� that

after 
nishing a step the process instance migrates directly to the node of the following step�

Usually a reliable communication system is used for this purpose� The disadvantage is that

the role resolution is only done at the 
rst time when a step becomes available �AGK�����

As consequence� this step is not o�ered to users which are connecting at a later point in

time� At INCAS �BMR��� every step is dedicated to exactly one user� Thus� there is no need

for synchronization� but the functionality is very limited� A similar approach is persued in

the Mentor project �WWWK�a� WWWK�b�� where each step is assigned with exactly one

�entity� and there is also no role resolution� Opposed to this� in Exotica FMQS �AMG����

a step is o�ered to all users with an appropriate role� Because there exists no WF�server

for coordinating the step selection� a distributed �and therefore expensive� synchronization

mechanism has to be applied� But the problem remains� that a step is not o�ered to users

which connect to the WFMS after this step is ready for selection� All these approaches have

in common that at every step the whole process instance migrates�


 Summary

In this paper we have concentrated on the aspects of how to optimize the communication

load in WFMS environments with a large number of users� We have shown that with the

usage of subnets and by assigning WF�control to the �right� WF�servers� the load can be

distributed and thus more users can be served� We have described how � based on easily to

obtain information � one can develop algorithms for calculating such distributions�

We have further shown that it can be favourable not always to treat and control work�ows

as a whole but to decompose them into parts which are controlled by di�erent WF�servers�

We have analyzed under which circumstances such a �process migration� is rewarding�

There are further possible improvements of our approach� e�g� dynamic optimization of the

step control distribution at runtime� Furthermore several aspects as the dynamic modi
cation

of processes at runtime �exeptions� or process abortion with compensation of already executed

steps have to be integrated in our approach� This will be subject of our future work�

References

�AGK���� G� Alonso� R� G�unth�or� M� Kamath� D� Agrawal� A� El Abbadi� and C� Mohan�
Exotica FMDC� Handling Disconnected Clients in a Work�ow Management
System� In Proc� of the Third Int� Conference on Cooperative Information
Systems� pages ������� Vienna� May �����

��



�AKA���� G� Alonso� M� Kamath� D� Agrawal� A� El Abbadi� R� G�unth�or� and C� Mohan�
Failure Handling in Large Scale Work�ow Management Systems� Technical
Report RJ����� IBM Almaden Research Center� November �����

�AMG���� G� Alonso� C� Mohan� R� G�unth�or� D� Agrawal� A� El Abbadi� and M� Ka	
math� Exotica FMQM� A Persistent Message�Based Architecture for Dis	
tributed Work�ow Management� In Proc� of the IFIP Working Conference
on Information Systems for Decentralized Organisations� Trondheim� August
�����

�BMR��� D� Barbar!a� S� Mehrotra� and M� Rusinkiewicz� INCAS� A Computational
Model for Dynamic Work�ows in Autonomous Distributed Environments�
Technical report� Matsushita Information Technology Laboratory� Princeton�
May �����

�Dad�� P� Dadam� Verteilte Datenbanken und Client�Server�Systeme �Distributed
Databases and Client�Server Systems�� Springer�Verlag� ���� �in german��

�HS�� P� Heinl and H� Schuster� Towards a Highly Scaleable Architecture for Work	
�ow Management Systems� In Proc� of the �th Int� Conference and Work�
shop on Database and Expert Systems Applications	 DEXA
��� pages ��������
Z�urich� September ����

�IBM��� IBM� FlowMark � Modeling Workow	 Version ���� First edition� March �����
Document Number� SH��	����	���

�KAGM�� M� Kamath� G� Alonso� R� G�unth�or� and C� Mohan� Providing High Avail	
ability in Very Large Work�ow Management Systems� In Proc� of the �th
Int� Conference on Extending Database Technology� pages �������� Avignon�
March ����

�ML��� H�L� Morgan and K� D� Levin� Optimal Program and Data Locations in Com	
puter Networks� Comm� of the ACM� ����������� �����

�NCWD��� S� Navathe� S� Ceri� G� Wiederhold� and J� Dou� Vertical Partitioning Al	
gorithms for Database Design� ACM Transactions on Database Systems�
������������ �����

�NR��� S� Navathe and M� Ra� Vertical Partitioning for Database Design� A Graphical
Algorithm� In Proc� of the ���� ACM SIGMOD Int� Conference on Manage�
ment of Data� volume ��� pages �������� Portland� June �����

� �OV��� M�T� �Ozsu and P� Valduriez� Principles of Distributed Database Systems� Pren	
tice Hall� �����

�WWWK�a� J� Weissenfels� D� Wodtke� G� Weikum� and A� Kotz�Dittrich� The Men	
tor Architecture for Enterprise�wide Work�ow Management� In Proc� of the
NSF Workshop on Workow and Process Automation in Information Systems�
pages ����� Athens� May ����

�WWWK�b� D� Wodtke� J� Weissenfels� G� Weikum� and A� Kotz Dittrich� The Mentor
Project� Steps Towards Enterprise�Wide Work�ow Management� In Proc�
of the ��th IEEE Int� Conference on Data Engineering� pages ������ New
Orleans� March ����

��


