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Abstract

There is an increasing interest in changing information systems to support business processes in a more direct
way. Workflow technology is a very interesting candidate to achieve this goal. Hence the important question
arises, how far do we get using this technology. Is its functionality powerful enough to support a wide range of
applications or is it only suitable for rather simple ones? And, if the latter is the case, are the missing functions of
the “just to do” type or are more fundamental issues addressed? The paper uses the clinical domain to motivate
and to elaborate the functionality needed to adequately support an advanced application environment. It shows
that workflow technology is still lacking important features to serve this domain. The paper surveys the state of
the art and it presents solutions for some issues based on the concepts elaborated in the ADEPT project.

1. Introduction

For a variety of reasons, companies are developing a growing interest in changing their information systems (IS)
such that they behave “process-oriented”. That means to offer the right tasks, at the right point in time, to the
right persons along with the information needed to perform these tasks. Up to now, most IS are (more or less)
purely functionally oriented: An application system, usually sitting upon a database system, is offering functions
for querying customer data, for querying or entering order data, for writing invoices, etc. Making such systems to
behave process-oriented is – if it is done by conventional programming methods (decision tables, state and tran-
sition tables, or if-then-else-statements) – a non-trivial task. As not all functions may be offered by one applica-
tion system, it may even require to issue procedure calls across application modules, maybe even across different
computers, thus making the implementation complex and error-prone. The most severe problem, however, is
probably caused by program maintenance. While functionally oriented IS tend to remain stable for rather long
periods of time, process-oriented IS have to be modified whenever the business process changes, and this may
happen rather frequently. Once an IS has been made to behave strictly process-oriented, it must be adjustable to
process changes and to evolving organizational structures very quickly and at reasonable costs.

When analyzing the alternatives to implement process-oriented IS in sufficient depth [9, 24], one comes to the
conclusion that such systems can only be realized in a cost-effective and reliable fashion if the process (control)
flow can be (1) described and implemented separately from the application functions and (2) the implementation of
the application functions can be kept (nearly) as simple as in the case of purely functionally oriented IS. That is
during implementation one should not have to bother about concurrency control and recovery (including log-
ging) issues, about inter-process communication (e.g. remote procedure calls which do never return) and – ideally
– also not about the issue that the order in which steps are performed in the process may be changed at a later
point in time. That is it should be possible to implement application functions as isolated components which can
expect that their input parameters are provided upon invocation by the run-time environment and which only
have to worry about producing correct values for their output parameters. This is, when looking at the whole
picture, not as trivial as it looks like at first glance! All the other issues should be handled by the build-time and
run-time environment of the process-oriented IS.

If this can be achieved, then the implementation of process-oriented applications or whole process-oriented IS
may one day consist of selecting an appropriate process or workflow (WF) template from a WF library, customiz-
ing the template according to the individual needs, picking-up appropriate application components from a com-
ponent library, plugging them into the WF template, and running a system check whether the interfaces of the
components harmonize such that they can properly work together as specified by the WF template  [9]. This may
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also require an automatic or semi-automatic mapping process to achieve the ”interoperability” of these pre-
existing (perhaps purchased) comp onents.

 (Process-oriented) WF technology, as offered by workflow management systems (WfMS) like FlowMark or
WorkParty, is already providing a major step towards this direction. Advanced WfMS of this category allow to
model the control flow and the data flow explicitly and independently from the implementation of the application
components. They “deliver” the values for the input parameters to the component before its invocation and pick-
up the output values after its completion. This is done in FlowMark, for example, by so-called input/output con-
tainers which allow, in principle, to write the application components in an isolated fashion as described above.
Hence the interesting point is how far do we get with such kind of technology (database technology for data
management + WF technology for WF management + application functions) for the implementation of process-
oriented IS when being applied in real-world application environments? Does this technology cover a broad spec-
trum of application areas or is it narrow in the sense that only a certain type of applications can be supported
adequately?  And, if this is the case, which additional functionality is needed?

 Based on many years of first-hand knowledge of and personal working experience in the clinical domain, based on
the experiences made in dedicated projects [9, 17, 31], and having also insights and experiences in other domains
like Business Administration and Engineering Processes, we are convinced that the clinical application domain is
very valuable for the evaluation of technologies for real-world, large-scale process-oriented IS. We believe (and
will explain this in the sequel) that the realization of process-oriented clinical IS is a great challenge – if not even
the “killer application” for this type of technology. It combines, like in a nutshell, all the problems and challenges
usually only found in different application areas. On the other hand, once the technology has been made power-
ful enough to adequately support this domain, it will be able to support a broad spectrum of different application
areas. Because of this, clinical applications can serve as an ideal test bed for process-oriented IS.

 In the next section we describe the characteristic properties of clinical working environments as far as they are re-
levant for this paper. It is a real life description and not an artificial scenario to justify a special research topic. In
Section 3 we evaluate the description of this application scenario, and we discuss and derive technological re-
quirements. Section 4 gives a survey on research and development contributions. In Section 5 we show that some
of these aspects should be considered in conjunction with each other and we use the ADEPT concepts to illus-
trate how an integrated approach could look like. Section 6 concludes with a summary and an outlook.

2. Clinical Working Environments

In hospitals, the work of physicians and nurses is burdened by numerous organizational as well as medical tasks.
Medical procedures must be planned and prepared, appointments be made, and results be obtained and evalu-
ated. Usually, in the diagnostic and treatment process of a patient various, organizationally more or less separate
units are involved. For a patient treated in a department of internal medicine or surgery, for example, tests and
procedures at the laboratory and the radiology department become necessary. In addition, specimen or the pa-
tient himself have to be transported, physicians from other units may need to come and see the patient, and re-
ports have to be written, sent, and evaluated. Thus, the cooperation between organizational units as well as the
medical personnel is a vital task, with repetitive but nevertheless non-trivial character. Processes of different
complexity and duration (up to several months) can be identified. One can find short processes, like order entry
and result reporting for radiology, but also complex and long-running (even cyclic) treatment processes like che-
motherapy for in- and out-patients.

Physicians have to decide which interventions are necessary or not – under the perspective of costs and
invasiveness – or which are even dangerous because of possible side-effects or interactions. Many procedures
need preparatory measures of various, sometimes considerable complexity. Before a surgery can take place, for
example, a patient has to undergo numerous preliminary examinations, each of them requiring additional
preparations. While some of them are known in advance, others may have to be scheduled dynamically,
depending on the individual patient and his state of health. All tasks may have to be performed in certain orders,
sometimes with a given minimal or maximal time distance between them. After an injection with contrast medium
was given to a patient, for example, some other tests cannot be performed within a certain period of time. Usually,
physicians have to coordinate the tasks related to their patients manually, taking into account all the
dependencies existing between them. Changing a schedule is not trivial and requires time-consuming
communication. For some procedures, physicians from various departments have to work together. So, coherent
series of appointments have to be arranged, and for each step actual and adequate information has to be
provided. Typically, each unit involved in the patient treatment process concentrates on the function it has to
perform. Thus, the process is subdivided into partial, function- and organization-oriented views, and optimization
usually stops at the border of the department. For all these reasons many problems result:
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- Patients have to wait, because resources like physicians, rooms, or technical equipment are not available.

- Medical procedures may become impossible to perform, if information is missing, preparations have been
omitted, or if a preceding procedure has been postponed, canceled or requires latency time. Subsequent ap-
pointments may then have to be changed as well, which results in intensive phone-calls and time losses.

- If any results are missing but urgently needed, tests or procedures may have to be performed repeatedly.

Because of this, from the patient as well as from the hospital perspective unpleasant and unwanted effects occur:
Hospital stays can be longer than necessary and the costs or even the invasiveness of the patient treatment may
increase. In critical situations, missing information may lead to late or even wrong decisions. Investigations have
shown that medical personnel is aware of these problems and that computer systems helping to make ap-
pointments and providing the necessary information would be highly welcome by nurses and physicians. In an
increasing way it is being understood, that the correlation between medicine, organization and information is
high, and that today's organizational structures and IS offer only sub-optimal support. This is even more the case
for hospital-wide and cross-hospital processes and for health care networks.

The roles of physicians and nurses complicate the problem. They are responsible for many patients and they
have to provide an optimal treatment process for each of them. Medical tasks are critical to patient care and even
minor errors may have disastrous consequences. The working situation is further burdened by frequent context
switches. Physicians often work at various sites of a hospital in different roles. In many cases unforeseen events
and emergency situations occur, patient status changes, or information necessary to react is missing (up to:
“where is my patient?”). In addition, the physician is confronted with a massive load of data that have to be struc-
tured, intellectually processed, and put into relation to the problems of the individual patient. One can show that
physicians tend to make mistakes (e.g., wrong decisions, omissive errors) under this “informational overload”
[23].

From the perspective of a patient, a concentration on his treatment process is highly desirable. Medical
personnel, very similarly, wishes to treat and help patients and not to spend their time on organizational tasks.
From the perspective of health care providers, the huge potential of the improvement of clinical processes has
been identified: length of stay, number of procedures, number of complications could be reduced. Hence there is a
growing interest in process orientation and quality management. Medical and organizational processes are being
analyzed, and the role of medical guidelines describing diagnostic and treatment steps for given diagnoses is em-
phasized.

When efforts are taken to improve and to automate the flow of clinical processes, it is extremely important not to
restrict the physician or the nurse. Early attempts to change the function-oriented views of patient processes
have been unsuccessful whenever rigidity came with them. Variations in the course of a disease or a treatment
process are deeply inherent to medicine; the unforeseen event is to some degree a “normal” phenomenon. Medi-
cal personnel must be free to react and is trained to do so. In an emergency case, for example, physicians may col-
lect information about a patient by phone and proceed with the process, without waiting for the (electronic) report
to be written. A medical procedure may have to be aborted if the patient's health state gets worse or the provider
finds out that a prerequisite is not met. Such deviations from the pre-planned process are frequent and form a key
part of process flexibility. A computer-based system which is used to assist physicians and nurses in their daily
work, therefore, must allow users to gain complete initiative whenever they need it. It must be easy to handle, self-
explaining and – most important – its use in exceptional situations should be not more cumbersome and time-
consuming than simply handling the exception by a telephone call to the right person; otherwise the system
won’t be accepted by the medical personnel.

The described working scenario makes it evident that clinical processes are of considerable complexity and of
long duration. A hospital must provide an optimal treatment for hundreds up to thousands of patients within the
same period of time. Already for a single treatment process, numerous organizational units – or even different
hospitals and health care providers – may be involved in. The adequate support of hospital-wide and cross-
hospital processes, therefore, can be considered as a great challenge for future process support systems.

3. Technological Challenges for Process-oriented (Clinical) Information Systems

 The described scenario illustrates that an IS giving instant access to an electronic patient record would be very
valuable; it would help to save time and thus help to reduce stress for the personnel. It makes also evident, how-
ever, that the online access to patient data alone will not dramatically improve the situation. At first glance,
knowledge-based systems, “fed” with comprehensive medical knowledge could help a lot. We have also made
experiments into this direction [17]. The identified problems are (as often) not at the technological side; they are
knowledge-acquisition, knowledge-maintenance, and potential legal problems with respect to responsibilities. Our
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conclusion was that a clinical IS should concentrate on the support of organizational procedures; i.e., it should
assist the personnel in doing their work at the right point in time and, by providing the appropriate information,
support them in taking the right decisions. But even if one concentrates on organizational procedures, the prob-
lem of “smooth assistance” still occurs. For clinical processes, it is nearly impossible to pre-model all possible
task sequences and all exceptions in advance. If a physician, for example, comes to the conclusion that an addi-
tional measure which has not been anticipated in the process template becomes necessary in a given situation,
the process-oriented IS must not prevent him to perform this measure. Otherwise, the IS would have to be “by-
passed”, which would cause (besides other problems) the problem of missing documentation.

 Taking all these aspects together (and, in addition, some aspects not explicitly mentioned above) one can state
the following list of requirements for a process-oriented clinical IS:

1. It must offer a WF meta model which is expressive enough to capture all relevant aspects of a process in an
integrated and consistent way; e.g., control/data flow, temporal constraints, or organizational responsibilities

2. High reliability and consistency are key requirements for such a system. The WF model must enable formal
verifications for the absence of any obscure system behavior at run-time (e.g., deadlocks, lost updates, invo-
cation of task programs with wrong or missing input parameters, or temporal inconsistencies).

3. It must support ad-hoc deviations from the pre-modeled WF template at the WF instance level (i.e., to omit or
postpone steps, to change the sequence of steps, or to insert new steps). Such dynamic changes must not
violate the data consistency, the specified temporal constraints, or the robustness of the system. In addition,
all changes must be properly integrated, especially with respect to authorization and documentation.

4. To deviate from the WF template must not be complicated for users. All the complexity associated with the
re-mapping of the input/output parameters of the components affected by a change, the problem of missing
input data due to the deletion of steps, or the problem of deadlocks must be hidden to a large degree from
them. Instead, users must be able to define a dynamic change at a high semantic level, without requiring that
they are familiar with a WF description formalism or a WF editing tool. In order to be able to realize applica-
tion-specific user interfaces, the system must offer advanced programming interfaces to developers.

5. The system must support temporal aspects (cf. Sect. 2). – Besides deadlines, it should know about the exter-
nally fixed dates for steps and about temporal dependencies (e.g., minimal / maximal time distances) between
them. It should monitor the WF execution with respect to these constraints and inform the user (in a reason-
able way, no “window terrorism”) about potential problems during run-time (e.g., due to delays).

6. For the efficient support of hospital-wide and cross-hospital processes, scalability of the process support
system is a must. The system must run with acceptable performance, even if the number of users and concur-
rently active WF instances becomes very large.

 Although already rather lengthy, this list is still incomplete. Further important aspects concern the evolution of
WF schemes (incl. the adaptation of in-progress instances), the handling of inter-workflow dependencies, the
treatment of ”media-breaks”, or the problem of mobility with respect to data entry and retrieval. Our experiences
led to the insight that any serious attempt to develop a process support system should not only concentrate on
isolated aspects, but must try to look (as far as possible) at the overall picture. As shown in Sect. 2, for example,
the WF meta model should support cyclic tasks. This does not look very complicated at first glance. In conjunc-
tion with dynamic changes, however, it is not trivial at all, as we will show in Sect. 5.3. The same applies to temp o-
ral constraints. If both, dynamic changes and temporal constraints, are supported, then the addition of a new step
or the change of pre-modeled task sequence, may lead to temporal inconsistencies (cf. Sect. 5.4). Finally, the sup-
port of dynamic changes should not negatively influence the performance of the system. Concepts which have
been developed to achieve scalability must also work in conjunction with dynamic changes (see Sect. 5.5).

4. Contributions from Research and Development

The separation of the flow structure from the implementation of the application components has been already
realized (at least partially) in systems like FlowMark and WorkParty. Today's high-end WfMS, however, have
been primarily designed for the support of well-structured processes showing little variations in their possible
task sequences. They implicitly assume that all aspects of a process and all tasks are known in advance, and they
usually enforce a strict execution of the pre-modeled WF template. Although on-the-fly modifications of organiza-
tional entities or substitutions of task components during run-time are supported, these WfMS are rather weak
with respect to dynamic WF changes. There are some (document-centered) systems that allow the user to deviate
from the pre-modeled WF template at run-time, but at the risk of inconsistencies and errors.
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To cope with the combinatorial problem of pre-modeling all possible execution paths at build-time, different
mechanisms have been suggested. MOBILE [18] provides a descriptive WF model. It allows the designer to omit
those aspects of a WF model (e.g., the order of tasks), which may be defined by end users at run-time. Although
this approach allows to combine tasks in a very flexible way, it is only applicable as long as the task programs are
encapsulated and autonomous, so that they may be executed in an arbitrary order. HOON [16] follows another
approach by supporting the late binding of task resources (e.g., task programs and sub-workflows). It does not
support dynamic changes, however, since structural adaptations of a WF mo del are not possible after it has been
bound to a task instance. A more advanced approach is offered by MOVE [15], which supports the concept of
late modeling. The designer may specify task nodes for which a sub-workflow may be dynamically defined or
modified. Late modeling, however, requires that users are familiar with the used WF language.

There are several approaches that support ad-hoc deviations from the pre-modeled WF template at the WF in-
stance level. Many of them are based on the object migration model. In this model, a WF instance (together with
its definition) is regarded as an object (“circulation folder”) which is sent from actor to actor according to the
modeled flow [20]. Only the user who is currently in charge of the folder may change the flow structure, e.g., by
adding an intermediate task. This approach may be sufficient for the coordination of document-centered WFs, but
not for the support of clinical WFs. A potential weakness is the simplicity of the used WF model. Parallel bran-
chings and loop backs are not directly supported. The offered change operations do consider the control flow,
but ignore other aspects of the WF model, like the data flow or temporal constraints. This leaves significant com-
plexity to application programmers, who themselves must ensure that the correctness of the WF is preserved
when a change is performed. There are several approaches which combine graph-based WF models with rule-
based extensions for exception handling [19, 28]. In HematoWork [28], for example, global rules are used to enable
the WfMS to automatically restructure the control flow of a WF instance at the occurrence of logical exceptions.
The necessary adaptation of the data flow is not considered. In MOKASSIN [19] rules serve as the basis for
extending the WF meta model by user-defined constructs as well as for configuring the WF behavior (e.g., with
respect to dynamic changes). The most severe problem, namely rule maintenance and consistency, is not dis-
cussed.

There are only few approaches which address correctness issues in conjunction with dynamic changes [8, 14, 22,
25, 32]. Most of them concern the handling of in-progress WF instances when their schema is modified (WF
schema evolution). Except TRAM [22], the proposals mainly deal with dynamic changes of the control flow, while
adaptations of other WF aspects are not considered. In [14], a change corresponds to the replacement of a subnet
of the WF graph by a new one. It is said to be correct if afterwards the WF instances can be either executed ac-
cording to the old schema or to the new one. WIDE [8] and TRAM [22] provide a set of change primitives and
evolution policies. Formal criteria are introduced in order to determine which WF instances can be transparently
migrated to the new schema. Similar approaches are discussed in [25, 32]. – There are several other proposals for
adaptive WFs, which come from different fields of computer science. Approaches which have been followed in
the context of transactional WF models [24, 26], case-based reasoning [27], Petri nets [1, 3, 6], graph grammars [7],
and configuration management [2, 6] are worth mentioning.

The WF meta models used by the discussed approaches capture only one or a few aspects of real-world proc-
esses, which may lead to problems when the WF structure is changed. The deletion or the addition of a task, for
example, may cause data as well as temporal inconsistencies if no further precautions are taken. Due to the com-
plexity of business processes, more comprehensive modeling techniques are needed, allowing to capture the
richness and complexity that accompany their computer-based support. The challenge is to keep such techniques
usable in practice and to keep the costs for model checking low. Although there exists a variety of formal models
[14], adequate mechanisms for modifying structural components of a WF at run-time are missing. Finally, most
approaches require that users are familiar with a WF modeling language or with a graphical modeling tool, respec-
tively. Taking the scenario described in Sect. 2, however, one cannot expect that physicians and nurses under
stress are able to change a WF instance graph by the use of a graph editor or a Petri net tool.

5. The ADEPT Approach to Process-oriented Information Systems

As already indicated, the main problem is that most of the issues addressed in Section 3 cannot be treated rea-
sonably well when considered in an isolated fashion only. In the ADEPT project we are looking at different facets
of process-oriented IS at the same time: user interfaces, exception handling, flexibility, dynamic changes, WF
schema evolution, temporal aspects, inter-workflow dependencies, and scalability. Due to lack of space we cannot
elaborate all interdependencies here. Instead, we focus on important issues arising in the context of dynamic WF
changes. We use the ADEPT concepts to illustrate the problems and to outline how an integrated solution could
look like. We only describe here those parts of the ADEPT methodology which are necessary for this discussion,
however. More comprehensive treatments can be found in [4, 5, 9, 29, 30, 31].
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5.1 The ADEPT Base Model and Usability Aspects

One of the challenges for process-oriented clinical IS is to find a reasonable compromise between the expressive
power of the modeling language on the one side and usability by the WF designer as well as by the end-user on
the other side. “Adequately” in this context means that the resulting model should represent the real-world proc-
ess as naturally as possible. As shown in Sect. 2, for example, we have found the support of cyclic tasks to be
important. Thus the modeling language should allow to express loops explicitly. “Usability” on the one hand
means that a representation of the running WF instance is still understandable to the end-user, or at least to
those users which may perform dynamic changes. That is, a user must be able to understand the consequences of
a change he is going to perform and should also be able to understand why the system is refusing to perform a
certain change request; i.e., there should be no “magic” behind. Usability on the other hand means, that the user
must be sure that a dynamic change does not violate the consistency and robustness of the system. Such checks
cannot be performed by  users, especially not during the exceptional situation which has caused the dynamic
change, but have to be performed by the system. This means that the WF model must allow to detect all inconsis-
tencies and to perform the checks efficiently (think of an emergency case which causes a deviation from the stan-
dard process; one cannot wait for minutes for the system's decision in such a situation). For these reasons we
have dismissed, for example, the idea of using Petri nets for WF modeling. Instead, we have adopted concepts
from block-structured process description languages [13] and have enriched them by introducing further control
structures (cf. Fig. 1) and correctness criteria regarding the data flow and the dynamic behavior of a process [30].

NT=STARTFLOW NT=ENDFLOW

NT: Node Type
ET: Edge Type

ET = SYNC_E

NT=STARTLOOP NT=ENDLOOP

ET = LOOP_E

A B

C

D

F

E

I J

G H

ET =FAILURE_E

loop

sequence

parallel
branching

conditional
branching

sequence

Fig. 1: Modeling Processes in ADEPT – the Base Model

Fig. 1 and Fig. 2 illustrate the philosophy how processes are modeled in ADEPT. This representation is not in-
tended for the end-user. However, even more “end-user-friendly” interfaces will somehow reflect the basic con-
cepts described here to avoid too large discrepancies between the mental model of the user and the model used in
reality by the system. In the ADEPT WF meta model different types of nodes are used to discriminate between
different kinds of branchings and loops. One class of edge types is used to describe the control flow and another
one, together with so-called “data elements”, to describe the data flow of the process (the data elements store the
data versioned to allow partial rollback). In the ADEPT WF model branchings as well as loops are always modeled
in a block-oriented fashion. A branching block as well as a loop block always has exactly one entry and one exit
node. Blocks may be nested but are not allowed to overlap. As this limits the expressive power of the WF model
so-called “synchronization edges” (see below) can be used in addition which allows to describe more complex
structures, if necessary. We have selected this block structure because it is rather quickly understood by users, it
allows the use of syntax-directed WF model editors, and it makes it possible to implement efficient algorithms for
consistency checking. The “ingredients” described so far are the same for WF templates (as stored in the WF
repository) and for WF instances in execution. At the instance level, special labels (ACTIVATED, RUNNING, ...;
see Fig. 2) are used to exactly describe the status of nodes and edges during the execution of the WF instance. In
addition, well-defined rules exist for changing these markings during WF execution.
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Fig. 2: Example of a WF instance graph (partial view)

5.2 Support of Dynamic Changes

As described above, the support of dynamic changes makes only sense, in general, if there is no risk of subse-
quent program crashes or data losses due to lost update problems. One approach to solve the problem is to only
support trivial modifications like allowing to insert a new step into a sequential chain of steps or to enforce that all
previous steps are completed before the newly inserted step can be activated. Such measures make consistency
checking much more easier, but also restrict the practical usability of this feature significantly. In ADEPT we,
therefore, decided to support all types of dynamic changes: insertions (as sequential or as parallel steps), dele-
tions, and shifts (i.e., changing the sequence of steps). Such changes must lead again to a proper block structure,
in which additional synchronization edges may be used, if necessary (see below). The user is not really burdened
with this restructuring of the WF graph. He or she expresses the change request in a rather declarative way (e.g.,
to insert a new step between two node sets) and at a high semantic level. For this high-level, powerful modifica-
tion operations are offered, which hide the complexity of a dynamic change to a large degree from the user; inter-
nally, graph transformation rules and graph reduction rules are used to perform the necessary transformation (see
[30] for details). As response to a change request ADEPT, in essence, first checks all data dependencies and
sequence constraints to detect whether the problem of missing input values, lost updates, or cyclic waits (dead-
locks) may occur in the modified WF graph. In case of missing input values (which may occur due to the inser-
tion, the deletion, or the shift of steps) ADEPT will offer the user to generate a form and prompt for these values
(either immediately or when needed). Only if no consistency problem may occur – or if it is explicitly accepted by
the user – ADEPT will accept the change request and perform the necessary graph transformations.

To illustrate the problems, let us assume that, at a certain point in time, the WF instance graph looks like as the
one depicted in Fig. 2 (note that this representation is not intended for the end-user, who may define dynamic
changes at a higher semantic level): The steps represented by the nodes Startloop and B are completed and step
C is currently in execution. Let us further assume that an exceptional situation occurs which makes it necessary to
immediately perform step D, but to maintain the order of all the other steps (i.e., step E after step D, step G after E
and F; and transitively also after D). At first, the data dependencies for step D are checked. Step D is executable,
in principle, because it receives its input data from step B which already has been completed and it does not pro-
duce any process relevant output data and therefore no problem of lost updates may occur. Thus the restructur-
ing of the WF graph can be started. In order to make it possible that step D can be immediately started, step D
must no longer be a successor to step C (because it would have to wait for the completion of C). Instead, D has to
be placed in a parallel branch to step E. This means that the control edge from C to D has to be removed and re-
placed by a control edge from B to D.

B
ü

E

F

GC

d1 d2

D
NT=NULL

ü

Fig. 3: Dynamic Change - Intermediate Process Graph

Fig. 3 illustrates how the process graph is looking like at this point in time. Step D has become a parallel step with
respect to step C, its predecessor with respect to the control flow is now step B, and the control edge from B to D
is marked with TRUE_SIGNALED which means that step D can be executed (because its start conditions are
satisfied). This transformation alone would not be correct, however, because not all of the previously existing
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constraints are obeyed any longer. It would be possible, for example, that step E is being started (once step C has
been completed) in parallel or even before step D. To enforce the correct execution sequence, a “synchronization
edge” (SYNC_E) from D to step E is introduced into the graph which enforces that step E cannot be started until
step D has been completed. ADEPT uses different types of synchronization edges to express different kinds of
“wait-for” situations (see [30]). The final process graph resulting from these modifications is depicted in Fig. 4.

B
ü

E

F

GC

d1 d2

D
ET = SYNC_E

NT=NULL
ü

Fig. 4: Dynamic Change - Final Process Graph

5.3 Loops and Dynamic Changes

As motivated, we consider the provision of explicit loop constructs as being very important. It improves the read-
ability of the WF model and allows to distinguish between unintentionally modeled cycles (“bad cycles”) from
intentionally modeled loops (“good cycles”) during consistency checks. If both, loops and dynamic changes are
supported in one system, then one has to decide on the duration of dynamic changes affecting steps which be-
long to a loop: Shall the modification be valid only for the current iteration of the loop (as it might be the case for
the ad hoc deviation presented above) or shall it also be valid for all subsequent iterations? To “hard-wire” one of
these alternatives is certainly no good idea. Instead, the system should offer to perform the modification temp o-
rarily (i.e., only valid for the current iteration) or to perform it permanently for this WF instance. To avoid potential
misunderstandings with modifications of the WF template, we will refer to these modifications as loop-permanent
and loop-temporary modifications in the sequel.

To support both, loop-temporary as well as loop-permanent modifications is not as straightforward as it looks at
first glance, especially if they occur in combination. Additional rules are necessary to describe when a modifica-
tion can become loop-permanent and when it can only become loop-temporary. The most important rule is that a
loop-permanent modification must not depend on a previously performed loop-temporary modification. Otherwise
it would either be lost in the next iteration (where the loop-temporary modification is no longer present) or it may
cause inconsistencies or even program crashes. In addition, once a loop-permanent modification has been ac-
cepted, no additional user-interaction should become necessary during the subsequent loops to resolve consis-
tency problems. How ADEPT is dealing with this situation is sketched in the following.

For each WF instance ADEPT potentially manages two process graphs. A process graph Pcurrent, which reflects
the currently valid flow structure (i.e., the set of nodes, edges, and data elements) as well as the status informa-
tion of the process, and a process graph Pperm which describes the nodes, edges, and data elements that are loop-
permanently valid. Note, that Pperm may contain more or less nodes and edges than Pcurrent depending on the kind
of loop-temporary modifications which have been applied (in addition, all changes to this WF instance are kept in
a “change history log” which records them with timestamps, duration of validity, starting conditions, etc.). These
two graphs are serving as the basis for performing loop-temporary and loop-permanent modifications. Loop-
permanent modification requests are first checked against Pperm. If no unresolvable conflicts are detected, then the
modification request is checked against Pcurrent as well, because loop-temporary changes may prevent to accept
the permanent change at this point in time. In such cases ADEPT will allow to “register” the change request and
the change will become effective at the next possible point in time. – We illustrate the usage of the two graphs by
an example: Assume our WF as described in Fig. 4 has completed steps C, D, E, and G. In addition, a loop-
permanent deletion has been applied to step F and two new steps X and Y have been loop-temporarily inserted
succeeding the steps D and G, but still within the loop. Furthermore, a step Z has been (permanently) inserted
after the loop-end-node. The resulting Pcurrent graph could then look like at a certain instance in time as depicted in
Fig. 5. The deleted node is now represented by a “gravestone” (NULL –node, i.e., a dummy activity without asso-
ciated action) and the three newly inserted nodes, together with their data elements as well as control flow and
data flow edges, are appearing. The corresponding Pperm graph would then look like the one depicted in Fig. 6.
Steps X and Y are not present in this graph, but step Z is.
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The proper treatment of temporary changes is somewhat more complicated as may be derived from this simple
example. Loops, for example, may be nested. Thus several levels of loop-temporary changes may occur. Think, for
example, that the loop depicted in the figures above is framed by an outer loop and that step Z is not permanently
inserted but is a loop-temporary modification which is performed while the system is in the “inner loop”. Assume
further that there is a data dependency between step X and step Z. What shall happen to step Z when the current
iteration of the inner loop is completed and step X disappears again? One possibility is to treat Z like a newly
inserted step and to prompt the user for the missing input values. Another possibility is to inform the user and to
apply a “cascading delete” semantic whenever temporarily inserted steps are depending on other temporarily
inserted steps which have been removed. This latter strategy is applied in ADEPT, for example.
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Fig. 6: Pperm

5.4 Temporal Constraints and Dynamic Changes

As motivated in Sections 2 and 3, the management of temporal constraints is an important feature of a process
support system. Although some functionality for considering temporal aspects has been incorporated into exis t-
ing WfMS, usually, it has been limited and has failed to capture the modeling requirements of real-world pro-
cesses. We, therefore, enhanced the capabilities of the ADEPT base model (cf. Sect. 5.1) by providing advanced
concepts for the definition and monitoring of temporal constraints; in the following we call this extension
ADEPTtime. In addition to the modeling concepts described in Sect. 5.1 (see also [30]), ADEPTtime allows the WF
designer to express different kinds of temporal constraints with respect to a given WF template. For each WF
activity, a minimal and a maximal duration may be specified. In addition, time dependencies between the activities
of a WF graph can be defined (e.g.,“activity X must be completed 2 days before activity Y starts”). For their mo d-
eling ADEPTtime introduces an additional edge type to the WF meta model: A time edge (cf. Fig. 7) connects two
activities X and Y and defines a minimal or maximal time distance between them. ADEPTtime supports four different
time relationships: completion/start, start/start, completion/completion, and start/completion.

For a given WF template, ADEPTtime already checks at build-time whether its temporal constraints are satisfiable;
i.e., whether there exists at least one valid time schedule (i.e., an assignment of absolute starting and finishing
times to the WF activities, such that all constraints are satisfied). At run-time, each node X of an instance graph is
associated with additional temporal attributes: ESTX , LSTX, EFTX, and LFTX, representing its earliest and latest
starting and finishing time. These attributes describe time intervals for the start and for the completion of the task
X with the following semantics: If for an arbitrary node Z of the WF instance graph, a starting (finishing) time
STZ∈ [ESTZ, LSTZ] (FTZ∈ [EFTZ, LFTZ]) is selected, then for all other nodes Y ≠ Z there also exists a starting time
STY ∈ [ESTY, LSTY] and a finishing time FTZ∈ [EFTZ, LFTZ] such that a valid time schedule results.

The time intervals of the WF activities are dynamically changed during WF execution: As soon as an activity is
started (completed), its starting (finishing) time is fixed; i.e., we obtain time intervals of length 0. For activities
which have not yet been started or completed, the earliest/latest starting and finis hing times are automatically de-
rived, so that the semantics described above is preserved. In addition, for pre-selected activities, the starting and
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finishing time may be externally fixed by a WF client. The latter facility is useful for dealing with tasks (e.g., a me-
dical examination) which are scheduled within an external (calendar) system. In any case, the fixed date should be
consistent with the calculated starting and finishing times in order to meet the defined constraints. The cal-
culation of the time intervals is done each time an activity is started or completed. In addition, it becomes neces-
sary when a user assigns an external date to a task. For the checking of consistency and the calculation of the
time intervals we use the Floyd-Warshall algorithm, similar to the approach described in [12]. The calculated time
attributes are used for worklist presentation (e.g., to priorize tasks, to filter tasks, or to generate warnings) and for
the proper selection of externally fixed dates. ADEPT monitors the WF execution with respect to the calculated
times and it informs users if deadlines are going to be missed.

A simple example is depicted in Fig. 7: Activity B is in the state COMPLETED and activity C in the state
RUNNING. Therefore, the starting and finishing time of B and the starting time of C have been already fixed. In
addition, the starting time for activity G was fixed through an external appointment. All other time intervals were
automatically calculated, considering the given temporal constraints (i.e., the minimal and maximal durations of the
activities C, D, E, F, and G and the defined time distances between C and G and between F and G).

Already for the static case, time management is a non-trivial task. The ADEPT approach, however, supports both,
dynamic WF changes and temporal constraints. Obviously, the consideration of temporal issues complicates the
handling of dynamic changes, since a change must not only preserve the structural correctness and the data
consistency of the WF instance graph, but also its temporal consistency. Think of, for example, the dynamic
addition of a new step. In such a case, the time intervals of the WF activities must be re-calculated in order adapt
their scheduling and to check whether any temporal inconsistency may occur. Assume, for example, that for the
WF instance graph from Fig. 7, a user wants to insert a new step X between C and F. Depending on the duration
of X, this change may cause a temporal inconsistency or not. If we have Dmin

X = 1 h, for example, all time con-
straints are further met after the insertion of X. If, however, Dmin

X is greater than 1 h, then the insertion of X will
lead to a temporal inconsistency. In such a case, the ADEPT system informs the user about the conflict and offers
him different strategies for resolving it, e.g., by aborting the change, by adapting the externally fixed starting
interval of step G, by reducing the minimal duration of X, or by releasing other temporal constraints.
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Fig. 7: Management of Temporal Constraints in ADEPT time (The time edge between C and G (F and G) defines a minimal/
maximal time distance between the completion of C (F) and the start of G. The normal control edges are treated as (completion
/ start) time edges with minDist = 0 and maxDist = ∞)

5.5 Distributed Workflow Execution and Dynamic Changes

Hospital-wide and cross-hospital WFs are characterized by a large number of users and concurrently active WF
instances; i.e., a WF server may have to cope with a very high load. Already the processing of a single activity
may require the transfer of multiple messages between a server and its clients, e.g., to transmit parameter data, to
update worklists, or to invoke task programs. This may overload both, servers and subnets, if the number of con-
current WF instances increases. In addition, the units participating in a cross-organizational WF are often con-
nected by slow wide area networks. Hence the load of the communication system is extremely critical for system
performance. To keep communication local within one network segment, in many cases, it is advantageous to
dynamically migrate the control of in-progress WF instances to a server in another network segment.
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a)  Distributed WF Control in ADEPTdistribution

For the efficient control of enterprise-wide and cross-enterprise WFs we developed the ADEPTdistribution model [4,
5]. It supports the WF designer in partitioning a WF schema and in distributing the control of the partitions
across several WF servers. The distribution is done in a way that prevents single system components (servers,
network segments, and gateways) from becoming overloaded at run-time. At build-time, a WF schema is divided
into several partitions. Each partition is assigned to a WF server, which then controls the corresponding activi-
ties at run-time. At each server a copy of the WF schema is stored. If a WF instance reaches a transition between
two partitions, its control migrates to the WF server of the target partition. Before this server may proceed with
the execution of the WF instance, WF data has to be transmitted as well. Following this approach, activities from
parallel execution branches may be controlled by different WF servers at the same time. In order to keep commu-
nication costs low, ADEPTdistribution does not require that these WF servers strictly synchronize with each other.
Fig. 8 shows an example of a WF, which is controlled by multiple WF servers. In its current state, two servers – S2

and S3 – participate in the processing of this instance. Note that S2 does not know the execution state of the lower
branch, i.e., it does not know whether this branch is still controlled by S1, the control has already been migrated to
S3 (as shown in the example), or has been given back to S1 (in order to control the partition P4).

ADEPTdistribution partitions a WF schema in a way that minimizes the communication load of the system at run-time.
The designer is supported by algorithms, which allow him to automatically calculate optimal server assignments
for the activities of a given WF schema; a partition then consists of a subgraph of which the activities are as-
signed to the same WF server. To determine optimal server assignments, we use a formal cost model that allows
us to evaluate the quality of a selected distribution. This model considers costs for the transfer of parameter data,
for the update of worklists, and for the migration of WF instances. In most cases, WF activities are controlled by
a WF server, which is located nearby their potential actors. Since migrations do also generate communication
costs, however, they are only used if they improve the overall communication behavior of the system. In addition,
we support variable server assignments, which enable the WfMS to select the server of a particular activity dy-
namically, depending on the actor assignments of preceding activities [(e.g., Server(A2):= Domain(Actor(A1));
see [5] for details]. This does further improve the communication behavior of the system. More comprehensive
treatments of the ADEPTdistribution approach can be found in [4, 5].
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Fig. 8: Distributed execution of workflows in ADEPTdistribution

b)  Dynamic Workflow Changes

So far, we have assumed that the structure of a WF instance graph is not changed during run-time. As shown,
this is not realistic for real-world processes. The challenging question therefore is, how dynamic WF changes can
be supported in a model like ADEPTdistribution, if we want to ensure the correctness and consis tency of WF
instances as in the central case and if we do not want to loose the advantages offered by the distributed control
of WFs. In this context, it is important to minimize the synchronization effort which becomes necessary when a
dynamic change is performed. A naive solution, therefore, would be to synchronize all servers that have already
been involved in the processing of the WF instance or that may become active in the future. Generally, such a
strict synchronization is not required and – in the case of variable server assignments – it is also not feasible.

We will illustrate some of the issues that arise in this context by an example. Taking the change operations pro-
vided by ADEPT [30] and the WF instance graph from Fig. 8, it is possible to dynamically insert a new activity X
into this graph, whose execution may not start before step G is completed and which must terminate before ac-
tivity E can be activated. Internally, this change is realized by applying a well-defined set of graph transformation
and reduction rules. After its insertion, X constitutes a new branch of the parallel branching defined by the nodes
C and H. The desired execution order (X after G, X before E) is enforced by inserting the two sync edges G → X
and X → E (cf. Fig. 9). Assume that this change is initiated by a client connected to the WF server S3. Obviously,
the desired modifications are only allowed, as long as E has not been started. In order to check this, first of all, the
WF server S3 must retrieve the current state of activity E from the WF server S2 (Note that S3 itself does not know
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the state of the upper branch). Conversely, the change must not only be applied to the WF instance graph stored
at S3, but it must also be considered for the copy of this graph stored at S2. The latter becomes necessary in order
to ensure that S2 delays the execution of E until the newly inserted step X will be completed.
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Fig. 9: The WF instance graph from Fig. 8 after a dynamic change

WF servers that may become active in the following (like S1 in our example) must also be informed about the
change in order to be able to correctly proceed with the flow and to provide a proper basis for subsequent
changes. This notification, however, must not be done immediately, i.e., at the time the change is introduced.
Instead it is sufficient to transmit the relevant information, when the control of the WF instance migrates to this
server. This causes additional communication costs for “normal” migrations, which should be kept as minimal as
possible. In our approach, for example, we do not transfer the complete description of the modified WF instance
graph to the target server. Instead, we use execution and change histories to reduce the communication amount.
When migrating the control from S2 (or S3) to S1 in our example (cf. Fig. 9), in addition to WF control data and WF
relevant data, the relevant entries from the change history are transmitted as well. The WF server S1 then applies
the structural modifications to its local copy of the WF instance graph, before the execution may proceed. As far
as possible, ADEPT tries to avoid the transfer of redundant change information.

Similarly to the execution of parallel branches, it is desirable to perform dynamic changes of single branches with-
out costly communication with other WF servers. As shown in the example, for changes that affect multiple parti-
tions of a WF instance graph this will not always be possible. Instead, it must be ascertained for how long and in
which mode the WF instance has to be locked at the respective WF servers. As far as possible, long-term locks
are avoided, so that the WF execution is not blocked unnecessarily long. There are numerous examples for dy-
namic WF changes, for which such a strict synchronization does not become necessary. Taking the WF instance
graph from Fig. 8, for example, the WF server S2 might insert a new activity between D and E without synchroniz-
ing this change with S3. This is possible, since S2 does not require information about the state of the lower branch
in order to apply the change. Conversely, S3 must not be informed about the modification of the upper branch in
order to proceed with the control. Such local modifications do occur often in practice. Therefore, it does make
sense to differentiate between different classes of changes with respect to a WF instance graph and to offer op-
timized procedures for their application. – Several other important issues are discussed in [29].

5.6 The ADEPTworkflow Prototype

Since 1997, we have developed the advanced WfMS prototype ADEPTworkflow which is based on the concepts
described above. Its components are implemented in Java; for communication Java-RMI is used. The current
version already supports dynamic changes, the management of temporal constraints, and the distributed control
of WF instances. For demonstration purposes we use a WF client, which does not only show worklists to users,
but which also visualizes the WF instance graphs, e.g., after a dynamic modification or a migration took place. In
addition, the prototype comprises several build-time components. WF templates can be defined with the syntax-
driven ADEPTworkflow process modeler, which supports a variety of correctness and consistency checks. Complex
organizational entities and relationships can be managed by the use of the ADEPTworkflow organization modeler.
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Fig. 10: System Architecture of ADEPTworkflow

The multi-server-architecture of ADEPTworkflow is shown in Fig. 10. Different clients may be connected to a WF
server; e.g., worklist handlers, monitoring components, or tools for the definition of WF templates and organiza-
tion models. For the implementation of such WF clients, ADEPT offers a rich API with a functionality that goes
far beyond to that of the WfMC standard interfaces [33]. Extensions became necessary to provide the advanced
ADEPT features to application programmers. Furthermore, we have extended the one-directional client-server-
communication in order enable WF servers to play an active role by initiating requests to clients (e.g., to get ap-
provals from WF participants when performing a run-time deviation or to immediately notify them afterwards).
The kernel of the server is realized as a multi-layer architecture. The top level, the Execution Layer, processes
client API calls. Each call is decomposed into a set of service requests from the underlying Service Layer. This
layer comprises services for the management of WF templates and instances, worklists, organizational entities, or
temporal constraints. As an example consider the completion of an activity by a client. This leads to an update of
temporal attributes as well as of the state of the WF instance, a role resolution for subsequent steps, and an up-
date of worklists. Each service call itself is decomposed into several basic operations from the Data Access Layer
(e.g., to read, create, or modify WF objects). If a migration of the WF control becomes necessary, in addition, the
Distribution Layer provides the required data and performs the migration.

6. Summary and Outlook

The main issue of this paper was to discuss the challenges for process-oriented IS for real-world environments
and to elaborate that these challenges respectively the technological answers cannot be treated in an isolated
fashion but have to be understood in conjunction. We have used the clinical domain because we believe that it is
indeed very challenging with respect to its functional needs on the one side, but it is not so “exotic” on the other
side that the features needed there would not be very useful for other advanced application areas as well. We
have described the clinical application scenario rather detailed to make clear under which working conditions WF
technology must prove its usefulness and applicability, and to make also evident, that the discussed require-
ments are not just artificial ones. Based on these analyses the answer to the question posed in the title should be
clear: it is “Yes, when looking at the whole picture, at present, clinical WFs are the 'killer application' for the proc-
ess-oriented IS technology which is currently available”.

The discussion on supporting dynamic changes in conjunction with loops, temporal constraints, and distributed
WF execution has shown that many non-trivial interdependencies among the different features exist, which must
be carefully analyzed and understood. Similar like with concurrency control in databases one cannot imp lement
such a system by adding one balcony to the other to solve situation-dependent problems. Instead, a proper
framework with clear semantics is needed which allows to argue on 'correctness' and which covers all possible
cases (no “implementation holes”). In Sect. 5 we described the research and development work in the ADEPT
project, which reflects this thinking to a large degree. As pointed out, the ADEPT project attempts to consider
most of the challenges described in conjunction with each other. Looking at the total landscape, the support of
dynamic changes and scalability issues are probably understood best in the mean-time. Also component-oriented
software development, user-interface issues, and the required support of organizational structures (which is a
nightmare in this domain) are understood quite well. The work on temporal issues as well as on supporting inter-
workflow dependencies (another important aspect we could not address in this paper) is on its way.
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