
The Project NoName

A functional programming language with its
development environment

H� Braxmeier� D� Ernst� A� M�o�le�

Universit�at Ulm� Fakult�at f�ur Informatik� Abt� Programmiermethodik und

Compilerbau

E�mail� fhbraxmei�dietmar�andreag�bach�informatik�uni�ulm�de

H� Vogler
TU Dresden� Fakult�at Informatik� Lehrstuhl Grundlagen der Programmierung

E�mail� vogler�inf�tu�dresden�de

� Introduction

Complex problems can often be described and solved in an easy and elegant way
with functional programs� Well�known functional programming languages are�
e�g�� LISP �McC�	
� ML �Mil��
� Miranda �Tur�
� and Gofer �Jon��
 �also cf�
�Hud��
 for a survey�� In this paper we present a further functional programming
language called NoName and its programming environment� The reason for
this development is to be able to test evaluation strategies and transformation
strategies in the �eld of di�erent recursive program schemes� NoName has some
helpful features which cannot be found in other languages in this composition�

Mathematical syntax� The syntax of the function de�nitions are based on
the convention of mathematics� Thus� parentheses and commata together
with a strict� monomorphic� higher�order typing discipline provide a clear
and simple notation in contrast to the lambda calculus�

Evaluation strategies� For every function NoName allows the choice between
the evaluation strategies call�by�name and call�by�value� Note that most of
the declarative programming languages have a �xed strategy� Indeed� the
only declarative programming language we know which supports di�erent
evaluation strategies is Dactl �GKS��
�

Tree transducers� Special recursive program schemes are explicitely suppor�
ted by simple NoName constructs� The program schemes are called top�
down tree transducer �Rou�	� Tha�	
� macro tree transducer �Eng�	� CF���

�The work of this authorwas supported by the �Deutsche Forschungsgemeinschaft �DFG���



EV�
� attributed tree transducer �F�ul��
� macro attributed tree trans�
ducer �KV��
� and modular tree transducer �EV��
� A detailed description
can be found in Section ����

Module concept� NoName allows to structure programs and enables the pos�
sibility to import functions and data types from other programs�

The main part of the programming environment is the syntax driven editor of
NoName that has been developed with the help of the Synthesizer Generator��
a software tool from GrammaTech� Inc �RT��
� Such a syntax driven editor is
tailormade for exactly one programming language and it simpli�es the program�
mers work with the help of pull�down menus and transformations to construct
a program in a top�down manner�

The NoName editor is based on an attribute grammar which determines
both� the context�free syntax of NoName and the context�sensitive properties of
NoName� While editing a NoName program� the NoName editor checks these
properties by means of an incremental attribute evaluator�

The attribute grammar for NoName is speci�ed in SSL �Synthesizer Speci��
cation Language� by the following parts� �i� the abstract syntax which describes
the syntactical structure� �ii� the in� and output syntax� �iii� transformations
to re�ne the program� �iv� attribute grammars for the context�sensitive prop�
erties� and �v� external functions for interfaces to other applications �for the
implementation of the NoName editor see �EHM�
�� The usage of the editor is
described in Section ��� in more detail�

The further components of the NoName programming environment are based
on the fact that� internally� the current program is represented as syntax tree
which� e�g�� can be easily modi�ed� The integration of the components which
are described later� was enabled by o�ered interfaces of the editor�

This paper is divided into four sections� In Section � we describe the language
NoName by means of an example� The NoName programming environment is
presented in Section �� In Section � we provide a list of further research topics�

� The language NoName

In this section we explain some basic concepts of the functional language No�
Name and describe the features of a NoName program� data types� functions�
and tree transducers� The skeleton of a NoName program is as follows�

PROGRAM program name�
list of speci�cations

END PROGRAM program name�

�The Synthesizer Generator is a trade mark of GrammaTechTM� Inc�

�



There are four di�erent kinds of speci�cations�

� data type speci�cation

� function speci�cation

� tree transducer speci�cation

� import speci�cation

We will describe these kinds of speci�cations by constructing a NoName pro�
gram� This NoName program is a type checker for SPL�programs� where the
context�free part of the SPL�syntax is determined by the set of productions
of the context�free grammar shown in Figure �� The type checker checks the
context�sensitive properties of SPL� i�e�� �i� whether every identi�er which oc�
curs in a statement is also declared� and �ii� whether the type of the left�hand
side of an assignment is equal to the type of its right�hand side� This example
is derived from �Vog��
�

prog � Program decl� stmt End�

decl � var ident� type

decl � decl� ident� type

stmt � ident �� ident

stmt � begin decl� stmt end

stmt � stmt� stmt

ident � a

ident � b

type � int

type � bool

Program

var

a� int�

b� int�

begin

var

b� int�

a �� b

end�

b �� a

End�

Figure �� Context�free grammar of SPL and a valid SPL�program�

For a full description of the syntax and semantics of NoName see �EGH���a
�

��� Data type speci�cations

In NoName there are two main categories of data types� basic types� e�g�� IN�
TEGER� BOOLEAN� VOID �empty type�� and algebraic data types� Already
known data types can be composed via cartesian products or function types to
new types called data type synonyms� Since basic types and data type synonyms
are well known from other programming languages� we restrict our interest to
algebraic data types�

�



Generally an algebraic data type speci�cation has the following form�

ALG DEF

data type� � constructor����list of types�
� constructor����list of types�
���
� constructor��m�list of types�

data type� � � � �
���

data typen � � � �
END ALG DEF

We explain this concept by de�ning the context� free grammarof SPL �shown
in Figure �� as an algebraic data type in NoName� Since it su�ces to specify
the abstract syntax instead of the concrete syntax in the data type declaration
of NoName� the terminal symbols are dropped completely� The production

prog � Program decl� stmt End� ���

is represented by the NoName data type declaration

prog � Prog�decl�stmt	�

where prog is the name of the data type� Prog is a constructor name of rank
two� and the nonterminals decl and stmt� which correspond to decl and stmt in
���� respectively� denote further data types� Note that each constructor name
and the type of each object have to be uniquely determined in NoName� The
complete NoName data type speci�cation of the abstract syntax of SPL is shown
in Figure �� Additionally� this �gure presents the abstract syntax tree of the
SPL�program from Figure ��

��� General functions

A function is speci�ed by its declaration and its de�nition� The declaration
determines the types of the input and output values� The de�nition �xes how
the output values of the function depends on its input values� Note that a
function must be declared before it is de�ned or used� The skeleton of a function
speci�cation is as follows�

FUNC SPEC

evaluation strategy �optional�
list of function declarations
list of function de�nitions

END FUNC SPEC

�



ALG DEF

prog � Prog�decl� stmt	�

decl � VarDef�ident� type	

� VarDefList�decl� ident� type	�

stmt � Assign�ident� ident	

� Compound�decl� stmt	

� StmtList�stmt� stmt	�

ident � A

� B�

type � Int

� Bool�

END ALG DEF

Prog�

VarDefList�

VarDef�

A�Int	�

B�Int	�

StmtList�

Compound�

VarDef�

B�Int	�

Assign�

A�B	�

Assign�

A�B				

Figure �� The NoName data type speci�cation of the abstract syntax of SPL
and the abstract syntax tree of the SPL�program shown in Figure ��

For every function� an evaluation strategy �call�by�value or call�by�name� can be
stated explicitely �for details cf� page � and �EGH���a
�� A function declaration
has the following form�

function name � input type 
� output type

The input and output types are arbitrary� for example the input type can be
CARDINAL x INTEGER� i�e�� a cartesian product of types�

Generally a function de�nition has the following form�

function name�t������tk	 � right�hand side

where the left�hand side has to be linear� i�e�� no variable occurs twice� A func�
tion which has no parameters �denoted by VOID as input type in the declaration�
needs empty parentheses� Obviously� the type of the right�hand side must be
identical with the output type speci�ed in the function declaration�

Now let us consider SPL and let us de�ne a type checker for the conditions
named before� every identi�er has to be declared and the types of the two sides
of an assignment have to be equal� For this purpose� we de�ne a symbol table�
called env� which is realized as a list of identi�ers with their types� For its
handling we need the function update which builds up and modi�es the symbol
table� and the function look up to determine the type of a given identi�er�
Furthermore� we need the function type eqwhich checks if two types are de�ned
and equal� These functions are shown in Figure �� The additional necessary
algebraic data type de�nitions for idtype and env are shown in Figure ��





FUNC SPEC

update � env x ident x idtype �� env�

help update � ident x idtype x env x ident x idtype �� env�

update	Nil� id
� ty
�

� Cons	id
� ty
� Nil�

update	Cons	id
� ty
� tail�� id� ty�

� help update	id
� ty
� tail� id� ty��

help update	id
� ty
� tail� id� ty�

� Cons	id� ty� tail��

IF id
 � id�

� Cons	id
� ty
� update	tail� id� ty���

OTHERWISE�

END FUNC SPEC

FUNC SPEC

look up � env x ident �� idtype�

help look up � ident x ident x idtype x env �� idtype�

look up	Nil� id
�

� undef

look up	Cons	id� ty� tail�� id
�

� help look up	id� id
� ty� tail��

help look up	id� id
� ty� tail�

� ty�

IF id
 � id�

� look up	tail� id
��

OTHERWISE�

END FUNC SPEC

FUNC SPEC

type eq � idtype x idtype �� BOOLEAN�

type eq	t
� t� � 		t
 �� undef� and 	t �� undef�� and 	t
 � t��

END FUNC SPEC

Figure �� Functions of the type checker of SPL�

Let us explain the function look up more detailed�
Assume that update has created a list where all identi�ers together with their
types of an SPL�program are listed� Now look up checks if the list contains the
given identi�er� and if so� then it returns its type� Therefore we need a help
function� called help look up� which returns the type if the identi�er is found�
or it checks if the identi�er can be found in the rest of the list�

Note that look up and help look up are de�ned by simultaneous recursion�
Also note that help look up uses conditional clauses whereas look up is de�ned
by pattern matching� The conditional clause which is introduced by the keyword
IF� must return a boolean value�

�



ALG DEF

idtype � int

� bool

� undef�

END ALG DEF

ALG DEF

env � Nil

� Cons	ident� idtype� env��

END ALG DEF

Figure �� The algebraic data types idtype and env

We demand that conditional clauses ful�ll the following conditions�

� They have to be non�overlapping� i�e�� for every input value at most one
condition can match�

� They must be exhaustive� i�e�� for every input value at least one condition
must match�

If we use the conditional clause OTHERWISE� then it only can occur once� because
the conditional expressions have to be non�overlapping�

In contrast to most of the functional programming languages� NoName al�
lows to determine for every function one of the following evaluation strategies�

� call�by�name

� call�by�value�

Call�by�name is a strategy where the outermost function call is evaluated �rst�
in contrast to the call�by�value strategy� where the innermost function call is
evaluated �rst� The bene�ts and drawbacks of both strategies are well known�

The keyword CALL BY NAME or CALL BY VALUEwhich determines the strategy�
has to be inserted between the keyword FUNC SPEC and the list of function decla�
rations �cf� Section ���� page ���

Higher�order functions

In contrast to pattern matching� which is only allowed on inductive data types
�i�e�� algebraic data types� CARDINAL� and BOOLEAN�� conditional expressions are
not restricted to particular data types�

A more elegant way to de�ne the type checker would be to de�ne look up and
update in a higher�order manner� For this purpose the symbol table new env

is de�ned as a function of type ident 
� idtype� Then new update looks as
shown in Figure �

�



FUNC SPEC

new update � new env x ident x idtype 
� new env�

new update�rho� id�� ty�	 � lambda

WHERE FUNC SPEC

lambda � ident 
� idtype�

lambda�id	 � ty��

IF id� � id�

� rho�id	�

OTHERWISE�

END FUNC SPEC�

END FUNC SPEC

Figure � The function speci�cation new update�

��� Tree transducers

Tree transducers specify functions over algebraic data types� The language No�
Name supports �ve di�erent kinds of tree transducers� these are�

� top�down tree transducer �Rou�	� Tha�	
�

� macro tree transducer �Eng�	� CF��� EV�
�

� attributed tree transducer �F�ul��
�

� macro attributed tree transducer �KV��
� and

� modular tree transducer �EV��
�

The most special one is the top�down tree transducer where each function is
de�ned in a top�down way and has exactly one parameter called recursion argu�
ment� More precisely� these functions are synthesized functions� i�e�� in the right�
hand sides of their de�nitions only function calls �of a tree transducer function
from the same speci�cation block� with a successor of the recursion argument
are allowed� Note that this restriction does not hold for general function calls�

A macro tree transducer is a generalization of a top�down tree transducer
in such a way that its functions may contain further parameters additionally to
the recursion argument�

An attributed tree transducer is a generalization of a top�down tree trans�
ducer in another direction� synthesized functions as well as inherited functions
can be speci�ed� Hereby in the right�hand side of an inherited function de�ni�
tion only function calls �of a tree transducer function from the same speci�cation
block� with a predecessor of the recursion argument are allowed�

A combination of the above enumerated concepts is realized by macro at�
tributed tree transducers� That means we can use further parameters in addi�

�



tion to the recursion argument and we can use both� synthesized functions and
inherited functions�

Modular tree transducers cluster several top�down tree transducers and ma�
cro tree transducers into a unit and allows for a tree shaped hierarchical ar�
rangement of units�

For instance� the type checker of SPL can be speci�ed by the followingmacro
tree transducer�

BEGIN�MAC

envir� SYN DESC decl x env 
� env�

check� SYN DESC stmt x env 
� BOOLEAN�

envir��z�VarDef�� rho	

� update�rho� id��z���	� id��z��		�

envir��z�VarDefList�� rho	

� envir��z���� update�rho� id��z��	� id��z���			�

check��z�Assign�� rho	

� type�eq�look�up�rho� id��z���		� look�up�rho� id��z��			�

check��z�Compound�� rho	

� check��z��� envir��z���� rho		�

check��z�StmtList�� rho	

� check��z���� rho	 and check��z��� rho	�

END�MAC

In contrast to general functions the left�hand side of a macro tree transducer
function de�nition comprises a term of the form �z�constructor� which denotes
a path in the input tree labeled by constructor� Note that this notation has to
be used in recursion argument position� whereas the other argument positions
have to be instantiated by variables�

The right�hand side of a tree transducer function de�nition is similar to that
of a general function �cf� Section ����� If� in the right�hand side� we call a tree
transducer function of the same speci�cation block� then the recursion argument
has the form

�z��j
where j denotes the j�th subtree�

The functions envir and check are declared as synthesized functions by the
lines

envir� SYN DESC decl x env 
� env�

and
check� SYN DESC stmt x env 
� BOOLEAN�

Note that the keywords SYN DESC marks a synthesized descent function�
Since the data type decl has two constructors �VarDef and VarDefList�� there
are two function equations for envir�

�



The id function which occurs in the right�hand side of� e�g�� envir� is a
special construct for tree transducers� because �z��j is the pointer to the j�th
subtree and does not include the value of this subtree� The built�in function id

is necessary to convert this pointer into the complete subtree�
The second function equation of envir recursively walks down the symbol

table �by a recursive call of envir� until one identi�er is left� Then the �rst
function equation calls update and builds up the symbol table�

Additionally to the function envir� the macro tree transducer contains the
function check which checks the type equality in the assignment statements of
SPL�

Furthermore we need the following function speci�cation to complete the
NoName speci�cation of the type checker for SPL�

FUNC�SPEC

check�prog � prog 
� BOOLEAN�

check�prog�Prog�z��z		

� check�z� envir�z�� Nil		�

END�FUNC�SPEC

The table below presents an overview of the syntactic requirements of the di�er�
ent tree transducers �note that tr� abbreviates tree transducer�� A more concise
description can be found in �EGH���a
�

top�down tr� macro tr� attributed tr� macro attr� tr�

Begin BEGIN TOP BEGIN MAC BEGIN ATT BEGIN MAT

End END TOP END MAC END ATT END MAT

Functype DESC DESC WALK WALK

Synthesized func� allowed allowed allowed allowed

Inherited func� 	 	 allowed allowed

More parameters 	 allowed 	 allowed

��� Import speci�cation

NoName supports the use of library modules� Such modules have the same
structure as other NoName programs and so we can use every NoName program
as a library module� Functions� tree transducers� or data types from other No�
Name programs can be imported by the IMPORT speci�cation� For example� the
import speci�cation

FROM math�nnm IMPORT ack�
imports from the NoName program math�nnm the function ack and� addi�

tionally� all functions and data types which are necessary for the speci�cation of
ack �even if� in its turn� all these functions and data types have been imported
in math�nnm for ack��

�	



��� Conclusion

With the help of the simple programming language SPL we have described the
most important properties of NoName� The type checker� including the alge�
braic data type speci�cations� the functions update� look up and type eq �see
Section ���� page �� the macro tree transducer �described in Section ���� page
�� and the function check prog �see Section ���� page �	� represents a complete
NoName program to check the context�sensitive properties of SPL� The follow�
ing sections explain how to use and work with the NoName programming en�
vironment� a tool to develop NoName programs in an e�ective� correct� and easy
way and how to use the features of this environment�

� The programming environment of NoName

The NoName programming environment was developed to support the user in
writing NoName programs� The main part of this environment is a syntax
driven editor for NoName �cf� Section ����� It was generated with the help
of the Synthesizer Generator� a software tool designed by T� W� Reps and T�
Teitelbaum� We have integrated an online help �cf� Section ����� di�erent views
of the current program �cf� Section ����� as well as a database connection �cf�
Section ���� to maintain parts of NoName programs� e�g�� standard functions
�for a collection of standard functions see �May�
�� For di�erent purposes� e�g��
optimization and user guidance� complex transformations �cf� Section ��� and a
tool for representing the syntax tree of the current program graphically �cf� Sec�
tion ���� complete our user�friendly environment� Additionally� the NoName
programming environment includes two compilers �cf� Section ����� Figure �

NoName

The

Syntax
D

riven

Editor

of
N

oN
am

e

Help

Online

V
iew

s
C

onnection

D
atabase

Transformations

C
om

pi
le

rs
G

ra
ph

ic
al

Su
pp

or
t

Figure �� The programming environment of NoName and its features�

pictures this programming environment� Remember that the programming lan�
guage NoName was described in Section ��

��



��� The basics of the NoName editor

NoName

First we describe the basic concepts of the NoName editor� In contrast to text
editors� the NoName editor provides syntactic correct NoName programs by
accepting only syntactic correct modi�cations� Moreover it can react helpfully
if any program errors are detected� Since a semantic analyser is also part of the
NoName editor� the user is promptly informed about existing semantic defects�

With the help of a screenshot� shown in Figure �� we describe how to work
with the editor�

Editor and Program Name

Work Area

Menu Pane

Transform
Buttons

Actual SelectionStatus Pane

Figure �� The programming environment of NoName�

The menu pane includes the following areas�

File� The menu File is used for �le handling� i�e�� to open� close� or save �les
etc� as usual�

Edit� This menu allows to execute several edit functions� i�e�� to select� copy�
paste� or delete parts of the actual program� Additionally to a text ver�
sion of these edit functions� structure modifying functions are included�
i�e�� functions which only allow to modify complete subtrees of the actual
program�s syntax tree in a correct way�

View� In addition to the representation of the actual program as shown in Fig�
ure �� other views are supported� e�g�� the miranda view which shows the
program in the syntax of the functional programming language Miranda
�Tur�
� The di�erent views are described in Section ����

��



Tool� The menu Tool o�ers interfaces to the operating system�

Options� The menu Options allows to adjust some basic options like switching
on and o� the status pane�

Structure� With this menu the navigation through the syntax tree of the actual
program can be performed�

Text� In contrast to the menu Structure the menu Text supports navigations
through the program text�

Transforms� This menu has the same function as the transform buttons which
are described below�

Extras� The menu Extras allows to start di�erent compilers �cf� Section ����
and it is possible to edit NoName programs with any other editor�

NoMIS� The menu NoMIS is used to open and work with a database �see
Section ��� and �M�ul�
��

Help� The menu Help starts a detailed help environment� e�g�� all transform
buttons are explained precisely �see Section �����

Note that the menus View and Help are interfaces o�ered by the Synthesizer Ge�
nerator which we have adjusted for NoName� Additionally we have added the
menus Extras and NoMIS which are explained later� For a more concise descrip�
tion of the other menus see �Gra��
�

The actual program is shown in a pretty�printed version in the work area�
Programs are built by re�ning so�called templates� i�e�� prede�ned� formatted
patterns for parts of NoName programs which contain placeholders� New tem�
plates can be inserted at the position of placeholders of already existing tem�
plates� By this method programs are constructed top�down� The underlined
part of the program is the actual selection� In Figure � the template

�tree specification�

is a placeholder where a new template can be inserted� Here� it can be re�ned
to a certain tree transducer �see transform buttons in Figure ��� We re�ne this
placeholder to a template of a macro tree transducer with the button MacTree�
The result of this re�nement is shown in Figure ��
The available transformations depend on the current context� because only

templates which generate a syntactic correct program are allowed�
Comments can be inserted at pre�de�ned places� which are automatically

marked by the line �� �comment� �	� In Figure �� e�g�� there are two possible
places where comments can be written� For more information see �EGH���a
�

The textual representation can also be edited by the keyboard� The return
key �nishes the editing mode and the text is parsed� Syntax errors are shown
in the status pane and should be corrected immediately� Furthermore all other
messages� as� e�g�� the message Read �home�NoName�SPL�nnm in Figure � and
the actual context are shown in the status pane�

��



Template of a
macro tree
transducer

Figure �� Part of the NoName speci�cation of SPL� one step later as shown in
Figure ��

��� The online help of the editor

NoName

The online help of the editor o�ers support to the complete NoName environ�
ment� There are help functions to every executable command as� e�g�� the �le
handling commands which can be found under the menu item File� Further�
more all transform buttons are described in detail� Let us show the online
help for the transform button MacTree which was used in the previous section�
To get this help page the item describe�transform of the menu Help has to be
selected� The browser eMosaic is started with a page in HTML �HyperText
Markup Language� format which contains references to all help pages of the
current enabled transforms buttons� As mentioned before we select the help
page for the transform button MacTree� The result is shown in Figure �� Un�
derlined text phrases of the document are links which refer to other related
topics� Here the underlined word synthesized is a link which refers to the topic
synthesized functions� Note that all help pages for transform buttons consist of
the following items where some of them may be omitted�

� USAGE�
Describes which code is generated if we click the corresponding transform
button�

� DESCRIPTION�
Gives further details to the transform button�

� LITERATURE�
Refers to other documents for further information on this topic�

��



Figure �� The NoName online help for the MacTree transform button�

� EXAMPLE�
Pictures the usage of the transform buttons�

� ATTENTION�
Gives hints for important peculiarities�

� SEE ALSO�
Links to other similar transform buttons�

Moreover our online help contains references to the language description of No�
Name �EGH���a
 and to the manual for the NoName programming environment
�EGH���b
�

��� Views

NoName

The NoName environment supports four di�erent views� the baseview and the
views miranda� decl� and clickpoint� The baseview shows the program in the
standard view as shown in Figure � and �� The miranda view presents NoName
programs in miranda syntax� The decl view only shows the declarations of a
NoName program and the clickpoint view marks all positions where templates

�



can be inserted� Views can be shown simultaneously� e�g�� the baseview and
the miranda view can be shown in two di�erent bu�ers at the same time� Note
that changes made in one view are adapted in the other views immediately�
Consequently� with slight modi�cations the NoName editor can be expanded in
such a way that programs can also be written in miranda syntax� For more
information see �EHM�
�

��� Database connections

NoName

The NoName programming environment includes a relational mSQL database
�cf� �Hug��
� to administrate constructs of NoName programs interactively� To
use the database we have to open the connection to it with the help of the
item db�connect of the menu item NoMIS� The database itself allows to retrieve�
store� and delete speci�cations of data types� algebraic data types� functions�
and tree transducers as well as templates of such speci�cations �see the items
db�retrieve� db�store� and db�delete�� Each saved construct is determined by a
name and a version and it can be accompanied by a comment� Search criterions
called topics simplify the administration of constructs� They are determined by
their name �comments to describe them more precisely are allowed�� We can
create new topics� delete them� or view all topics �see the item topic�handling��
Topics can be associated to constructs and vice versa� The item db�output allows
the user to generate di�erent LATEX��les which give an overview about stored
data in the database� The following �les can be generated�

� constructs�tex� Gives an overview over all stored constructs�

� topic�tex� Gives an overview about all topics�

� assign�tex� Lists all associations between constructs and topics�

We use the item db�disconnect to end the connection with the database and
return to the NoName programming environment� If we use the item db�exit�all
we disconnect the database and close the NoName programming environment�

For a complete description of the database connection see �M�ul�
� There�
the backgrounds� the basics� the implementation� and the usage of the database
etc� are described in a very detailed form� A lot of examples complete the
description in that document�

��� Transformations

NoName

In Section ��� we have described some basic transformations to re�ne templates�
Now we present more powerful transformations which allow complex code mod�
i�cations� Since the class of tree transducer is well structured� many theoretical
results are known for this class �cf�� e�g� �Eng�� Eng��� F�ul��� Eng�	� CF���
EV�� EV��� EV��� FHVV��� KV��
�� Some of them are realized in the No�
Name programming environment� With the help of transformations it is possible

��



to transform one kind of tree transducer into another kind of tree transducer�
e�g�� a modular tree transducer can be split into several top�down and macro
tree transducers� hereby external functions are resolved� context parameters are
substituted� and simultaneous recursion is eliminated �the underlying technique
can be found in �K�uh�	
��

Obvious syntactic transformations from one class into the other are enabled
if the conditions pictured in the following table are given�

Furthermore it is possible to improve the e�ciency of the underlying program
by applying the tupling strategy to macro tree transducer �cf� �MV�
�� Indeed
this tupling strategy is a combination of some transformations which are based
on the idea to avoid recomputations of values and multiple traversals of the
input argument� This transformation is fully automatic and it is o�ered with
the transform button tupling when a macro tree transducer is marked�

To support the programmer in the usage of tree transducers other helpful
transformations are integrated �cf� �Ern�
�� e�g�� the necessary left�hand sides
of tree transducer de�nitions can be inserted automatically�

To simplify the programmers work several transformations exist as� e�g�� the
transform button PM 
� IF which allows to change the distinction of cases by
pattern�matching into IF�clauses�

Now let us explain helpful transformations of tree transducers by an ex�
ample� We demonstrate the usage of the transform buttons Create Defs and
Make Compact with the following template of the macro tree transducer from
Section ��� �page ���

BEGIN�MAC

envir� SYN DESC decl x env 
� env�

check� SYN DESC stmt x env 
� BOOLEAN�

END�MAC

If the functions of a tree transducer are completely declared as shown above�
then it is possible to determine the corresponding de�nitions except their right�
hand sides because of the restricted syntax of tree transducers� More precisely
it is known that for every constructor function equations must exist of the form�

functionname ��z�constructor�� 	 right�hand side

Clicking the transform button Create Defs generates these equations automati�
cally and the result is as follows�

BEGIN�MAC

envir� SYN DESC decl x env 
� env�

check� SYN DESC stmt x env 
� BOOLEAN�

envir��z�VarDefList�� y�	 � �mac�right��

envir��z�VarDef�� y�	 � �mac�right��

check��z�Assign�� y�	 � �mac�right��

check��z�Compound�� y�	 � �mac�right��

��



check��z�StmtList�� y�	 � �mac�right��

END�MAC

This can also be done by re�ning templates by hand� Hereby the case may arise
that the functions of a tree transducer are not de�ned compactly� that means�
it is not guaranteed that the function equations are de�ned in the right order
like shown in the following example�

BEGIN�MAC

envir� SYN DESC decl x env 
� env�

check� SYN DESC stmt x env 
� BOOLEAN�

envir��z�VarDef�� rho	 � �mac�right��

check��z�Assign�� rho	 � �mac�right��

check��z�Compound�� rho	 � �mac�right��

check��z�StmtList�� rho	 � �mac�right��

� NOT COMPACT � envir��z�VarDefList�� rho	 � �mac�right��

END�MAC

The error message f NOT COMPACT g shows that this tree transducer is not
de�ned compactly� i�e�� the program is not correct� If the actual tree transducer
is marked� then this error can be corrected automatically with the help of the
transform button Make Compact�

BEGIN�MAC

envir� SYN DESC decl x env 
� env�

check� SYN DESC stmt x env 
� BOOLEAN�

envir��z�VarDefList�� rho	 � �mac�right��

envir��z�VarDef�� rho	 � �mac�right��

check��z�StmtList�� rho	 � �mac�right��

check��z�Compound�� rho	 � �mac�right��

check��z�Assign�� rho	 � �mac�right��

END�MAC

For more information cf� �Ern�
�

��	 Graphical support

NoName

The NoName programming environment supports a graphical representation of
NoName programs� To use this feature select the item Enable Graphical Support
from the menu item Options� An extra window is opened in parallel to the
NoName editor to show the syntax tree of the corresponding program� All
modi�cations in this program are shown immediately in the syntax tree and the
actual selection is highlighted �see Figure �	��

��



Figure �	� Part of the syntax tree of our SPL program�

��
 Compilers

NoName

NoName o�ers two di�erent compilers� The NoName compiler and the miranda
compiler� As we have described in Section ��� the miranda view shows a No�
Name program as miranda program� By this method it is possible to evaluate
NoName expressions with the help of an integrated miranda compiler by trans�
forming them also in miranda expressions� More precisely� for the evaluation
of a concrete expression expr we select the menu item Execute Miranda from
the menu Extra� A dialog box is opened where the user can type in expr� By
selecting the Start button� expr is automatically transformed in a miranda ex�
pression expr� and evaluated with the associated miranda program� The result
is back transformed to NoName and shown in the message pane� This process
is pictured in Figure ��� Most parts of NoName programs are easy to translate�
except tree transducers and di�erent evaluation strategies because Miranda does
not support them� So each tree transducer is represented in the corresponding

��



Miranda view of 
the 

in

NoName prg.

inexpr’

result in
NoName
result in

translate

translate

transform
back

NoName
expr

Miranda

NoName
program

Miranda
evaluate

Figure ��� The Miranda compiler�

Miranda program as set of functions and given evaluation strategies are ignored�
For further information see �EHM�
�

At the time being the NoName compiler which is based on a runtime stack
machine can only evaluate �rst�order NoName programs �that means� NoName
programs without higher�order functions�� The evaluation can be started by
selecting the menu item Execute NoName� For detailed information see �Hou�
�

��� Conclusion

In this section we have presented the NoName programming environment with
all its features� The integrated online help� the di�erent views� the database con�
nection� the transformations with their various functions� the graphical support
to show the syntax tree of a NoName program� and the di�erent compilers� A de�
tailed description of the programming environment can be found in �EGH���a

and further background information is enclosed in the quoted articles�

� Further research topics

After having described the language NoName and the programming environ�
ment of NoName� we give an overview about other desirable features�

One major point is to introduce the concept of lists in NoName� It would
be useful to have an extra notation for lists�

Furthermore we want to support the concept of polymorphism� that means�
a function which is required for di�erent data types should be implemented only
once with the help of type variables� Note that the introduction of polymor�
phism causes great changes in the NoName programming environment and in
the underlying type checker for NoName�

Obviously some of the existing features should be generalized� For exam�
ple we want to expand the possibility to correct syntactic and semantic errors
automatically� Clearly this can not be done for all errors which can occur in a
program�

�	



Other program transformation techniques could be senseful as� e�g�� defore�
station ��Wad�	
� and partial evaluation ��DGT��
�� and should be integrated
in the NoName editor� The ability to compare and test transformation tech�
niques� a possibility to protocol the number of evaluated function calls� and
other measure criteria shall be introduced�

References

�CF��
 B� Courcelle and P� Franchi�Zannettacci� Attribute grammars and
recursive program schemes� Theoretical Computer Science� �������
��� and ������ �����

�DGT��
 O� Danvy� R� Gl�uck� and P� Thiemann� Partial Evaluation� volume
���	 of Lecture Notes in Computer Science� Springer�Verlag� �����

�EGH���a
 D� Ernst� D� Gluche� F� Houdek� A� K�uhnemann� A� M�o�le�
E� M�uller� S� Sablatn�og� H� Vogler� and E� Wieser� NoName �
Eine funktionale Sprache mit Unterst�utzung der primitiven Rekur�
sion� Universit�at Ulm� �����

�EGH���b
 D� Ernst� D� Gluche� F� Houdek� A� K�uhnemann� A� M�o�le�
E� M�uller� S� Sablatn�og� H� Vogler� and E� Wieser� Handbuch zum
NoName�Editor� Version ��	� Universit�at Ulm� �����

�EHM�
 D� Ernst� F� Houdek� and A� M�o�le� Technische Dokumentation
zum NoName�Editor� Version ��	� Universit�at Ulm� ����

�Eng�
 J� Engelfriet� Bottom�up and top�down tree transformations � a
comparison� Mathematical Systems Theory� ���������� ����

�Eng��
 J� Engelfriet� Top�down tree transducers with regular look�ahead�
Mathematical Systems Theory� �	� �����

�Eng�	
 J� Engelfriet� Some open questions and recent results on tree trans�
ducers and tree languages� In R�V� Book� editor� Formal language
theory� perspectives and open problems� pages ������� New York�
Academic Press� ���	�

�Ern�
 D� Ernst� Entwicklung und Implementierung eines syntaxge�
steuerten Editors f�ur die Sprache NoName� Master�s thesis� Uni�
versit�at Ulm� ����

�EV�
 J� Engelfriet and H� Vogler� Macro tree transducers� Journal of
Computer and System Science� ���������� ����

��



�EV��
 J� Engelfriet and H� Vogler� Pushdown machines for the macro tree
transducer� Theoretical Computer Science� ������������� october
�����

�EV��
 J� Engelfriet and H� Vogler� High level tree transducers and iterated
pushdown tree transducers� Acta Informatica� ����������� �����

�EV��
 J� Engelfriet and H� Vogler� Modular tree transducers� Theoretical
Computer Science� ��������	�� �����

�FHVV��
 Z� F�ul�op� F� Herrmann� S� Vagv�olgyi� and H� Vogler� Tree trans�
ducers with external functions� TCS� �	��������� �����

�F�ul��
 Z� F�ul�op� On attributed tree transducers� Acta Cybernetica� �����
���� �����

�GKS��
 J� Glaubert� R� Kennaway� and R� Sleep� Dactl� An experimen�
tal graph rewriting language� In H� Ehrig� H��J� Kreowski� and
G� Rozenberg� editors� Graph Grammars and Their Application to
Computer Science� volume �� of Lecture Notes in Computer Sci�
ence� pages ������� �����

�Gra��
 GrammaTech� The Synthesizer Generator ��� Reference Manual�
�����

�Hou�
 F� Houdek� Implementation von �rst�level NoName auf einer
Runtime�Stack Maschine� Master�s thesis� Universit�at Ulm� ����

�Hud��
 P� Hudak� Conception� evolution� and application of functional
programming languages� ACM Computing Surveys� ����������
�����

�Hug��
 Hughes Technologies Ltd� On�line manual of mini sql ��	� �����
Available via http�		Hughes�com�au	library	msql
	manual�

�Jon��
 M�P� Jones� Gofer � an introduction to Gofer� ����� Included as
part of the standard Gofer distribution�

�K�uh�	
 A� K�uhnemann� Transformation strukturell�rekursiver Programme
in Normalform� Master�s thesis� RWTH Aachen� ���	�

�KV��
 A� K�uhnemann and H� Vogler� Synthesized and inherited functions
� a new computational model for syntax�directed semantics� Acta
Informatica� ����������� �����

�May�
 R� Mayer� Beschreibung der Standardfunktionen der Sprache No�
Name� Universit�at Ulm� ����

��



�McC�	
 J� McCarthy� Recursive functions of symbolic expressions and their
computation by machine� part i� Communications of the ACM�
��������� ���	�

�Mil��
 R� Milner� A proposal for Standard ML� In ACM Conference on
LISP and Functional Programming� pages �������� ACM� �����

�M�ul�
 E� M�uller� Entwicklung eines Modul�Informationssystems f�ur den
NoName�Editor� Master�s thesis� Universit�at Ulm� ����

�MV�
 A� M�o�le and H� Vogler� E�cient call�by�value evaluation of prim�
itive recursive program schemes� In M� Takeichi and T� Ida� edi�
tors� Functional and Logic Programming� World Scienti�c Publish�
ing Co� Pte Ltd�� ����

�Rou�	
 W�C� Rounds� Mappings and grammars on trees� Mathematical
Systems Theory� ��������� ���	�

�RT��
 T�W� Reps and T� Teitelbaum� The Synthesizer Generator � A
system for constructing language�based editors� Springer�Verlag�
�����

�Tha�	
 J�W� Thatcher� Generalized� sequential machine maps� Journal of
Computer and System Science� ���������� ���	�

�Tur�
 D� Turner� Miranda� A non�strict functional language with poly�
morphic types� In J��P� Jouannaud� editor� Functional programming
languages and computer architecture� volume �	� of Lecture notes
in computer science� pages ����� Springer Verlag� September ����

�Vog��
 H� Vogler� Functional description of the contextual analysis in
block�structured programming languages� a case study of tree
transducers� Science of Computer Programming� ��������� �����

�Wad�	
 P� Wadler� Deforestation� Transforming programs to eliminate
trees� Theoretical Computer Science� ����������� ���	�

��


