
Formal Veri�cation of a

Coordinated Atomic Action Based Design�

E� Canver

Abteilung K�unstliche Intelligenz

Universit�at Ulm

Ulmer Informatik�Berichte

Nr� �����

March 	
� ����

Abstract

Coordinated atomic actions �CAAs� have been used in a semi�formal way for the design of
the production cell case study� This paper presents a formal speci�cation and veri�cation of
the production cell building on this design� However� this report is not intended to present
yet another formalization of the production cell case study but rather as an approach to
formalizing a CAA based system design in order to formally verify its properties�

Each CAA is modeled as an atomic state transition characterized by its pre� and postcon�
ditions� In order for such transitions to become enabled� conditions are formalized requiring
all associated roles to be activated� Activation of roles is performed by controllers� which
are again modeled in terms of state transitions� The state space of the production cell can
be viewed as being �nite� hence� the production cell is speci�ed as a �nite state transition
system and the formal veri�cation of the CAA�design is carried out using model�checking�

�This work has partly been funded by the Esprit Long Term Research Project ����� �Design for

Validation�





Contents

� Introduction �

� Overview of the CAA�PC Design �

� Formal Speci�cation of the CAA�PC Design �

	�
 Formalizing Plates � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	�� Formalizing CAAs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

	�	 Formalizing CAAs of the CAA�PC Design � � � � � � � � � � � � � � � � � � � � �
	�� Formalizing Controllers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	�
 The Main Module � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Proof�Obligations for Verifying the CAA�Design ��

��
 Plausibility Assumptions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


��� Postconditions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��	 Safety Requirements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
	
��� Liveness Requirements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

� Results from the Veri�cation Process ��


�
 Results on the Veri�cation of the Production Cell � � � � � � � � � � � � � � � � 



�� Results on Applying SMV Model�Checking to the CAA�Design � � � � � � � � 
�

	 Conclusion and Outlook �


A Brief Summary of SMV ��

B Listing of the SMV Code ��

B�
 Module MovePlate � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
B�� Module Forge � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
B�	 Module UnloadDepositBelt � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
B�� Module ReloadPlate � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
B�
 Module FeedBeltController � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

B�� Module CraneController � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

C Using Counter Examples for Debugging Speci�cations ��

i





Chapter �

Introduction

Coordinated atomic actions �CAA� �RRS���� XRR��
� have been proposed as a concept
for structuring complex concurrent activities in safety�critical systems� The principles of
applying CAAs to the design of critical systems have been demonstrated in �ZRX���� by
developing a semi�formal solution to the production cell case study �LL�
�� the design pre�
sented in �ZRX���� is referred to in the remainder of this paper as the �CAA�PC design��

The production cell is a model of an industrial processing unit that consists of several
devices� feed belt� table� robot� press� deposit belt� and crane� In addition� an operator�
who has the task of loading the initial plates into the production cell� is included as a device
in the CAA�PC design� The activities of the devices need to be coordinated speci�cally at
points where they interact with each other� This kind of coordination can be expressed very
elegantly by CAAs� A CAA coordinates the activities of roles �threads of control� that are
activated from outside the CAA� This simple but elegant and powerful concept is used in
the CAA�PC design�

The CAAs are characterized by their respective pre� and postconditions� They appear
to be atomic transactions when viewed from the environment� The pre� and postconditions
are designed to be compatible with the intended order on the execution of the CAAs� the
postcondition of a CAA should imply the precondition of the next CAA to be executed�
The activities of the devices are represented by controller processes for the devices� which
have the primary task of activating the next appropriate role at each step�

This paper presents a formalization of the CAA�PC design as a �nite state transition
system� The formalization is based on a previous version of �ZRX����� which did not contain
fault tolerance aspects� also some details have changed since� In our formalization� safety
and liveness properties are speci�ed in terms of CTL �Eme��� and the model�checker SMV
�McM��� McM�	� is used for verifying the asserted properties� Note that a state transition
system may exhibit many di�erent behaviours� when model�checking is applied� all possible
behaviours are considered� For a brief summary of SMV see appendix A of this paper�

Several approaches to the production cell problem based on model checking have been
reported in �LL�
�� in fact� these turned out to be more e�ective than most of the other
approaches considered� The purpose of this paper� however� is not to add yet another such
approach� but to investigate how CAA�based designs and model checking can be combined�
using the production cell as a test case� Further work would be necessary to assess the ben�
e�ts or drawbacks of CAA�based designs for model�checking as compared to other reported
approaches based on model�checking towards formalizing the production cell�






Chapter �

Overview of the CAA�PC

Design

In the CAA�PC design the devices are controlled by processes which use CAAs as building
blocks for coordinating their activities� Each CAA is characterized by its pre� and post�
conditions and provides roles that can be activated by the controller process� For example
the controller for the table device repeatedly iterates activating its roles in the two CAAs
for loading and then unloading the table� Controller processes are designed for each of the
devices including the operator�

Ten CAAs have been developed� as presented in the following list� Each of them models
one step of plate processing and most CAAs involve passing a plate from one device to the
next�

LoadPlate for passing a plate from the operator to the feed belt�

LoadTable for passing a plate from the feed belt to the table�

UnloadTable for passing a plate from the table to the robot�

LoadPress for passing a plate from the robot to the press�

ForgePlate for forging a plate in the press��

UnloadPress for passing a plate from the press to the robot�

LoadDepositBelt for passing a plate from the robot to the deposit belt�

TransportPlate for moving a plate from the beginning of the deposit belt to its end�

UnloadDepositBelt for passing a plate from the end of the deposit belt to the crane�

ReloadPlate for passing a plate from the crane back to the feed belt again� thus enabling
the system to proceed in�nitely�

The requirements for the production cell case study include safety and liveness properties�
Liveness requirements have not been addressed explicitly in �ZRX����� In order to ensure
the safety requirements of avoiding collisions� the CAA�PC design has been developed in
such a way that at any time� each plate is processed by at most one CAA and each CAA
processes at most one plate�

Each CAA has a rather complex task to perform� including control over the devices in�
volved� like for example moving the table up or down until some required position is reached�

�The pre� and postconditions of this CAA have been changed in the current CAA�PC design� the formal�

ization presented here is based on the previous version	 where a non�forged plate is expected and a forged

plate is produced


�



At this level� other safety requirements �machine mobility� need to be considered� Thus� in
addition to the top level view of the production cell� which includes the external interfaces
�roles� pre� and postconditions� of the CAAs and the design of the device controllers� also
a re�nement of the CAAs is presented in �ZRX����� where the state transition caused by
a CAA is broken down into smaller steps and intermediate states� This also involves the
development of additional devices �sensors� and CAAs�

The formal speci�cation and analysis presented in this paper is concerned so far only
with the top level view� Hence� the lower level CAAs and sensors are not considered here
and intermediate states are not observable� Also the fault tolerance aspects are not yet
included�

	



Chapter �

Formal Speci�cation of the

CAA�PC Design

The formal speci�cation is intended to resemble very closely the top level description of the
CAA�PC design� The state of the devices� e�g� the table position� which are to be maintained
by the controller processes are represented by state�variables covering an appropriate range
of values� like top and bottom for table positions� The controller processes perform their
tasks mainly by activating roles in the appropriate CAAs�

In this paper� the main emphasis is on the formalization of the CAAs� Each CAA is
characterized by its pre� and postconditions and its roles� These pre� and postconditions
are expressed in terms of the states of the devices and plates involved� The inspection of all
pre� and postconditions reveals that the given CAA�PC design can be formalized in terms
of a �nite state machine since all values of state�variables that can be seen in the top level
speci�cation are explicitly named� even for variables whose range of values is a�priori non�
�nite� If other values are left anonymous but still are considered to be important� they can
be modeled by adding a speci�c value� e�g� called other� to cover all other values�

In the SMV formalization of the design� all controllers and CAAs are modeled by sepa�
rate SMV processes� The formalization presented below also contains initializations of state
components� like for example the initial position of the table� Such initializations are neces�
sary to prove that certain requirement are satis�ed� Most of the necessary initialization of
state components has been neglected in �ZRX�����

Some details in the formalization presented further below are due to the notation required
by the SMV system� speci�cally� there is no support for procedure calls and for passing
parameters� This has to be encoded using appropriate static structures� For further details
on the language of SMV see �McM��� McM�	��

��� Formalizing Plates

Plates to be processed by the production cell are represented as records of two entries� a
unique identi�er name for identifying the plate and a state component expressing whether
a plate has already been forged�� At the beginning the plate is initialized to be not forged�
Individual plates are de�ned by instantiating the generic module Plate with an appropriate
identi�er for the plate�

�This entry is derived from the pre� and postcondition of CAA ForgePlate

�



MODULE Plate�name�

DEFINE

present �� ��id � void��

VAR

id � f void� id	� id
� id�� id�� id
� id�� id�� id� g�
state � f plain� forged g�

ASSIGN

init�id� �� name�

init�state� �� plain�

Module Plate allows a production cell with at most eight plates being processed to be
modeled� In the CAA�PC design� passing a plate from one device to the next is modeled
by �moving� the plate from an input parameter to an output parameter of roles of the
same CAA� These parameters are modeled using the structure presented in module Plate�
The pre� and postconditions of the CAAs contain conditions for checking whether a plate
is present at some device� For the purpose of encoding that no plate is present a speci�c
identi�er void is provided� Additional modules have been developed to model forging a plate
�module Forge� and to express moving a plate �module MovePlate� from one location� e�g�
the input parameter� to another location� e�g� the output parameter� see Appendix B for a
listing�

��� Formalizing CAAs

The key to formalizing the CAA�PC design is the formalization of CAAs� The interface
provided by a CAA to its environment� which is mainly the collection of the device controller
processes� is characterized by its roles and its e�ect� The environment can make use of a
CAA by activating its roles� The CAA will be executed if and only if all roles are activated�
The execution of a CAA corresponds to an atomic state transition and leads to a state
change which is speci�ed by its e�ect� The coordination of the di�erent roles takes place
within the CAA and involves intermediate steps� which are not visible in our formalization
except for their common outcome which is speci�ed by the e�ect of the CAA� The actions of
a CAA are intended to be interleaved with the actions of other CAAs and of its environment�
Thus� modules specifying CAAs are intended to be used�instantiated as processes�

A role of a CAA is activated by a controller process with a mechanism that resembles
a procedure call� if the role is not active� then the controller initializes the inputs for the
CAA and changes the state of a role to be activated� After activating the role the controller
waits for the role to be �nished�� Then it obtains the available outputs and takes the role
back to a non�active state� Thus a role can be in one of three states�

free� means role is not activated� this is the initial state

occ� means role is occupied or activated

ret� means role is returning

The state of a CAA� which is visible to the environment is represented by the collection of
its role�s states� The environment takes a role from state free to state occ and from state
ret to state free� The CAA itself only takes the role from state occ to state ret�

The e�ect of a CAA is expressed in terms of its inputs and outputs� Variables representing
the inputs and outputs are not part of the internal state of a CAA� When a CAA is executed
the input and output variables are modi�ed according to the CAA�s e�ect and the roles
are changed to state ret signaling to the environment that the execution of the CAA is

�Before a role can �nish	 it is required that all roles had been activated by some other controllers� upon

�nishing it is ensured that all other roles are �nished	 too







�nished� The formalization of a CAA foo with two roles is illustrated �in SMV notation�
by the following example�

MODULE foo�InOut�

VAR role	� role
 � f free� occ� ret g�
ASSIGN

init�role	� �� free�

init�role
� �� free�

next�role	� �� case

role	 � occ � role
 � occ� ret�

	 � role	�

esac�

next�role
� �� case

role	 � occ � role
 � occ� ret�

	 � role
�

esac�

next�InOut� �� case

role	 � occ � role
 � occ� Effect�InOut��

	 � InOut�

esac�

Initially� roles are not active� If all roles are occupied� a state change occurs and in the next
state� the IO variables of the CAA are assigned values satisfying its intended e�ect and the
role�s states are set to be returning� The changes to IO variables and the role�s state occur
simultaneously� If not all roles are occupied� then no state change occurs� as speci�ed by
the default outcomes of the case constructs�

Since all roles are treated similarly� the initialization and next�state assignment for roles
can be formalized in a separate SMV module Role� as listed below� Then the CAA can
be modeled by using instances of module Role as synchronized components of the module
specifying the CAA�

A module for specifying a role is parameterized with an enabling condition� which is to
be instantiated by the CAA the role belongs to� The according enabling condition in module
foo is role	 � occ � role
 � occ

MODULE Role�enabled�

VAR

state� f free� occ� ret g�
DEFINE

nonactive �� state � free�

activated �� state � occ�

returning �� state � ret�

ASSIGN

init�state� �� free�

next�state� ��

case

enabled � ret�

	 � state�

esac�

Initialization and next state assignment are equivalent to those contained in foo� In order
to simplify the application of module Role some useful de�nitions are provided� Now CAA
foo can be rewritten as a structured speci�cation�

�



MODULE foo�struct�InOut�

DEFINE

enabled �� role	�activated � role
�activated�

VAR

role	 � Role�enabled��

role
 � Role�enabled��

ASSIGN

next�InOut� �� case

enabled � Effect�InOut��

	 � InOut�

esac�

��� Formalizing CAAs of the CAA�PC Design

In �ZRX���� CAAs are described by their respective roles with pre� and postconditions
expressing their e�ects� For a CAA to become enabled� all of its roles must be activated�
In this formalization� also the precondition is modeled as an enabling condition� The above
mentioned input and output parameters of the roles are modeled as parameters of the CAA�

The formalization is exempli�ed here with the CAA LoadTable� The other CAAs de�
scribed in the CAA�PC design are formalized similarly� The CAA�PC design of LoadTable
de�nes roles FeedBelt and Table for the feed belt controller and the table controller to par�
ticipate in� There are two more roles� which� however� are only used in the implementation
of LoadTable� they are therefore ignored here�

The pre� and postconditions for LoadTable are de�ned in the CAA�PC design in terms of
the state of the devices maintained by the controllers and in terms of the role�s input�output
parameters for passing a plate from the feed belt to the table�

preconditions postconditions

feed belt o� feed belt o�
plate on the feed belt no plate on the feed belt
no plate on table plate on table

table on top position table on bottom position
table angle 
�� table angle ��

�plate on table� and �plate on the feed belt� correspond to the input and output parameters
of roles in �ZRX����� The other entries represent conditions on state components of the
devices involved� The formalization of LoadTable is parameterized with all entries appearing
in the pre� and the postcondition�

MODULE LoadTable�feed belt� plate on feed belt� plate on table�

table position� table angle�

DEFINE

pre �� feed belt � off �

plate on feed belt�present �

�plate on table�present �

table position � top �

table angle � deg
��

next table position �� bottom�

next table angle �� deg��

enabled �� FeedBelt�activated �

Table�activated �

pre�

VAR

FeedBelt � Role�enabled��

�



Table � Role�enabled��

mvplate � MovePlate�enabled� plate on feed belt� plate on table��

ASSIGN

next�feed belt� �� feed belt�

next�table position� ��

case

enabled � next table position�

	 � table position�

esac�

next�table angle� ��

case

enabled � next table angle�

	 � table angle�

esac�

FAIRNESS running

The action of passing a plate from the feed belt to the table is de�ned by a �synchronized�
instance of MovePlate�cond�source�destination�� which moves the contents of source
over to destination when cond is true� the synchronization mechanism is analogous to the
use of instances of module Role� The ASSIGN section de�nes the coordinated state transition
of the two controllers for the feed belt and the table� The assignments are designed to ensure
the postcondition of the CAA LoadTable� notably the state of the feed�belt is the same in
the pre� and the postcondition� The module also contains a fairness assumption to specify
that the state transition associated with this module is selected in�nitely often�

��� Formalizing Controllers

The main activities of the production cell are de�ned by the CAAs� But� in order for a
CAA to perform a state transition� all of its roles need to be activated� Activation of roles
within CAAs is performed by controller processes� which take the role from state free to
state occ� After activating a role� a controller waits for the role to return and then resets the
state of the role to free� These activities are synchronized with the actions of the controller
for setting the inputs and obtaining the outputs of the CAA� The controller may perform
other �internal� activities that do not a�ect calling a role� The actions of a controller can
therefore be divided into three groups�

if
all roles are free and controller wants

to call some role
then CAA inputs are set and role becomes

activated

if role is returning then CAA outputs are obtained and the

role becomes non active

if
all roles are free and controller does

not want to call a role
then

the internal actions of the controller

are executed

The �rst two actions on the state of the role are formalized in the module CallRole� which
is parameterized with the role to be activated and a condition at call expressing whether
the controller wants to call this role� The default action in the case expression causing no
state change is intended to be synchronized with the internal actions of the controller�

�



MODULE CallRole�role�at call�

DEFINE

returning �� role�returning� �� returning condition

ASSIGN

next�role�state� ��

case

at call � role�nonactive � occ� �� activating role

returning � free� �� returning from role

	 � role�state�

esac�

The CAA�PC design describes controllers for each of the devices involved� including the
operator� Each controller is formalized as a process that maintains the state of the respective
device represented by state variables� Each controller is parameterized with the CAAs it
participates in� This is illustrated here for the table controller process�

MODULE TableController�loadtable� unloadtable�

VAR

table angle � deg�� deg
� �

table position � bottom� top �

plate on table � Plate�void��

lt� CallRole�loadtable�Table� �plate on table�present

� unloadtable�Table�nonactive

��

ut� CallRole�unloadtable�Table� plate on table�present

� loadtable�Table�nonactive

��

ASSIGN

init�table angle� �� deg
��

init�table position� �� top�

FAIRNESS running

The controller maintains the state of the table� which is expressed by the state variables
table angle and table position� These components are initialized according to the
ASSIGN section� TableControllermayparticipate in the CAAs loadtable and unloadtable
for loading and unloading the table� The table controller also maintains a local variable for
encoding which plate� if any� is on the table� Initially� there is no plate on the table� This
variable corresponds to the output parameter for CAA loadtable and to the input param�
eter for CAA unloadtable� as described in �ZRX����� The table controller activates its
role in the CAA for loading the table� when there is no plate on the table and when the
other role is not active� and it activates its role in the CAA for unloading the table� when
a plate is on the table and its loading role is not active� There are no internal actions and
additional activity for setting inputs or obtaining outputs is not necessary�

��� The Main Module

The modules for CAAs and controllers are composed and connected with each other in a
module called main� It contains separate processes for each of the CAAs and each controller�
connected with each other by appropriate instantiation of their parameters�

�Due to the syntactic structure of the SMV language	 this connection is expressed only globally in MODULE

main


�



MODULE main

DEFINE

N �� PLATES IN PRODCELL� �� number of plates �max� ��

VAR

�� CAA as processes

lpl � process LoadPlate������

ltb � process LoadTable�fbc�feed belt� fbc�plate on feed belt�

tbc�plate on table� tbc�table position� tbc�table angle��

utb � process UnloadTable������

lpr � process LoadPress������

fpl � process ForgePlate������

upr � process UnloadPress������

ldb � process LoadDepositBelt������

tpl � process TransportPlate������

udb � process UnloadDepositBelt������

rpl � process ReloadPlate������

�� Controller Processes

opc � process OperatorController������

fbc � process FeedBeltController������

tbc � process TableController�ltb� utb��

dbc � process DepositBeltController������

crc � process CraneController������

prc � process PressController������

rbc � process RobotController������

ltb is an instance of CAA LoadTable� It is connected with the controllers for the feed belt
and the table and has access to some of the local state components of the device controllers
through the parameters� fbc�plate on feed belt instantiates the CAA�s input parameter
for referencing the current plate on the feed belt� This plate is moved by the actions within
ltb to the CAA�s output parameter which is instantiated with tbc�plate on table for
referencing the plate currently on the table� tbc is the table controller process instantiated
with the two CAAs for loading �ltb� and unloading �utb� the table��

In order to analyze the formal model of the CAA design of the production cell� the
constant PLATES IN PRODCELL has to be instantiated �substituted� with some number in the
range from 
 to �� Each such instance has to be created and analyzed on its own� SMV
cannot deal with generic systems although the system parameter might be restricted to a
�nite range�

�SMV allows forward references to module names


�



Chapter �

Proof�Obligations for Verifying

the CAA�Design

Veri�cation is performed with di�erent purposes in mind� One goal is to develop a formal
speci�cation that conforms to the CAA�PC description of the design� This is done by trying
to prove simple assumptions that are expected to hold in the �formal� model� A failed
proof might point to a bug in the formalization� Another goal is to verify that certain
properties are satis�ed by the design under the assumption that it has been formalized
correctly� Speci�cally in the case of safety critical systems� these properties include the
safety requirements� The functionality expected from the design often includes liveness
requirements�

As mentioned earlier� properties to be veri�ed are stated as CTL formulae in the module
section introduced by the keyword SPEC�

��� Plausibility Assumptions

As is the case with programs� formal speci�cations tend to be initially erroneous� One
approach to eliminate such mistakes is to perform plausibility checks� A rather simple
proof�obligation �stated in the main module� for checking plausibility is

�� at any point in the computation there exists some next state

SPEC AG EX TRUE

The purpose of this proof�obligation is to ascertain that the system makes some sort of
progress and that no deadlock has been introduced into the system� for instance by inap�
propriate use of the SMV speci�cation constructs�

Plausibility checks can be used to assess that there is some progress within speci�c
modules� For example� it is expected that� if there is a plate on the table� then eventually
the plate will be �re��moved from the table� This goal is expressed in the SPEC section
presented below�

MODULE TableController�loadtable� unloadtable�

���

�� goals for gaining confidence in formalization

SPEC AG �plate on table�present

�� AF �plate on table�present�

One may also state the expectation that if there is no plate on the table� then eventually
one will arrive�

SPEC AG ��plate on table�present

�� AF plate on table�present�







The task of verifying these goals also helped to reveal minor �aws in the previous version
of the CAA�PC design� which is no longer present in the current version� this analysis is
described in section 
�

��� Postconditions

Each CAA is formalized with an ASSIGN section that is intended to ensure its postcondition�
Since each CAA has a postcondition with a fairly simple form� it is easy to see that its
assignment really conforms with its postcondition� However� in general it is necessary to
verify that the assignment produces a next state in which the postcondition is ful�lled� In
order to accomplish this veri�cation task� for each CAA a suitable goal has to be formulated
which has then to be veri�ed� An informal description of such a goal for some CAA is

If in some state all roles of the CAA are activated and
its precondition is satis�ed�

then if the next state results from executing this CAA�
then the postcondition is satis�ed�

In the context of SMV� such a goal is written in terms of a CTL formula� This is illustrated
here for the CAA LoadTable� Recall that the pre� and postconditions are given by

preconditions postconditions

feed belt o� feed belt o�
plate on the feed belt no plate on the feed belt
no plate on table plate on table

table on top position table on bottom position
table angle 
�� table angle ��

The module LoadTable presented earlier is extended by a de�nition for post and a SPEC

section containing a CTL formula for this goal�

MODULE LoadTable�����

DEFINE

���

enabled �� FeedBelt�activated �

Table�activated �

pre�

post �� feed belt � off �

�plate on feed belt�present �

plate on table�present �

table position � bottom �

table angle � deg��

VAR

���

ASSIGN

���

�� postcondition is satisfied � safety property

SPEC AG �enabled �� AX �FeedBelt�returning � Table�returning �� post��

This CTL formula corresponds to the informal description of the goal given above� Whether
a next state results from executing CAA LoadTable is encoded by checking whether in a
next state all its roles are in a returning state� Such a speci�cation would also be satis�ed by
a system� which does not execute and �nish CAA LoadTable� Therefore� a liveness property
has been added�


�



�� postcondition is satisfied � CAA termination �liveness� property

SPEC AG �enabled �� A�enabled U FeedBelt�returning � Table�returning � post��

This CTL formula expresses that� if enabled� the CAA will eventually return and then the
postcondition will hold �expressed by means of the temporal operator until��

��� Safety Requirements

Several safety requirements are stated in the informal description of the production cell case
study �LL�
�� One requirement states that plates may not be dropped outside safe areas� In
terms of the top level model of the production cell this can be described by the requirement
that a plate� once introduced into the system� stays in the system� A formalization of this
requirement for plate �id	� is given below� For a complete analysis� such a goal would have
to be stated and veri�ed for each plate�

SPEC

AG �fbc�plate on feed belt�id � id	 ��

AG � fbc�plate on feed belt�id � id	

� opc�plate with operator�id � id	

� fbc�plate on feed belt�id � id	

� tbc�plate on table�id � id	

� rbc�plate on arm	�id � id	

� rbc�plate on arm
�id � id	

� prc�plate in press�id � id	

� dbc�plate on beg deposit belt�id � id	

� dbc�plate on end deposit belt�id � id	

� crc�plate on crane�id � id	��

The formula states that if once plate �id	� is on the feed belt �the �rst device� then in all
states from then on it will be on �at least� one of the devices� which ensures that the plate
stays in the system�

It is argued in �ZRX���� that the system safety requirements for ensuring that neither
plates nor devices can collide are satis�ed because�


� only one plate can be in an action

�� a plate cannot be involved in more than one action

	� a device can participate in only one action

These requirements on the relation between plates and CAAs can be considered as new
�transformed� safety requirements which are su�cient for ensuring the original non�collision
requirement� The �rst requirement can be demonstrated by proving for each CAA a goal
that states that if the CAA is active then at most one plate is in that action� This is shown
here for CAA LoadTable�

MODULE LoadTable�����

���

�� only one plate can be in a CAA

SPEC AG ��FeedBelt�nonactive � �Table�nonactive ��

�plate on feed belt�present � �plate on table�present�

The formula describes that if no role of the CAA LoadTable is inactive �i�e� LoadTable is
active�� then at most one of the both plate locations accessible by LoadTable �i�e� feed�belt
and table� contains a plate�

The second requirement stating that a plate is involved in at most one CAA at a time
is divided into two properties� �rst� a plate is present on at most one device and� second� at


	



any time at most one of the CAAs utilized by a device controller can be active� The second
property is identical to the third requirement� By assuming the second property it is here
su�cient to formalize the �rst property only� The property that a plate being processed
by one device cannot be present at any other device is here exempli�ed for plate location
plate on table�

MODULE main

���

SPEC

AG �tbc�plate on table�present ��

��tbc�plate on table�id � opc�plate with operator�id�

� ��tbc�plate on table�id � fbc�plate on feed belt�id�

� ��tbc�plate on table�id � rbc�plate on arm	�id�

� ��tbc�plate on table�id � rbc�plate on arm
�id�

� ��tbc�plate on table�id � prc�plate in press�id�

� ��tbc�plate on table�id � dbc�plate on beg deposit belt�id�

� ��tbc�plate on table�id � dbc�plate on end deposit belt�id�

� ��tbc�plate on table�id � crc�plate on crane�id��

The third requirement states that at most one of the CAAs utilized by a device controller
is active� This is exempli�ed here for the table controller� if a plate is on the table then one
of the two CAAs being used there must be inactive� This is expressed with the following
formula in Module TableController�

SPEC AG �plate on table�present ��

unloadtable�Table�nonactive � loadtable�Table�nonactive�

The formalizationof the safety requirements presented here also makes use of some structural
assumptions� The formalization of the �rst requirement is based on the assumption that a
CAA may gain access to only some of the plate locations� like for example CAA LoadTable

may only access plates on the feed�belt and plates on the table� The formalization of the
third requirement is based on the assumption that a device controller may gain access to
only some of the CAAs� like for example TableController may only participate in the
CAAs UnloadTable and LoadTable�

��� Liveness Requirements

The functionality of the production cell is speci�ed in terms of a liveness property� which
requires that a plate introduced into the system via the feed belt will eventually have been
forged and dropped by the crane onto the feed belt� The formalization of this requirement
is presented here for plate �id	�� again� for a complete analysis this requirement has to be
expressed for each plate�

SPEC �� plate will arrive forged on the crane

AG �fbc�plate on feed belt�id � id	 ��

AF �crc�plate on crane�id � id	 �

crc�plate on crane�state � forged��

SPEC �� plate will be reintroduced into system

AG �crc�plate on crane�id � id	 �� AF fbc�plate on feed belt�id � id	�


�



Chapter �

Results from the Veri�cation

Process

There are two kinds of results from performing the veri�cation process� On one side� there are
results on the bene�ts from checking certain proof obligations for improving or correcting the
formal speci�cation of the speci�c application �production cell case study� to be developed�
On the other side� there are also results on the applicability and usefulness of the particular
formal method chosen to approach the given problem� In the following� both issues are
discussed�

��� Results on the Veri�cation of the Production Cell

The SMV system checks whether a given CTL formula is valid in the speci�ed state transi�
tion system� If it is not valid� an execution path is constructed and displayed which serves
as a counterexample� This is very useful for debugging a speci�cation� Speci�cally the plau�
sibility checks reveal mistakes resulting from slight oversight when writing the speci�cation�
these mistakes are comparable to �typos�� like using a wrong logical connective� missing
negations in formulas� etc�

These plausibility checks also helped in �nding a minor design �aw and some incomplete�
ness in the CAA�PC design� One incompleteness is that hardly any initialization of state
components are mentioned in �ZRX����� Proper initialization� however� is necessary for a
formal analysis� Otherwise the system might just start in an undesired state� or devices
might be initialized such that a deadlock can occur in the system�

Another incompleteness results from a missing postcondition for CAA UnloadDeposit�
Belt� The pre� and postconditions of the CAAs should be such that the postcondition of a
CAA implies the precondition of the next CAA to be executed� This is not the case for CAA
UnloadDepositBelt since the next action would be ReloadPlate� which requires the crane�s
lower switch to be o�� This is not implied by the postcondition of CAA UnloadDepositBelt�
A proof obligation in module CraneController� which expresses that if a plate is present
on the crane then it will eventually be removed from there� reveals this incompleteness�

SPEC AG �plate�on�crane�present �� AF �plate�on�crane�present�

is false when crane lower switch � off is missing in the postcondition of CAA Un�
loadDepositBel� This condition has been added to the postcondition� Symmetrically� al�
though not necessary for correctness� the precondition has been extended with the condition
crane lower switch � on� The SMV system generates a counter example execution path
which helps in identifying the reason for failed proofs� see appendix C�

For similar reasons also the postcondition of CAA ForgePlate is found to be incomplete�
The formula







SPEC AG �plate�in�press�present �� AF �plate�in�press�present�

is false due to the missing condition press position � top in the postcondition of CAA
ForgePlate� This has been added to the postcondition and� for the sake of symmetry� the
precondition has been extended with press position � middle�

The minor design �aw� that was present in the previous version of the CAA�PC design�
is connected to forging plates� On one hand� plates are reintroduced into the system after
they have been forged� on the other hand� CAA ForgePlate expects a non�forged plate for
processing� as stated in the precondition� When checking the formula

SPEC AG AF pre

�stated in Module ForgePlate� it is shown to be false and a counterexample is generated
that shows that when a plate arrives at the press for the second time the precondition will
not be true� This design �aw can be eliminated by di�erent means� One would be to modify
the pre� and postconditions of the CAA ForgePlate� Another option would be to �un�forge�
plates before they are reintroduced onto the feed belt� Since the crane is an artifact with
the sole purpose of keeping the system running in�nitely� the second option has been chosen
here� when a plate is reloaded from the crane to the feed belt� it is also un�forged� Counting
up the number of forge operations� as mentioned in the previous version and adopted in the
current version of �ZRX����� would not be possible in this formalism� since for SMV a �nite
state system is required� The veri�cation of postconditions does not exhibit any further
errors� This is partly due to the very simple form of the pre� and postconditions�

The other proof obligations deriving from safety and liveness requirements were shown
to be satis�ed by the state transition system model of the production cell�

��� Results on Applying SMV Model�Checking to the

CAA�Design

Although the production cell is a rather small system� the CAA design adds considerable
complexity by increasing the state space� Each instance �with one up to eight plates� of the
production cell needs to be analyzed separately� Whereas the instance with a single plate
can be analyzed very quickly� other instances consume considerably more time for being
analyzed and the presented formalization drives SMV at its limits� Hence� special steps
need to be taken in order to be able to successfully apply model�checking�

� The speci�cation actually being analyzed has been augmented with additional condi�
tions for enabling certain state transitions in order to reduce the overall reachable state
space� see the appendix for a listing of relevant modules in the SMV formalization of
the production cell�

� The SMV model checker is based on binary decision diagrams �BDD�� A very important
aspect of BDD representations is� that their size and hence the e�ciency of their
analysis strongly depends on the ordering of variables that the BDD representation
is based upon� One simple heuristic for ordering variables is to place the ones that
are strongly related to each other� when the system is executed� also close to each
other in the ordering� Using this heuristic� an initial variable ordering was generated
�manually� which immediately gave better run�time results� however� for practical
application and experimentation with the model�checking approach� the run�times still
were not acceptable� SMV provides an option for dynamically re�ordering variables�
This was used for generating new variable orderings� Two approaches were taken� in
the �rst approach a new ordering was generated starting from the manual ordering
�see above�� In the second approach a new ordering was generated from scratch�
i�e� without initializing SMV with a speci�c ordering� The �rst approach yielded an


�



ordering which results again in better run�time performance� The second approach
also lead to an ordering with better run�time performance than starting the analysis
from scratch� however� this ordering was worse than the manual ordering� This process
of re�ordering variables was applied to a single plate system to obtain a new ordering�
intriguingly� the new ordering could also be applied to decrease considerably the run�
time for analyzing other instances of the production cell� Whether this process can be
generalized to other examples needs to be examined further and in a di�erent context�

All instances of the production cell with one up to eight plates has been analyzed� Note
that model�checking is performed with respect to all possible behaviours� for example the
second plate can be put on the feed�belt in di�erent states� while the �rst plate is on the
table� in the press� etc�� all these behaviours are considered by model�checking� The eight
plates system can be shown to deadlock�� while the others are proved to be correct� The
following table summarizes the run�times� reported by SMV�

Plates Platform Run�Time

 Sparc Ultra I 		��	 s
� Sparc Ultra I 
����
 s
	 Sparc Ultra I ��	���� s
� Sparc Ultra I ����	�� s

 Sparc Ultra II ����
�� s
� Sparc Ultra II ��


�� s
� Sparc Ultra II ����
�� s
� Sparc Ultra II � ������� s

While the one�plate instance can be checked within reasonable time� the run�times for check�
ing larger instances increase tremendously� Even with the improved ordering on variables�
model checking of the two�plate system takes roughly 
�
 hours� the three�plates system
takes roughly � hours� and the �hardest� instance with 
 plates takes almost �� hours on
�Sun Sparc Ultra� �I� and �II� platforms� The pure run�times for checking all system
instances sums up to roughly �� hours �or � days�

�When checking the ��plates instance	 SMV crashes	 probably due to memory allocation problems	 after

displaying the �rst counter example path

�For the ��plates instance we have measured the time until the crash occurs



�



Chapter �

Conclusion and Outlook

The work presented here has been done in order to evaluate the feasibility of model�checking
for the analysis of systems designed using CAAs� A generic concept has been presented for
formally specifying both� CAAs and according mechanisms for activating their roles�

Some aspects of CAAs are rather cumbersome and non�intuitive for encoding in the re�
stricted language of the SMV system� Speci�cally parameters for calling procedures �meth�
ods� roles� have to be encoded explicitly� since the SMV language does not allow dynamic
instantiation� but is restricted to static instantiation of modules� In the encoding presented
here� these parameters are �hard�wired� to speci�c locations� Despite these particular pecu�
liarities� a CAA�design can be formalized appropriately with SMV� However� certain prop�
erties �safety requirements� could be formalized based on assumptions that are induced by
the CAA structure�

The structure imposed by CAAs increases the state space of a system� The state ex�
plosion problem is present although advanced analysis techniques �model�checking based
on BDDs� have been applied� Thus� the CAA design did not contribute directly to a
simpli�cation of the veri�cation process� speci�cally when compared to reports on other
model�checking approaches applied to the production cell case study �LL�
�� One approach
to deal with the state explosion problem might be a combination of theorem proving and
model�checking� This issue still needs further investigation�

Re�nement issues that are also presented in �ZRX���� have not been considered here�
but it is in principle possible to formalize the implementation of CAAs expressed in terms of
other �low level� controllers and CAAs similar to the formalization presented in this paper�

Fault tolerance mechanisms have not been considered yet� it still needs to be investigated
whether the approach presented here is suitable for representing a fault tolerant CAA�
designs� It is even more important to investigate� whether model�checking can be applied to
the CAA design of a fault�tolerant system since one may expect an increase in state space
when additional �exceptional� outcomes are de�ned for CAAs�

Despite the problems associated with the state explosion it is noteworthy that the er�
rors in the formalization and the incompleteness and �aws in the design could already be
detected in the single plate instance of the production cell� Safety properties were speci�ed
by directly encoding safety requirements and by encoding �transformed� safety requirements
for the CAA�PC design� Furthermore� the liveness requirements� which were not assessed in
�ZRX����� could be checked and proved correct� Thus� model�checking can be considered a
useful technique to supplement other analysis methods for assessing properties of a safety
critical system based on its CAA�design�

A bene�t of the CAA concept is� that certain properties� like atomicity� are provided by
CAAs and need not to be implemented by a programmer� Thus� the re�nement of a CAA
only needs to respect its pre� and postconditions� which may entail erroneous outcomes
when faults occur and according fault�tolerance mechanisms and strategies may be used
when re�ning a CAA� it is not necessary to repeat the veri�cation of the re�nement with


�



respect to the complete system� only a veri�cation with respect to its pre� and postconditions�
which is expected to be much easier� needs to be carried out� Thus� the higher e�ort needed
for validating a CAA�based design may pay o��


�



Bibliography

�Eme��� E� Allen Emerson� Temporal and Modal Logic� In J� van Leeuwen� editor�
Handbook of Theoretical Computer Science� volume B� chapter 
�� pages ��
�

���� Elsevier Science Publishers B�V�� 
���� Formal Models and Semantics�

�LL�
� Claus Lewerentz and Thomas Lindner� editors� Formal Development of Reac�

tive Systems� Case Study Production Cell� volume ��
 of LNCS� Berlin� 
��
�
Springer�

�McM��� K�L� McMillan� The SMV system� Carnegie Mellon University� draft edition�
February 
����

�McM�	� Kenneth L� McMillan� Symbolic Model Checking� Kluwer Academic Publishers�
Carnegie Mellon University� 
��	� Revised version of PhD thesis�

�RRS���� B� Randell� A� Romanovsky� R�J� Stroud� J� Xu� and A�F� Zorzo� Coordinated
Atomic Actions� from Concept to Implementation� Submitted to Special Issue
of IEEE Transactions on Computers� 
����

�XRR��
� J� Xu� B� Randell� A� Romanovsky� C� Rubira� R�J� Stroud� and Z� Wu� Fault
Tolerance in Concurrent Object�Oriented Software through Coordinated Error
Recovery� In Proceedings of the ��th Int� Symp� on Fault�Tolerant Computing�
pages �
���
�� Pasadena� USA� 
��
� IEEE CS Press�

�ZRX���� A� Zorzo� A� Romanovsky� J� Xu� B� Randell� R� Stroud� and I� Welch� Using
Coordinated Atomic Actions to Design Complex Safety�Critical Systems� The
Production Cell Case Study� ESPRIT LTR Project ����� � DeVa Technical Re�
port 	�� Department of Computing Science� University of Newcastle upon Tyne�
UK� 
���� See http���www�newcastle�research�ec�org�deva�trs�index�html�

��



Appendix A

Brief Summary of SMV

SMV �McM��� McM�	� is a system for checking �nite state systems against speci�cations
in the temporal logic CTL �Eme���� The SMV language describes the Kripke model and
the speci�cation of a system� Its input language is thus designed to describe state transition
systems� Descriptions can be structured hierarchically into several modules� each describing
some part of the �nite state transition system� The state transitions of each part can be
de�ned to occur synchronously or asynchronously with the state transitions de�ned in other
modules� In the following� the example of a three�bit counter �taken from �McM�	�� serves
to illustrate the concepts� the speci�ed system increments the counter in each step�

MODULE main

�� A three bit counter

VAR bit� � cell����

bit� � cell�bit�	carry
out�

bit� � cell�bit�	carry
out�

FAIRNESS running

SPEC AG AF bit�	carry
out

MODULE cell�carry
in�

DEFINE carry
out �� val 
 carry
in�

VAR val � boolean�

ASSIGN

init�val� �� ��

next�val� �� �val 
 �carry
in�

� ��val 
 carry
in�

MODULE is followed by main or a user�de�ned name for the module and optional param�
eters� Module main is considered to be the root of the module hierarchy� The SMV
language is only weakly typed� e�g� parameters are not typed� A module consists of
several sections� each introduced by a key�word� these are explained below� A part of
a system is represented by an instance of a module� Instances of modules are created
in the VAR section�

DEFINE is used for de�ning shortcuts for complex expressions� comparable to macros
without parameters� Forward references to names that will be de�ned later are per�
mitted�

VAR has two purposes� One is to declare the state variables� The state of the Kripke model
consists of the collection of all state variables� the variables may only range over a �nite
set of values expressed by a �nite type �boolean� enumerated type� or integer subtype��
The second purpose is to de�ne instances of modules� Module instances are de�ned by
declaring a name for the module instance and by instantiating the module parameters
accordingly� The arguments for instantiating module parameters may contain forward
references to names that are not yet declared� All module instances are distinct from
each other and can be uniquely identi�ed by the instance name� The state transition of
each module instance can be speci�ed to be synchronous� i�e� occurring simultaneously�
with the state transition of the module in which the instance is created� or it can be
speci�ed to be asynchronous� i�e� being interleaved� In the example given above� the
state transitions of bit�� bit	 and bit
 are synchronized� An asynchronous instance
is considered to be a separate process and it is created using a notation of the form

�




instance� process ModuleName�arguments�� Entities de�ned within instances can
be accessed by pre�xing the name declared within the module with its instance name�
like bit��carry out in the example above�

ASSIGN is used for initializing state variables and for de�ning the next�state relation�
State variables can be initialized using the form init�var���expr� The next�state
relation is de�ned by assigning to state variables their value in the next state� The
syntactic form used here is next�var���expr� expr is built from constants�� variables�
boolean� integer� and set operations� and case expressions� SMV provides the boolean
operators � �negation�� � �conjunction�� and � �disjunction�� The next�state expres�
sion in the example given above encodes �val xor carry in�� A case expression
of the form �case cond	�expr	� cond
�expr
����� 	�expr� esac� is regarded as
being equivalent to �if cond	 then expr	 elsif cond
 then expr
� � � else expr�� All
next�state assignments within the same assignment section occur simultaneously �syn�
chronized��

FAIRNESS is used to declare a fairness constraint� i�e� a formula that is assumed to be true
in�nitely often in a fair execution path� The prede�ned boolean expression running is
true if the instance of a process module containing this expression is active� running is
very useful for specifying processes that are assumed to be executed in a fair execution
path in�nitely often� When SMV evaluates speci�cations� only fair execution paths
are considered�

SPEC is used to specify� by means of a CTL formula� the system property to be checked�
A CTL formula is built from boolean expressions� the boolean operators� the CTL
path quanti�ers A �for all paths� and E �exists a path�� and the CTL time quanti�ers X
�next time�� F �eventually�� G �globally�� and U �until�� with the restriction that every
path quanti�er must be followed by a time quanti�er� For example� the speci�cation
�AG AF bit
�carry out� states that along each execution path bit
�carry out will
in�nitely often be set true�

�The boolean values false and true are represented by � and 
 respectively

��



Appendix B

Listing of the SMV Code

This appendix contains listings from SMV modules that are referenced in the main text
of this paper� The complete source �le of the SMV speci�cation is available online from
http���www�informatik�uni�ulm�de�abt�ki�publications�html together with an on�
line copy of this report�

B�� Module MovePlate

MovePlate speci�es the state transition associated with moving a plate from one location
to another� This state transition is enabled if parameter cond is true�

MODULE MovePlate�cond� from� to�

ASSIGN

next�to	id� ��

case

cond � from	id�

� � to	id�

esac�

next�to	state� ��

case

cond � from	state�

� � to	state�

esac�

next�from	id� ��

case

cond � void�

� � from	id�

esac�

next�from	state� ��

case

cond � plain�

� � from	state�

esac�

B�� Module Forge

Forge speci�es the state transition associated with forging a plate� This state transition is
enabled if parameter cond is true�

MODULE Forge�cond� plate�

ASSIGN

next�plate	id� �� plate	id�

�	



next�plate	state� ��

case

cond � forged�

� � plate	state�

esac�

B�� Module UnloadDepositBelt

The design of CAA UnloadDepositBeltwas originally incomplete� The condition requiring
that the crane�s lower switch is turned o� was missing from the postcondition� Therefore a
plate once unloaded from the deposit belt onto the crane was never passed further on�

MODULE UnloadDepositBelt�plate
on
crane� plate
on
end
deposit
belt�

deposit
belt� crane
upper
switch�

crane
lower
switch� crane
height�

DEFINE

pre �� �plate
on
crane	present 


plate
on
end
deposit
belt	present 


deposit
belt � off 


crane
upper
switch � off 


crane
lower
switch � on 


crane
height � ht�����

post �� plate
on
crane	present 


�plate
on
end
deposit
belt	present 


deposit
belt � off 


crane
upper
switch � on 


crane
lower
switch � off 
 �� was originally missing

crane
height � ht�����

next
crane
upper
switch �� on�

next
crane
lower
switch �� off� �� was originally missing

enabled �� DepositBelt	activated 


Crane	activated 


pre�

VAR

DepositBelt�Role�enabled��

Crane � Role�enabled��

mvplate � MovePlate�enabled� plate
on
end
deposit
belt� plate
on
crane��

ASSIGN

next�deposit
belt� �� deposit
belt�

next�crane
upper
switch� ��

case

enabled � next
crane
upper
switch�

� � crane
upper
switch�

esac�

next�crane
lower
switch� �� �� was originally missing

case

enabled � next
crane
lower
switch�

� � crane
lower
switch�

esac�

next�crane
height� �� crane
height�

FAIRNESS running

B�� Module ReloadPlate

CAA ReloadPlate requires the crane�s lower switch to be o� as a precondition� The precon�
dition is part of the enabling condition for this CAA�

��



MODULE ReloadPlate�feed
belt� plate
on
feed
belt� plate
on
crane�

crane
upper
switch� crane
lower
switch� crane
height�

DEFINE

pre �� feed
belt � off 


�plate
on
feed
belt	present 


plate
on
crane	present 


crane
upper
switch � on 


crane
lower
switch � off 


crane
height � ht�����

post �� feed
belt � off 


plate
on
feed
belt	present 


�plate
on
crane	present 


crane
upper
switch � off 


crane
lower
switch � on 


crane
height � ht�����

next
crane
upper
switch �� off�

next
crane
lower
switch �� on�

enabled �� FeedBelt	activated 


Crane	activated 


pre�

VAR

FeedBelt � Role�enabled��

Crane � Role�enabled��

mvplate � MoveAndUnforge�enabled� plate
on
crane� plate
on
feed
belt��

ASSIGN

next�feed
belt� �� feed
belt�

next�crane
upper
switch� ��

case

enabled � next
crane
upper
switch�

� � crane
upper
switch�

esac�

next�crane
lower
switch� ��

case

enabled � next
crane
lower
switch�

� � crane
lower
switch�

esac�

next�crane
height� �� crane
height�

FAIRNESS running

B�� Module FeedBeltController

The speci�cation of the feed�belt controller contains additional conditions in order to reduce
the state space of the considered system� the operator must load all plates onto the feed�belt
before a plate can be re�loaded from the crane� This is encoded as an additional enabling
condition when instantiating module CallRole� A variable� pc� is used to encode whether
the operator still has some plates �pc �� ��� In that case CAA LoadPlate is enabled� When
no plates are left with the operator �pc � ��� then plates can be re�loaded from the crane�

MODULE FeedBeltController�loadplate� reloadplate� loadtable�

plate
with
operator� plate
on
crane� plate
on
table�

VAR

feed
belt � f on� off g�
pc � � 		 PLATES
IN
PRODCELL�

plate
on
feed
belt � Plate�void��

lp� CallRole�loadplate	FeedBelt� �plate
on
feed
belt	present 
 ��pc���


 reloadplate	FeedBelt	nonactive


 loadtable	FeedBelt	nonactive

�





 plate
with
operator

��

rp� CallRole�reloadplate	FeedBelt� �plate
on
feed
belt	present 
 �pc���


 loadplate	FeedBelt	nonactive


 loadtable	FeedBelt	nonactive


 plate
on
crane

��

lt� CallRole�loadtable	FeedBelt� plate
on
feed
belt	present


 loadplate	FeedBelt	nonactive


 reloadplate	FeedBelt	nonactive


 �plate
on
table

��

ASSIGN

init�feed
belt� �� off�

init�pc� �� ��

next�pc� ��

case

lp	returning 
 pc �� PLATES
IN
PRODCELL � �� �� all plates loaded

lp	returning � pc � ��

� � pc�

esac�

FAIRNESS running

SPEC EF plate
on
feed
belt	present

SPEC AF plate
on
feed
belt	present

SPEC AG �plate
on
feed
belt	present

�� AF �plate
on
feed
belt	present�

SPEC EG EF plate
on
feed
belt	present

B�	 Module CraneController

The description of the crane controller speci�es the property which revealed an incomplete�
ness of CAA UnloadDepositBelt� This property requires that if a plate arrives on the crane
then it will eventually be removed from the crane� i�e� passed on to the next device�

MODULE CraneController�unloaddepositbelt� reloadplate�

plate
on
end
deposit
belt�

plate
on
feed
belt�

VAR

crane
height � f ht����� other g�
crane
lower
switch � f on� off g�
crane
upper
switch � f on� off g�
plate
on
crane � Plate�void��

ud� CallRole�unloaddepositbelt	Crane� �plate
on
crane	present


 reloadplate	Crane	nonactive


 plate
on
end
deposit
belt

��

rp� CallRole�reloadplate	Crane� plate
on
crane	present


 unloaddepositbelt	Crane	nonactive


 �plate
on
feed
belt

��

ASSIGN

init�crane
height� �� ht�����

init�crane
lower
switch� �� on�

init�crane
upper
switch� �� off�

FAIRNESS running

�� a plate will eventually be passed on from the crane onto the next device

SPEC AG �plate
on
crane	present �� AF �plate
on
crane	present�

��



Appendix C

Using Counter Examples for

Debugging Speci�cations

This appendix describes an example from the veri�cation process and explains how counter
examples produced by SMV have been used to identify the reasons for proofs to fail�

Incomplete Postcondition of CAA UnloadDepositBelt

The incompleteness of the postcondition of CAA UnloadDepositBelt can be observed from
the counter example execution path generated by SMV when trying to prove the spec�
i�cation AG �plate�on�crane�present �� AF ��plate�on�crane�present��� State 
�

below� shows the initial state of the counter example execution path�

state 	�	�

rpl�enabled � �

rpl�pre � �

rpl�FeedBelt�activated � �

rpl�Crane�activated � �

fbc�feed�belt � off

fbc�plate�on�feed�belt�present � �

crc�crane�height � ht�
��

crc�crane�lower�switch � on

crc�crane�upper�switch � off

crc�plate�on�crane�present � �

Variables starting with rpl are de�ned in module ReloadPlate� variables starting with fbc

are de�ned in module FeedBeltController� and variables starting with crc are de�ned in
module CraneController� Recall that rpl�enabled is de�ned by

rpl�enabled �� rpl�FeedBelt�activated �

rpl�Crane�activated �

rpl�pre�

and rpl�pre is de�ned by

rpl�pre �� fbc�feed�belt � off �

�fbc�plate�on�feed�belt�present �

crc�plate�on�crane�present �

crc�crane�lower�switch � off �

�The SMV output is here restricted to the information relevant to the proof obligation

��



crc�crane�upper�switch � on �

crc�crane�height � ht�
���

The modi�cations to these variables that are displayed in the execution path generated by
SMV are listed below� note� that variables are only listed in the SMV output if their values
are modi�ed�

���

state 	���

fbc�plate�on�feed�belt�present � 	

fbc�plate�on�feed�belt�id � id	

���

state 	�	��

fbc�plate�on�feed�belt�present � �

fbc�plate�on�feed�belt�id � void

���

state 	����

�executing process udb�

���

state 	����

crc�crane�upper�switch � on

crc�plate�on�crane�present � 	

���

state 	����

rpl�FeedBelt�activated � 	

���

state 	����

rpl�Crane�activated � 	

���

�� loop starts here ��

state 	����

���

Note also� that this listing of the execution path is truncated and restricted to show only
modi�cations to the relevant variables� SMV displays the message �loop starts here� close
to the end of the execution path and after that point no modi�cations to the variables of
the system are shown�

The counter example can be used to identify the reason why the proof of the speci�cation
fails� The speci�cation can only become true� if CAA ReloadPlate is executed� for this the
appropriate condition rpl�enabled must become true� which requires rpl�pre to be true�
This however is not the case� since crc�crane lower switch is at no state changed to off�
We would expect that this happens in CAA UnloadDepositBelt �udp changing the state from

�	� to 
�	��� since also variable crc�crane upper switch is set to value on there� Therefore
the conclusion is� that the postcondition of CAA UnloadDepositBelt is incomplete and
needs to be extended with the additional condition crc�crane�lower�switch � off�

��


