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Abstract

Current workflow management technology does not provide adequate means for describing and
implementing workflow ensembles, i. e., dynamically evolving collections of more or less independent
workflows which have to synchronize only now and then. Interaction expressions are proposed as a
simple yet powerful formalism to remedy this shortcoming. Besides operators for sequential
composition, iteration, and selection, which are well-known from regular expressions, they provide
parallel composition and iteration, conjunction, and several advanced features like parametric
expressions, multipliers, and quantifiers. The paper introduces interaction expressions semi-formally,
gives examples of their typical use, and describes their implementation and integration with state-of-
the-art workflow technology. Major design principles, such as orthogonality and implicit and
predictive choice, are discussed and compared with several related approaches.

1. Introduction

Everyone of us is familiar with phrases like the following frequently found in envelopes from
insurance companies or authorities: “Our apologies if you receive multiple letters from us today. The
cost for merging them, however, would be higher than the additional postage.”

In-patients of hospitals might be familiar with even more unpleasant happenings: The nurse comes
again to take blood because another test has been ordered; examinations have to be repeated because
they hav e been performed in an incompatible order; an appointment has to be cancelled because the
temporary nurse forgot to keep the patient sober, and so on.

The reason for this trouble is the same in both scenarios: Work processes run concurrently and
independently despite the fact that they are actually interdependent. Even if the individual processes
(or “workflows”) are controlled by a workflow management system (WfMS), there remains a lack of
inter-workflow coordination which is not addressed by current workflow technology. When trying to
solve these coordination problems with state-of-the-art approaches, it turns out that the language
constructs typically provided by workflow description languages (such as sequence, branch, and loop)
are not adequate to describe workflow ensembles, i. e., dynamically evolving collections of more or
less loosely coupled workflows.

Taking as an example the different examinations of a patient during an inpatient treatment, it is
sensible to model each of them as a separate workflow because it is a self-contained, comprehensible
and frequently recurring process by itself. If several such workflows (for the same patient) run in
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parallel, most of their activities (or “steps”) are still independent of each other and thus can be
executed by themselves, but some of them must be coordinated across workflow boundaries. For an
ad-hoc solution of this problem, all affected workflows might be augmented with explicit
“coordination steps,” comparable to semaphor operations in parallel programming. It is well-known
from that domain, however, that such an “entanglement” of application and synchronization matters
leads to very unwieldy and error-prone solutions in practice. Therefore, it is desirable to re-apply a
basic principle of workflow management, viz the separation of the control and data flow description
from the individual application modules, one level higher: to separate the specification of inter-
workflow dependencies from the individual workflow descriptions.

However, since usually neither the number nor the actual types of the workflows “participating” in
an ensemble are known in advance, explicit descriptions like “Activity A of workflow W1 must follow
activity B of workflow W2” or “If A has been executed then . . .  else . . .” will lead to an unmanageable
number of cases. In order to describe the coordination requirements in a compact and elegant means,
a more implicit and generic formalism is needed which allows a whole range of possibilities to be
described by a single expression or statement.

Regular expressions are a well-known and proven instance of such a formalism from the area of
compiler construction. Substituting actions or activities for input characters or tokens, they can be
employed to describe permissible (or impermissible) sequences of executions. Augmenting them
with operators for expressing concurrent executions (together with some more advanced features)
directly leads to interaction expressions as a conceptually simple yet powerful formalism for
describing inter-workflow dependencies.

Despite their conceptual simplicity, interaction (or even regular) expressions tend to become
incomprehensible quite quickly when applied to real-world problems. Therefore, a more user-friendly
(e. g., graphical or verbal-propositional) notation is needed in order to improve their readability,
especially for “computer science laymans” such as workflow designers. The actual appearance of
such a notation is irrelevant for and beyond the scope of this paper, but it should be kept in mind
throughout the following sections that an actual user will not be burdened with the mathematical
formalism presented here.

Section 2 commences by introducing actions and activities and the six basic operators of interaction
expressions. It proceeds with describing more advanced features, such as multipliers and quantifiers,
and demonstrates their use with several examples. It concludes with some remarks about the
implementation of interaction expressions by means of an interaction manager.

Section 3 uses the example of inpatient examinations to explain the specification of inter-workflow
dependencies with interaction expressions. Furthermore, it describes the possibilities for integrating
the interaction manager with current workflow technology in order to actually enforce specified
constraints.

Section 4 compares interaction expressions with several related approaches, while section 5
concludes with some remarks about current and future work.

2. Interaction Expressions

2.1 Actions and Activities

Activities (or “steps”) are the basic building blocks of workflow descriptions whose execution is
requested by an external (not necessarily human) user. In order to describe inter-workflow
dependencies with interaction expressions, it seems reasonable, therefore, to base them on activities,
too. It turns out, however, that things become conceptually easier if interaction expressions are based
on actions instead, whose executions are assumed to be instantaneous ev ents (i. e., to take no time)
which cannot overlap in time. This does not restrict generality, since it is always possible to describe
an acitivity A (having a positive duration in time) by a sequential composition (see section 2.2) of two
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actions, Astart and Aterm, representing its start and termination, respectively. By that means it is
possible to formally reduce a concurrent execution of activities to a sequential execution of actions
which can be captured with formal (e. g., language-theoretic) methods much easier.

2.2 Basic Expressions

Interaction expressions (or simply expressions) are used to describe permissible sequences of action
executions. An expression itself is “executed” by executing a sequence of actions permitted by the
expression. If several such sequences exist (which is common), we assume −− as a mental model −−
that the expression always chooses the “right” one, i. e., the sequence the external user has in mind.
For a real implementation this means, of course, that it must consider all possible alternatives in order
to finally accept the user’s sequence if it is permissible.

In the following, interaction expressions are defined according to this simple, “intuitive” model. A
more precise definition, based on formal language theory, is possible, but beyond the scope of this
paper.

An atomic expression a is executed by executing the action a.
A selection or disjunction x | y is executed by executing one of the expressions x or y.
A sequential composition x − y is executed by first executing expression x and afterwards

executing expression y.
A sequential iteration x * is executed by sequentially executing expression x an arbitrary number

of times. This is equivalent to the expression λ | x | x − x | x − x − x | . . ., where λ represents an
empty sequence of actions.

A parallel composition x + y is executed by executing the expressions x and y concurrently, i. e.,
by arbitrarily interleaving their executions.

A parallel iteration x # is executed by executing an arbitrary number of expressions x in parallel.
In analogy to the sequential iteration, this is equivalent to the expression λ | x | x + x | x + x + x | . . .

A (strict) conjunction x && y is executed by executing a sequence of actions permitted by both
expressions, x and y. In practice, this means that actions x1, x2, . . .  (y1, y2, . . ., respectively) which
occur only in expression x (y) but not in expression y (x) will never be permitted by the conjunction
x && y. Since this would severely restrict the practical applicability of the conjunction operator, a
weaker definition is used in the following which makes sure that an action occuring in one “branch”
only is always permitted by the other branch. Formally, this weak conjunction can be defined as
follows:

x & y = (x + y1 * + y2 * + . . .) && (y + x1 * + x2 * + . . .).

As a simple example, the expression (a − b) & (a − c) is equivalent to ((a − b) + c *) &&
((a − c) + b *) whose first (second, resp.) branch permits the sequence ab (ac) with arbitrary
interleavings of c’s (b’s). Therefore, the complete expression permits the sequences abc and ac b
corresponding to the intuitive meaning of (a − b) & (a − c) which simply says that a has to be
executed before b and before c.

Weak conjunction is similar, but different from parallel composition: If the “alphabets” (i. e., action
sets) of the expressions x and y are disjoint, the expressions x & y and x + y are equivalent, i. e., x
and y can be executed independently. Otherwise, their execution must be synchronised at every
common action.

In order to make complex expressions involving different operators unambiguous, the following
precedence rules are defined. The unary operators * and # have highest precedence, followed, in
decreasing order, by the binary operators −, +, |, and & (&& is not used in practice and is only needed
to define &). Since both unary operators are applied postfix and all binary operators are associative,
no rules for implicit bracketing are necessary. Parenthesis can be used, of course, for explicit
grouping or improving readability.
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2.3 Multipliers

Multipliers are a straight-forward extension of binary operators, similar to the mathematical sum and
product operators, Σ and Π. If @ is one of the operators −, +, |, or &, the following definitions shall
hold:

n

@ x = x @ . . .  @ x (n times x) for n > 0;
n

@ x = λ for n ≤ 0;
n

k=m
@ xk = xm @ . . .  @ xn for arbitrary integers m, n.

In the first line, n is called factor, while m and n are called lower resp. upper bound in the second
line. k is called index and can be used as a factor or bound of nested multipliers in the expression xk .

As a simple example, the expression
k
− x states that x must be executed (sequentially) exactly k times,

while
n

k=m
|

k
− x allows m to n repetitions of x.

Formally, multipliers are just “syntactic sugar:” they can always be replaced by ordinary binary
operators according to their definition. However, multipliers can help to significantly reduce the size
and, simultaneously, improve the readability of complex expressions. Furthermore, an
implementation of interaction expressions might be able to process a multiplier expression more
efficiently than its “unfolded” counterpart. Finally, multipliers can be generalized to quantifiers (see
section 2.6) which can no longer be directly reduced to the original binary operators.

2.4 Implicit and Predictive Choice

The operators for sequential composition, selection, and sequential iteration resemble well-known
constructs of programming or workflow description languages: sequence, branch, and loop. There is
a fundamental difference, however: there are no explicit conditions in interaction expressions. Given
a selection a | b, for instance, no Boolean expression is used to decide which branch to follow, but
simply the fact which action is executed first. The same holds for the termination of an iteration like
a *: The iteration continues as long as instances of a are executed. As soon as a permissible
subsequent action ist executed (e. g., b in the expression a * − b), the iteration terminates. We call this
policy implicit choice.

Some of these “decisions” cannot be made “immediately,” howev er. Giv en an expression like
a − b | a − c, for example, and executing action a, it is not clear which branch of the selection to
choose. Therefore, the decision is “postponed,” i. e., both b and c are permitted next. If one of them
is executed later, the decision is made “retroactively.” The same is true for an expression like
a * − a − b. If an a is executed, it might correspond to the a in the iteration or to the subsequent one.
The decision always “limps one step behind:” if another a is executed, the previous one belonged to
the iteration; if b is executed, it corresponded to the subsequent a.

As already mentioned in section 2.2, one can assume as a mental model, that −− in analogy to
nondeterministic automata −− the expression always makes the “right” decision. We call this behavior
predictive choice.

The combination of these two principles leads to expressions which are very elegant and compact
compared to solutions based on explicit conditions.
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2.5 Examples

In order to substantiate the statement just made, a few examples shall give an impression of the typical
use and expressiveness of interaction expressions.

Activities

As already mentioned in section 2.1, an activity A can be described by the sequential composition
Astart − Aterm. Since, in practice, activities occur so frequently, the name of an activity A may always
be used as an abbreviation for this sequence in interaction expressions.

Producer and consumer

Let activity produce produce an object which will then be consumed by activity consume. If the
“transport channel” connecting them can hold only one object, the activities must be executed in
alternating sequence starting with produce:

(produce − consume) *.

If, on the other hand, the channel’s capacity is unlimited, an arbitrary number of produce-consume
sequences might be executed in parallel:

(produce − consume) #.

This expression permits an arbitrary number of concurrent producers, but guarantees that the number
of active consumers never exceeds the number of completed producers.

If, finally, the channel can hold at most n objects, the number of concurrent produce-consume
sequences must be limited to n:

n
+ (produce − consume) * =

n
+ (( produce − consume) *).

Mutual exclusion

If several activities (or complex expressions), A, B, . . ., access a common resource and thus must not
execute concurrently, they can be synchronized with the expression (A | B | . . .) *.

Readers and writers

If the common resource just mentioned is an object which can be either read or written, concurrency
can be increased by distinguishing readers (activity read) from writers (activity write) and allowing
several readers simultaneously:

(read # | write) *.

Arbitrary sequence

To describe in a compact form that a number of activities (or complex expressions), A, B, . . ., should
be executed sequentially in arbitrary order, is quite hard with typical „imperative“ control constructs
such as sequence, branch, and loop. Using parallel composition, it is possible to prescribe that each
activity is executed exactly once: A + B + . . .  Combining this with the above expression for mutual
exclusion, immediately yields the desired behavior:

(A + B + . . .) & (A | B | . . .) *.

To specify that only m of the activities should be executed, the first part of the expression is replaced
by (A ? + B ? + . . .) where x ? is an abbreviation for x | λ . This guarantees that each activity is
executed at most once. To express that exactly m activities should be executed, the indefinite iteration
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of the second part is replaced by
m
− (A | B | . . .), yielding the expression

(A ? + B ? + . . .) &
m
− (A | B | . . .).

If, finally, m1 to m2 activities should be executed, the following expression might be used:

(A ? + B ? + . . .) &
m2

m=m1

|
m
− (A | B | . . .).

2.6 Parameters and Quantifiers

In practical applications of, e. g., the readers and writers problem, there is, of course, not only one, but
a large (usually unknown) number of objects on which access has to be synchronized independently.
Therefore, it is reasonable to augment the activities read and write with a parameter, say o,
representing the object to be accessed. Then, for every instance of the parameter o, a separate
instance of the expression (read(o) # | write(o)) * is needed. This can be specified as follows, using
an intuitive generalisation of the multiplier concept:

o
+ (read(o) # | write(o)) *.

By leaving the range of the parameter o unspecified, it is indicated that this range is usually neither
known exactly nor of particular interest here. “Virtually,” an expression

p
+ x(p) might be imagined as

a parallel composition with an infinite number of components:

p
+ x(p) =

∞

i=1
+ x(pi),

where { p1, p2, . . . } represents the set of all possible values of the parameter p. (Since parallel
composition is commutative and associative, the ordering of the pi is irrelevant.) Practically, this
means that the expression

p
+ x(p) will “create on demand” a new instance of the subexpression x(p)

for every new value of the parameter p.
Similarly, it is possible to “define” infinite selections as

p
| x(p) =

∞

i=1
| x(pi).

Due to their conceptual similarity to the universal and existential quantifiers known from predicate
logic,

p
+ and

p
| are called quantifiers, too.

Despite the fact that parametric expressions and quantifiers are of essential importance in practice,
space does not permit to treat them in more detail here nor to give more formal and sound definitions
of them. The same is true for additional features of interaction expressions like substitution (an action
can be declared as a substitute for one or more other actions), explicit conditions (if the principle of
implicit choice is not appropriate or sufficient for a particular application), and temporal aspects
(conditions whose truth value changes with time).

2.7 Interaction Manager

Interaction expressions can be implemented by an interaction manager as follows. First, an
expression x is transformed to a graph-based internal representation G(x), similar to [34]. Based on
this graph, a notion of state is defined: An atomic state corresponds to a node of the graph and
indicates that the action contained in that node is currently permissible. A product state, which is
introduced to deal with concurrency, is a tuple of atomic states indicating that all corresponding
actions are currently permissible. Finally, a sum state, which is necessary to deal with
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nondeterminism and to implement the principle of predictive choice, is a set of product states
indicating that one of these product states is the “right” one corresponding to the external user’s
intention.

Given an expression x, the interaction manager maintains a current (sum) state S(x) and a set of
permissible actions, P(x), consisting of all actions contained in the nodes of S(x). As a simple
example, the expression x = (a − b | c − d) + (e − f ) is transformed to the graph of figure 1. Its
initial state is S(x) = { (a, e), (c, e) }, and thus the set of permissible actions is P(x) = { a, c, e }. If
an action of P(x) is executed by a user, e. g., a, a new state is determined according to a state
transition function derived from the graph (details are beyond the scope of this paper) leading to a new
set of permissible actions. In the example, the atomic state a is replaced by its successor b (and
consequently, (a, e) is replaced by (b, e)), while the atomic state c (and consequently (c, e)) is
discarded because this alternative has proven false. Therefore, the new sum state becomes
S(x) = { (b, e) }, and consequently P(x) = { b, e }.

If more than one expression is given to the interaction manager, an action a should be permissible if
and only if it is permitted by all expressions containing a. Formally, this is achieved by combining
the expressions to a single expression using (weak) conjunction. In practice, however, it is easier to
maintain a separate graph, state, and set of permissible actions for every expression, especially if
expressions shall be added and removed dynamically.

The principle of predictive choice which forces the interaction manager to pursue all possible
interpretations of an action execution, might lead to intractable state explosions when implemented
naively. In order to surmount this problem, it is necessary to introduce an equivalence relation over
product states which is able to reduce otherwise exponentially large sets of equivalent product states
to a single representative. By that means, it becomes possible to process even complex expressions
quite efficiently. Precise complexity analyses are a topic of future work, however.

Control Flow Server

Even though interaction expressions are primarily intended for describing inter-workflow
dependencies, they might be used to model the “behavioral aspect” (control flow) of individual
workflows, too. In that case, the interaction manager can be used as the “control flow server” in a
modular workflow management system architecture like MOBILE [5, 21]. Other aspects, like
organizational modeling or data flow, are described with other appropriate formalisms and
implemented by corresponding servers in such an architecture.

3. Inter-Workflow Dependencies

3.1 Specification

To make sure that individual workflow descriptions and inter-workflow dependencies will harmonize
properly, it is necessary to define a “vocabulary” of activities (workflow steps) in advance which
serves as a common basis for both kinds of descriptions.

a b
c d

e f

Figure 1: Graph-based representation G(x) for expression x = (a − b | c − d) + (e − f ).
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For the domain of inpatient examinations mentioned in the introduction, the following set of
activities might be useful:

• order: an examination (e. g., an ultrasonography or an X-ray) is ordered by a ward doctor;

• appoint: an appointment is made with the department supplying the examination (e. g., internal
medicine or radiology);

• prepare: the patient is prepared by a ward nurse;

• inform: the patient is informed by a ward doctor about potiential risks of the examination;

• call: the patient is called to the examination room;

• examine: the examination is actually performed;

• report: a report is written (or dictated) by the examining physician;

• read: the report is read by the ward doctor.

Given such a vocabulary, it is possible, on the one hand, to use an arbitrary workflow definition
language to define individual workflow types such as the “examination workflow” shown in figure 2.
On the other hand, interaction expressions (resp. a more user-friendly notation of them; cf. section 1)
can be used to specify “global constraints” which are independent of the particular use of activities in
individual workflows. For example, if several examination workflows are performed in parallel for
the same patient, their call-examine sequences must be serialized since a patient cannot be in two
examination rooms at the same time. Furthermore, it is impossible to inform or prepare him for
another examination while such a sequence is in progress. (In database terms, call and examine
require exclusive access to the patient.) On the other hand, it is possible and even desirable to perform
several preparations (e. g., taking blood) or informational talks simultaneously. These requirements
can be summarized (for a single patient) with the following expression resembling the readers and
writers problem:

((call − examine) | prepare # | inform #) *.

In analogy to this problem, the expression should be quantified over all patients, however, in order to
guarantee individual synchronization for every patient (cf. section 2.6):

p
+ ((call(p) − examine(p)) | prepare(p) # | inform(p) #) *.

3.2 Integration with Current Workflow Technology

To actually enforce inter-workflow constraints like the one just shown, two general problems have to
be solved. First, the interaction manager implementing the expressions must be able to monitor all
actions performed by the WfMS (i. e., start and termination of workflow steps) in order to adjust its
state and set of permissible actions accordingly. Second, it must be able to control which actions a
user might execute (i. e., which workflow steps he might start) in order to make sure that only
permissible actions will be executed. This is especially difficult if actions alternate between being
permissible and being not. The above expression, for example, initially permits to start any one of the

order appoint

prepare

inform

call examine report read

Figure 2: Simple examination workflow.
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steps call, prepare, and inform for arbitrary patients, i. e., all of them are allowed to appear in
appropriate users’ worklists. As soon as one of them is executed for a particular patient, however,
e. g., prepare(p1), call(p1) and inform(p1) cease to be permissible and therefore should disappear
from all worklists! Although this is very similar to the requirement that a single step should disappear
from all worklists as soon as it is executed by one user, it is not supported for multiple steps by current
WfMSs.

A specific solution to these general problems depends more or less on the peculiarities of the
particular WfMS. To solve the monitoring problem, for example, it is necessary to identify some
externally “observable” event that takes place whenever a step is started or terminated by a user. If the
WfMS records such events in an externally accessible database system, for example, database triggers
might be used to intercept them and to inform the interaction manager. Other systems, e. g.,
ProMInanD [22, 23], invoke an external program whenever a workflow instance is copied between the
global workflow server and a user’s client, and there is a one-to-one correspondence between copying
of workflow instances and the execution of workflow steps: If an activity is started, the workflow
instance is copied from the server to the client; if an activity is terminated, it is copied back to the
server. Replacing the external copy program with a “wrapper” which informs the interaction manager
before executing the original copy program is a safe yet simple method to solve the monitoring
problem in that case.

Furthermore, it is a partial solution to the controlling problem, too, if the wrapper program does not
only inform the interaction manager about an activity to be started, but also asks whether this activity
is permissible. If it is not, the wrapper might “pull the emergency brake” by returning an error code
instead of executing the copy program, causing the WfMS to tell the user that the step is currently not
executable (although the actual error message might not be very instructive).

Of course, this is not an ideal solution from the user’s point of view since it might happen that most
of the steps appearing in his worklist are not actually executable. In order to fully solve the
controlling problem, the interaction manager must be able to temporarily remove impermissible
activities from users’ worklists. Many WfMSs, including ProMInanD, automatically remove an
activity from a user’s worklist as soon as it has been started −− or reserved −− by another user. This
behavior can be exploited as follows. If a particular activity A is executable from the WfMS’s point
of view and therefore would appear in appropriate users’ worklists, but A is not permissible from the
interaction manager’s point of view, a priviliged pseudo-user “grabs” the activity by declaring that he
is willing to execute it. This causes the WfMS to remove the activity from all other user’s worklists.
The pseudo-user does not actually execute the activity, howev er, but only waits until it becomes
permitted by the interaction manager. Then he declares to give it back to the pool of authorized users,
causing the WfMS to re-insert it into the corresponding users’ worklists. The only prerequisite for
this trick to work is to have an “omnipotent” user having the privilege to execute resp. reserve every
activity in the system. Even if the WfMS does not directly support such a “super-user,” it is usually
possible to declare a user as a “temporary” substitute for all other users and by that means inherit all
of their privileges.

4. Related Work

Interaction expressions are, of course, not the first attempt to describe dependencies between
concurrent activities. Quite similar approaches are: regular expressions [19, 2], CoCoA ordering rules
[12], “life cycles” [10], path expressions [6, 7], and synchronization expressions [14, 15]. Modeling
techniques, such as Petri nets [31, 29], sequence diagrams [37], and statecharts [16], also have
something in common with interaction expressions. So why “yet another” formalism?

Well, none of the alternatives just mentioned is complete with respect to the approach presented
here. Regular expressions, in their basic form, do not provide any constructs for expressing
concurrency. The same is true for the ordering rules of CoCoA and for sequence diagrams which are
just a graphical representation of regular expressions. Life cycles are an example of a straight-

9



forward extension of regular expressions with parallel composition. Similarly, statecharts and Petri
nets provide parallel composition, but like almost all other approaches, they do neither provide
parallel iteration nor conjunction, which have turned out to be quite important constructs in our
experience (confer the examples in section 2.5). A very limited form of parallel iteration is supported
by path expressions, where multiple instances of a simple expression (containing only selection and
sequential composition) might be executed concurrently. Parallel iteration has also been suggested for
synchronization expressions [14], but discarded in the final version [15]. Synchronization expressions
provide conjunction, too, but only in its strict form which is unwieldy for practical applications (cf.
section 2.2).

Despite their significance for real-world applications (cf. section 3.1), parametric expressions and
quantifiers are usually not supported by related approaches. Path expressions are a partial exception:
Since a path expression is part of an abstract data type (or “class”) definition, it is implicitly quantified
over all instances of that type. This makes it impossible, however, to specify dependencies between
“methods” of different classes. CoCoA ordering rules allow for parametric actions and provide a
“forall” operator corresponding to our + quantifier.

Many approaches lack orthogonality, mostly to be easily implementable. Path expressions, for
example, forbid nested iterations, while synchronization expressions do not allow the same action to
occur in both branches of a parallel composition, inhibiting our simple interpretation of parallel
iteration as x # = λ | x | x + x | . . .  Even though restrictions like these might seem reasonable at first
glance (“Who will need such complicated expressions?”) and may simplify an implementation of the
formalism, they should be avoided whenever possible, because they will generally impede the
development of expressions (“Is this combination of operators allowed?”) and especially obstruct the
modular composition of complex expressions from independently developed subexpressions.

Besides these practically oriented approaches, there is a variety of related theoretical approaches, too:
trace theory [1, 27], process algebra [4, 17], CSP [18], CCS [28], and maybe others. While these
formalisms are well-suited for specifying, studying, and verifying properties of concurrent systems,
their practical applicability to our problem domain is limited. Usually, they do not provide explicit
iteration operators, but employ recursion equations for that purpose. While this is quite elegant from a
mathematical point of view, we prefer “closed” and self-contained expressions for practical
applications.

Workflow description languages usually provide only standard “imperative” control constructs, such
as sequence, branch, loop, and possibly concurrency, which are too “explicit” and inflexible for
modelling workflow ensembles, i. e., dynamically evolving collections of more or less independent
workflows which have to synchronize only now and then (cf. sections 1 and 2.4). The same holds for
most advanced transaction models [11, 20], such as ConTracts [35] or FlexTransactions [25, 26],
whose emphasis and strength lie in different areas, such as reliability, (forward) recovery, etc. of
indivudal workflows. These aspects are considered orthogonal to inter-workflow dependencies.

An approach that goes in line with ours is presented in [30]. However, since only regular
expressions are allowed there to describe permissible or impermissible interleavings of
subtransactions, the expressive power is quite limited.

Klein [24] has proposed two primitives to describe “inter-task dependencies” [3, 33]: order
dependency and existence dependency. Similar to interaction expressions, it is possible to describe a
whole range of permissible event sequences (corresponding to action sequences in our terminology)
with a single expression based on these primitives. When comparing the expressiveness of the two
approaches, it can be noticed that every “Klein expression” can be transformed to an equivalent
interaction expression in principle (in the worst case by enumerating all permissible sequences, which
is not very elegant, of course), but interaction expressions involving iteration cannot be expressed with
the Klein primitives.

Some WfMSs provide an event mechanism [32, 36] which can be employed to synchronize activities
across workflow boundaries, similar to the idea of “coordination steps” mentioned in section 1. While
concepts like these might help to implement inter-workflow dependencies at run time, they appear to
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be too primitive and restricted to be useful for describing them at build time. Furthermore, they are
not able to fully solve the controlling problem mentioned in section 3.2, since events can only be used
to enable permissible activities, but not to disable (i. e., remove from worklists) impermissible ones.

An approach which is directly concerned with interacting workflows is presented in [9]. The inter-
workflow dependencies identified there, are quite similar to ours. A “condition-action dependency”,
{ A1, A2, . . . } <ca B, for example, corresponds to the interaction expression (A1 | A2 | . . .) − B. The
concept of “workflow integration,” howev er, is proposed only as a “conceptual device” helping to
“build an integrated frame in which interactions can be better understood.” Furthermore, it seems that
only interactions between “cooperating” workflows are studied, whereas interaction expressions can
deal with “competing” workflows equally well.

5. Summary and Outlook

Using the example of interrelated medical examinations as a representative, we hav e shown that inter-
workflow dependencies cannot be ignored for practical applications. Since neither “ad-hoc” solutions
like explicit coordination steps nor “hard-wired” specifications like if-then-else statements are really
satisfactory in practice, we have introduced interaction expressions as a simple yet powerful
formalism for describing inter-workflow dependencies in an adequate way. With only a few basic
building blocks −− sequential and parallel composition, the corresponding iterations, Boolean
operators, and their generalisation to multipliers and quantifiers −− it is possible to solve a broad
spectrum of synchronization problems. The principles of implicit and predictive choice allow for very
compact and elegant expressions compared to solutions based on more explicit constructs.

A prototypical implementation of interaction expressions by means of an interaction manager as
well as an interface to the WfMS ProMInanD have been built as a feasibility study. As already
mentioned in section 2.7, the implementation performs reasonably well even for complex expressions,
but no detailed analyses of its worst-case complexity have been carried out so far.

In order to emphasize their practical usefulness, interaction expressions have been introduced rather
informally. A theoretically founded definition based on formal languages is currently under
construction and shall be completed in the near future. Based on the formal semantics, it is possible
to develop a calculus which can be used to “optimize” expressions, i. e., transform an expression to an
equivalent one which can be implemented more efficiently, and to recognize and eliminate
“malignant” expressions (e. g., a * #  which can be replaced by a #) causing the current implementation
to loop infinitely. (This is a well-known problem with simple regular expressions, too [34].)

In order to make complex expressions more comprehensible, especially for “computer science
laymans,” a first draft of a graphical representation of interaction expressions is under preparation.
Furthermore, an abstraction mechanism is being developed, which allows arbitrary subexpressions to
be replaced either by (parametric) macros or by user-defined (unary, binary, or n-ary) operators. By
that means, it is possible for an “expert” to predefine a set of application-specific macros and
operators which can afterwards be used by a “layman” without understanding their possibly
complicated internal structure. This work will be continued in order to make interaction expressions
really suitable for workflow designers.

Currently, interaction expressions solve only one “half” of the inter-workflow coordination problem,
viz synchronization. The other half, inter-workflow communication, has not been addressed so far. It
has to be explored whether it is more reasonable to extend interaction expressions to incorporate that
aspect or to develop an independent formalism. In any case, the remarks about explicit vs. implict
appraoches apply analogously: Typical “explicit” approaches, such as message passing, will not be
adequate to deal with dynamically evolving workflow ensembles. More “implicit” and flexible
approaches like, e. g., generative communication [8, 13], seem to be more promising here.
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