A guided tour through TYPELAB®

Marko Luther and Martin Strecker

Abt. Kinstliche Intelligenz
Fakultat fir Informatik
Universitat Ulm
D-89069 Ulm

{luther, strecker}@ki.informatik.uni-ulm.de

Abstract

This report gives a survey of TYPELAB, a specification and verification environment
that integrates interactive proof devel opment and automated proof search. TYPELAB is
based on a constructive type theory, the Calculus of Constructions, which can be un-
derstood as a combination of a typed A-calculus and an expressive higher-order logic.
Distinctivefeatures of the type system are dependent function types for modeling poly-
morphism and dependent record types for encoding specifications and mathematical
theories. After presenting an extended example which demonstrates how program de-
velopment by stepwise refinement of specifications can be carried out, the theory un-
derlying the prover component of TYPELAB is described in detail. A calculus with
metavariables and explicit substitutionsis introduced, and the meta-theoretic properties
of this calculus are analyzed. Furthermore, it is shown that this calculus provides an
adequate foundation for automated proof search in fragments of the logic.

*This research haspartly been supported by the “ Deutsche Forschungsgemeinschaft” within the Schwerpunkt-
programm Deduktion”. A shorter version of thiswork appearedin (von Henkeet al., 1998).
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1 Introduction

This report gives a survey of TYPELAB, a specification and verification environment that
integrates interactive proof development and automated proof search. TYPELAB is based
on a constructive type theory, the Calculus of Constructions, which can be understood as a
combination of atyped A-calculus and an expressive higher-order logic. Distinctivefeatures
of the type system are dependent function types for modeling polymorphism and dependent
sigmatypesfor encoding specifications and mathematical theories.

Type theory provides a homogeneous theoretical framework in which the construction of,
say, afunction and the construction of a proof can be considered to be essentially the same
activity. There is, however, a practical difference in that the development of a function
requires more insight and therefore usually has to be performed under human guidance,
whereas proof search can, to a large extent, be automated. Internally, TYPELAB exploits
the homogeneity provided by type theory, while externally offering an interface to the hu-
man user which conceals most of the complexities of type theory. Interactive construction
of proof objects is possible whenever desired, metavariables serve as placeholders which
can incrementally be refined until the desired object is complete. For procedures which can
reasonably be automated, high-level tactics are available. In thisrespect, TYPELAB can be
understood as a proof assistant which, in addition to the manipulations of formulae tradi-
tionally performed by theorem provers, permits to carry out operations on entities such as
functions and types.

From a different perspective, TYPELAB can be viewed as a programming environment in
which, apart from the execution of programs in the style of functional language interpreters,
properties of programs can be specified and verified and in which complex developmentscan
be carried out. Even though these features are currently not advanced very much beyond the
stage of a research prototype, it is possible to enter expressions at the top level and evaluate
them by reduction to normal form. Function definition is so far limited to (higher-order)
primitive recursive functions and no efficient compilation is currently available, but a wide
range of practically relevant functions can be coded in a natural style.

TYPELAB supports program development by stepwise refinement: Declarations of types,
functions and axioms can be bundled up to specifications respectively mathematical theo-
ries. Specifications, as internal objects of the logic, can be handled in complete analogy to
other entities of the logic. In particular, they can be parameterized, possibly by other speci-
fications, and can be the domain or range of functions, which in this case can be interpreted
as refinement mappings.

Theremainder of thisreport isorganized asfollows: In Section 2, some conceptsof TYPELAB
are illustrated by an example, the derivation of executable functions from an abstract spec-
ification of a symbol table. Since metavariables play an important role in the interactive
construction of proof objects, but lead to some intricacies in dependently-typed logics, the
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theory behind TYPELAB's metavariables has to be described in greater detail (Section 3). In
Section 4, it will be shown how this machinery, developed primarily for interactive proof
construction, provides a foundation for an automation of proof search. A comparison with
related systems (Section 5) and final remarks (Section 6) conclude this report.

2 An extended example

In this section, it will be necessary to briefly sketch some distinctive aspects of TYPELAB'S
specification language, because specification language and logic are closely intertwined. The
language is based on the Calculus of Constructions (Coquand and Huet, 1988), which com-
prises a higher-order logic and a functional language with an expressive type system. In
particular, types are first-class objects, which yields a form of parametric polymorphism.
Types and relations can be defined inductively in a user-friendly syntax, induction princi-
ples are generated automatically. Specifications respectively mathematical theories (not to
be confounded with the notion of “theory” in the LCF tradition) can be represented by de-
pendent record types (Luo, 1994), elements of these types can be interpreted as realizations
of specifications.

The language features sketched so far will in thefollowing beillustrated by a standard exam-
ple, the development of the specification of a symbol table into an executable version. Our
formalization isinspired by Sannellas specification (Sannella, 1989) in Extended ML (see
also (Hofmann, 1992)). A symbol tableis a data structure in which items, called attributes,
are stored together with an identifier by which they can be retrieved | ater on.

When working with TYPELAB, aglobal context of declarations and definitionsis gradually
built up. We assume that this context already contains some elementary vocabulary about
natural numbers, Booleans etc. The specification of the symbol table will be parameterized
by theories IDENT and ATTRIB. Their definition can now be added to the global context:

ATTRIB =
IDENT ‘= SPEC
SPEC Attrib,Attrib+: Type,
Ident: Type, bottom: Attrib+,
=Ident: Ident — Ident —Bool, lift: Attrib—Attrib+,
AXIOM equiv_ax: equiv_p =r1dent AXIOM lift_ax:
END-SPEC Va:Attrib. bottom # (lift a)
END-SPEC

As opposed to the global context, the declarations (and possibly also definitions) in a spec-
ification generate alocal context whose members are not visible from outside, except when
explicitly selected. Thus, we declare atype 1dent and arelation = 4., inside of IDENT. In
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the constructive type theory on which TYPELAB is based, propositions and types are iden-
tified, therefore the statement of the axiom isin fact a syntactically sugared declaration of
equiv_ax Of type =rgens

We can now turn to the specification of the symbol table itself. SYMTAB, is a specifica-
tion which is parameterized by the specifications IDENT and ATTRIB. As already mentioned
above, specifications are types, parameterization can therefore simply be expressed as A-
abstraction. SYMTAB, specifies a type Symtab, a constant empty, afunction add that adds an
identifier and an attributeto a symbol table, afunctionpresent_p that testswhether thereis
an entry for an identifier in a symbol table, a function Lookup that retrieves the attribute as-
sociated with an identifier from a symbol table, a function change_attrib that, when given
an identifier and an attribute, modifies the value associated to the identifier to the attribute,
and the related axioms. The construct open (ID,ATT) in B makes components of 1D and
ATT visiblein the body B so that they can be referenced directly without an explicit selection
such asID.Ident.

SYMTABy ‘= XID:IDENT,ATT:ATTRIB.
open (ID,ATT) in
SPEC

Symtab: Type,
empty: Symtab,
add: Ident —Attrib— Symtab— Symtab,
present_p: Ident — Symtab—Bool,
lookup: Ident — Symtab— Attrib+,
change_attrib: Ident — Attrib— Symtab— Symtab,

AXIOM axp: Vi:Ident. (present_p i empty) = false,
AXIOM axy: Vi,ig:Ident,ag:Attrib,s:Symtab.

(present_p 1 (add ig ag s)) = ((1I =1dent is) V (present_p i s)),
AXIOM ax3: Vi,ig:Ident,ag:Attrib,s:Symtab.

(present_p i1 (change_attrib ig ag s)) = (present_p i s),

AXIOM axy: Vi:Ident. (lookup i empty) = bottom,
AXIOM axs: Vi:Ident,a:Attrib,s:Symtab.

(lookup i (add i a s)) = (lift a),

AXIOM axg: Vi,ig:Ident,ag:Attrib,s:Symtab. (i =1dent is) = false —
((lookup i (add ig ag s)) = (lookup i s)),

AXIOM ax7: Vi:Ident,a:Attrib,s:Symtab. (present_p i s) = true —
((lookup i (change_attrib i a s)) = (lift a)),

AXIOM axg:Vi,ig:Ident,agAttrib,s:Symtab. (i=r1dent is) = false —
((lookup i (change_attrib ig ag s)) = (lookup i s)),

THEOREM th;: Vs:Symtab,i:Ident,a:Attrib.
(lookup 1 (add i a s)) # bottom
END-SPEC

Stating the theorem in the last line of the specification generates a proof obligation which
can be discharged any time later during the development. A theorem can be used even if it
has not been proved yet. The mechanisms described in Section 3 prevent circular arguments.
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The proof management of TYPELAB keepstrack of unsolved obligations. Open obligations
can be selected in the graphical user interface and fully or partially solved in any order. If
we invoke the TYPELAB prover with the obligation generated for the theorem th;, we enter
the following proof state:

ID:IDENT, ATT:ATTRIB, Symtab:Type
axs:Vi:Ident,a:Attrib,s:Symtab. (lookup i (add i a s)) = lift a
axg:V1i,ig:Ident,ag:Attrib, s:Symtab.

?SYMTABq thi:Vs:Symtab,i:Ident,a:Attrib.
(lookup 1 (add i a s)) # bottom

Here, the global context isabbreviated by ' . . . *, thelocal assumptions are displayed above
the stylized turnstile (some are omitted). The proof obligationisrepresented by the metavari-
able ?SYMTAB, th; which is a placeholder for the proof object that will be constructed. In
this case, the proof object does not have computational contents. Proof objects are useful
if functions are synthesized together with their correctness proof (see below) or if programs
are extracted from proofs.

First we introduce the local assumptions:

tlab? intros;
Command succeeded. Goals: 1 new, 1 open.

axs:Vi:Ident,a:Attrib,s:Symtab. (lookup i (add i a s)) = lift a
s:Symtab, i:Ident, a:Attrib
?1:(lookup 1 (add i a s)) # bottom

We can now use axs as rewrite rule to rewrite (lookup i (add 1 a s)) ingoa ?1to
(1ift a):

tlab? rewrite axs;
Command succeeded. Goals: 1 new, 1 open.

?2: (1ift a) # bottom

Thisyieldsthe new goal 22 with the same local context as of goal 21. It can completely be
solved using the axiom 1ift_ax out of ID: IDENT:

tlab? refine lift_ax;

Command succeeded. Goals: 0 new, 0 open. Q.E.D.
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Now we turn back to the development of SYMTAB, The first step will be to implement
change_attrib by a function that adds the identifier-attribute pair to the symbol table if
the identifier already occurs in the symbol table, and leaves it unchanged otherwise. This
implementation step is achieved by a high-level operator implement that takes the name
of the component to be implemented (change_attrib), the source specification (SYMTAB)
and the expression which implements the function and produces a new specification (called
SYMTAB,) and a function (called sm1to0) which showsthat SYMTAB, isindeed a realization of
SYMTAB,.

implement change_attrib in SYMTABg by
Ai:Ident,a:Attrib,s:Symtab. if (present_p i s) (add i a s) s
yields SYMTAB; and smlto0

Note that the implement operator is not a function defined in the language of TYPELAB,
but just a syntactic device that removes from SYMTAB, the declaration of change_attrib,
aswell as axiomsreferencing change_attrib, textually produces the specification SYMTAB,
and submits it to the type checker (Henke et a., 1995). Thus, except for the components
change_attrib, axs, ax; and axsg, specification SYMTAB, agrees with SYMTAB,,

The refinement mapping sm1to0 is generated in a similar spirit: The components that re-
main unaffected by the implementation are copied, and for change_attrib, its proposed
implementation isinserted. The refinement mapping then reads as follows:

smltol = XID:IDENT,ATT:ATTRIB,sym: (SYMTAB1 ID ATT) .
open (ID,ATT) in
STRUCT
Symtab = sym.Symtab, empty := sym.empty, add := sym.add,
present_p := sym.present_p, lookup := sym.lookup,
change_attrib := Ai:Ident,a:Attrib,s:Symtab.
if (present_p i s) (add i a s) s,

ax] .= sym.ax], axy .= Sym.aXp, ax4 .= Sym.axy,
axs .= Sym.axXs, axg .= Syl.aXg
END-STRUCT :: (SYMTABg ID ATT)

type = I1ID:IDENT,ATT:ATTRIB. (SYMTAB; ID ATT) — (SYMTABy ID ATT)

For given ID:IDENT and ATT:ATTRIB, the refinement mapping sm1to0 converts each real-
ization (“model”) sym of (SYMTAB; ID ATT) toarealizationof (SYMTAB, ID ATT).A Speci-
fication can be understood as a dependent record type (a X type), which generalize Cartesian
products. Accordingly, elements of specifications, structuresin TYPELAB terminology, are
generalizations of tuples. As mentioned above, most of the components of (SYMTAB; ID
ATT), such as sym.empty, can simply be copied to form the corresponding component of
(SYMTABy ID ATT). For the components axs, ax; and axg, Which are required in (SYMTAB,
ID ATT) but have no counterpart in (SYMTAB; ID ATT), the typechecker generates three
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proof obligationswhich are handled in anal ogy to the proof obligationscreated by theorems.
The purpose of the coercion : : (SYMTAB, ID ATT) isjust to enable the typechecker to rec-
ognize which type the given realization is supposed to have, and to make it generate proof
obligationsfor missing components.

Let's prove the obligation generated for ax ; now. The proof easily succeeds by introducing
assumptions, expanding definitions and invoking equational simplification:

axg .= sym.axg:Vi,ig:Ident,agAttrib, s:sym.Symtab.

?smlto0_ax7:Vi:Ident,a:Attrib,s:Symtab. (present_p i s) = true —
(lookup i (change_attrib i a s)) = (lift a)

tlab? intros; expandR;

Command succeeded. Goals: 1 new, 1 open.

axg .= sym.axg:Vi,ig:Ident,agAttrib, s:sym.Symtab.
i:Ident, a:Attrib, s:Symtab
hi: (present_p i s) = true

?5: (lookup i (if (present_p i s) (add i a s) s)) = (lift a)
tlab? egSimplify;
Command succeeded. Goals: 0 new, 0 open. Q.E.D.

Thelast step of the development consistsin producing an executabl e realization. We choose
to implement the symbol table by alist of pairs of identifiersand attributes.

The inductive type of polymorphic listsis predefined in the system by the following state-
ment:

ind [T|Type] List : Type := nil:List | cons:T—List —List;

As abbreviation we can write T* instead of (List T) for the type of lists with elements
of type T. It is now quite straightforward to implement add as the function that attaches an
identifier-attribute pair to the front of alist.

REALIZATION := AID: IDENT, ATTR:ATTRIB.
open (ID,ATTR) in
let (Elem := IdentxAttrib) in

STRUCT

Symtab = Elem*,

empty = (nil Elem),

add = Ai:Ident,a:Attrib,l:Elem*. (cons (i,a) 1)
END-STRUCT :: (SYMTAB; ID ATTR)
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However, it isnot so evident how to realize the functionspresent_p and lookup. We there-
fore submit the incomplete realization to TYPELAB. Apart from proof obligations for ax-
ioms concerning the given function add, the typechecker generates proof obligations that
contain metavariables ?present_p and ?1ookup Which stand for the as yet undefined func-
tionspresent_p and lookup, respectively. We will now show how TYPELAB can be used
to construct the function present_p and to prove its correctness at the same time.

We start with the goal requiring to construct the function present_p and expand the defini-
tion of symtab. It isreasonableto assumethat present_p recursesover its second argument,
so we start an induction over lists.

ID:IDENT, ATTR:ATTRIB,

Elem = IdentxAttrib:Type

Symtab = Elem*:Type

empty = (nil Elem):Elem*

add = Ai:Ident,a:Attrib,l:Elem*. (cons (i,a) 1)

?present_p:Ident — Symtab— Bool
tlab? expandR Symtab; induct 2;
Command succeeded. Goals: 2 new, 2 open.

i:Ident, l:Elem*

?4:Bool
new subgoal 2 is: ?9:Bool

We obtain two new goals, the first one corresponding to the base case. By applying the above
commands, TYPELAB has constructed a partial solutionfor ?present_p:

tlab? show proof-term;
Ai:Ident,l1:Elem*. elimy;¢r (Al:Elem*. Bool) 24
(Ae:Elem, 1y:Elem*,b:Bool. ?9) 1;

This partia solution still containstwo metavariables (?4 and 29), corresponding to what the
function returns for 1,=nil and for 1;=(cons e 1,), respectively. We leave our goal for
a moment, to look at the obligation ?REALIZATION_ax; which has been generated for the
axiom ax; and specifies the behaviour of present_p for an empty symbol table:

present_p := Ai:Ident,li:Elem*. elim;sr (A1l;:Elem*. Bool) 24
(Ae:Elem, 1y:Elem*,b:Bool. ?9)
lookup := ?lookup:Ident — Symtab—Attrib+

?REALIZATION_axi:Vi:Ident. (present_p i empty) = false
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Thelocal context of thisproof obligation containsthe partial solutionprovidedfor ?present_p
so far. Introducing assumptionsand expanding definitions on the right leads to the following
goal, from which we can read off the required solution for metavariable 24 at once:

tlab? intros; expandR;
Command succeeded. Goals: 1 new, 1 open.

i:Ident
?2:(?4 = false)

We can use this hint to solve the base case of the original problem. Finishing this part of the
proof, weturn to the step case, which can be handled in a similar fashion, however involving
some reasoning modul o the reduction relation generated by the list recursor. This reasoning
is currently not automated; a more powerful unification procedure would be desirable here.

Altogether, we have synthesized the following function for present_p:

Ai:Ident,l1:Elem*. elimy;sr (Al:Elem*. Bool) false
(Ae:Elem,1s:Elem*,b:Bool. (i =1dent €.1) V b) 11

Asdemonstrated by the synthesisof thisfunction, the“executable” and “logical” parts of the
calculus interact smoothly, proof construction in both fragments obeys the same principles
and can therefore be handled by the same machinery.

After having completed the realization of the symbol table, we can instantiate its parameter
theories appropriately, for example by choosing strings as identifiers and natural numbers as
attributes.

attrib =
ident = STRUCT
STRUCT Attrib = Nat,
Ident := String, Attrib+ = Error Nat,
=Ident ‘= =String bottom = failure Nat "No entry!",
END-STRUCT :: IDENT lift = success Nat

END-STRUCT :: ATTRIB

For therealization of attributeswe use the predefined inductivetype Error with the two con-
structor success and failure on natura numbersto model the extended domain Attrib+.
Of course we have to prove the axiom 11 ft_ax for thisrealization.

symtab .= REALIZATION ident attrib
sym = add "Martin" 31 (add "Marko" 28 empty)
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The following computations confirm that the functionswork as desired:

tlab> compute (present_p "Marko" symi);
true

tlab> compute (lookup "Martin" symi);
success Nat 31

tlab> compute (lookup "Frieder" symi);

failure Nat "No entry!"

The above development of executable functionsfrom an abstract specification has been car-
ried out in order to present the most important constructs of the TYPELAB specification lan-
guage, to exemplify a certain software devel opment methodology and to demonstrate how
interactive and automated proof techniques are applied.

Interactive proof construction is further facilitated by a pleasant graphical user interface.
There are separate windows for displaying the global context, the current proof state, the
proof tree and much more. The objects presented in the windows are mouse sensitive. For
example, context entries can be shrunk or hidden to save space on the screen. Similarly,
subtrees of the proof tree can be expanded so that individual steps taken by a complex tactic
can beviewed indetail. TYPELAB suggestsappropriate proof rulesor equationsfor rewriting
if subterms of the current goal are activated.

Equational simplificationisthe only kind of automation applied in the above example. Apart
from that, TYPELAB offers proof search in intuitionistic logic, which will be described at
length in Section 4. Based on proof search and equational reasoning, some still quite rudi-
mentary support for inductive proofs has been devel oped.

3 A calculus with metavariables

The example derivation given in Section 2 has demonstrated the usefulness of metavariables
as placeholdersfor proof objects. The concept of proof object hasto be understoodin alarge
sense: A proof object can be afunction that is part of arealization of a specification, it can be
awitness of an existentially quantified variable or a term which encodes logical reasoning,
according to the propositions-as-types principle?.

For these seemingly disparate notions, type theory provides a unifying framework. For this
convenience, a price has to be paid: in a dependently typed logic such as the Calculus of
Constructions that TYPELAB is based on, metavariables can depend on one another. The
solution for one metavariable, say ?n;, can determine the type of another metavariable 7n;
and thusinfluence the set of valid solutionsfor ?n,. A priori, it isnot clear which dependen-
cies among metavariables should be admitted, and whether a partial solution provided for

1Some of the following motivation makes use of terminology introduced in the later sections.



3 A caculuswith metavariables

a metavariable can safely be accepted. The sections below try to clarify these questions by
developing a calculus with metavariables.

An additional difficulty arises from the fact that metavariables not only depend on a type,
but also on a context that determines which variables can legally occur in the solution of the
metavariable. For example, the theorem in specification SYMTAB, of Section 2 depends on
the context that is shown in theinitial proof state.

There are mainly two problems when dealing with context-dependent metavariables, illus-
trated by the following examples:

Example 3.1

Commutativity of instantiation and reduction: Assume that metavariable ?n; is defined to
be of type T in a context containing x : T, that is, x: T =?n1 : T. In anaive approach, first
reducing the term trmy := (Ax: T. 2ng) t to Pn; and then instantiating the result with term x
yieldstheresult x. First instantiating ?n4 to x and then reducing yieldst (the variable x bound
by A-abstraction isthe same object as the variable x bound in the context of the metavariable
—de Bruijnindiceswould give a clearer picture).

{?1:=x}
(AX:T. ) t (AX:T.x)t

{?1:=x}

Notethat this problem is not caused by a particular type system, but arisesin any calculusin
which there is anotion of B-reduction and in which metavariables depend on a context.

&

Example 3.2
Keeping track of type information: Consider a metavariable ?n, defined with the following
context and type:

A:Type T :Typex: T T

Consider thetermtrmy := (AT : Type. Ax: T. 2n2) Aiin context A:Type. When first instanti-
ating 7ny with x and then reducing, the resulting Ax : A. x is easily seen to have type A — A.
When first reducing trmy, however, the question arises what the type of the resulting term
AX:A. ?ny should be. A — T iscertainly not correct, as T does not even occur in context
A:Type. Claiming that ?n, has type A is aso problematic, since then, the term ?n, would
have different types (A resp. T) in different contexts. As opposed to the first problem, this

10



3.1 Termcalculus

difficulty is directly related to the type system and arisesin a similar form in any calculus

with dependent types.
&

To overcome these difficulties, we will keep track of substitutions that have been carried
out in metavariables. Thisleads to a notion of explicit substitution. After reduction, trm;
becomes ;" [x :=t], whereas trmp, becomes Ax : A. ;[T := A]. The calculus developed
in the following solves the above problems, and it will be shown that it has desirable meta-
theoretical properties such as confluence and strong normalization.

A calculuswith metavariables and explicit substitutionsfor Martin-L 6f's monomorphic type
theory is presented by Magnusson (1995), and some agorithms such as unification are de-
fined and shown to be correct. However, the properties of the calculus are not examined.
Ensuring confluence and termination is not just a routine matter; some straightforward def-
initions of simply typed A-calculus with explicit substitutions lack these properties (see for
example (Lescanne, 1994; Mélliés, 1995)).

Section 3.1 is concerned with the behaviour of — not necessarily well-typed — terms, Sec-
tion 3.2 defines typing rules for metavariables. Alternative approaches are conceivable, for
example using a functional encoding of scopes which avoids dependence of metavariables
on contexts. Consequently, no explicit substitutions have to be taken into account. In Sec-
tion 3.4, it will be shown that both representations have the same strength in that thereis a
one-to-one correspondence between them. From a practical perspective, however, a func-
tional encoding of scopes would usualy become very clumsy for al those metavariables
nested deeply inside terms, for example proof obligations generated for theorems within
specifications or metavariables occurring in incompl ete refinement mappings, as in the ex-
ample of Section 2.

3.1 Term calculus

The term language of the logic is built up from a set V of variables, from type constants
Prop and Type (i > 0), denoting universes of propositions and types, of dependent prod-
uct types (TT types) which generalize universal quantification and dependent record types (Z
types) which are used to model specifications. On the level of elements of types, we have
A-abstraction, function application, pairing and projection. In addition to these term con-
structors, already present in the core logic as defined in (Luo, 1994), a set M of metavari-
ables is introduced. Metavariables ?n,?m,... € M are placeholders for terms to be con-
structed.

The syntax of the calculus with metavariables is then defined by the grammar of Figure 1.
Oneof the productionsfor terms T permitsto build terms of theform ?n o, which expresses
that the application of substitution ¢ to metavariables ”n has been delayed. Substitutionsare
generated by production S. By this construction, a substitution effectively becomes a part

11



3 A caculuswith metavariables

T ==V
| Prop| Type
| TV:T.TIAV:TT|(TT)
| ZViTT | pair 1(T, T)[r o(T) [ m2(T)
| M~S
S = []IIV:=T]:S

Figure 1. Grammar of language with metavariables and explicit substitutions

of aterm and can be reasoned about in the calculus. This notion of explicit substitutions
has to be distinguished from the traditional notion of substitutions, which are defined as
meta-operations on terms. It should be remarked that substitutions can only be attached to
metavariables and not to arbitrary terms. This distinguishes our calculus from (to our best
knowledge) all calculi of explicit substitutionspresented in the literature.

To improve readability, we sometimes write vx : A.B instead of I1x: A. B, or A— B if x does
not occur in B. Metavariables with empty substitution, ?n~[ ], will often be abbreviated as
.

For proving properties of the term calculus, such as confluence, it will be convenient to
assume that there is a function svars which associates to each 7n € M allist of variables
that may be substituted into ?n, the substitutions for other variables being discarded (cf.
Definition 3.4). When considering well-typed termsin Section 3.2, it will turn out that this
list of variablesisnaturally given by the context on which ?n depends.

We can now define explicit (or internal) substitutionsmore formally as follows:
Definition 3.3 (Internal Substitution)

An internal substitutionisalist of the form [x1 :=1t1,...X, := t,] associating terms to vari-
ables. A substitutionc = [X1 :=t3,...Xy :=ty] isvalid for ametavariable 7n if:

1. All thevariablesx; are distinct.
2. All the variablesx; are contained in svars(?n).

3. If x; occurs before x; in o, then x; occurs before x; in svars(?n).

The domain of a substitutionis defined to be the set dom(c) := {X1,...Xn}.

12
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Since subgtitutionsin our calculus are only internalized as attachment to metavariables to
expressthat a substitutionis delayed, we cannot completely dispense with an external notion
of substitution.

Definition 3.4 (External Substitutions)

A substitution 6 := {x := s} homomorphically maps over terms as usual. On metavariables,
it is defined as follows (we assume that x ¢ {y1...yn} and will from now on enforce this
requirement when applying substitutions):

e If x € svars(?n) and x is declared between y; and y;i1 in svars(?n):
(M7 [y1:=1,...yn=tp])o 1=
?nﬁ[yl =10,.. Y= fio,xX:= S,Yit1 = 1;i_|_1(j7 coYni= tnG]

o If x ¢ svars(™):
(M7 [y1:=t1,...¥n ' =1ty])o 1=

My i=110,...Vh = tho]

¢
In order to distinguish external substitutionsfrom the internalized explicit substitutions, we
write the former in braceslike {...} and the latter in bracketslike[...]. However, the |etters

o and t will be used indiscriminately for both kinds of substitutions.

We assume that the reader is familiar with standard notions of A-calculi such as one-step
reduction —1, parallel one-step reduction =1, reduction — (the reflexive-transitive closure
of —1) and convertibility ~ (cf. Barendregt 1984). The Church-Rosser property ensures
that two diverging computation paths can always be joined again. If reductions of the strict
part of — awaysterminate (which indeed they do, see Proposition 3.18), then normal forms
are unigque. Thisway, convertibility of two terms can be decided, by reducing them to normal
form and comparing the normal forms syntactically. The following result can be established
by an adaptation of a method originally devel oped by Martin-L 6f and Tait:

Proposition 3.5 (Reduction is Church-Rosser)

Thereduction relation — satisfies the Church-Rosser property.

3.2 Typing

Typing judgements of theform 't : T are used to expressthat term t isof type T in context
I', where T" is a list of declarations of the form x; : Ty, ..., X, : To. Typing judgements are
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3 A caculuswith metavariables

inductively generated by typing rules such as the following (A) rule, which expresses how
elements of dependent product types are introduced.
Ix:AFM:B )
I'-Ax:AM:TIx: AB

By the propositions-as-types principle, which interprets propositions as types and elements
of propositions as proofs, the rule can also be understood as saying that a A-abstraction
provides a proof trace for the introduction of a universal quantifier.

As opposed to the situation encountered in less complex calculi (such asthe simply-typed A-
calculus), there can beintricate dependenciesamong metavariablesin cal culi with dependent
types. In particular, the type of one metavariable can depend on the val ue assigned to another
one, and the well-typedness of a context can depend on the val ue assigned to a metavariable.

Before stating typing rulesand examining their properties, some restrictionson dependencies
among metavariables have to be imposed which are strong enough to make verification of
the correctness of solutionsfor metavariablespossible. Therestrictionsshould be sufficiently
liberal so that dependencies among metavariables can be exploited for proof search.

Example 3.6
Consider the (3R) rule (cf. Section 4.3):

FI—’?nle FI—?nZ:P(?nl)
I'F2no:3x: AP(X)

(3R

Application of this rule introduces two metavariables ?n1 and ?n,, where ?n, depends on
2y since 7y € MV (P(?nq)) (here, MV/(.) is the set of metavariables occurring in a term or
context). If there is a declaration of the form h: P(a) in T, then ?n, can be solved with h,
leading to an assignment ?n; := a as a Side-effect.

&

Example 3.7

Starting from the (academic) formula3P : Prop, Q: P — Prop,x: P.(P — Q(x)), eliminating
existential quantifiers (asin the exampl e above) and introducing assumptions, one obtainsthe
following set of metavariables:

F?P: Prop

F2Q:?P — Prop

F2X:?2P

h:?2PE2n:2Q(7X).

One step that suggestsitself now is to equate ?n with h and consequently ?P with 2Q(?x),
leading to a new proof problem with F?Q :?Q(?x) — Prop and - ?x :?2Q(?X), in which the

14



32 Typing

dependency of metavariablesis cyclic. There is no intuitive interpretation of such a proof
problem, nor does it seem clear that tentative solutions of such a proof problem can effec-
tively be verified.

&

In the sequel, we will permit proof problems with metavariable dependencies of the first
kind, but will exclude circularities of the second kind.

Let us emphasize again that a metavariable depends on a context T" and has a type T, as
expressed by the more suggestive notation T'"H?n: T. In the course of a proof, metavariables
occurring inT" or T can be instantiated. Therefore, a context and a type are not invariantly
assigned to a metavariable ?n by functions depending only on 7, but they are determined by
the proof problem under consideration, as reflected by the following definition.

Definition 3.8 ((\Valid) Proof Problem)
A proof problem P isatriple (M p, ctxtp,typep ) consisting of:

e A finite set of metavariables Mp
e A function ctxtp assigning a context to each ?n € Mp

e A functiontypep assigning aterm to each ?n € Mp

The subscriptsin Mp , ctxtp ,typep will be omitted whenever P isclear from the context.

For aproof problem P and ?n1,?n, € Mp, therelation <p isdefined as:
M <p?y iff g e MV(ctxt(?ny)) or g € MV (type(?ny)).
Let <p be defined asthe transitive closure of <p.

A proof problem P iscaled valid if < p isan irreflexive partial order.
¢

The proof problem P; with the set of metavariables {?n;,7n,} as given in Example 3.6 is
valid, with ?ny <p, 2, since n; € MV (P(?n1)). Regarding Example 3.7, the proof prob-
lem Py = (My, ctxtz, types) has My = {2, 2Q}, ctxtz(?X),ctxt2(?Q) the empty context and
typex(?x) = (?Q ?x) and typex(?Q) =?2Q(?x) — Prop. P2 isnot valid, since 2x <p, ?x.

Unless stated otherwise, we will only consider valid proof problemsin the following. Since,
for every valid proof problem P, the set Mp is finite and the order <p is transitive and
irreflexive, it is aso well-founded on Mp. This fact can be used to show termination of
certain functionsinvolving metavariables. In particular, the definitionsmade in the following
can be shown to be well-defined.

The typing rules for metavariables with explicit substitutionsare shown in Figure 2. Typing
rulesfor metavariables are added to the typing rules of the base logic (Luo, 1994) in a* mod-
ular” fashion, that is, without making a modification of the base rules necessary. The typing
rules for metavariables can be motivated as follows:

15



3 A caculuswith metavariables

ctxt(7n) Ftype(?n) : Type;
ctxt(?n) =207 [ ] : type(?n)

(MV-base)

z¢ dom(T") Udom(A) Udom(o)
I'ET : Type; IAFMM™o:N
Iz:T,AF?n"c:N

(MV-weak)

r=t:T Ix: T,AF?7n"c:N
[LA{x:=t}- (M o){x:=t} : N{x:=t}

(MV-B-Red)

Figure 2: Typing rules for Metavariables

MV-base A metavariable ?n with empty substitutionis typecorrect in case its defining type
type(?n) and, consequently, its defining context ctxt (?n) are well-typed.

MV-weak Theweakening rule, whichisadmissiblefor the baselogic, isexplicitly added for
metavariables. Its effect could aswell have been encoded into the rules (MV-base) and
(MV-B-Red).

MV-B-Red This rule simulates the behaviour of B-reduction. To illustrate its effect, we re-
sume Example 3.2 which leadsto a type-incorrect term when treated naively.

Assume, then, that the term ((AT : Type Ax: T. ?n) A) has to be reduced to normal
form, where A: Type, T : Type,x: TH?n:T. Notethat thetype of thistermisA— A.
B-reductionyieldstheterm Ax : A. 2n™[T := A]. The derivation of itstype reflects the
procedure of B-reduction — with the sole difference that T : Type and x : T are not
bound locally by A-abstraction, but globally in the context:

A:Type-A:Type A:TypeT:Typex:TE2n []:T
A:Typex: AEM [T :=A: A (MV-B-Red)
A:TypeFAX:A. T[T =A:A=A

The observation suggested by this example — the type of terms is invariant under re-
duction —is confirmed by Proposition 3.10 below.

At first glance, the rules do not appear to have an appropriate form for typechecking. In
particular, the rule (MV-B-Red) seems to require guessing a substitution {x :=t}. It can
however be shown that efficient typechecking of judgementsT'-?n"c : T isindeed possible
by starting with the judgement ctxt (?n) -2n"[ ] : type(?n) and incrementally building up the
expected substitution ¢ by applying rules in the forward direction.
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3.3 Solutions of metavariables

Altogether, the extended cal culus preserves the pleasant properties of the base calculus, such
asthefollowing, all of which can be proved by rather straightforward inductive arguments:

Proposition 3.9 (Decidability of Type I nference and Type Checking)
e Given aterm t and a context T, there is an algorithm that determines whether t is
well-typedin I" or not and, in the first case, computesthe principal typeof t inT.

e Givenatermt, atype T and acontext I', there isan algorithm that determines whether
I'~t: T holdsor not.
&

Proposition 3.10 (Subject Reduction)
IfI'=M:Aand M—N, thenTHN : A.

3.3 Solutions of metavariables

Definition 3.11 (Instantiation)

Aninstantiation? 1p for avalid proof problem

P = (Mp,ctxtp,typep) is a function mapping the metavariablesin Mp to terms, subject to
the requirement that for every metavariable ?n € Mp:

e if 1p(?n) =t and 7me MV(t), thenp (?m) =7m

The notation for instantiations is comparable to the notation for substitutions: If Mp =
{?,... 2}, thenp iswrittenas {?n; :=t3,...2n := t}. Whenever P isunderstood from
the context, the subscript is omitted from 1p.

Instantiationsare inductively extended to terms as follows:

(
e 1(Prop) = Prop, 1(Type) = Type
e ((Qx:T.M)=Qx:1(T).y(M) for Q € {A,I1,X}
e (fa)=(1(f)(a))
e 1(pairt(ty, t2)) = pair,T(1(ts), t2))
(

[ ]
-

mi(t)) = m((t)) fori=1,2

2The term instantiation has been chosen to distinguish instantiation of metavariables from substitution of
variables

17



3 A caculuswith metavariables

e UM X =t X =) = UM {X = 1(ty) ... X% = 1(ty) }

This definition can be extended to contexts in an obvious manner.

&

Note in particular that no renaming of bound variablesis carried out: As opposed to substi-
tutions {x := s}, which must not be applied to termsin which x isbound (see Definition 3.4),
variables occurring in theterm t of an instantiation {?n :=t} have to be interpreted relative
to the defining context of 2n.

Definition 3.12 (Instantiation of proof problems)
Assume that P = (M p,ctxtp,typep) is avalid proof problem and 1 an instantiation for P.
Theinstantiationti(P) = (M p, ctxt) , typeb ) is defined to be the proof problem consisting of:

e Mp :={™Me Mp[i(M) ="}
e ctxtp isdefined as the function which, for 2n € Mp, yieldsi(ctxtp (7))

e typeh isdefined asthe function which, for 2n € Mg, yieldsi(typep (7))
%

Intuitively, if P isa proof problem, then1(P) isthe proof problem that remains after provid-
ing apartial solutiont.

Example 3.13
Assume the proof problem P is given by:

A:Type P:A— Prop,a: Ah: (Paj-1: A
A:Type P:A— Prop,a: A h: (Pa)-7y: (P?y)
and theinstantiationtp by {?n; :=a}. Then P’ :=1p (P) isthe proof problem consisting of:
A:Type,P:A— Prop,a: A/h: (Pa)F™,: (Pa)

It can be solved by another instantiationip: := {?n, := h}.
%

The notion of instantiationis not related to type correctness. Thisisremedied by the follow-
ing definition:

Definition 3.14 (Valid / Welltyped I nstantiation)
Let P = (Mp,ctxtp,typep) be avalid proof problem.

e Aninstantiationtiscalled validif 1(P) isavalid proof problem.

18



3.4 Functional encoding of scopes

e Aninstantiationt is called well-typed if, for every ™n € Mp,

w(etxtp () () < (typep ()
¢

As a consequence of the following proposition, it is sufficient to verify instantiations“lo-
cally”, i.e. for metavariables only, to ensure typecorrectness “globally” for al termsto which
instantiationsare applied.

Proposition 3.15 (I nstantiation preservestyping)
Let P be a valid proof problem, T', t and T be a context resp. terms in which at most
metavariables from P occur, and 1 awell-typed instantiation for P.

o IfT'Ht:T holds, thenalso (") F1(t) :1(T).

e 1(P) isawell-typed proof problem.
%

These definitions and propositions provide the foundations of incremental proof construc-
tion. They ensure that, whenever metavariables are solved with valid, well-typed instantia-
tions, no type-incorrect terms can result.

3.4 Functional encoding of scopes

In the following, a functional representation of scopes will be examined. The general idea
is to replace a metavariable ?n of type T which depends on assumptionsxy : Ty, ..., Xk : Tk
by a metavariable ?F which is of functional type ITx; : Tz...TIX : T. T and which does not
depend on assumptions.

Example 3.16
Thisprocedure can best beillustrated by an example. Consider the following proof problem:

A:Type P:A— Propk-?p:Vva:A3x:A(Pa) — (PX)
This problem can be decomposed into the subproblems:
A:Type P:A— Prop,a: A-".: A

A:Type P:A— Prop,a: A-?y: (Pa) — (P?y)

It can easily be verified that 2n; := a and ?np := Ay : (P a). y are welltyped instantiations.
The problem can also be stated with metavariables ?F; and ?F, which are the functiona
analogues of ?n; and ?n, and which are defined by:

F?F i TIA: Type,P: A— Prop,a: AA
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3 A caculuswith metavariables

F2F (TIA: Type,P: A— Prop,a: A.(Pa) — (P (?FL AP a))

The solutions of this proof problem are 7F; := AA: Type,P: A— Prop,a: A.aand 7/, ;=
AA: Type,P: A— Prop,a: ALy: (Pa).y. 5
Thisfunctional trandation can be defined more formally as a mapping taking termst toterms
f and proof problemsP to proof problemsP. Furthermore, it can be shown that this mapping
is type-preserving and that there is a one-to-one correspondence between solutionsof P and
solutionsof P.

A benefit of a functional representation of scopesis that substitutions cannot take effect in
metavariables: ?Fc will always be the same as ?F, since al the variablesin the domain of
© cannot occur free in asolution of 2F. Thus, under afunctional representation, thereis no
need to explicitly record substitutionsapplied to metavariables — atogether, the calculus es-
sentially behaves like a cal culus without metavariables. These advantages have to be traded
against the difficulties incurred when dealing with metavariables that depend on many local
assumptions, such as the metavariables created for theorems in specifications or metavari-
ables created as typecorrectness conditions in refinement mappings (see the examples in
Section 2).

A functional encoding of metavariablesis used in many algorithmsand systemsdealing with
proof search in higher-order logic. Only recently have there been attempts (Dowek et al.,
1995) to restate unification algorithms for the simply typed lambda calculus in terms of
calculi of explicit substitutions. The transformation of metavariables into a functional en-
codingisclosely related to “lifting” as presented by Paulson (1989). Miller (1992) examines
methods of exchanging existential and universal quantifiersand developsasimilar technique
caled “raising”.

By showing that the reduction relations are preserved under the functional translation, it
can be shown that, since the calculus without metavariables is strongly normalizing, so
is the calculus with metavariables and explicit substitutions. The following lemma shows
how to simulate reductions in the calculus with metavariables by reductionsin the calculus
with metavariablesin functional representation, whichwewill call “ essentially metavariable-
free’.

Lemma 3.17 o
If M=1M’ and M # M’, then M=>1M’ and M # M'.

¢
Proof:
By induction on the generation of =-. O
Proposition 3.18 (Strong Nor malization)
The calculus with metavariables and explicit substitutionsis strongly normalizing.

¢

Proof:
Assume, to the contrary, that there isawell-typed term M which permits an infinite sequence
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4 Automated Proof Search

of reduction steps: M = Mg=1M1=-1..., with M; # M;1. It can be shown that the term
M is well-typed in the essentially metavariable-free calculus, and by Lemma 3.17, there
is an infinite sequence of well-typed terms M = Mp=1M1=>1..., with Mj # Mi;1. This
contradicts the strong normalization property of the essentially metavariable-free calculus.

a

4 Automated Proof Search

In this section, automation of proof search will be examined. The kind of automation we are
aiming at should integrate well with theinteractive proof construction presented in Section 3,
and it should lead to practically useful procedures, even if completeness has to be sacrificed.

Previouswork includesinvestigationscarried out by Pym and Wallen (1991) on proof search
inthe AIT calculus. The proof procedure does hot make appeal to typing rulesas presentedin
Section 3.2 to ensure that solutions of metavariables are welltyped in the metavariable-free
fragment, but instead uses a complex consistency criterion which is based on permutability
of rules. Dowek (1993) develops a complete search procedure for all systems of the A-cube.
For the Calculus of Constructions, this proof procedure has a possibly infinite branching
factor which can be avoided when giving up completeness. Even though both approaches
(Pym and Wallen, 1991) and (Dowek, 1993) use context-dependent metavariables as we do,
the problems related to substituting into metavariables are not addressed by a calculus of
explicit substitutions.

Contrary to the procedures defined by Pym, Wallen and Dowek, we have deliberately chosen
a formulation which includes the usual logical connectives and is not restricted to the ele-
mentary term constructors of the logic, viz. essentially I'T-abstraction and its non-dependent
version, implication. This makes this calculus amenable to traditional proof search tech-
niques and optimizations.

In Section 4.1, we will shortly review unification. In Section 4.2, a sequent (or Tableau)
calculus will be developed. Usually, in sequent calculi an Eigenvariable condition has to
be satisfied. The discussionin Section 4.3 will show that this proviso need not be enforced
explicitly, since al derivations with typecorrect instantiations in the sense of Section 3.3
respect it. The main emphasisin the following is on conveying an idea of how the apparatus
developed so far can be used for automated proof search, and not on providing details of
efficient search procedures.

4.1 Unification

Let us briefly point out how unification can be defined in our framework so as to produce
welltyped instantiationsin the sense of Definition 3.14.
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4 Automated Proof Search

Unification of termsty, t, consistsin finding an instantiation for the metavariables occurring
inty or ty such that t; and t, are equal modulo convertibility. In order to be able to develop
a correctness criterion, we suppose that the metavariables of t; and t, stem from awelltyped
proof problem Pg. It isfurthermore assumed that t; and t, are welltyped in acontext I', even
though their types need not agree at the outset.

Definition 4.1 (Unification Prob[)em)

A unification problem (Po, Tt =t,) isa pair consisting of a welltyped proof problem P
and a unification equation Fl—tlz?tz, whereT"isavalid context, t; and t, are termswelltyped
inT and all the metavariables of T',t;,t, are among the metavariables of Py,

&

The rules defining the unification algorithm will use ajudgement of theform (Po, T't; 2 to)

= Pq;11, which expresses that the unification problem <Po,1“l—t1:?t2> can be (partialy)
solved by instantiation 11, leaving open the metavariables of the proof problem P;. Asan
example, consider the unification rule for A-abstraction in Figure 3.

<P0,F|—A1:?A2> = Pl;ll
<|:)1,l1(1_‘7 X1 . All— Blz? Bz{Xz = X1})> = Pz;lz
<P0,F|—7\,X1 AYH Blz?KXZ C Ao, Bz> = Pz;lz

(A=2)

ctxt(Pn)-t: T

(Po, T-type(?n) :?T> =Pyu
valid(yyu{?n:=t}, Pl)
L:=uU{M:=t} Py:=1(P))

<|:)07 '+ %;w =Py

(MV —term)

Figure 3: First-order unification

In order to unify a metavariable ?n and an arbitrary term t (rule (MV-term)), the type of n
and thetype T of t arefirst unified, yielding an instantiation . It still hasto be verified that
the instantiation1; U {?n:=t} isvalid, in particular that it passes the occurs check implicit
in Definition 3.11 and that the resulting proof problem P, satisfies the acyclicity condition
of Definition 3.8. It can then be concluded that the instantiation1, :=1;U{?n:=t} isvalid
and well-typed in the sense of Definition 3.14.

Altogether, the rules satisfy the following invariants, which can be understood as stating the
correctness of the unification algorithm.
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4.2 Tableau-style proof search

Proposition 4.2 (I n?variants of Unification) ,
Assume (Po, T-t3 =ty) isaunification problem. If (Po,T'-t1=t2) = P3;14, then:

e 1 isavalid, well-typed instantiation for Py.
° ll(tl) ~ ll(tz)

e P;isavalid, well-typed proof problem.
&

To some extent, the rules can be adapted to incorporate higher-order aspects, for example
unification in the simply-typed A-calculus (see (Huet, 1975; Nipkow, 1993) and also (Pfen-
ning, 1991)). Thisalso entails some modifications of the invariants of Proposition4.2. Thus,
completeness of unification can be achieved for alarger part of the language than the essen-
tially first-order fragment considered above.

An invariant of our unification algorithm is that two terms are only unified after a unifier
for their types has been established. In some cases, this prevents simplifications such as
leaving equations as constraints that can be solved later on in the course of the proof. This
requirement isrelaxed in the proceduresfor the calculus L F of Elliott (1989) and Pym (1990)
which, however, leads to considerably more complex algorithms.

4.2 Tableau-style proof search

This section develops a Tableau calculus appropriate for proof search. For a better under-
standing, the Tableau calculus is first given in a familiar presentation as a set of sequent
rules. A formulation as proof transformation system establishes the connection with the ter-
minology of the preceding sections. This section only considersthe quantifier-free fragment,
whereas Section 4.3 discusses problemsrelated to quantifiers. For lack of space, only some
of therules are presented in an exemplary fashion.

Although the core language of TYPELAB does not include the usual logical connectives and
the existential quantifier as term constructors, these can easily be defined by an encoding
which dates back to (Prawitz, 1965). For example, AA B can be defined asTIR : Prop.(A—
B — R) — R. It can be shown that this encoding corresponds to the usual definition of the
connectives by means of natural deduction rules. Thus, for the above definition of conjunc-
tion, the following rules are derivable (with appropriately defined andl, andEl and andEr):

'Fa:A TEb:B (Al)
I'(andl ab):AAB

I'-p:AAB
' (andEl p):A

For the other connectives, similar rules are derivable.

I'-p:AAB
I'(andEr p):B (RET)

(AEI)
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4 Automated Proof Search

l“l—?nle Fl—?nziB
TF2:AAB

(AR)

I,p:AAB,T,pa:A ps:BFM1:G (AL)
I,p:AABT'E?g:G

Figure 4: Tableau rules for conjunction

Natural deduction rules can be divided into introduction rules (e.g. (Al)) which say how a
connective can be constructed, and elimination rules (e.g. (AEl) and (AEr)) which say how
a connective can be decomposed. A well-known disadvantage of natural deduction is the
lack of a subformula property in its elimination rules. Thus, for performing “backwards’
proof search, applying rules from the conclusion towards the premisses, formulae have to be
guessed, such as formulaB in (AEl) and formulaAin (AEr).

Sequent calculi as defined by (Gentzen, 1934) replace the schema of introduction-elimination
rules by a schema of Left-Right rulesin which connectives are decomposed on the | eft resp.
right side of a sequent. In our case, the interpretation of I'-?n: T as a sequent is obvious.
The Right rules are identical to the introduction rules of the natural deduction calculus. An
application of a Left rule to aformula F, or more precisely, to a context entry x: F in T
does not lead to aremoval of thiscontext entry from I, since x might appear elsewhereinT.
Rather, new context entries are added at the end of I". Thistwist of representation makes it
more appropriate to call our calculus a Tableau calculus.

The rulesfor conjunction are displayed in Figure 4. Associated with each ruleisaterm (cf.
Figure 5) which spellsout how a solution of the metavariable ?ng in the conclusion of therule
can be obtained from solutionsof the metavariables (?n; and ?n; resp. ?n;) of the premisses.
The correctness of (AR) and (AL), when interpreted as derived rules, can immediately be
verified by typechecking their solution terms.

(/\R) Mo = (andl Zall ?nz)
(AL)  ?ng:= (Apa: A, ps:B.7ny) (andEl p) (andEr p)

Figure 5: Solutions associated with the proof rules

More formally, Tableau-style proof search can be related to the notions developed in Sec-
tion 3 by presenting the rulesin the form of a proof transformation system. A transformation
rule Po;19 = P1;11 (possibly containing side conditions) expresses that proof problem P g
and instantiation 19 can be transformed to proof problem P, and instantiation 1; when ap-

24
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plying a proof rule backwards. The transformation rules corresponding to the proof rules of
Figure 4 are displayed in Figure 6°.

PU{FI—?no ZA/\B};IO
1 :=1W{?M:= (andl 7ny )}
= tl(PU{FI—?nle, 'y B});ll

PU{l,p: AAB,T'F29:G};10
1 =1W {2 = (Apa: A ps:B.7n1) (andEl p) (andEr p)}
= u(PU{l,p:AAB,T',pa:Aps:B-M1:G})u

Figure 6: Rules of Transformation System

We can state invariants of the proof transformation system, similar to the invariants for uni-
fication (Proposition 4.2) but technically more involved. As a special case, the following
proposition expresses that an automated proof search procedure which is started on a goa
I'-7ng : G and succeeds in solving it completely, constructs a well-typed proof term t for
Mo.

Proposition 4.3 (Correctness of Proof Search)
If {TF?7M0:G}{} = {};{Mp:=t}, thenTt:G.

&
So far, we have neglected questions regarding completeness. The introductory remarks of
Section 4 have given some plausibility to the claim that procedures which are complete for
the whole logic become too unwieldy to be practically useful. The identification of suitable
fragments which lend themsel ves to compl ete proof methodsis atopic of current research.

4.3 Quantifiers in sequent rules

In traditional presentations of Sequent Calculi, the rules (VR) and (L) are usualy stated
with an “Eigenvariable condition”. Typically, therule (VR) isthen given by:

I'FB(2) VR
I'=Vx. B(x) (VR
under the proviso that the fresh variable z does not occur in T". In this section, we will
examine how the Eigenvariable condition is enforced in our calculus. The quantifier rules
aredisplayedin Figure 7.

3The combination 1« of two instantiations 1, k performs the necessary instantiations of « within 1 and vice
versawhich ensure the idempotency of the resulting instantiation.
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'E2ng:A T2 P(?2nl) R [, x: AF21:B(X)
I'F2n0:3x: AP(X) (R I'F2no:TIx: A. B(X)

(HR)

Cop:3X:T.PX),Ty:T,p :Ply)F2m:G

L
[p:3Ix: T.P(x),I"F2p:G (BL)
[, p:Ix: A B(x),["+?n1:A
[ p:IIx: A B(x),I",p : B(?n) - 72:G (L)

[ p:IIx:A B(x),["F2n9:G

Figure 7: Tableau rulesfor quantifiers

Since the argument leading to Proposition 4.3 can be used to show the correctness of the
associated proof transformation system, this section does not provide an additional proof,
but rather an illustration for one aspect of correctness. Since most of the considerations are
independent of typing, we will omit type information whenever convenient.

Example 4.4
As an illustration, we will use the following formulas throughout this section, the first of
which: ¥x.3y.x =y isvalid, the second of which: Ix.Vy.x =y isnot.

¢

In traditional Tableau calculi, Skolemization is used to eliminate a universal quantifier by
keeping track of existential quantifiers on which it depends. Skolemization* expresses that
the formula 3x.vy.P(x,y) isvaid iff 3x.P(x, f(x)) isvalid, where f is afresh function con-
stant. There are two impedimentsto using Skolemization in our framework. Thefirst isthat
it is hard to justify the introduction of a new function constant f proof-theoretically. When
considering, in atyped calculus, thetransitionfrom 3x: A.Vy: B. P(x,y) to3x: A.P(x, (X)),
we make a claim as to the existence of afunction f : A— B, for which we have no direct
evidence. The second reason for not using Skolemization, of a more practical nature, is that
it can blow up formulae and make them difficult to understand.

The method that is implicit in our approach is to describe the dependence of existentia
variables on universal variables. A proof obligationxy : Ty, ..., X : Tk ?n: T expresses that
the existential variable ?n occurs in the scope of the universal variables xj,...,xx and can
only be solved by terms in which at most xi, ..., X« occur free. The examples demonstrate
the procedure: In the first example, the proof succeeds because ?y can be unified with x.

X:THEdY T X:THE @ x=%
X:THE?2m : dy: Tx=y
F?2o @ VX:T.dy: Tx=y (VR)

(3R

4The dual variant of Skolemization in which existential quantifiers are eliminated and which preserves satisfi-
ability is commonly found in refutational theorem proving.
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In the second example, however, ?x does not unify with y because y does not occur in the

context of 2x.
y:TE?, i X=y

F2x: T F2ng @ Wy T. &=y
F2o @ IX:TVy: Tx=y

(VR)
(3R

Again, this dependence could be made explicit by a functional encoding of scopes, as for
example in the I sabelle system (Paulson, 1994). The observations of the above example can
be generalized to the following proposition, which expresses that no well-typed instantiation
of metavariables can violate the Eigenvariable condition:

Proposition 4.5 (Eigenvariable Condition)
AssumeT’, x : Aisavalid context with occurrences of metavariables 2my,...2m¢inT". Then
there is no well-typed instantiation1 of 2my, ...2my such that x occurs free in ((T")

¢
Pr oof:
SinceT’,x: Aisavalid context and 1 avalid instantiation, by Proposition 3.15, 1(T') isavalid
context and thus cannot contain a free occurrence of x. O

It isworth noting that our approach gives arather direct criterion to verify that Eigenvariable
conditions are respected, as opposed to indirect criteriaimplicit in the methods of Pym and
Wallen (1991) and Shankar (1992) which encode permutabilitiesof rule applicationsin their
proof search procedures. Even though rule permutabilitiesare not used to ensure correctness,
they can be exploited to optimize proof search. In particular, they can help to recognize when
goals cannot be satisfied even by application of aternative proof rules, thusavoiding useless
backtracking. Details are atopic of current research.

5 Comparison

There are several criteriaby which TYPELAB can be compared to other systems, one of them
being the underlyinglogic. Systemswhich are based on atypetheory are NUPRL (Constable
et a., 1986), CoqQ (Barras et a., 1997), LEGO (Pollack, 1994) and ALF (Magnusson and
Nordstrém, 1994). NuPRL and CoQ provide powerful automation for fragments of the
logic and permit to extract programs from proofs, but do not allow for a direct construction
of objects with the aid of metavariables. In LEGO and ALF, proof construction essentially
consists in finding appropriate instantiations for metavariables, further automation is not
available. TYPELAB aims at a synthesisof these approaches.

Several systems pursue similar objectives as TYPELAB, but use different logics to attain
them. HoL (Gordon and Melham, 1993) and ISABELLE (Paulson, 1994) are based on the
simply-typed A-calculus. Using simpler logicseliminates some of the technical difficultiesof
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typechecking and proof search, at the expense of areduced expressiveness of the language.
By using a system based on a sufficiently rich metalogic as logical framework and encoding
an object logic in it, much of the expressiveness can be regained. Even though systems like
IsABELLE offer considerable support, the effort to provide a high-level proof and devel op-
ment environment tailored to a complex object logic is then comparable to writing a system
from scratch.

Another approach to circumvent limitationsof the base logicisto provide some extra-logica
features. Thisisexemplified by | sabelle'stype classes (Nipkow and Prehofer, 1995) and till
more by the PV'S system (Owre et al., 1992, 1995): Semantic subtypes and theory expres-
sionswhich can be parameterized by typesand values are grafted on the corelogic of PVS, a
simply-typed A-calculus. Thisgives PV S much of the expressiveness of a dependently-typed
calculus. However, having constructs available in the logic and not simulating them on the
meta-level often gives a clearer picture of the semantics. Also, limitations of the language
are sometimes dictated more by the implementation than by logical necessity. The possibil-
ity to parameterize theories by other theories and to define morphisms between theories in
TYPELAB areacasein point.

A notion of specification or theory, even though externa to the underlying logic, can be
found in several systems, for example OBJ (Goguen and Winkler, 1988) (based on an equa-
tional logic), IMPs (Farmer et a., 1993) (simply typed A-calcuus) and PV S. TheKiv system
((W.Reif et al., 1998)), based on Dynamic Logic, provides an environment for modular soft-
ware development. Central concepts are parameterized specifications, implementations and
modules, the latter corresponding closely to the refinement mappings of TYPELAB.

The example of Section 2 has shown how a function can be developed together with a proof
of its correctness. However, TYPELAB currently does not support extraction of programs
from proofs. In the context of the Calculus of Constructions, this topic has been studied
extensively by Paulin-Mohring and Werner (1993). The system CoqQ trandlates proofs in
the Calculus of Constructions to an intermediate language (actually, the System F (Girard
et a., 1989)), removing non-constructive proof information and flattening some dependent
typing. From thisintermediate language, ML code can be generated. Asdemonstrated by the
MINLOG system ((Benl et al., 1998)), program extraction succeeds with quite sparse logical
means, and even by using classical reasoning. The resulting programs can be surprisingly
efficient, but some non-trivial transformations of the proof are required to obtain them.

6 Conclusions

This report has provided a survey of the TYPELAB system. The example in Section 2 has
shown several stylesof program development supported by Ty PELAB, such asdirect coding
of afunction, a posteriori verification and execution of the function, or stepwise refinement
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of specifications by interleaving the development of a function and solving associated proof
obligations.

This example has also served as a motivation for the use of metavariables in the TYPELAB
system. Metavariables can occur nested deeply inside terms, depending on a great number of
local assumptions. Therefore, common techniques such as a functional encoding of scopes
are not appropriate here. Some problems arising from a naive use of metavariables have been
identified, and a calculus with explicit substitutions has been presented to solve them (Sec-
tion 3). This calculus has desirable properties such as confluence and strong normalization,
and it provides a foundation for an automation of proof search (Section 4) in that it directly
ensures some conditions such as the Eigenvariable proviso for quantifier rules.
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