
A guided tour through TYPELAB�

Marko Luther and Martin Strecker
Abt. Künstliche Intelligenz

Fakultät für Informatik
Universität Ulm
D-89069 Ulm

{luther,strecker}@ki.informatik.uni-ulm.de

Abstract

This report gives a survey of TYPELAB, a specification and verification environment
that integrates interactive proof development and automated proof search. TYPELAB is
based on a constructive type theory, the Calculus of Constructions, which can be un-
derstood as a combination of a typed λ-calculus and an expressive higher-order logic.
Distinctive features of the type system are dependent function types for modeling poly-
morphism and dependent record types for encoding specifications and mathematical
theories. After presenting an extended example which demonstrates how program de-
velopment by stepwise refinement of specifications can be carried out, the theory un-
derlying the prover component of TYPELAB is described in detail. A calculus with
metavariables and explicit substitutions is introduced, and the meta-theoretic properties
of this calculus are analyzed. Furthermore, it is shown that this calculus provides an
adequate foundation for automated proof search in fragments of the logic.

�This research has partly been supported by the “DeutscheForschungsgemeinschaft”within the “Schwerpunkt-
programm Deduktion”. A shorter version of this work appeared in (von Henke et al., 1998).

1

2

Contents

1 Introduction 1

2 An extended example 2

3 A calculus with metavariables 9

3.1 Term calculus . 11

3.2 Typing . 13

3.3 Solutions of metavariables . 17

3.4 Functional encoding of scopes . 19

4 Automated Proof Search 21

4.1 Unification . 21

4.2 Tableau-style proof search . 23

4.3 Quantifiers in sequent rules . 25

5 Comparison 27

6 Conclusions 28

i

ii

1 Introduction

This report gives a survey of TYPELAB, a specification and verification environment that
integrates interactive proof development and automated proof search. TYPELAB is based
on a constructive type theory, the Calculus of Constructions, which can be understood as a
combination of a typed λ-calculus and an expressive higher-order logic. Distinctive features
of the type system are dependent function types for modeling polymorphism and dependent
sigma types for encoding specifications and mathematical theories.

Type theory provides a homogeneous theoretical framework in which the construction of,
say, a function and the construction of a proof can be considered to be essentially the same
activity. There is, however, a practical difference in that the development of a function
requires more insight and therefore usually has to be performed under human guidance,
whereas proof search can, to a large extent, be automated. Internally, TYPELAB exploits
the homogeneity provided by type theory, while externally offering an interface to the hu-
man user which conceals most of the complexities of type theory. Interactive construction
of proof objects is possible whenever desired, metavariables serve as placeholders which
can incrementally be refined until the desired object is complete. For procedures which can
reasonably be automated, high-level tactics are available. In this respect, TYPELAB can be
understood as a proof assistant which, in addition to the manipulations of formulae tradi-
tionally performed by theorem provers, permits to carry out operations on entities such as
functions and types.

From a different perspective, TYPELAB can be viewed as a programming environment in
which, apart from the execution of programs in the style of functional language interpreters,
properties of programs can be specified and verified and in which complex developments can
be carried out. Even though these features are currently not advanced very much beyond the
stage of a research prototype, it is possible to enter expressions at the top level and evaluate
them by reduction to normal form. Function definition is so far limited to (higher-order)
primitive recursive functions and no efficient compilation is currently available, but a wide
range of practically relevant functions can be coded in a natural style.

TYPELAB supports program development by stepwise refinement: Declarations of types,
functions and axioms can be bundled up to specifications respectively mathematical theo-
ries. Specifications, as internal objects of the logic, can be handled in complete analogy to
other entities of the logic. In particular, they can be parameterized, possibly by other speci-
fications, and can be the domain or range of functions, which in this case can be interpreted
as refinement mappings.

The remainder of this report is organized as follows: In Section 2, some concepts of TYPELAB

are illustrated by an example, the derivation of executable functions from an abstract spec-
ification of a symbol table. Since metavariables play an important role in the interactive
construction of proof objects, but lead to some intricacies in dependently-typed logics, the

1

2 An extended example

theory behind TYPELAB's metavariables has to be described in greater detail (Section 3). In
Section 4, it will be shown how this machinery, developed primarily for interactive proof
construction, provides a foundation for an automation of proof search. A comparison with
related systems (Section 5) and final remarks (Section 6) conclude this report.

2 An extended example

In this section, it will be necessary to briefly sketch some distinctive aspects of TYPELAB's
specification language, because specification language and logic are closely intertwined. The
language is based on the Calculus of Constructions (Coquand and Huet, 1988), which com-
prises a higher-order logic and a functional language with an expressive type system. In
particular, types are first-class objects, which yields a form of parametric polymorphism.
Types and relations can be defined inductively in a user-friendly syntax, induction princi-
ples are generated automatically. Specifications respectively mathematical theories (not to
be confounded with the notion of “theory” in the LCF tradition) can be represented by de-
pendent record types (Luo, 1994), elements of these types can be interpreted as realizations
of specifications.

The language features sketched so far will in the following be illustrated by a standard exam-
ple, the development of the specification of a symbol table into an executable version. Our
formalization is inspired by Sannella's specification (Sannella, 1989) in Extended ML (see
also (Hofmann, 1992)). A symbol table is a data structure in which items, called attributes,
are stored together with an identifier by which they can be retrieved later on.

When working with TYPELAB, a global context of declarations and definitions is gradually
built up. We assume that this context already contains some elementary vocabulary about
natural numbers, Booleans etc. The specification of the symbol table will be parameterized
by theories IDENT and ATTRIB. Their definition can now be added to the global context:

IDENT :�
SPEC
Ident: Type,
�Ident: Ident�Ident�Bool,
AXIOM equiv_ax: equiv_p �Ident

END-SPEC

ATTRIB :�
SPEC

Attrib,Attrib+: Type,
bottom: Attrib+,
lift: Attrib�Attrib+,
AXIOM lift_ax:

�a:Attrib � bottom �� (lift a)

END-SPEC

As opposed to the global context, the declarations (and possibly also definitions) in a spec-
ification generate a local context whose members are not visible from outside, except when
explicitly selected. Thus, we declare a type Ident and a relation �Ident inside of IDENT. In

2

2 An extended example

the constructive type theory on which TYPELAB is based, propositions and types are iden-
tified, therefore the statement of the axiom is in fact a syntactically sugared declaration of
equiv_ax of type �Ident.

We can now turn to the specification of the symbol table itself. SYMTAB0 is a specifica-
tion which is parameterized by the specifications IDENT and ATTRIB. As already mentioned
above, specifications are types, parameterization can therefore simply be expressed as λ-
abstraction. SYMTAB0 specifies a type Symtab, a constant empty, a function add that adds an
identifier and an attribute to a symbol table, a function present_p that tests whether there is
an entry for an identifier in a symbol table, a function lookup that retrieves the attribute as-
sociated with an identifier from a symbol table, a function change_attrib that, when given
an identifier and an attribute, modifies the value associated to the identifier to the attribute,
and the related axioms. The construct open (ID,ATT) in B makes components of ID and
ATT visible in the body B so that they can be referenced directly without an explicit selection
such as ID.Ident.

SYMTAB0 :� λID:IDENT,ATT:ATTRIB �

open (ID,ATT) in
SPEC
Symtab: Type,
empty: Symtab,
add: Ident�Attrib�Symtab�Symtab,
present_p: Ident�Symtab�Bool,
lookup: Ident�Symtab�Attrib+,
change_attrib: Ident�Attrib�Symtab�Symtab,
AXIOM ax1: �i:Ident � (present_p i empty) � false,
AXIOM ax2: �i,is:Ident,as:Attrib,s:Symtab �

(present_p i (add is as s)) � ((i �Ident is) � (present_p i s)),
AXIOM ax3: �i,is:Ident,as:Attrib,s:Symtab �

(present_p i (change_attrib is as s)) � (present_p i s),
AXIOM ax4: �i:Ident � (lookup i empty) � bottom,
AXIOM ax5: �i:Ident,a:Attrib,s:Symtab �

(lookup i (add i a s)) � (lift a),
AXIOM ax6: �i,is:Ident,as:Attrib,s:Symtab � (i �Ident is) � false ��

((lookup i (add is as s)) � (lookup i s)),
AXIOM ax7: �i:Ident,a:Attrib,s:Symtab � (present_p i s) � true ��

((lookup i (change_attrib i a s)) � (lift a)),
AXIOM ax8:�i,is:Ident,as:Attrib,s:Symtab � (i�Ident is) � false ��

((lookup i (change_attrib is as s)) � (lookup i s)),
THEOREM th1: �s:Symtab,i:Ident,a:Attrib �

(lookup i (add i a s)) �� bottom

END-SPEC

Stating the theorem in the last line of the specification generates a proof obligation which
can be discharged any time later during the development. A theorem can be used even if it
has not been proved yet. The mechanisms described in Section 3 prevent circular arguments.

3

2 An extended example

The proof management of TYPELAB keeps track of unsolved obligations. Open obligations
can be selected in the graphical user interface and fully or partially solved in any order. If
we invoke the TYPELAB prover with the obligation generated for the theorem th1, we enter
the following proof state:

...
ID:IDENT, ATT:ATTRIB, Symtab:Type
..
ax5:�i:Ident,a:Attrib,s:Symtab.(lookup i (add i a s)) � lift a
..
ax8:�i,is:Ident,as:Attrib,s:Symtab � ..

|---------------------------------------
?SYMTAB0_th1:�s:Symtab,i:Ident,a:Attrib �

(lookup i (add i a s)) �� bottom

Here, the global context is abbreviated by ’...’, the local assumptions are displayed above
the stylized turnstile (some are omitted). The proof obligation is represented by the metavari-
able ?SYMTAB0_th1 which is a placeholder for the proof object that will be constructed. In
this case, the proof object does not have computational contents. Proof objects are useful
if functions are synthesized together with their correctness proof (see below) or if programs
are extracted from proofs.

First we introduce the local assumptions:

tlab? intros;
Command succeeded. Goals: 1 new, 1 open.
..
ax5:�i:Ident,a:Attrib,s:Symtab.(lookup i (add i a s)) � lift a
..
s:Symtab, i:Ident, a:Attrib

|---------------------------------------

?1:(lookup i (add i a s)) �� bottom

We can now use ax5 as rewrite rule to rewrite (lookup i (add i a s)) in goal ?1 to
(lift a):

tlab? rewrite ax5;
Command succeeded. Goals: 1 new, 1 open.

?2:(lift a) �� bottom

This yields the new goal ?2 with the same local context as of goal ?1. It can completely be
solved using the axiom lift_ax out of ID:IDENT:

tlab? refine lift_ax;

Command succeeded. Goals: 0 new, 0 open. Q.E.D.

4

2 An extended example

Now we turn back to the development of SYMTAB0. The first step will be to implement
change_attrib by a function that adds the identifier-attribute pair to the symbol table if
the identifier already occurs in the symbol table, and leaves it unchanged otherwise. This
implementation step is achieved by a high-level operator implement that takes the name
of the component to be implemented (change_attrib), the source specification (SYMTAB0)
and the expression which implements the function and produces a new specification (called
SYMTAB1) and a function (called sm1to0) which shows that SYMTAB1 is indeed a realization of
SYMTAB0.

implement change_attrib in SYMTAB0 by
λi:Ident,a:Attrib,s:Symtab � if (present_p i s) (add i a s) s

yields SYMTAB1 and sm1to0

Note that the implement operator is not a function defined in the language of TYPELAB,
but just a syntactic device that removes from SYMTAB0 the declaration of change_attrib,
as well as axioms referencing change_attrib, textually produces the specification SYMTAB1
and submits it to the type checker (Henke et al., 1995). Thus, except for the components
change_attrib, ax3, ax7 and ax8, specification SYMTAB1 agrees with SYMTAB0.

The refinement mapping sm1to0 is generated in a similar spirit: The components that re-
main unaffected by the implementation are copied, and for change_attrib, its proposed
implementation is inserted. The refinement mapping then reads as follows:

sm1to0 :� λID:IDENT,ATT:ATTRIB,sym:(SYMTAB1 ID ATT) �

open (ID,ATT) in
STRUCT

Symtab :� sym.Symtab, empty :� sym.empty, add :� sym.add,
present_p :� sym.present_p, lookup :� sym.lookup,
change_attrib :� λi:Ident,a:Attrib,s:Symtab �

if (present_p i s) (add i a s) s,
ax1 :� sym.ax1, ax2 :� sym.ax2, ax4 :� sym.ax4,
ax5 :� sym.ax5, ax6 :� sym.ax6

END-STRUCT :: (SYMTAB0 ID ATT)

type = ΠID:IDENT,ATT:ATTRIB � (SYMTAB1 ID ATT)�(SYMTAB0 ID ATT)

For given ID:IDENT and ATT:ATTRIB, the refinement mapping sm1to0 converts each real-
ization (“model”) sym of (SYMTAB1 ID ATT) to a realization of (SYMTAB0 ID ATT). A speci-
fication can be understood as a dependent record type (a Σ type), which generalize Cartesian
products. Accordingly, elements of specifications, structures in TYPELAB terminology, are
generalizations of tuples. As mentioned above, most of the components of (SYMTAB1 ID
ATT), such as sym.empty, can simply be copied to form the corresponding component of
(SYMTAB0 ID ATT). For the components ax3, ax7 and ax8, which are required in (SYMTAB0
ID ATT) but have no counterpart in (SYMTAB1 ID ATT), the typechecker generates three

5

2 An extended example

proof obligations which are handled in analogy to the proof obligations created by theorems.
The purpose of the coercion ::(SYMTAB0 ID ATT) is just to enable the typechecker to rec-
ognize which type the given realization is supposed to have, and to make it generate proof
obligations for missing components.

Let's prove the obligation generated for ax 7 now. The proof easily succeeds by introducing
assumptions, expanding definitions and invoking equational simplification:

...
ax6 :� sym.ax6:�i,is:Ident,as:Attrib,s:sym.Symtab � ..

|---------------------------------------
?sm1to0_ax7:�i:Ident,a:Attrib,s:Symtab � (present_p i s) � true ��

(lookup i (change_attrib i a s)) � (lift a)
tlab? intros; expandR;
Command succeeded. Goals: 1 new, 1 open.
...
ax6 :� sym.ax6:�i,is:Ident,as:Attrib,s:sym.Symtab � ..
i:Ident, a:Attrib, s:Symtab
h1:(present_p i s) � true

|---------------------------------------
?5:(lookup i (if (present_p i s) (add i a s) s)) � (lift a)

tlab? eqSimplify;
Command succeeded. Goals: 0 new, 0 open. Q.E.D.

The last step of the development consists in producing an executable realization. We choose
to implement the symbol table by a list of pairs of identifiers and attributes.

The inductive type of polymorphic lists is predefined in the system by the following state-
ment:

ind [T|Type] List : Type :� nil:List | cons:T�List�List;

As abbreviation we can write T* instead of (List T) for the type of lists with elements
of type T. It is now quite straightforward to implement add as the function that attaches an
identifier-attribute pair to the front of a list.

REALIZATION :� λID:IDENT,ATTR:ATTRIB �

open (ID,ATTR) in
let (Elem :� Ident�Attrib) in
STRUCT

Symtab :� Elem*,
empty :� (nil Elem),
add :� λi:Ident,a:Attrib,l:Elem* � (cons hi,ai l)

END-STRUCT :: (SYMTAB1 ID ATTR)

6

2 An extended example

However, it is not so evident how to realize the functions present_p and lookup. We there-
fore submit the incomplete realization to TYPELAB. Apart from proof obligations for ax-
ioms concerning the given function add, the typechecker generates proof obligations that
contain metavariables ?present_p and ?lookup which stand for the as yet undefined func-
tions present_p and lookup, respectively. We will now show how TYPELAB can be used
to construct the function present_p and to prove its correctness at the same time.

We start with the goal requiring to construct the function present_p and expand the defini-
tion of Symtab. It is reasonable to assume that present_p recurses over its second argument,
so we start an induction over lists.

...
ID:IDENT, ATTR:ATTRIB,
Elem :� Ident�Attrib:Type
Symtab :� Elem*:Type
empty :� (nil Elem):Elem*
add :� λi:Ident,a:Attrib,l:Elem* � (cons hi,ai l)

|---------------------------------------
?present_p:Ident�Symtab�Bool

tlab? expandR Symtab; induct 2;
Command succeeded. Goals: 2 new, 2 open.
...
i:Ident, l:Elem*

|---------------------------------------
?4:Bool

new subgoal 2 is: ?9:Bool

We obtain two new goals, the first one corresponding to the base case. By applying the above
commands, TYPELAB has constructed a partial solution for ?present_p:

tlab? show proof-term;
λi:Ident,l1:Elem* � elimList (λl:Elem* � Bool) ?4

(λe:Elem,l2:Elem*,b:Bool � ?9) l1

This partial solution still contains two metavariables (?4 and ?9), corresponding to what the
function returns for l1=nil and for l1=(cons e l2), respectively. We leave our goal for
a moment, to look at the obligation ?REALIZATION_ax1 which has been generated for the
axiom ax1 and specifies the behaviour of present_p for an empty symbol table:

...
present_p :� λi:Ident,l1:Elem* � elimList (λli:Elem* � Bool) ?4

(λe:Elem,l2:Elem*,b:Bool � ?9) ..
lookup :� ?lookup:Ident�Symtab�Attrib+

|---------------------------------------

?REALIZATION_ax1:�i:Ident � (present_p i empty) � false

7

2 An extended example

The local context of this proof obligationcontains the partial solutionprovided for ?present_p
so far. Introducing assumptions and expanding definitions on the right leads to the following
goal, from which we can read off the required solution for metavariable ?4 at once:

tlab? intros; expandR;
Command succeeded. Goals: 1 new, 1 open.
...
i:Ident

|---------------------------------------

?2:(?4 � false)

We can use this hint to solve the base case of the original problem. Finishing this part of the
proof, we turn to the step case, which can be handled in a similar fashion, however involving
some reasoning modulo the reduction relation generated by the list recursor. This reasoning
is currently not automated; a more powerful unification procedure would be desirable here.

Altogether, we have synthesized the following function for present_p:

λi:Ident,l1:Elem* � elimList (λl:Elem* � Bool) false

(λe:Elem,l2:Elem*,b:Bool � (i �Ident e.1) � b) l1

As demonstrated by the synthesis of this function, the “executable” and “logical” parts of the
calculus interact smoothly, proof construction in both fragments obeys the same principles
and can therefore be handled by the same machinery.

After having completed the realization of the symbol table, we can instantiate its parameter
theories appropriately, for example by choosing strings as identifiers and natural numbers as
attributes.

ident :�
STRUCT
Ident :� String,
�Ident :� �String

END-STRUCT :: IDENT

attrib :�
STRUCT
Attrib :� Nat,
Attrib+ :� Error Nat,
bottom :� failure Nat "No entry!",
lift :� success Nat

END-STRUCT :: ATTRIB

For the realization of attributes we use the predefined inductive type Error with the two con-
structor success and failure on natural numbers to model the extended domain Attrib+.
Of course we have to prove the axiom lift_ax for this realization.

symtab :� REALIZATION ident attrib

sym1 :� add "Martin" 31 (add "Marko" 28 empty)

8

3 A calculus with metavariables

The following computations confirm that the functions work as desired:

tlab> compute (present_p "Marko" sym1);
true

tlab> compute (lookup "Martin" sym1);
success Nat 31

tlab> compute (lookup "Frieder" sym1);

failure Nat "No entry!"

The above development of executable functions from an abstract specification has been car-
ried out in order to present the most important constructs of the TYPELAB specification lan-
guage, to exemplify a certain software development methodology and to demonstrate how
interactive and automated proof techniques are applied.

Interactive proof construction is further facilitated by a pleasant graphical user interface.
There are separate windows for displaying the global context, the current proof state, the
proof tree and much more. The objects presented in the windows are mouse sensitive. For
example, context entries can be shrunk or hidden to save space on the screen. Similarly,
subtrees of the proof tree can be expanded so that individual steps taken by a complex tactic
can be viewed in detail. TYPELAB suggests appropriate proof rules or equations for rewriting
if subterms of the current goal are activated.

Equational simplification is the only kind of automation applied in the above example. Apart
from that, TYPELAB offers proof search in intuitionistic logic, which will be described at
length in Section 4. Based on proof search and equational reasoning, some still quite rudi-
mentary support for inductive proofs has been developed.

3 A calculus with metavariables

The example derivation given in Section 2 has demonstrated the usefulness of metavariables
as placeholders for proof objects. The concept of proof object has to be understood in a large
sense: A proof object can be a function that is part of a realization of a specification, it can be
a witness of an existentially quantified variable or a term which encodes logical reasoning,
according to the propositions-as-types principle1.

For these seemingly disparate notions, type theory provides a unifying framework. For this
convenience, a price has to be paid: in a dependently typed logic such as the Calculus of
Constructions that TYPELAB is based on, metavariables can depend on one another. The
solution for one metavariable, say ?n1, can determine the type of another metavariable ?n2

and thus influence the set of valid solutions for ?n2. A priori, it is not clear which dependen-
cies among metavariables should be admitted, and whether a partial solution provided for

1Some of the following motivation makes use of terminology introduced in the later sections.

9

3 A calculus with metavariables

a metavariable can safely be accepted. The sections below try to clarify these questions by
developing a calculus with metavariables.

An additional difficulty arises from the fact that metavariables not only depend on a type,
but also on a context that determines which variables can legally occur in the solution of the
metavariable. For example, the theorem in specification SYMTAB0 of Section 2 depends on
the context that is shown in the initial proof state.

There are mainly two problems when dealing with context-dependent metavariables, illus-
trated by the following examples:

Example 3.1
Commutativity of instantiation and reduction: Assume that metavariable ?n1 is defined to
be of type T in a context containing x : T , that is, x : T �?n1 : T . In a naive approach, first
reducing the term trm1 :� �λx : T� ?n1� t to ?n1 and then instantiating the result with term x
yields the result x. First instantiating ?n1 to x and then reducing yields t (the variable x bound
by λ-abstraction is the same object as the variable x bound in the context of the metavariable
– de Bruijn indices would give a clearer picture).

�λx : T� ?n1� t ��

f?n1 :� xg

��

β

�λx : T� x� t

��

β

?n1
��

f?n1 :� xg
x t

Note that this problem is not caused by a particular type system, but arises in any calculus in
which there is a notion of β-reduction and in which metavariables depend on a context.

�

Example 3.2
Keeping track of type information: Consider a metavariable ?n2 defined with the following
context and type:

A : Type�T : Type�x : T �?n2 : T

Consider the term trm2 :� �λT : Type� λx : T� ?n2� A in context A:Type. When first instanti-
ating ?n2 with x and then reducing, the resulting λx : A� x is easily seen to have type A� A.
When first reducing trm2, however, the question arises what the type of the resulting term
λx : A� ?n2 should be. A � T is certainly not correct, as T does not even occur in context
A:Type. Claiming that ?n2 has type A is also problematic, since then, the term ?n2 would
have different types (A resp. T) in different contexts. As opposed to the first problem, this

10

3.1 Term calculus

difficulty is directly related to the type system and arises in a similar form in any calculus
with dependent types.

�

To overcome these difficulties, we will keep track of substitutions that have been carried
out in metavariables. This leads to a notion of explicit substitution. After reduction, trm 1

becomes ?n�1 �x :� t�, whereas trm2 becomes λx : A� ?n�2 �T :� A�. The calculus developed
in the following solves the above problems, and it will be shown that it has desirable meta-
theoretical properties such as confluence and strong normalization.

A calculus with metavariables and explicit substitutions for Martin-Löf's monomorphic type
theory is presented by Magnusson (1995), and some algorithms such as unification are de-
fined and shown to be correct. However, the properties of the calculus are not examined.
Ensuring confluence and termination is not just a routine matter; some straightforward def-
initions of simply typed λ-calculus with explicit substitutions lack these properties (see for
example (Lescanne, 1994; Melliès, 1995)).

Section 3.1 is concerned with the behaviour of – not necessarily well-typed – terms, Sec-
tion 3.2 defines typing rules for metavariables. Alternative approaches are conceivable, for
example using a functional encoding of scopes which avoids dependence of metavariables
on contexts. Consequently, no explicit substitutions have to be taken into account. In Sec-
tion 3.4, it will be shown that both representations have the same strength in that there is a
one-to-one correspondence between them. From a practical perspective, however, a func-
tional encoding of scopes would usually become very clumsy for all those metavariables
nested deeply inside terms, for example proof obligations generated for theorems within
specifications or metavariables occurring in incomplete refinement mappings, as in the ex-
ample of Section 2.

3.1 Term calculus

The term language of the logic is built up from a set V of variables, from type constants
Prop and Typei (i � 0), denoting universes of propositions and types, of dependent prod-
uct types (Π types) which generalize universal quantification and dependent record types (Σ
types) which are used to model specifications. On the level of elements of types, we have
λ-abstraction, function application, pairing and projection. In addition to these term con-
structors, already present in the core logic as defined in (Luo, 1994), a set M of metavari-
ables is introduced. Metavariables ?n�?m� � � � � M are placeholders for terms to be con-
structed.

The syntax of the calculus with metavariables is then defined by the grammar of Figure 1.
One of the productions for terms T permits to build terms of the form ?n �σ, which expresses
that the application of substitution σ to metavariables ?n has been delayed. Substitutions are
generated by production S. By this construction, a substitution effectively becomes a part

11

3 A calculus with metavariables

T ::� V
j Prop j Typei

j ΠV : T�T j λV : T�T j �T T�
j ΣV : T�T j pair T �T� T� j π 1�T� j π 2�T�
j M�S

S ::� � � j �V :� T� :: S

Figure 1: Grammar of language with metavariables and explicit substitutions

of a term and can be reasoned about in the calculus. This notion of explicit substitutions
has to be distinguished from the traditional notion of substitutions, which are defined as
meta-operations on terms. It should be remarked that substitutions can only be attached to
metavariables and not to arbitrary terms. This distinguishes our calculus from (to our best
knowledge) all calculi of explicit substitutions presented in the literature.

To improve readability, we sometimes write �x : A�B instead of Πx : A� B, or A� B if x does
not occur in B. Metavariables with empty substitution, ?n�� �, will often be abbreviated as
?n.

For proving properties of the term calculus, such as confluence, it will be convenient to
assume that there is a function svars which associates to each ?n � M a list of variables
that may be substituted into ?n, the substitutions for other variables being discarded (cf.
Definition 3.4). When considering well-typed terms in Section 3.2, it will turn out that this
list of variables is naturally given by the context on which ?n depends.

We can now define explicit (or internal) substitutions more formally as follows:

Definition 3.3 (Internal Substitution)
An internal substitution is a list of the form �x1 :� t1� � � �xn :� tn� associating terms to vari-
ables. A substitution σ� �x1 :� t1� � � �xn :� tn� is valid for a metavariable ?n if:

1. All the variables xi are distinct.

2. All the variables xi are contained in svars�?n�.

3. If xi occurs before xj in σ, then xi occurs before xj in svars�?n�.

The domain of a substitution is defined to be the set dom�σ� :� fx 1� � � �xng.
�

12

3.2 Typing

Since substitutions in our calculus are only internalized as attachment to metavariables to
express that a substitution is delayed, we cannot completely dispense with an external notion
of substitution.

Definition 3.4 (External Substitutions)
A substitution σ :� fx :� sg homomorphically maps over terms as usual. On metavariables,
it is defined as follows (we assume that x �� fy1 � � �yng and will from now on enforce this
requirement when applying substitutions):

	 If x � svars�?n� and x is declared between yi and yi�1 in svars�?n�:

�?n��y1 :� t1� � � �yn :� tn��σ :�

?n��y1 :� t1σ� � � �yi :� tiσ�x :� s�yi�1 :� ti�1σ� � � �yn :� tnσ�

	 If x �� svars�?n�:
�?n��y1 :� t1� � � �yn :� tn��σ :�

?n��y1 :� t1σ� � � �yn :� tnσ�
�

In order to distinguish external substitutions from the internalized explicit substitutions, we
write the former in braces like f� � �g and the latter in brackets like �� � ��. However, the letters
σ and τ will be used indiscriminately for both kinds of substitutions.

We assume that the reader is familiar with standard notions of λ-calculi such as one-step
reduction �1, parallel one-step reduction
1, reduction� (the reflexive-transitive closure
of �1) and convertibility � (cf. Barendregt 1984). The Church-Rosser property ensures
that two diverging computation paths can always be joined again. If reductions of the strict
part of� always terminate (which indeed they do, see Proposition 3.18), then normal forms
are unique. This way, convertibility of two terms can be decided, by reducing them to normal
form and comparing the normal forms syntactically. The following result can be established
by an adaptation of a method originally developed by Martin-Löf and Tait:

Proposition 3.5 (Reduction is Church-Rosser)

The reduction relation� satisfies the Church-Rosser property.
�

3.2 Typing

Typing judgements of the form Γ� t : T are used to express that term t is of type T in context
Γ, where Γ is a list of declarations of the form x1 : T1� � � � �xn : Tn. Typing judgements are

13

3 A calculus with metavariables

inductively generated by typing rules such as the following �λ� rule, which expresses how
elements of dependent product types are introduced.

Γ�x : A�M : B
Γ�λx : A�M : Πx : A�B

�λ�

By the propositions-as-types principle, which interprets propositions as types and elements
of propositions as proofs, the rule can also be understood as saying that a λ-abstraction
provides a proof trace for the introduction of a universal quantifier.

As opposed to the situation encountered in less complex calculi (such as the simply-typed λ-
calculus), there can be intricate dependencies among metavariables in calculi with dependent
types. In particular, the type of one metavariable can depend on the value assigned to another
one, and the well-typedness of a context can depend on the value assigned to a metavariable.

Before stating typing rules and examining their properties, some restrictions on dependencies
among metavariables have to be imposed which are strong enough to make verification of
the correctness of solutions for metavariables possible. The restrictions should be sufficiently
liberal so that dependencies among metavariables can be exploited for proof search.

Example 3.6
Consider the ��R� rule (cf. Section 4.3):

Γ�?n1 :A Γ�?n2 :P�?n1�

Γ�?n0 :�x : A�P�x�
��R�

Application of this rule introduces two metavariables ?n1 and ?n2, where ?n2 depends on
?n1 since ?n1 � MV�P�?n1�� (here, MV��� is the set of metavariables occurring in a term or
context). If there is a declaration of the form h : P�a� in Γ, then ?n2 can be solved with h,
leading to an assignment ?n1 :� a as a side-effect.

�

Example 3.7
Starting from the (academic) formula �P : Prop�Q : P� Prop�x : P��P� Q�x��, eliminating
existential quantifiers (as in the example above) and introducingassumptions, one obtains the
following set of metavariables:
�?P : Prop
�?Q :?P� Prop
�?x :?P
h :?P�?n :?Q�?x�.

One step that suggests itself now is to equate ?n with h and consequently ?P with ?Q�?x�,
leading to a new proof problem with �?Q :?Q�?x�� Prop and �?x :?Q�?x�, in which the

14

3.2 Typing

dependency of metavariables is cyclic. There is no intuitive interpretation of such a proof
problem, nor does it seem clear that tentative solutions of such a proof problem can effec-
tively be verified.

�

In the sequel, we will permit proof problems with metavariable dependencies of the first
kind, but will exclude circularities of the second kind.

Let us emphasize again that a metavariable depends on a context Γ and has a type T , as
expressed by the more suggestive notation Γ�?n : T . In the course of a proof, metavariables
occurring in Γ or T can be instantiated. Therefore, a context and a type are not invariantly
assigned to a metavariable ?n by functions depending only on ?n, but they are determined by
the proof problem under consideration, as reflected by the following definition.

Definition 3.8 ((Valid) Proof Problem)
A proof problem P is a triple �M P �ctxtP � typeP � consisting of:

	 A finite set of metavariables MP

	 A function ctxtP assigning a context to each ?n �MP

	 A function typeP assigning a term to each ?n � MP

The subscripts in MP �ctxtP � typeP will be omitted whenever P is clear from the context.

For a proof problem P and ?n 1�?n2 �MP , the relation �P is defined as:
?n1 �P ?n2 iff ?n1 � MV�ctxt�?n2�� or ?n1 �MV�type�?n2��.
Let
P be defined as the transitive closure of �P .

A proof problem P is called valid if
 P is an irreflexive partial order.
�

The proof problem P1 with the set of metavariables f?n1�?n2g as given in Example 3.6 is
valid, with ?n1
P1?n2 since ?n1 � MV�P�?n1��. Regarding Example 3.7, the proof prob-
lem P2 � �M2�ctxt2� type2� has M2 � f?x�?Qg, ctxt2�?x�,ctxt2�?Q� the empty context and
type2�?x� � �?Q ?x� and type2�?Q� �?Q�?x�� Prop. P2 is not valid, since ?x
P2?x.

Unless stated otherwise, we will only consider valid proof problems in the following. Since,
for every valid proof problem P, the set M P is finite and the order
P is transitive and
irreflexive, it is also well-founded on MP . This fact can be used to show termination of
certain functions involving metavariables. In particular, the definitions made in the following
can be shown to be well-defined.

The typing rules for metavariables with explicit substitutions are shown in Figure 2. Typing
rules for metavariables are added to the typing rules of the base logic (Luo, 1994) in a “mod-
ular” fashion, that is, without making a modification of the base rules necessary. The typing
rules for metavariables can be motivated as follows:

15

3 A calculus with metavariables

ctxt�?n��type�?n� : Typej

ctxt�?n��?n�� � : type�?n�
(MV-base)

z �� dom�Γ��dom�Δ��dom�σ�
Γ�T : Typej Γ�Δ�?n�σ : N

Γ�z : T�Δ�?n�σ : N
(MV-weak)

Γ� t : T Γ�x : T�Δ�?n�σ : N
Γ�Δfx :� tg��?n�σ�fx :� tg : Nfx :� tg

(MV-β-Red)

Figure 2: Typing rules for Metavariables

MV-base A metavariable ?n with empty substitution is typecorrect in case its defining type
type�?n� and, consequently, its defining context ctxt�?n� are well-typed.

MV-weak The weakening rule, which is admissible for the base logic, is explicitly added for
metavariables. Its effect could as well have been encoded into the rules (MV-base) and
(MV-β-Red).

MV-β-Red This rule simulates the behaviour of β-reduction. To illustrate its effect, we re-
sume Example 3.2 which leads to a type-incorrect term when treated naively.

Assume, then, that the term ��λT : Type� λx : T� ?n� A� has to be reduced to normal
form, where A : Type�T : Type�x : T �?n : T . Note that the type of this term is A� A.
β-reduction yields the term λx : A� ?n��T :� A�. The derivation of its type reflects the
procedure of β-reduction – with the sole difference that T : Type and x : T are not
bound locally by λ-abstraction, but globally in the context:

A : Type�A : Type A : Type�T : Type�x : T �?n�� � : T

A : Type�x : A�?n��T :� A� : A
(MV-β-Red)

A : Type�λx : A� ?n��T :� A� : A� A
λ

The observation suggested by this example – the type of terms is invariant under re-
duction – is confirmed by Proposition 3.10 below.

At first glance, the rules do not appear to have an appropriate form for typechecking. In
particular, the rule (MV-β-Red) seems to require guessing a substitution fx :� tg. It can
however be shown that efficient typechecking of judgements Γ�?n�σ : T is indeed possible
by starting with the judgement ctxt�?n��?n�� � : type�?n� and incrementally building up the
expected substitution σ by applying rules in the forward direction.

16

3.3 Solutions of metavariables

Altogether, the extended calculus preserves the pleasant properties of the base calculus, such
as the following, all of which can be proved by rather straightforward inductive arguments:

Proposition 3.9 (Decidability of Type Inference and Type Checking)
	 Given a term t and a context Γ, there is an algorithm that determines whether t is

well-typed in Γ or not and, in the first case, computes the principal type of t in Γ.

	 Given a term t, a type T and a context Γ, there is an algorithm that determines whether
Γ� t : T holds or not.

�

Proposition 3.10 (Subject Reduction)
If Γ�M : A and M�N, then Γ�N : A.

�

3.3 Solutions of metavariables

Definition 3.11 (Instantiation)
An instantiation2 ιP for a valid proof problem
P � �M P �ctxtP � typeP � is a function mapping the metavariables in MP to terms, subject to
the requirement that for every metavariable ?n � MP :

	 if ιP �?n� � t and ?m � MV�t�, then ιP �?m� �?m

The notation for instantiations is comparable to the notation for substitutions: If M P �
f?n1� � � �?nkg, then ιP is written as f?n1 :� t1� � � �?nk :� tkg. Whenever P is understood from
the context, the subscript is omitted from ιP .

Instantiations are inductively extended to terms as follows:

	 ι�x� � x for variables x.

	 ι�Prop� � Prop, ι�Typei� � Typei

	 ι�Qx : T�M� � Qx : ι�T��ι�M� for Q � fλ�Π�Σg

	 ι� f a� � �ι� f � ι�a��

	 ι�pairT�t1� t2�� � pairι�T ��ι�t1�� ι�t2��

	 ι�πi�t�� � πi�ι�t�� for i � 1�2

2The term instantiation has been chosen to distinguish instantiation of metavariables from substitution of
variables

17

3 A calculus with metavariables

	 ι�?n��x1 :� t1 � � �xk :� tk�� � ι�?n�fx1 :� ι�t1� � � �xk :� ι�tk�g

This definition can be extended to contexts in an obvious manner.
�

Note in particular that no renaming of bound variables is carried out: As opposed to substi-
tutions fx :� sg, which must not be applied to terms in which x is bound (see Definition 3.4),
variables occurring in the term t of an instantiation f?n :� tg have to be interpreted relative
to the defining context of ?n.

Definition 3.12 (Instantiation of proof problems)
Assume that P � �M P �ctxtP � typeP � is a valid proof problem and ι an instantiation for P.
The instantiation ι�P� � �M �

P �ctxt �

P � type�

P � is defined to be the proof problem consisting of:

	 M�

P :� f?n � MP jι�?n� �?ng

	 ctxt �

P is defined as the function which, for ?n � M �

P , yields ι�ctxtP �?n��

	 type�

P is defined as the function which, for ?n �M �

P , yields ι�typeP �?n��
�

Intuitively, if P is a proof problem, then ι�P� is the proof problem that remains after provid-
ing a partial solution ι.

Example 3.13
Assume the proof problem P is given by:

A : Type�P : A� Prop�a : A�h : �P a��?n1 : A

A : Type�P : A� Prop�a : A�h : �P a��?n2 : �P ?n1�

and the instantiation ιP by f?n1 :� ag. Then P � :� ιP �P� is the proof problem consisting of:

A : Type�P : A� Prop�a : A�h : �P a��?n2 : �P a�

It can be solved by another instantiation ιP � :� f?n2 :� hg.
�

The notion of instantiation is not related to type correctness. This is remedied by the follow-
ing definition:

Definition 3.14 (Valid / Welltyped Instantiation)
Let P � �M P �ctxtP � typeP � be a valid proof problem.

	 An instantiation ι is called valid if ι�P� is a valid proof problem.

18

3.4 Functional encoding of scopes

	 An instantiation ι is called well-typed if, for every ?n �MP ,

ι�ctxtP �?n���ι�?n� : ι�typeP �?n��
�

As a consequence of the following proposition, it is sufficient to verify instantiations “lo-
cally”, i.e. for metavariables only, to ensure typecorrectness “globally” for all terms to which
instantiations are applied.

Proposition 3.15 (Instantiation preserves typing)
Let P be a valid proof problem, Γ, t and T be a context resp. terms in which at most
metavariables from P occur, and ι a well-typed instantiation for P.

	 If Γ� t :T holds, then also ι�Γ��ι�t� :ι�T �.

	 ι�P� is a well-typed proof problem.
�

These definitions and propositions provide the foundations of incremental proof construc-
tion. They ensure that, whenever metavariables are solved with valid, well-typed instantia-
tions, no type-incorrect terms can result.

3.4 Functional encoding of scopes

In the following, a functional representation of scopes will be examined. The general idea
is to replace a metavariable ?n of type T which depends on assumptions x1 : T1� � � � �xk : Tk

by a metavariable ?F which is of functional type Πx1 : T1 � � �Πxk : Tk�T and which does not
depend on assumptions.

Example 3.16
This procedure can best be illustrated by an example. Consider the following proof problem:

A : Type�P : A� Prop�?n0 : �a : A��x : A��P a�� �P x�

This problem can be decomposed into the subproblems:

A : Type�P : A� Prop�a : A�?n1 : A

A : Type�P : A� Prop�a : A�?n2 : �P a�� �P ?n1�

It can easily be verified that ?n1 :� a and ?n2 :� λy : �P a�� y are welltyped instantiations.
The problem can also be stated with metavariables ?F1 and ?F2 which are the functional
analogues of ?n1 and ?n2 and which are defined by:

�?F1 : ΠA : Type�P : A� Prop�a : A�A

19

3 A calculus with metavariables

�?F2 : ΠA : Type�P : A� Prop�a : A��P a�� �P �?F1 A P a��

The solutions of this proof problem are ?F1 :� λA : Type�P : A � Prop�a : A�a and ?F2 :�
λA : Type�P : A� Prop�a : A�λy : �P a�� y.

�

This functional translation can be defined more formally as a mapping taking terms t to terms
t and proof problems P to proof problems P. Furthermore, it can be shown that this mapping
is type-preserving and that there is a one-to-one correspondence between solutions of P and
solutions of P.

A benefit of a functional representation of scopes is that substitutions cannot take effect in
metavariables: ?Fσ will always be the same as ?F , since all the variables in the domain of
σ cannot occur free in a solution of ?F . Thus, under a functional representation, there is no
need to explicitly record substitutions applied to metavariables – altogether, the calculus es-
sentially behaves like a calculus without metavariables. These advantages have to be traded
against the difficulties incurred when dealing with metavariables that depend on many local
assumptions, such as the metavariables created for theorems in specifications or metavari-
ables created as typecorrectness conditions in refinement mappings (see the examples in
Section 2).

A functional encoding of metavariables is used in many algorithms and systems dealing with
proof search in higher-order logic. Only recently have there been attempts (Dowek et al.,
1995) to restate unification algorithms for the simply typed lambda calculus in terms of
calculi of explicit substitutions. The transformation of metavariables into a functional en-
coding is closely related to “lifting” as presented by Paulson (1989). Miller (1992) examines
methods of exchanging existential and universal quantifiers and develops a similar technique
called “raising”.

By showing that the reduction relations are preserved under the functional translation, it
can be shown that, since the calculus without metavariables is strongly normalizing, so
is the calculus with metavariables and explicit substitutions. The following lemma shows
how to simulate reductions in the calculus with metavariables by reductions in the calculus
with metavariables in functional representation, which we will call “essentially metavariable-
free”.

Lemma 3.17
If M
1M� and M �� M�, then M
1M� and M �� M�.

�

Proof:
By induction on the generation of
1. �

Proposition 3.18 (Strong Normalization)
The calculus with metavariables and explicit substitutions is strongly normalizing.

�

Proof:
Assume, to the contrary, that there is a well-typed term M which permits an infinite sequence

20

4 Automated Proof Search

of reduction steps: M � M0
1M1
1 � � �, with Mi �� Mi�1. It can be shown that the term
M is well-typed in the essentially metavariable-free calculus, and by Lemma 3.17, there
is an infinite sequence of well-typed terms M � M0
1M1
1 � � �, with Mi �� Mi�1. This
contradicts the strong normalization property of the essentially metavariable-free calculus.

�

4 Automated Proof Search

In this section, automation of proof search will be examined. The kind of automation we are
aiming at should integrate well with the interactive proof construction presented in Section 3,
and it should lead to practically useful procedures, even if completeness has to be sacrificed.

Previous work includes investigations carried out by Pym and Wallen (1991) on proof search
in the λΠ calculus. The proof procedure does not make appeal to typing rules as presented in
Section 3.2 to ensure that solutions of metavariables are welltyped in the metavariable-free
fragment, but instead uses a complex consistency criterion which is based on permutability
of rules. Dowek (1993) develops a complete search procedure for all systems of the λ-cube.
For the Calculus of Constructions, this proof procedure has a possibly infinite branching
factor which can be avoided when giving up completeness. Even though both approaches
(Pym and Wallen, 1991) and (Dowek, 1993) use context-dependent metavariables as we do,
the problems related to substituting into metavariables are not addressed by a calculus of
explicit substitutions.

Contrary to the procedures defined by Pym, Wallen and Dowek, we have deliberately chosen
a formulation which includes the usual logical connectives and is not restricted to the ele-
mentary term constructors of the logic, viz. essentially Π-abstraction and its non-dependent
version, implication. This makes this calculus amenable to traditional proof search tech-
niques and optimizations.

In Section 4.1, we will shortly review unification. In Section 4.2, a sequent (or Tableau)
calculus will be developed. Usually, in sequent calculi an Eigenvariable condition has to
be satisfied. The discussion in Section 4.3 will show that this proviso need not be enforced
explicitly, since all derivations with typecorrect instantiations in the sense of Section 3.3
respect it. The main emphasis in the following is on conveying an idea of how the apparatus
developed so far can be used for automated proof search, and not on providing details of
efficient search procedures.

4.1 Unification

Let us briefly point out how unification can be defined in our framework so as to produce
welltyped instantiations in the sense of Definition 3.14.

21

4 Automated Proof Search

Unification of terms t1� t2 consists in finding an instantiation for the metavariables occurring
in t1 or t2 such that t1 and t2 are equal modulo convertibility. In order to be able to develop
a correctness criterion, we suppose that the metavariables of t1 and t2 stem from a welltyped
proof problem P0. It is furthermore assumed that t1 and t2 are welltyped in a context Γ, even
though their types need not agree at the outset.

Definition 4.1 (Unification Problem)
A unification problem hP0�Γ� t1

?
� t2i is a pair consisting of a welltyped proof problem P0

and a unification equation Γ� t1
?
� t2, where Γ is a valid context, t1 and t2 are terms welltyped

in Γ and all the metavariables of Γ� t1� t2 are among the metavariables of P0.
�

The rules defining the unification algorithm will use a judgement of the form hP0�Γ� t1
?
� t2i

 P1; ι1, which expresses that the unification problem hP0�Γ� t1
?
� t2i can be (partially)

solved by instantiation ι1, leaving open the metavariables of the proof problem P1. As an
example, consider the unification rule for λ-abstraction in Figure 3.

hP0�Γ�A1
?
�A2i
 P1; ι1

hP1� ι1�Γ�x1 : A1�B1
?
�B2fx2 :� x1g�i
 P2; ι2

hP0�Γ�λx1 : A1� B1
?
�λx2 : A2� B2i
 P2; ι2

�λ�λ�

ctxt�?n��t : T

hP0�Γ� type�?n�
?
�T i
 P1; ι1

valid�ι1�f?n :� tg�P1�
ι2 :� ι1�f?n :� tg P2 :� ι2�P1�

hP0�Γ�?n ?
� ti
 P2; ι2

�MV � term�

Figure 3: First-order unification

In order to unify a metavariable ?n and an arbitrary term t (rule (MV-term)), the type of ?n
and the type T of t are first unified, yielding an instantiation ι1. It still has to be verified that
the instantiation ι1 �f?n :� tg is valid, in particular that it passes the occurs check implicit
in Definition 3.11 and that the resulting proof problem P2 satisfies the acyclicity condition
of Definition 3.8. It can then be concluded that the instantiation ι2 :� ι1�f?n :� tg is valid
and well-typed in the sense of Definition 3.14.

Altogether, the rules satisfy the following invariants, which can be understood as stating the
correctness of the unification algorithm.

22

4.2 Tableau-style proof search

Proposition 4.2 (Invariants of Unification)
Assume hP0�Γ� t1

?
� t2i is a unification problem. If hP0�Γ� t1

?
� t2i
 P1; ι1, then:

	 ι1 is a valid, well-typed instantiation for P0.

	 ι1�t1� � ι1�t2�

	 P1 is a valid, well-typed proof problem.
�

To some extent, the rules can be adapted to incorporate higher-order aspects, for example
unification in the simply-typed λ-calculus (see (Huet, 1975; Nipkow, 1993) and also (Pfen-
ning, 1991)). This also entails some modifications of the invariants of Proposition 4.2. Thus,
completeness of unification can be achieved for a larger part of the language than the essen-
tially first-order fragment considered above.

An invariant of our unification algorithm is that two terms are only unified after a unifier
for their types has been established. In some cases, this prevents simplifications such as
leaving equations as constraints that can be solved later on in the course of the proof. This
requirement is relaxed in the procedures for the calculus LF of Elliott (1989) and Pym (1990)
which, however, leads to considerably more complex algorithms.

4.2 Tableau-style proof search

This section develops a Tableau calculus appropriate for proof search. For a better under-
standing, the Tableau calculus is first given in a familiar presentation as a set of sequent
rules. A formulation as proof transformation system establishes the connection with the ter-
minology of the preceding sections. This section only considers the quantifier-free fragment,
whereas Section 4.3 discusses problems related to quantifiers. For lack of space, only some
of the rules are presented in an exemplary fashion.

Although the core language of TYPELAB does not include the usual logical connectives and
the existential quantifier as term constructors, these can easily be defined by an encoding
which dates back to (Prawitz, 1965). For example, A�B can be defined as ΠR : Prop��A�
B � R�� R. It can be shown that this encoding corresponds to the usual definition of the
connectives by means of natural deduction rules. Thus, for the above definition of conjunc-
tion, the following rules are derivable (with appropriately defined andI, andEl and andEr):

Γ�a :A Γ�b :B
Γ� �andI a b� :A�B

��I�

Γ� p :A�B
Γ� �andEl p� :A

��El�
Γ� p :A�B

Γ��andEr p� :B
��Er�

For the other connectives, similar rules are derivable.

23

4 Automated Proof Search

Γ�?n1 :A Γ�?n2 :B
Γ�?n0 :A�B

��R�

Γ� p : A�B�Γ�
� pA : A� pB : B�?n1 :G

Γ� p : A�B�Γ��?n0 :G
��L�

Figure 4: Tableau rules for conjunction

Natural deduction rules can be divided into introduction rules (e.g. ��I�) which say how a
connective can be constructed, and elimination rules (e.g. ��El� and ��Er�) which say how
a connective can be decomposed. A well-known disadvantage of natural deduction is the
lack of a subformula property in its elimination rules. Thus, for performing “backwards”
proof search, applying rules from the conclusion towards the premisses, formulae have to be
guessed, such as formula B in ��El� and formula A in ��Er�.

Sequent calculi as defined by (Gentzen, 1934) replace the schema of introduction-elimination
rules by a schema of Left-Right rules in which connectives are decomposed on the left resp.
right side of a sequent. In our case, the interpretation of Γ�?n : T as a sequent is obvious.
The Right rules are identical to the introduction rules of the natural deduction calculus. An
application of a Left rule to a formula F , or more precisely, to a context entry x : F in Γ
does not lead to a removal of this context entry from Γ, since x might appear elsewhere in Γ.
Rather, new context entries are added at the end of Γ. This twist of representation makes it
more appropriate to call our calculus a Tableau calculus.

The rules for conjunction are displayed in Figure 4. Associated with each rule is a term (cf.
Figure 5) which spells out how a solutionof the metavariable ?n0 in the conclusion of the rule
can be obtained from solutions of the metavariables (?n1 and ?n2 resp. ?n1) of the premisses.
The correctness of ��R� and ��L�, when interpreted as derived rules, can immediately be
verified by typechecking their solution terms.

��R� ?n0 :� �andI ?n1 ?n2�
��L� ?n0 :� �λpA : A� pB : B�?n1� �andEl p� �andEr p�

Figure 5: Solutions associated with the proof rules

More formally, Tableau-style proof search can be related to the notions developed in Sec-
tion 3 by presenting the rules in the form of a proof transformation system. A transformation
rule P0; ι0 �
 P1; ι1 (possibly containing side conditions) expresses that proof problem P 0

and instantiation ι0 can be transformed to proof problem P1 and instantiation ι1 when ap-

24

4.3 Quantifiers in sequent rules

plying a proof rule backwards. The transformation rules corresponding to the proof rules of
Figure 4 are displayed in Figure 63.

P�fΓ�?n 0 : A�Bg; ι0

ι1 :� ι0�f?n0 :� �andI ?n1 ?n2�g
�
 ι1�P�fΓ�?n 1 : A� Γ�?n2 : Bg�; ι1

P�fΓ� p : A�B�Γ ��?n0 : Gg; ι0

ι1 :� ι0�f?n0 :� �λpA : A� pB : B�?n1� �andEl p� �andEr p�g
�
 ι1�P�fΓ� p : A�B�Γ �� pA : A� pB : B�?n1 : Gg�; ι1

Figure 6: Rules of Transformation System

We can state invariants of the proof transformation system, similar to the invariants for uni-
fication (Proposition 4.2) but technically more involved. As a special case, the following
proposition expresses that an automated proof search procedure which is started on a goal
Γ�?n0 : G and succeeds in solving it completely, constructs a well-typed proof term t for
?n0.

Proposition 4.3 (Correctness of Proof Search)
If fΓ�?n0 : Gg;fg�
 fg;f?n0 :� tg, then Γ� t : G.

�

So far, we have neglected questions regarding completeness. The introductory remarks of
Section 4 have given some plausibility to the claim that procedures which are complete for
the whole logic become too unwieldy to be practically useful. The identification of suitable
fragments which lend themselves to complete proof methods is a topic of current research.

4.3 Quantifiers in sequent rules

In traditional presentations of Sequent Calculi, the rules ��R� and ��L� are usually stated
with an “Eigenvariable condition”. Typically, the rule ��R� is then given by:

Γ�B�z�

Γ��x� B�x�
��R�

under the proviso that the fresh variable z does not occur in Γ. In this section, we will
examine how the Eigenvariable condition is enforced in our calculus. The quantifier rules
are displayed in Figure 7.

3The combination ι�κ of two instantiations ι�κ performs the necessary instantiations of κ within ι and vice
versa which ensure the idempotency of the resulting instantiation.

25

4 Automated Proof Search

Γ�?n1 :A Γ�?n2 :P�?n1�

Γ�?n0 :�x : A�P�x�
��R�

Γ�x : A�?n1 :B�x�

Γ�?n0 :Πx : A� B�x�
�ΠR�

Γ� p : �x : T�P�x��Γ�
�y : T� p� : P�y��?n1 :G

Γ� p : �x : T�P�x��Γ��?n0 :G
��L�

Γ� p : Πx : A� B�x��Γ��?n1 :A
Γ� p : Πx : A� B�x��Γ�

� p� : B�?n1��?n2 :G

Γ� p : Πx : A� B�x��Γ��?n0 :G
�ΠL�

Figure 7: Tableau rules for quantifiers

Since the argument leading to Proposition 4.3 can be used to show the correctness of the
associated proof transformation system, this section does not provide an additional proof,
but rather an illustration for one aspect of correctness. Since most of the considerations are
independent of typing, we will omit type information whenever convenient.

Example 4.4
As an illustration, we will use the following formulas throughout this section, the first of
which: �x��y�x � y is valid, the second of which: �x��y�x � y is not.

�

In traditional Tableau calculi, Skolemization is used to eliminate a universal quantifier by
keeping track of existential quantifiers on which it depends. Skolemization4 expresses that
the formula �x��y�P�x�y� is valid iff �x�P�x� f �x�� is valid, where f is a fresh function con-
stant. There are two impediments to using Skolemization in our framework. The first is that
it is hard to justify the introduction of a new function constant f proof-theoretically. When
considering, in a typed calculus, the transition from �x : A��y : B� P�x�y� to �x : A�P�x� f �x��,
we make a claim as to the existence of a function f : A � B, for which we have no direct
evidence. The second reason for not using Skolemization, of a more practical nature, is that
it can blow up formulae and make them difficult to understand.

The method that is implicit in our approach is to describe the dependence of existential
variables on universal variables. A proof obligation x1 : T1� � � � �xk : Tk�?n : T expresses that
the existential variable ?n occurs in the scope of the universal variables x1� � � � �xk and can
only be solved by terms in which at most x1� � � � �xk occur free. The examples demonstrate
the procedure: In the first example, the proof succeeds because ?y can be unified with x.

x : T �?y : T x : T �?n2 : x �?y
x : T �?n1 : �y : T�x � y

��R�

�?n0 : �x : T��y : T�x � y
��R�

4The dual variant of Skolemization in which existential quantifiers are eliminated and which preserves satisfi-
ability is commonly found in refutational theorem proving.

26

5 Comparison

In the second example, however, ?x does not unify with y because y does not occur in the
context of ?x.

�?x : T
y : T �?n2 : ?x � y
�?n1 : �y : T�?x � y

��R�

�?n0 : �x : T��y : T�x � y
��R�

Again, this dependence could be made explicit by a functional encoding of scopes, as for
example in the Isabelle system (Paulson, 1994). The observations of the above example can
be generalized to the following proposition, which expresses that no well-typed instantiation
of metavariables can violate the Eigenvariable condition:

Proposition 4.5 (Eigenvariable Condition)
Assume Γ�x : A is a valid context with occurrences of metavariables ?m1� � � �?mk in Γ. Then
there is no well-typed instantiation ι of ?m1� � � �?mk such that x occurs free in ι�Γ�

�

Proof:
Since Γ�x : A is a valid context and ι a valid instantiation, by Proposition 3.15, ι�Γ� is a valid
context and thus cannot contain a free occurrence of x. �

It is worth noting that our approach gives a rather direct criterion to verify that Eigenvariable
conditions are respected, as opposed to indirect criteria implicit in the methods of Pym and
Wallen (1991) and Shankar (1992) which encode permutabilities of rule applications in their
proof search procedures. Even though rule permutabilities are not used to ensure correctness,
they can be exploited to optimize proof search. In particular, they can help to recognize when
goals cannot be satisfied even by application of alternative proof rules, thus avoiding useless
backtracking. Details are a topic of current research.

5 Comparison

There are several criteria by which TYPELAB can be compared to other systems, one of them
being the underlying logic. Systems which are based on a type theory are NUPRL (Constable
et al., 1986), COQ (Barras et al., 1997), LEGO (Pollack, 1994) and ALF (Magnusson and
Nordström, 1994). NUPRL and COQ provide powerful automation for fragments of the
logic and permit to extract programs from proofs, but do not allow for a direct construction
of objects with the aid of metavariables. In LEGO and ALF, proof construction essentially
consists in finding appropriate instantiations for metavariables, further automation is not
available. TYPELAB aims at a synthesis of these approaches.

Several systems pursue similar objectives as TYPELAB, but use different logics to attain
them. HOL (Gordon and Melham, 1993) and ISABELLE (Paulson, 1994) are based on the
simply-typed λ-calculus. Using simpler logics eliminates some of the technical difficulties of

27

6 Conclusions

typechecking and proof search, at the expense of a reduced expressiveness of the language.
By using a system based on a sufficiently rich meta logic as logical framework and encoding
an object logic in it, much of the expressiveness can be regained. Even though systems like
ISABELLE offer considerable support, the effort to provide a high-level proof and develop-
ment environment tailored to a complex object logic is then comparable to writing a system
from scratch.

Another approach to circumvent limitations of the base logic is to provide some extra-logical
features. This is exemplified by Isabelle's type classes (Nipkow and Prehofer, 1995) and still
more by the PVS system (Owre et al., 1992, 1995): Semantic subtypes and theory expres-
sions which can be parameterized by types and values are grafted on the core logic of PVS, a
simply-typed λ-calculus. This gives PVS much of the expressiveness of a dependently-typed
calculus. However, having constructs available in the logic and not simulating them on the
meta-level often gives a clearer picture of the semantics. Also, limitations of the language
are sometimes dictated more by the implementation than by logical necessity. The possibil-
ity to parameterize theories by other theories and to define morphisms between theories in
TYPELAB are a case in point.

A notion of specification or theory, even though external to the underlying logic, can be
found in several systems, for example OBJ (Goguen and Winkler, 1988) (based on an equa-
tional logic), IMPS (Farmer et al., 1993) (simply typed λ-calcuus) and PVS. The KIV system
((W.Reif et al., 1998)), based on Dynamic Logic, provides an environment for modular soft-
ware development. Central concepts are parameterized specifications, implementations and
modules, the latter corresponding closely to the refinement mappings of TYPELAB.

The example of Section 2 has shown how a function can be developed together with a proof
of its correctness. However, TYPELAB currently does not support extraction of programs
from proofs. In the context of the Calculus of Constructions, this topic has been studied
extensively by Paulin-Mohring and Werner (1993). The system COQ translates proofs in
the Calculus of Constructions to an intermediate language (actually, the System F (Girard
et al., 1989)), removing non-constructive proof information and flattening some dependent
typing. From this intermediate language, ML code can be generated. As demonstrated by the
MINLOG system ((Benl et al., 1998)), program extraction succeeds with quite sparse logical
means, and even by using classical reasoning. The resulting programs can be surprisingly
efficient, but some non-trivial transformations of the proof are required to obtain them.

6 Conclusions

This report has provided a survey of the TYPELAB system. The example in Section 2 has
shown several styles of program development supported by TYPELAB, such as direct coding
of a function, a posteriori verification and execution of the function, or stepwise refinement

28

6 Conclusions

of specifications by interleaving the development of a function and solving associated proof
obligations.

This example has also served as a motivation for the use of metavariables in the TYPELAB

system. Metavariables can occur nested deeply inside terms, depending on a great number of
local assumptions. Therefore, common techniques such as a functional encoding of scopes
are not appropriate here. Some problems arising from a naive use of metavariables have been
identified, and a calculus with explicit substitutions has been presented to solve them (Sec-
tion 3). This calculus has desirable properties such as confluence and strong normalization,
and it provides a foundation for an automation of proof search (Section 4) in that it directly
ensures some conditions such as the Eigenvariable proviso for quantifier rules.

29

References

References

H. Barendregt. The Lambda Calculus. Elsevier Science Publishers, 1984.

B. Barras et al. The Coq Proof Assistant Reference Manual, Version 6.1. INRIA Rocquen-
court – CNRS - ENS Lyon, 1997.

H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber. Proof theory at
work: program development in the Minlog system. In Bibel and Schmitt (1998), chapter
3: Interactive Theorem Proving. To appear.

W. Bibel and P. Schmitt. Automated Deduction — A Basis for Applications. Kluwer Aca-
demic Publishers, 1998. To appear.

R. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, 1986.

T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation,
76(2/3):pages 95–120, 1988.

G. Dowek. A complete proof synthesis method for the cube of type systems. Journal of
Logic and Computation, 3(3):pages 287–315, 1993.

G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions. In
D. Kozen, editor, Proceedings LICS'95, pages 366–374. 1995. Extended abstract.

C. M. Elliott. Higher-order unification with dependent function types. In N. Dershowitz,
editor, Proc. 3rd Intl. Conf. on Rewriting Techniques and Applications, pages 121–136.
Springer LNCS 355, 1989.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive mathematical proof
system. J. of Automated Reasoning, 11:pages 213–248, 1993.

G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:pages 176–210 and 405–431, 1934.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Press, 1989.

J. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, SRI Inter-
national, 1988.

M. Gordon and T. Melham. Introduction to HOL – A theorem proving environment for higher
order logic. Cambridge University Press, 1993.

F. v. Henke, A. Dold, H. Rueß, D. Schwier, and M. Strecker. Construction and deduction
methods for the formal development of software. In KORSO: Methods, Languages, and
Tools for the Construction of Correct Software. Springer LNCS 1009, 1995.

30

References

M. Hofmann. Formal development of functional programs in type theory - a case study.
Technical Report ECS-LFCS-92-228, University of Edinburgh, 1992.

G. Huet. A unification algorithm for typed lambda-calculus. Theoretical Computer Science,
pages 27–57, 1975.

P. Lescanne. From λσ to λv a journey through calculi of explicit substitutions. In Proc.
POPL'94, pages 60–69. 1994.

Z. Luo. Computation and Reasoning. Oxford University Press, 1994.

L. Magnusson. The Implementation of ALF - a Proof Editor based on Martin-Löf's
Monomorphic Type Theory with Explicit Substitution. Ph.D. thesis, Chalmers University
of Technology, 1995.

L. Magnusson and B. Nordström. The ALF proof editor and its proof engine. In H. Baren-
dregt and T. Nipkow, editors, Types for Proofs and Programs, Springer LNCS 806, pages
213–237. 1994.

P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In Typed
Lambda Calculi and Applications. Springer LNCS 902, 1995.

D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:pages 321–358, 1992.

T. Nipkow. Functional unification of higher-order patterns. In Proc. 8th IEEE Symp. Logic
in Computer Science, pages 64–74. 1993.

T. Nipkow and C. Prehofer. Type reconstruction for type classes. Journal of Functional
Programming, 5(2):pages 201–224, 1995.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In D. Kapur, ed-
itor, Proceedings 11th International Conference on Automated Deduction CADE, volume
607 of Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag, Saratoga,
NY, 1992.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verification for Fault-Tolerant
Architectures: Prolegomena to the Design of PVS. IEEE Transactions on Software Engi-
neering, 21(2):pages 107–125, 1995.

C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq. J. Symbolic
Computation, 11:pages 1–34, 1993.

L. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5:pages 363–397, 1989.

31

References

L. Paulson. Isabelle - a generic theorem prover. Springer LNCS 828, 1994.

F. Pfenning. Unification and anti-unification in the calculus of constructions. In Sixth Annual
Symposium on Logic in Computer Science, pages 74–85. IEEE Computer Society Press,
1991.

R. Pollack. The Theory of LEGO – A proof checker for the Extended Calculus of Construc-
tions. Ph.D. thesis, University of Edinburgh, 1994.

D. Prawitz. Natural Deduction – A proof-theoretic study. Almqvist & Wiksells, 1965.

D. Pym. Proofs, Search and Computation in General Logic. Ph.D. thesis, University of
Edinburgh, 1990.

D. Pym and L. Wallen. Proof-search in the λπ-calculus. In G. Huet and G. Plotkin, editors,
Logical Frameworks, pages 311–340. Cambridge University Press, 1991.

D. Sannella. Formal program development in Extended ML for the working programmer.
LCFS Report ECS-LCFS-89-102, University of Edinburgh, 1989.

N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur, editor, Proc.
CADE-11. Springer LNCS 607, 1992.

F. von Henke, M. Luther, and M. Strecker. Interactive and automated proof construction in
type theory. In Bibel and Schmitt (1998), chapter 3: Interactive Theorem Proving. To
appear.

W.Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifications and interactive
proofs with KIV. In Bibel and Schmitt (1998), chapter 3: Interactive Theorem Proving.
To appear.

32

