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Abstract

The folding architecture together with adequate supervised training algorithms is a special

recurrent neural network model designed to solve inductive inference tasks on structured

domains� Recently� the generic architecture has been proven as a universal approximator of

mappings from rooted labeled ordered trees to real vector spaces�

In this article we explore formal correspondences to the automata �language	 theory in

order to characterize the computational power �representational capabilities	 of di
erent in�

stances of the generic folding architecture� As the main result we prove that simple instances

of the folding architecture have the computational power of at least the class of deterministic

bottom�up tree automata� It is shown how architectural constraints like the number of layers�

the type of the activation functions ��rst�order vs� higher�order	 and the transfer functions

�threshold vs� sigmoid	 inuence the representational capabilities� All proofs are carried out

in a constructive manner and a detailed analysis of the space complexity of the construction

schemes is provided�

We derive bounds for the principled node complexity of folding architecture implementa�

tions of tree automata when threshold transfer functions are used�

Tree languages used in former empirical investigations are identi�ed to belong to the class

of so�called pattern languages� We show that the folding architecture has the capability to

recognize at least interesting subclasses if the de�ning pattern is constrained to be linear�

i�e� if each variable occurs not more than once� Nonlinear pattern languages turn out to be

beyond the representational capability of tree automata� The relationships between pattern

languages� tree automata and the folding architecture give a new view on the interpretation

of known empirical results� Further� this leads to the formulation of conjectures about the

adequacy of the classical automata framework to characterize the full computational power

of the folding architectures�

The construction schemes presented here can be e
ectively used to inject prior knowledge

given in form of tree automata �or implicitly in form of the corresponding grammars or pattern

descriptions	 into an equivalent folding architecture with sigmoid transfer functions which is

ready to be inductively re�ned on data by known training algorithms like backpropagation

through structure� We briey discuss the possible embedding of the folding architecture into

a general knowledge injection�re�nement�extraction framework�

Keywords Theory of Neural Networks� Recurrent Architectures� Computational Power� Tree

Automata� Node Complexity� Pattern Languages� Knowledge Injection�
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	 Introduction

��� Motivation

Classical neural network models � like feedforward multilayer networks � are successfully applied in

static classi�cation and recognition tasks� These models are not always appropriate in interesting

domains with inherent dynamics like speech processing
 plant control and time series prediction�

Therefore there has been growing interest in dynamic recurrent neural network models which are

capable to model nonlinear dynamic systems
 but are limited to process variable�length sequences

of continuous or discrete values as inputs �a selection of topics can be found in Gori et al� ����

and Giles et al� ������ However
 several application areas like molecular biology
 language and

document processing
 geometric reasoning and symbolic computation require to deal with more

structured objects like graphs or terms�

Inspired by this observation
 recently the folding architecture �FA� provided with adequate

supervised training algorithms �e�g� backpropagation through structure� was designed to solve in�

ductive learning tasks on structured objects �K�uchler and Goller �	
 �	��� The generic architecture

has been proven as a universal approximator of mappings from labeled rooted ordered trees to

real vector spaces �Hammer ����
 Hammer and Sperschneider ������ First application perspectives

already emerged � computational chemistry �Schmitt and Goller �	��
 Bianucci et al� �	��
 pat�

tern recognition �Francesconi et al� �����
 search control in theorem proving �Goller ����
 Schulz

et al� �	���
 but up to now there is only few knowledge about the in principle representational

capabilities of this architecture�

The FA may be viewed as a generalization of a class of discrete�time recurrent neural network

models �RNN� which includes the so�called simple�recurrent networks �Elman ������ In the past

few years much work has been done in characterizing the computational power of RNN by linking

them to concepts known from the theory of formal languages and automata
 especially �nite�state

automata �FSA� �e�g� Kremer ��
 �
 Omlin and Giles ����
 Frasconi et al� ��	�
 Goudreau et

al� ����
 Minsky ������ Thus
 a plausible access might be in the attempt to lift some of the known

results and concepts from the RNN to the FA�

In this article we explore some formal correspondences between the FA and a certain class of tree

automata �G�ecseg and Steinby ����� �which is a natural generalization of �nite�state automata��

The focus is on the computational power and the representational capabilities of di�erent instances

and variations of the generic architecture� Note that this issue is di�erent from the question

of learnability 
 but a necessary prerequisite for the latter� As the main result we prove that

simple instances of the folding architecture have the computational power of at least the class of

deterministic bottom�up tree automata �DTA� �Doner ������ Proofs are developed in a constructive

manner� We analyze and compare the space complexity of di�erent construction schemes�

These construction schemes can be e�ectively used to inject prior knowledge given in form

of tree automata �or in form of the corresponding grammars� into equivalent FA� The possible

embedding into a general injection�re�nement�extraction framework �as introduced by Shavlik �	���

is brie�y addressed�

A further topic to be discussed is the so�called node complexity of folding architecture imple�

mentations of tree automata
 i�e� the number of neurons required to implant a given tree automaton

into the FA� Known bounds in the case of RNN with threshold transfer functions �see Horne and

Hush ���
 �	�� are lifted to the FA�

�



In the past a bunch of empirical investigations on the learnability of arti�cially generated

term classi�cation tasks have been conducted with the FA and gradient�based learning procedures

�Schmitt �	��
 Goller ����
 Schulz et al� �	��
 K�uchler and Goller �	��� Even tasks intuitively

considered to be hard for the FA were solved with fairly high generalization accuracy� We identify

those term sets used in former experiments belonging to the class of so�called pattern languages�

The relationship between pattern languages
 tree automata and the FA gives a new interpretation

of the known experimental results and makes the FA a very promising candidate for interesting

inductive inference tasks in pattern recognition applications �Steinby ����
 Schalko� ������ We are

lead to the conjecture that the full computational power of the FA �equipped with sigmoid transfer

functions� is far beyond that of DTA�

Throughout this article one can observe that most concepts and results known in the case

of discrete�time recurrent neural networks
 �nite�state automata and sequence processing can

be successfully lifted to tree processing and applied to explore the relationship between folding

architectures and tree automata�

��� Preview

This paper is organized as follows� After having �xed the basic terminology required for later

investigations we give a brief introduction into the concept of bottom�up tree automata �DTA��

The generic folding architecture �FA� is described in Section � Taking a static point of view

the FA is roughly characterized by two multi�layer feedforward network components � the folding

part and the transformation part� The folding part computes a non�linear combination of the

input and a sequence of prior network states yielding the new state while the latter is used to

map a network state to the output� We consider di�erent kinds of activation functions ��rst�order

vs� higher�order� and transfer functions �sigmoid vs� threshold� but allow only a homogeneous

usage� A known result on the approximation capability of the FA is brie�y reviewed� We show

how a known upper bound result on the sample complexity � strictly speaking the so�called VC�

dimension � of discrete�time recurrent neural networks �RNN� can be easily applied to the folding

architecture�

The basic tools to be applied in later proof constructions are developed in Section �� The

key idea is that state transition functions of tree automata can be rewritten to Boolean formulae�

We show how certain Boolean functions can be simulated by a single neuron �or unit� both

in the �rst�order and the higher�order activation function case� For sigmoid transfer functions

a discretization scheme has to be applied to the output value of the neuron� The constraints

imposed by the discretization and the fact that compositions of Boolean functions are allowed

lead to satis�able sets of linear inequalities in the weights and the thresholds�

The main results concerning the correspondence between DTA and FA are derived in Section 	�

We explore the in�uence of di�erent architectural constraints� Most proofs are carried out in a

constructive manner� Each construction schema is completed by a detailed analysis of the space

complexity� The most important results are�

� The folding architecture equipped with a two�layered folding part
 one unit as transformation

part
 �rst�order activation functions and sigmoid transfer functions su�ces to simulate any

given deterministic bottom�up tree automata�

� The transformation part is super�uous
 i�e� the previous proposition also holds for a two�

�



layered FA consisting only of the transformation part where one unit in the second layer is

recruited to serve as output�

� Any given DTA can be simulated by a FA constituted by only one layer if higher�order

connections are used�

� One layer with �rst�order connections cannot implement any arbitrary tree automata state

transition function�

� However
 the so�called state�splitting technique can be applied to transform any given DTA

into an equivalent one which can be implemented by a FA with �rst�order connections and

a one�layered folding part� Then
 one output neuron is required as transformation part�

Thus
 it is shown that the FA equipped with sigmoid transfer functions has at least the compu�

tational power of DTA� In the case of threshold functions the both machine models are equivalent

�in terms of computational power�� By a known result in the �eld of tree automata we illustrate

an interesting relationship of the folding architecture to the class of context�free word languages�

A discussion of the so�called node complexity of FA implementations � i�e� the number of

neurons required to implant a given DTA into an equivalent FA � follows in Section �� In the

case of threshold functions known facts can be borrowed from the �eld circuit complexity theory

of linear threshold circuits and we are able to lift results known in the context of RNN and FSA

to the FA and DTA� Upper bounds �for a two�
 three� and four�layered folding part� are derived�

A way for the estimation of a lower bound is worked out�

Section � reconsiders inductive inference tasks on arti�cially generated term languages which

were formerly used in empirical investigations about the learnability and generalization capabilities

of the FA respectively gradient�based learning procedures� We identify those term sets belonging

to the class of so�called pattern languages� The FA is proven to possess the representational

capability of at least the class of linear pattern languages� Non�linear pattern languages are

beyond the class of regular tree languages �RTL� �which correspond to DTA�� However
 empirical

results show that inductive inference tasks on non�linear pattern languages can be solved by the

FA with high generalization accuracy� We formulate the conjecture that the full computational

power of the FA is beyond that of DTA and discuss supporting arguments� This section is closed

by a critical view on the adequacy of the formal automata�language framework to characterize

the �full� computational power of the FA� We brie�y discuss how the FA may be viewed from a

non�linear dynamic systems perspective�

The possible embedding of the FA �and adequate training procedures� in the known knowledge

injection�re�nement�extraction framework is the subject of Section �� The proof constructions

developed in Section 	 can be e�ectively used to inject prior knowledge given in form of tree

automata �or in form of corresponding grammars or de�ning patterns� into an equivalent FA

which is ready for an inductive re�nement� The proposed injection scheme shows robustness

against weight perturbations and a small noise level on the output of the neurons�

Section �� is the attempt to �t our own work into the existing research landscape� Most results

and concepts developed in this article have been fruitfully lifted from the the context of discrete�

time recurrent neural network models� The proof technique for implementing DTA by FA was

essentially inspired by an existing system for the combination of symbolic decision tree learning

with supervised training in multilayer feedforward neural networks�

�



We conclude this article with a summary on an abstract level
 discuss open questions and future

directions and re�ect some consequences for the practical application of the folding architecture

in pattern recognition tasks�


 Preliminaries

In order to eliminate ambiguities and to facilitate detailed discussions let us �rst introduce and

�x the basic concepts and terminology used throughout this paper in a formal way� The neural

network architectures considered here were designed to operate on terms �or trees� � a special

kind of structured domain�

De�nition � Term� Let � be a ranked alphabet
 r be the corresponding ranking function r �

�� �IN� and V be a �nite set of variables with � � V  �� The enumerable set T ���V� of terms

over � and V is inductively de�ned as�

�� t � T ���V� if t � V or t � � with r�t�  �


�� f�t�� t�� � � � � tn� � T ���V� if there is a symbol f � � with r�f�  n and for each ti �i  

�� � � � � n� holds ti � T ���V�


�� nothing else is in the set T ���V��

Symbols a � � with rank �or arity� r�a�  � are also called constants
 the pair of alphabet �

and ranking function r is often denoted as signature
 the rank of a symbol is often marked by

subscript� A term in T ��� �� �or shorthand� T ���� is called a ground term� If � and V are �xed
by context of usage we will abbreviate T ���V� by T � Let s
t be two terms in T ���V�� s is called
subterm �written s v t� of t i� s  t or t  f�t�� t�� � � � � tn� and s is a subterm of one of the terms

ti �i  �� �� � � � � n�� We write s � t if s is a proper subterm of t
 i�e� s � t i� s v t and s � t� If

t  f�t�� t�� � � � � tn� then the term ti is called the i�th immediate subterm�

Any term t in T ���V� may be viewed as a rooted labeled ordered tree
 the external nodes �or

leaves� of which are labeled with variables and constants and the internal nodes of which are

labeled with function symbols f �f � � with r�f� � �� and having an outdegree equal to the arity
of the label� The frontier of a tree �term� is de�ned as the sequence of external nodes �leaves�

built up in a left�to�right order�

A position within a term may be represented as a sequence of positive integers
 describing the

path �queued argument position numbers� from the root �head
 outermost symbol� to the root

�head� of a subtree �subterm�� By tjp we denote the subterm of t rooted at position p� A tree

�term� s is said to occur in t i� there is a position p in t with tjp  s�

A substitution is a mapping � � V � T ���V�
 extended to � � T ���V�� T ���V� in such a way
that f�t�� t�� � � � � tn��  f�t��� t��� � � � � tn��� A term s matches a term t if there is a substitution

� with t�  s� The functions root and succ have their usual meaning� Further let ��v� � � map
the node v of a tree �term� to its label �head symbol�
 and let k  maxa���r�a�� be the maximum

rank of �� A subset of T ��� �� will be synonymously called tree language
 term language or forest �

The computational power of neural network models is often constrained by certain types of

transfer functions �e�g� see Siegelmann and Sontag �		��� Here
 the following types of functions are

of particular interest�





binary threshold �t � IR �� f�� �g �t�x�  

�
� if x � ��

� else�
� � IR

classical sigmoid �c � IR ����� �� �c�x�  
�

� ! e��x
� 	 � � IR

general sigmoid �g � IR ������ ���

lim
x���

�g�x�  ��

lim
x���

�g�x�  ��

and �g is continuous�

�� 
 �� � IR

Note that �c is a special case of �g and �t is approximated arbitrarily well by �c for lim����� In

our constructions �c will be con�gured by choosing �  ��

Sometimes it is convenient to index certain elements in an enumerable set� Then
 we assume an

arbitrary but a priori �xed total ordering on elements in a set M and use the function � �M � IN

to compute the index number
 i�e� ��a�  i for a  ai and M  fa�� a�� � � � � ai� ai��� � � �g�

� Tree Automata

The concept of tree automata �and that of the corresponding tree grammars� is well�understood

and applied in several �elds of computer science like compiler construction �code generation and

optimization
 see Wilhelm and Maurer �����
 syntactical pattern recognition �e�g� Schalko� ����

or Miclet �����
 linguistics
 computational biology
 computational logic and game theory� It may

be viewed as a straight forward generalization of the well�known �nite�state automata �FSA�
 see

Hopcroft and Ullman ���� Informally spoken
 a state transition is decided upon a character read

from the input and a tuple of prior states �instead of exactly one prior state in the case of �nite

state automata�� There are several types of tree automata and several ways to introduce them


e�g� consult Doner ����
 G�esceg and Steinby ���
 ��� or Common et al� ����� We are particularly in�

terested in �nite bottom�up tree automata and essentially follow the formalization of Schalko� ����

or Miclet �����

De�nition � Bottom�Up Tree Automata� A �nite bottom�up tree automata �or frontier�to�

root automata� is a quadruplet

��� Q� F�R�

where � is a ranked alphabet
 r the corresponding ranking function r � � � �IN� 
 Q a �nite

set of states
 F � Q a set of �nal states and R  f�a � a � �g a set of relations of the type
�a � Qr�a� 	Q�

If R is a set of functions of the type �a � Q
r�a� � Q we speak of a deterministic �nite bottom�up

tree automata �DTA��

A given DTA A operates as a tree acceptor in the following way� First
 each leaf node v with

label a  ��v� of a given input tree t is assigned �if possible� an initial state belonging to �a � Q�

Then A examines all the paths of t towards the root by looking at each node and its immediate

successors� If the sequence of states already assigned to the successors of a node v with label a is

�
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Figure �� An example input tree processed by the DTA Ap� Assigned states are denoted in square

brackets�

an element of Qr�a� in the domain of the mapping �a
 then the corresponding image state for the

mapping is assigned to v� The process continues either it becomes impossible to assign states to

nodes or the root is reached� The tree t is accepted by the automaton A i� the root of t is assigned
to a �nal state�

As observed the transition functions of a DTA do not necessarily have to be de�ned on the

whole domain� In order to be able to present a formal speci�cation of the recognition operation we

introduce a unde�ned state 
 �� F and de�ne �a�q�� q�� � � � � qn�  
 if there is a qi �i  �� �� � � � � n�
with qi  
�
Let t � T ��� be a given tree with a  ��root�t�� and t�� � � � � tr�a� be the immediate subtrees�

The transition functions in R can be extended to a function "� � T ���� Q in the following way�

"��t�  �a�"��t��� "��t��� � � � � "��tr�a��� ���

The tree language L�A� recognized by a given DTA A is the set of all trees accepted by this

automaton
 i�e� L�A�  ft j "��t� � Fg� The following DTA does not only serve as explanation but
will also be used as a counterexample in Section 	�

Example � Even�parity Tree Recognizer� Let Ap  ��� Q� F�R� be a DTA where �  

f�� �g
 r���  r���  f�� �g
 Q  fq� pg
 F  fpg and R  f��� ��g with

�� � �� p� �p� p� �� p� �p� q� �� q� �q� p� �� q� �q� q� �� p

�� � �� q� �p� p� �� q� �p� q� �� p� �q� p� �� p� �q� q� �� q

Figure � shows the automaton Ap accepting the the input tree t  ���� ���� ���
 assigned states

are denoted in square brackets� The accepted language is the enumerable set of all binary trees

with the number of nodes labeled by #�# is even� p acts as �even�
 q as �odd� state
 a node of a

tree is assigned a state depending on the parity of its immediate subtrees�

Henceforth for reasons of simplicity we consider DTA that are ��lled up� to the maximum

rank of the given signature�

De�nition � Maximum�Rank DTA� Let A�  ���� Q�� F �� R�� be an arbitrary DTA� A� is

transformed to a maximum�rank automaton A  ��� Q� F�R� in the following canonical way�
We introduce a void state q� �� Q�� �  ��
 Q  Q� � fq�g
 F  F � and R is R� extended to

the maximum rank k of ��
 i�e� each ��a � R�� ��a � Q
�n � Q� with n 
 k is extended to �a � Q

k � Q

and each �q�� � � � � qn� q� � ��a
 �
�
a � R� becomes �q�� � � � � qn� q�� � � � � q�� �z �

k�n

� q� � �a
 �a � R�

	



Remarks The two classes of deterministic and nondeterministic bottom�up tree automata are

known to have the same recognition power �see Doner �����
 i�e� the recognizable class of languages

is identical� A tree automaton which processes the trees starting at the root proceeding then

towards the leaves is called a top�down �or root�to�frontier� tree automaton� The nondeterministic

version of the top�down tree automaton has the same power as the bottom�up counterpart
 but the

deterministic one is considerably weaker and de�nes a proper subfamily of recognizable languages

�Doner ����
 G�esceg and Steinby ������

As in the case of other automata types each type of tree automaton corresponds to certain

kinds of tree grammars which can be alternatively used to describe the recognition power� The

so�called regular tree grammars belong to DTA
 nondeterministic bottom�up and nondeterministic

top�down tree automata� The recognized language class is often called regular tree language �RTL��

By restricting the maximum rank to k  � tree automata are reduced to the well�known �nite

state automata �FSA�
 see Hopcroft and Ullman ����

Several important concepts and results in the �eld of tree automata necessary to explore the

correspondence to neural networks are still not addressed
 but we will introduce them on demand

and in context in the later sections�

� Folding Architecture

The neural folding architecture �FA� together with a supervised learning procedure has been

designed to inductively infer mappings from structured objects to the real vector space by given

examples �K�uchler and Goller �	��� In this section we will �rst explain the type of learning tasks

to be solved by the FA in a more precise way� After the presentation of the layout of the generic

architecture and the processing dynamics
 the approximation and the generalization capabilities

of the FA are brie�y discussed�

��� The Learning Tasks

Precisely
 the inductive learning task �ILT� intended to be solved by the FA is de�ned as a tuple

�$�P�
 where $ is an unknown function of the type $ � T ��� � IRq with q � IN and T ��� is
the �possibly in�nite� domain of rooted labeled ordered trees �ground terms� over a given ranked

alphabet � �see Section ��� P is a large but �nite set of examples partially describing $
 i�e�

P  f�t��$�t���� �t��$�t���� � � � � �tp�$�tp��g where ti � T ��� and i� p � IN� � � i � p� The learning

task is to infer an approximation $A �as good as possible
 w�r�t� a given error measure� to the

unknown function $ based on the given �nite example set P only�
A special case is the function $ restricted to $ � T ��� � fc�� c�� � � � � cpg with p � IN � This

is a description of inductive p�class classi�cation tasks where the ci �i � IN� � � i � p� are the

corresponding class labels� The objective here is to infer a classi�er $C with a high accuracy
 i�e�

with a high probability of correctly classifying a randomly selected instance �t�$�t��� t � T ����
The principled idea in designing a neural network architecture for solving a given ILT is to

combine a component for encoding elements of T ��� into suitable connectionist distributed rep�

resentations �points in the real vector space� with a component to compute �approximation or

classi�cation� tasks on these distributed representations�

�



��� The Static View

Our generic folding architecture is layered and the static view is that of a specially scaled multilayer

feedforward network �see Figure ��� The �rst r layers constitute the folding part
 the next layers

�including layer numbered r� the transformation part
 where s � � and r � ��
The number q � IN of units �neurons� in the output layer as well as the maximum rank k is

de�ned by the given ILT  �$�P� �i�e� the maximum rank of the domain of $�� The number of

hidden layers and the number of neurons in each layer concerning the folding and transformation

part is not prede�ned� Neither ism
 the dimension of the representation layer �the layer numbered

by r�� The input layer is constituted by n!km units
 i�e� one block of n units followed by k blocks

of equal size m�

The architecture is homogeneous
 i�e� all neurons are of the same type� The output of a layer

l ! � is computed from the output o �l� of the previous one according to

o �l���  �
�
��o �l��

�
where � computes the activation of a neuron and � is the transfer function� A popular instance is

the classical sigmoid function �  �c �see Section �� and �  �� with

�c�x�  
�

� ! e�x
���o

�l��  W �l���o �l� ! � �l���

�� speci�es so�called �rst�order connections
 W �l��� denotes the connections from layer l to l ! �

in matrix form �with real�valued components�
 � �l� the individual biases in layer l�

An other possibility is to use higher�order connections �also called sigma�pi units�� For example

consider an instance of the FA with a one�layer folding part �r  ��
 no transformation part �s  ��


some units in the representation layer recruited as output units and the function �  �h of order

k ! � which computes the activation of neuron i as

�h�x�  �i !

nX
j��

mX
l������lk��

wijl����lk  xj 
k��Y
u��

xn�um�lu

where x � IRn�km denotes the input vector
 �i the bias of the neuron
 xi the i�th component of

x and wijl� ���lk � IR is the weight of the connection �of order k ! �� that leads to neuron i by a

multiplicative combination of the input from neuron j and from the neurons indexed l�� � � � � lk� In

this special higher�order case a fully�connected layer yields nmk�� weight connections�

Remarks The FA may be viewed as a generalization of some types of discrete�time continuous�

space recurrent neural networks �RNN� used for temporal sequence processing �e�g� see Giles et

al� ������ By setting k  �
 specifying one layer as folding part �r  ��
 one layer as transformation

part �s  �� and choosing �rst�order connections the FA is instantiated to the simple recurrent

network of Elman ����� The con�guration k  �� r  �� s  �� �  �h gives the well�known

second�order recurrent architecture�

Occasionally we will describe the FA by a ��tuple � �r� s�m� n� k� q� �� �� although this notation

does not specify the number of units in the hidden layers of the folding and transformation part�

�If one component is not relevant for certain propositions it will be �lled by the anonymous underscore � �

character�

�
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Figure �� The generic folding architecture

��� Processing Dynamics

There are no explicit feedback connections in the FA� The recurrent processing is completely driven

by the inherent recursive structure of the objects mapped from the tree �term� domain�

Let � be a ranked alphabet with maximum rank k
 T ��� be the induced set of trees
 c be
an arbitrary
 but �xed encoding function c � � � IRn that maps labels to numeric codes and

nil � IRm be a special encoding for the empty tree�

Informally spoken the folding part is used to �fold� �or encode� a given tree into a distributed

representation �in IRm�� This is achieved by recursively setting the previously computed repre�

sentations of the immediate subtrees together with the label coding of the root node at the input

layer and propagating them through the folding part� This process starts at the leaves �by using

the label coding and k times the coding of the empty tree� and ends up with a representation

of the whole tree which is then mapped by the transformation part yielding the mapping of the

input tree�

Let us now de�ne the dynamics of the folding architecture in a formal way� The folding part

may be viewed as a function g � IRn�k�m � IRm and the transformation part as a function h �

IRm � IRq � Let t � T ��� be an arbitrary tree with � � d � k immediate subtrees ft�� t�� � � � � tdg�
Then the mapping "g � T ���� IRm is recursively de�ned by g in the following way�

"g�t�  g
�
c���root�t��� � "g�t��� "g�t���    � "g�td�� nil�    � nil� �z �

k�d

�
� ���

where #�# is the vector concatenation operator� Finally the mapping $A � T ��� � IRq com�

puted by the folding architecture is de�ned by

$A  h � "g�

Precisely
 this de�nition only allows mappings to the range of the transfer function� If one

wants to use IRq as potential range the last layer of the transformation part can be replaced by a

�



layer of neurons �or to be extended by an additional one� carrying identity transfer functions� By

this measure
 the last layer computes an a�ne mapping A and we get

h  A � h�

where h� is the function computed by the original part of the transformation layers�

Remarks If no transformation part is speci�ed for the FA �s  �� one can simply recruit some

units from the representation layer �r� and de�ne h to extract the corresponding components from

the result vector delivered by the mapping "g�

Let the network state be de�ned as the output of the representation layer �i�e� the layer num�

bered by r�� Note that in our model state transitions depend on the current node of the input

tree to be processed
 i�e� autonomous state transitions are not allowed �� This modus operandi

�described by Equation �� essentially di�ers from that of other recurrent models �e�g� see some

models investigated by Siegelmann and Sontag �		��
 where an arbitrary number of autonomous

state transitions are allowed �after the input sequence is completely fed into the network� before

the output of the network is computed�

A supervised learning procedure can be developed to solve a given ILT  �$�P� with the FA in a
common way� Let E be an �appropriately di�erentiable� error measure in the weight space w�r�t the

training data P and the mapping $A� Obviously
 the FA gives a good approximation to $ w�r�t� P if
the error E is minimized� In principle any suitable numerical optimization procedure can be used

for this minimization task� A simple gradient�based training algorithm called Backpropagation

Through Structure �BPTS� has been developed and published by Goller and K�uchler ��	�
 later

re�ned by K�uchler and Goller �	� and worked out in detail by Goller ���
 chapter ���

In this article we concentrate on the computational capabilities of the folding architecture and

for that purpose it su�ces to know about the existence of an e�ective learning method� For the

detailed mathematical derivation
 the application and experimental evaluation of BPTS for the FA

we refer to Goller ����
 K�uchler and Goller �	
 �	�
 Schulz et al� �	��
 Schmitt �	��
 Calmbach ����

Other froms of dynamics than expressed by Equation � might be realizable and compatible

with the static view of the folding architecture� For example
 by allowing to compute an output

each time a node of a given input tree is processed the overall mapping constituted by the FA will

be a special structure�to�structure mapping $A � T ��� � T ��� where the shape of tree remains
invariant �see also Frasconi et al� ������

Further note that for the processing of trees by the FA it makes no di�erence whether the tree

labels are taken from a discrete set � �and encoded by c � �� IRn� or directly drawn from IRn�

��� Approximation Capabilities

If we want to apply the FA as approximation device one might ask about the class of functions

that can be approximated under the assumption that an e�ective and appropriate learning method

will be available� Recently
 Hammer ���� has proven the FA being a universal approximator for

functions of the above type $ � T ���� IRq � Here
 we brie�y recall this result�

Let the transfer function � be the general sigmoid �g �see Section ��
 monotonuous and further

constrained by the existence of a point x� in ��
�� ��� so that � is two times continuously di�eren�

tiable in an environment of x� and �
���x�� � �� Let f � T ���� IRq be an arbitrary function and

�This property of models of computation is also called real�time processing�

��



P be an appropriate probability measure on T ���� Further let F denote the class of functions

that are implementable by the generic FA equipped with neurons using � as transfer function�

Theorem � Approximation� For any � 	 � there exists a function f� � F so that for all

t � T ��� holds
P �jf��t�� f�t�j 	 �� 
 �

Hammer ���� gives a proof construction that requires O�log� k� layers with less than O�k� units

in each layer in the folding part and a three�layer feedforward network as transformation part� k

is the maximum rank of �
 the dimension m of the representation layer can be chosen less than

�� The theorem also holds for radial basis functions as transfer function� Using the threshold

function �t
 approximation can be accomplished with a number of units that is exponential to the

maximum depth of the trees in a �nite domain�

��� VC�Dimension

One aspect in characterizing the generalization capabilities of learning devices like neural net�

works is the theoretical investigation of the sample complexity 
 i�e� the amount of training data

necessary to achieve a given level of generalization accuracy� The sample complexity is known

to be closely related to the so�called Vapnik�Chervonenkis�dimension �or VC�dimension�
 which

can be regarded as a measure of the �expressive power� of a set of functions F � In the case of
neural networks
 F is de�ned as the set of functions implementable by a given architecture� For

the exact relationship between sample complexity and VC�dimension
 the application of these

concepts to neural networks and a survey of recent work on that �eld the reader may be referred

to Anthony ���

In the following we show that an upper bound for the VC�dimension of the FA can be trivially

derived by directly applying the result of Karpinski and Macintyre ���� �VC�dimension of multilayer

feedforward networks� and the extension of Koiran and Sontag ��� �VC�dimension of RNN��

Theorem � VC�Dimension� For folding architectures with �rst�order connections being con�

strained �by discretized interpretation of the output� to implement functions $ � F of the type

$ � T ���� f�� �g holds�

The VC�dimension given classical sigmoid transfer functions �c is O�u�w	��

where w is the number of weights �including thresholds� in the FA and u is the size �number of

nodes� of the input terms �trees� received by the FA�

Proof VC�Dimension� Upper Bound� By virtually unfolding �see also Section ��
 Equa�

tion �� the FA for a given input tree of size u the recurrent architecture can be simulated by

an equivalent multilayer feedforward network with unf ! nt units �neurons�
 where nf resp� nt

be the number of units in the folding resp� transformation part of the original architecture
 and

the same number of programmable parameters �weights� w  wf ! wt in the folding �wf � resp�

transformation part �wt��

By Karpinski and Macintyre ���
 Theorem �� there is an O��unf ! nt�
�w�� upper bound on

the VC�dimension of that feedforward architecture� Assuming w 	 wf 	 nf and w 	 wt 	 nt

this is O�u�w	� as claimed�

��



Remarks Koiran and Sontag ��� also derived upper bounds on the VC�dimension of RNN

instantiated by several other classes of transfer functions� These results seem to be transferrable

to the FA in a similar way as demonstrated by the proof of Theorem �� Hammer ���� explores

recurrent neural network models using the framework of PAC learning and give lower bounds on

the VC�dimension of the FA�

 Single Neurons and Boolean Functions

The smallest building block of the FA is the single unit �neuron�� In Section 	 we will utilize

the fact that the transition function of a DTA can be rewritten in a propositional way� Thus
 it

is convenient to explore the computational capabilities of a single neuron �rst and to investigate

how certain Boolean functions can be simulated by certain types of single neurons� The results to

be developed here will enable us to establish constructive proofs for propositions concerning the

correspondence between the FA and DTA �to be presented in later sections��

��� First�Order Connections

Lemma � A single neuron provided with �rst�order connections and the classical sigmoid transfer

function �c can simulate the following Boolean functions�

a� The n�ary Boolean ��
b� the n�ary Boolean ��
c� the function � � ���� � � � � � ��n�� � � � � � ��k� � � � � � �knk �� where �� �ij � f�� �g� � � i � k�

� � j � ni and for all i there exists at most one j with �ij  ��

In order to simulate Boolean functions by neurons equipped with transfer functions of a continuous

range a special discretization scheme has to be applied� The following idea is borrowed from

Ivanova and Kubat �����

Proof Since �c has a continuous range of ��� �� we choose an � ���� ���� and interpret the output
of a neuron in the following way� We say that �the output of� a neuron is high if ��x� � ���
 low if
��x� � � and unde�ned
 else �x being the activation�� Thus
 the Boolean values f�� �g correspond
to flow� highg� Let �  ln ���

� � Due to the monotonicity and symmetry of �c the output will be

high if the activation of the neuron is x � �
 low if x � �� and unde�ned
 else�
a� A neuron receiving input from n neurons connected by identical weights w � IR�w 	 �

behaves as a n�ary Boolean � i� the following constraints can be satis�ed�
��� ��  n  w ! � � � ���

�  �n� ��  w ! �  �  w ! � � �� ��

Constraint � states that the neuron should be high even if all input neurons are �minimal�

high� Further it should be low even if n � � input neurons are �maximal� high and one is
�minimal� low �Constraint �� By turning these constraints into equations we get at least

one solution�

w  �  �

�� ��n! ��
�  �  �� ��n! ��� �n��� ��

�� ��n! ��
� 


�

n! �

��



b� For simulating a n�ary Boolean � we get the following conditions �w 	 ���

��� ��  �  w ! �  �n� ��  w ! � � � ���

�  n  w ! � � �� �	�

Constraint � postulates that the neuron should give a high output if one input neuron is

�minimal� high and all other input neurons are �maximal� low� The neuron has to be low


even if all input neurons are minimal low �Constraint 	�� We get at least one solution�

w  �  �

�� ��n! ��
�  ��  �� ��n! �� ! �n�

�� ��n! ��
� 


�

n! �

c� We assume that the neuron receives input from one neuron by the weight connection w� 	 �

and from n  
Pk

i�� ni neurons by identical weight connections w� 	 �� The Boolean

function � � ���� � � � � � ��n�� � � � � � ��k� � � � � � �knk� is simulated if the following constraints
hold�

��� ��  �  w� ! k  ��� ��  �  w� ! � � � ���

�  �  w� ! ��  � ! ��n� � ���  w� ! � � �

� � �! ��  � ! ��nk � ���  w� ! � � �� ���

�  �  w� ! �  n�  w� ! ��  � ! ��n� � ���  w� ! � � �

� � �! ��  � ! ��nk � ���  w� ! � � ��
���

�  �  w� ! ��  � ! ��n� � ���  w� ! � � �

� � �! ��  � ! ��nk�� � ���  w� ! �  nk  w� ! � � �� ���

Constraint � postulates that the neuron should be high if � is set �minimal� high and for all

� � i � k there is exactly one �ij 
 � � j � ni �minimal� high and all other ni � � �maximal�
low� Further the neuron has to be low if � is set �minimal� low and each ��disjunction

is tuned to a maximal permissable value �Condition ��� k inequalities are expressed by

Condition �� The neuron should be low if � is set �maximal� high
 k � � ��disjunctions are
tuned to a maximal value and for one �i�disjunction all ni literals are �minimal� low� The

above k ! � constraints may be compacti�ed to�

��� ��  w� ! k  ��� ��  w� ! � � � ����

�  w� ! �k ! �  n� k  ��  w� ! � � �� ����

w� ! �k � � ! �  n� �k � ��  ��  w� ! � � �� ����

By turning these conditions to equations and computing ��������� we get

w�  w� ����

Resubstitution into Condition �� and Condition �� yields

��k ! ��  ��� ���  w� ! �  � ���

��! k ! �  n� k  ��  w� ! �  �� ����

��



and leads to at least one solution�

w�  w�  �  �

�� ��n! ��
�  ��  �k  ��� �� ! � ! �  n

�� ��n! ��

� 

�

n! �
n  

kX
i��

ni

One might have observed that this proof has been designed to obtain a tool that possesses more

power than really needed to prove Lemma �� Although the parameters for the Boolean functions

being constrained to discrete values from the set f�� �g by Lemma �
 the construction permits
to apply the developed discretization scheme for both input and output values �presented to and

computed by the single neuron�� This gives rise to the following lemma�

Lemma � Circuits� Any logical circuit composed by the Boolean gates given in Lemma 	

�a��b��c�� can be simulated by a network of neurons with �rst�order connections and the trans�

fer function �c�

Proof Circuits� Substitute each logical gate by a neuron� Let n� be the maximum fan�in found

in the circuit� Choose the discretization variable � as �  �
n��
 � Set the thresholds and weights

according to the recipe given in the proof construction for Lemma �� Obviously
 the resulting

neural network simulates the given logical circuit�

Lemma � and Lemma � can be generalized in the following way�

Lemma � Lemma 	 and Lemma 
 hold substituting �c by the general sigmoid function �g

Proof Due to the asymptotic behavior of �g for any given � with � 
 � 
 �
� ��

����� there exist

�� and �� such that �g�x� � ��� � �� if x � �� and �g�x� � ��� ! �� if x � ��� By choosing

�  max�j��j� j��j� we can apply the discrete interpretation scheme and the constructions used
to prove Lemma ��

Lemma � Lemma 	 and Lemma 
 hold when �c is substituted by the threshold function �t�

Proof The range of �t is f�� �g so that the Boolean functions may directly be implemented
without discretization� Let � � IR� be an arbitrary constant� We apply the general construction

given in the proof of Lemma � by setting �  ��

a� Obeying the constraints for the n�ary �
 n  w � � and �n � ��  w 
 � we get one possible

solution�

w  �� �  ���n� ��

b� For the n�ary � we have to satisfy w � � and � 
 ��

w  �� �  �

�



c� The Boolean function � � ���� � � � � � ��n�� � � � � � ��k� � � � � � �knk� requires w� ! k  w� � �


k  w� 
 � and w� ! �k � ��  w� 
 �� We get one possible solution by

w�  w�  �� �  ���k ! ��

��� Higher�Order Connections

As speci�ed in Section �� the FA can be con�gured with higher�order activation functions� The

next lemma shows that this enables the simulation of a more complex �than given in Lemma � c��

Boolean function by using just a single neuron�

Lemma � A single neuron equipped with k�th�order connections� the classical sigmoid transfer

function �c and the activation function �h���  
Pl

i�� wi

Qk
j�� �

i
j �where l� k � � and �ij are the

inputs to the neuron� can simulate the Boolean function

���� � � � � � ��k� � ���� � � � � � ��k� � � � � � ��l� � � � � � �lk� ��	�

Proof We apply the same discretization scheme as used for proving Lemma �� Since each

conjunct in Equation �	 carries the same number k of literals the weights are assumed to be

identical wi  w 	 �
 i  �� � � � � l� A neuron simulates the above Boolean function if the following

constraints can be satis�ed�

��� ��k  w ! �k  w  �l � �� ! � � � ����

�  �k��  w  l ! � � �� ����

Constraint �� �Constraint ��� expresses the minimal �maximal� activation of the neuron that

should result in a high �low� output� By turning these constraints into equations we get at least

one solution�

w  �  �

��� ��k � l�
�  ��  ��� ��k ! l�

��� ��k � l�

In order to ful�ll w 	 � the discretization parameter � � ��� ���� has to be chosen such that

��� ��k 	 l�� Let y���  ��� ��k be substituted by %y���  � !
h
�y
��

i
�
�  �� k�
 i�e� the tangent

on y in �  �� Thus
 � 
 �
k�l guarantees w 	 ��

Remarks Lemma � also holds for the general transfer function �g and the threshold function

�t� The Boolean function given by Equation �	 subsumes the k�ary � �by choosing l  �� and the
l�ary � �by choosing k  ��� Furthermore
 units with higher�order connections can be composed
to larger Boolean circuits �using the same argumentation as applied to prove Lemma � for the

case of �rst�order activation functions��

��



� Correspondences between DTA and FA

Our intuition tells us that there must be a tight correspondence between DTA and FA� Both

machines are deterministic
 both process trees from the leaves to the root and both compute new

states �the output of the representation layer of the FA may be interpreted as state� by combining

a sequence of prior states with symbols read from the input �compare Equation � with Equation ���

The relation between FSA and RNN has been intensively studied during the last years �e�g�

Kremer ���
 Omlin and Giles ����
 Frasconi et al� ��	�
 Goudreau et al� ����
 Minsky ������ One can

observe that DTA�FA is a straight�forward generalization of the FSA�RNN concept� This section

is to show how known results about the relationship between FSA�RNN can be transferred and

applied to explore the correspondences between the DTA and FA�

The approximation theorem of Hammer ���� may give a �rst hint on the computational power

of the FA and its relationship to DTA�

Theorem � The FA provided with �rst�order connections and the classical sigmoid transfer func�

tion �c can approximate any DTA w�r�t� a �nite set of input trees arbitrarily well�

Proof A DTA may be viewed as an acceptor function $ � T ��� � f�� �g� According to ����
�see also Theorem �
 Section �� any such function $ can be approximated arbitrarily well by the

generic FA� The construction of the proof requires O�log� k� layers with O�k� units each in the

folding part and a multilayer network as transformation part with q  �
 where k is the maximum

rank found in ��

This result supports the conjecture that the FA is at least as powerful as DTA� However
 a

DTA is de�ned on a enumerable set of trees �that cannot a priori be limited in size� and the

Theorem � gives us little practical help for implementing a concrete DTA into a �nite�size FA

with the exactly identical behavior�

We are going to show that indeed the FA is at least as powerful as DTA� The investigation of

the relationship between FA and DTA is guided by three principles�

Architectural Constraints The generic folding architecture developed in Section �� allows

several degrees of freedom� We want to explore how architectural constraints like the number of

layers in the folding and transformation part
 the type of the activation and the transfer function

will take in�uence on the relationship to the DTA�

Constructiveness in Proof All proofs of positive propositions will be carried out in a con�

structive manner� The tools developed in Section � will be applied to give construction schemes

for the implementation of given DTA by speci�c folding architectures�

Analysis of Complexity For practical purposes �for example see Section �� one might also

be interested in the complexity of the di�erent alternative �neural DTA�implementations� to be

developed� The space complexity of a DTA A  ��� Q� F�R� can be characterized by the number
of states m  jQj
 the size of the alphabet n  j�j
 the maximum rank k of �
 the number of

�nal states nF  jF j and the number of explicitly speci�ed transitions nR  
P

	�R j�j� If it is
demanded that each possible combination of states and input symbols has to be explicitly speci�ed

we get n
R  mk  n di�erent transitions�

�	



The complexity of a speci�c neural implementation will be measured by the number of neurons

�also called node complexity of the implementation
 not counting the input layer� and the number

of weights �inclusive biases� used in the construction� Here
 it will be convenient to discriminate

between the number of non�zero weights in the neural network architecture and the total number

of weights if layers are assumed to be fully�connected�

��� Two�Layered Folding Part

We begin the investigations by proving that an architecture FA��� �� jQj� n� k� �� ��� �g�
 i�e� two
layers in the folding part
 one unit as transformation part with the �rst�order activation function

�� and the general sigmoid transfer function �g 
 su�ces to simulate any given DTA�

Theorem � The FA with �rst�order connections and the general transfer function can simulate

any DTA using two layers in the folding part and only one unit in the transformation part�

Proof Let A  ��� Q� F�R� be an arbitrary DTA with �  fa�� � � � � ang
 t � T ��� be a given
tree and v a node in t whose successors are already assigned the states �q�� � � � � qk�� By De�nition �

we can rewrite the conditions for state transitions in a propositional way� A assigns v the state q
i� 	

�p�� � � � � pk� q� � �a

a � �



�a  ��v��

�

k�

i��

�qi  pi�

��
����

A is mapped into an architecture FA��� �� jQj� n� k� �� ��� �g� by the following construction �see also
Figure ��� We choose the coding function c for labels �symbols� as c�ai�  ei
 ai � �
 i�e� the i�th
symbol is mapped to the i�th unit vector �the i�th component is high
 all others low in the sense of

Lemma �
 proof construction�� The second layer in the folding part consists of m  jQj units
 the
i�th unit corresponds to the i�th state qi � Q� For each �p�� � � � � pk� p� � �a� a � � we put a unit
into the �rst layer receiving connections from the ��a��th unit of the label block and from each

��pj��th unit of the j�th block of the input layer �j  �� � � � � k�� That unit is further connected to

the ��p��th unit in the second layer�

By Lemma � �Circuit Lemma� all units in the �rst layer can be tuned �weights and biases�

to act as �k ! ���ary logical �
 each unit i in the second layer to act as logical � with arity
ni  jf�p�� � � � � pk� qi� � �� � � Rgj� By Equation �� it is obvious that the folding part implements
the state transition function of A� Finally we add a single output unit in transformation part of
the FA acting as jF j�ary logical � receiving input from each unit ��q�� q � F of the second layer�

The empty tree �corresponding to state q�� is coded by e��

In case where the transition function of A is only partially de�ned the missing connections �to
a full connectivity between layers� will be inserted with weight w  �� Thus
 the unde�ned state


 �� F �see De�nition � and Equation ��� is represented by ��

It is clear �compare Equation � and Equation ��� that the tree t is mapped by the FA to a

high output i� the DTA A accepts t�

Table � summarizes the results of the space complexity analysis for the �neural implementation�

of a given DTA into the folding architecture �as demonstrated by the proof construction for

Theorem 
 see also Figure ���

��
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Figure �� Layout of the folding architecture with two layers in the folding part
 one layer in

the transformation part for simulating DTA� Neurons are denoted by circles
 those acting as

Boolean functions are �lled with � and �
 groups of semantically similar neurons are enclosed
by boxes� The solid lines with arrows exemplify the connections to be inserted when a transition

�p�� p�� � � � � pk� p� � �a� �a � R is embedded�

nR n
�
R

neurons nR �m� � � m
k
n�m� � �

O�nR	 O�mk
n	

weights �n� km	nR � nRm�m� �n� km	mk
n�m

k
nm�m�

�full connectivity	 �nR �m� � � O�nR�n� km		 �mk
n�m� � � O�kmk��

n�m
k
n
�	

weights nR�k � �	 � nF � nR �m� � � m
k
n�k � �	 � nF �m

k
n�m� � �

�non�zero	 O�knR	 O�kmk
n	

Table �� Complexity of the DTA implementation given by Theorem 
 proof construction�

By a small modi�cation of the proof construction given above �regarding Theorem � we can

show that the transformation part of the FA is super�uous�

Eliminate the output unit of the transformation part and all connections leading to� Instead


extend layer two by one unit acting as logical � and the new designated output of the network�
Connect this unit with all units of the �rst layer that belong to a transition leading to a �nal

state �f�p�� � � � � pk� p� � � j � � R� p � Fg�� It is obvious that this unit is high i� the DTA
accepts the tree t� The complexity of this construction �see Table �� di�ers only marginally from

the proof of Theorem � Let nf describe the number of transitions leading to a �nal state
 i�e�

nf  jf�p�� � � � � pk� p� � � j � � R� p � Fgj�

Corollary � The FA with �rst�order connections and the general transfer function can simulate

any DTA using two layers in the folding part� No transformation part is required�

��



nR n
�
R

neurons nR �m� � � m
k
n�m� � �

O�nR	 O�mk
n	

weights �n� k�m� �		nR � nR�m� �	� �n� k�m� �		mk
n�m

k
n�m� �	�

�full connectivity	 �nR �m� � � O�nR�n� km		 �mk
n�m� � � O�kmk��

n�m
k
n
�	

weights nR�k � �	 � nf � nR �m� � � m
k
n�k � �	 � nf �m

k
n�m� � �

�non�zero	 O�knR	 O�kmk
n	

Table �� Complexity of the DTA implementation given by Corollary ��

��� One�Layered Folding Part

The next conclusive question is whether one layer in the folding part of the FA su�ces to simulate

any DTA� The answer seems to depend on the representability of arbitrary DTA state transition

functions and on the type of activation function implanted into the FA�

����� Higher�Order Connections

The condition for state transitions in a DTA as formulated by Equation �� �Theorem 
 proof� can

be immediately identi�ed as a Boolean function of the type presented by Equation �	 �Lemma ���

This observation can be utilized to simulate any given DTA by a FA with higher�order activation

functions and only one layer as folding part�

Theorem � The FA with higher�order connections and the general transfer function can simulate

any given DTA using one layer in the folding part and no transformation part�

Proof Let A  ��� Q� F�R� be an arbitrary DTA
 let k be the maximum rank of �� We apply the
same construction scheme as presented by the proof of Theorem  and Corollary �
 but now using

neurons with higher�order �de�ned by Lemma �� instead of �rst�order connections to implement

Equation �	 into an architecture FA��� �� jQj! �� n� k� �� �h� �g� �see also Figure ��
Symbols in � are encoded by unit vectors� The folding part consists of one layer carrying

jQj ! � neurons
 one for each state in jQj and one neuron as output of the network� There is no
transformation part�

For each state q � Q the disjunction of conjunctions �as expressed by Equation ��� is modeled

by the ��q��th neuron receiving connections of order k!� from the corresponding units of the input

layer� The conditions for transitions leading to �nal states are implemented by the designated

output neuron in the same manner�

Let l� be the maximum fan�in found in the network� Thus
 the Circuit Lemma �Lemma �� can

be applied to neurons with an activation function of order k ! � by choosing the discretization

parameter � as �  �
l��k�� and setting the weights of the connections according to Lemma ��

Following the same line of argumentation as worked out for the proof of Theorem  it is obvious

that this FA construction yields a simulation of the given DTA A�

Table � summarizes the resource consumption for the proof construction developed above� The

��� sign inside a column indicates that the complexity aspect does not change when all possible

��
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Figure � Sketch of the layout of the folding architecture constituted by one layer as folding part


no transformation part and by neurons with connections of order k ! � for simulating a given

DTA� Neurons are denoted by circles
 the connections of order k!� by trapeze �lled with asterisk

��� and linked to circles with a plus sign �!� inside
 groups of semantically similar neurons are
enclosed by boxes� The output neuron is marked in a hatched manner� The solid lines exemplify

the implementation of the transition conditions leading to the state represented by the �rst neuron�

The implementation of the test on the �nal state condition is indicated by dashed lines leading to

the output unit�

transitions are explicitly speci�ed for the DTA� Again
 nf denotes the number of automaton

transitions leading to a �nal state�

nR n
�
R

neurons m� � � �

O�m	

weights n�m� �	k�m� �	 �m� � � �

�full connectivity	 O�n�m� �	�k���	

weights nR � nf �m� � � m
k
n� nf �m� � �

�non�zero	 O�nR	 O�mk
n	

Table �� Complexity of the DTA implementation given by the proof construction to Theorem ��

Remarks When considering the space complexity the higher�order one�layered implementation

of a DTA seems to be superior to the �rst�order two�layered case presented in Corollary �� However


the time complexity for recognizing a given tree of size u with the FA gives a di�erent picture�

Folding architectures with �rst�order connections require &�unw� multiplicative operations which

is in contrast to &��k ! ��u nw� multiplicative operations for architectures with connections of

order k ! �
 where nw is the number of weights found in the architecture�

����� One Layer with First�Order Connections Cannot Implement Arbitrary State

Transitions

We have seen that a FA with one layer in the folding part �and no transformation part� su�ces

to simulate an arbitrary DTA if higher�order connections are provided� The next question is

��



whether one�layered FA with �rst�order connections have the same computational power� The

�rst idea is to investigate the representability of automata state transition functions in a folding

part consisting of only one layer�

Theorem � One layer as folding part of a FA with �rst�order connections and the threshold

transfer function �t cannot compute arbitrary DTA state transition functions�

This statement is easily proven by applying known results about the relationship between FSA

and RNN�

Proof Deterministic Finite State Automata are special DTA where each new state is computed

by combining each symbol of the alphabet with exactly one previous state
 i�e� FSA are DTA

A  ��� Q� F�R� with the maximum rank of � is k  �� Goudreau et al� ���� proved that a single
layer with �rst�order connections and the threshold transfer function cannot compute arbitrary

�nite state transition functions�

It turns out that the situation does not change when using more powerful transfer functions�

Theorem � Theorem � even holds for monotonous general sigmoid transfer functions�

Proof Here we provide an explicit example of a DTA state transition function which cannot be

computed by a single layer FA with �rst�order connections� Take the �even�parity� DTA Ap from

Example ��

Without loss of generality let q resp� p be outputs at layer � that represent the �even� resp�

�odd� parity state of Ap� We assume that p and q are distingishable
 i�e� q � p� Further let the

input symbols be coded by c�����  x� and c�����  x� with x� � x�� In order to compute the

state transitions correctly the following constraints have to be satis�ed �compare Example ���

A B C

� g�x�� p� p�W �  p g�x�� p� q�W �  q g�x�� q� q�W �  p

� g�x�� p� p�W �  q g�x�� p� q�W �  p g�x�� q� q�W �  q

Thresholds � may be integrated into the weight matrix W by supplying additional input units

with the constant input �� We denote by W ��W c�W l�W r the columns of W that correspond to

the threshold
 label coding
 left and right input block� The folding part �function g� computes

a linear combination of inputs and passes the result through the monotonous sigmoid function�

Thus we can strip the transfer function �g and get

A��A�
�
 B��B�

W ��� x� � p� p��W ��� x� � p� p�
�
 W ��� x� � p� q��W ��� x� � p� q�

W cx� �W cx�
�
 W cx� �W cx�

W cx�  W cx� ����

by combining the conditions A�� B� with A�� B�� Condition C� and Equation �� leads to

q  g� x�� q� q�W �

 �g�W ��� x� � q � q��

��



 �g�W
�� !W cx� !W lq !W rq�

 �g�W
�� !W cx� !W lq !W rq�

 �g�W ��� x� � q � q��

 g� x�� q� q�W �

 p

which is a contradiction to the assumption that p and q are distinguishable states� Therefore

no FA consisting only of a one�layered folding part with �rst�order connections �regardless of the

dimensions� and a monotonous sigmoid transfer function can compute arbitrary state transition

functions�

Remarks This proof is an alternative formulation of the well�known fact that a XOR function

cannot be separated by a neural network consisting of only one layer with �rst�order connections�

����� The State�Splitting Approach for First�Order Connections

At the �rst glance
 Theorem 	 and Theorem � give a rather pessimistic view on the computational

power of the FA with �rst�order connections and only one layer in the folding part� But already

Minsky ���� �and later Goudreau et al� ����� observed that for any �nite state automaton that

cannot be implemented by a �rst�order recurrent neural network with one layer there exists another

one with identical functional behavior which can be realized� This argument can also be applied

to tree automata and the folding architecture�

Theorem 	 The FA with �rst�order connections� one layer in the folding part and one unit as

transformation part provided with the general sigmoid transfer function can implement any DTA�

Proof Here we use the so�called state�splitting technique of Goudreau et al� ����
 where several

states in the new automaton play together the same role as a single state in the original one� The

idea is to �precompile� information about the direct transition history �only one step back� into

the state description�

Let A  ��� Q� F�R� be an arbitrary DTA with �  fa�� � � � � ang� We de�ne the DTA A�  

���� Q�� F �� R�� as follows�

��  �

Q�  fhq�� � � � � qk� q� ai j �q�� � � � � qk� q� � �a� �a � Rg � fhq�ig
F �  fhq�� � � � � qk� qf i j hq�� � � � � qk� qf i � Q�� qf � Fg
R�  f��a j a � ��g
��a  f�q��� � � � � q�k� q�� j q�i� q� � Q�� q�  hq�� � � � � qk� q� ai�

�i �q�i  h � � � � � qi� i or q�i  hq�i �g

The special state hq�i is introduced to capture DTA which are �lled up to maximum rank k �see
De�nition ��� Obviously
 the construction of A� assures the identical functional behavior as the

original DTA A� i�e� L�A��  L�A��

��



Let t � S be a given tree and v a node in t whose successors are already assigned the states

�q��� � � � � q
�
k�� By De�nition � we follow the scheme of the proof to Theorem  and reformulate state

transitions in a propositional way� A� assigns v the state q�  hq�� � � � � qj � q�� � � � � q�� �z �
k�j

� q� ai i�

�a  ��v��

j�
i��

 	
u�h �����qi� i

u�Q

�q�i  u�

� k�
i�j��

�q�i  hq�i� ����

A can be mapped into FA��
�
jQ�j
n
k
�
��
�g� by the following construction �see Figure ��� We
choose again the �one�of�n� encoding c for labels with c�ai�  ei
 ai � �
 i�e� the i�th symbol
is mapped to the i�th unit vector� The �rst and only layer of the folding part consists of m�  

jQ�j units each of them representing one state of A� �the i�th unit corresponds to the i�th state

q�i � Q��� The determinism of A guarantees that at most one term in each inner disjunction of

Condition �� is true� Thus
 Lemma � �and Lemma �c� can be applied to directly translate the

Boolean Condition �� into weight connections for the FA�

The ��q���th unit representing q�  hq�� � � � � qk� q� ai receives connections from the ��a��th unit
of the label block and for each block i  �� � � � � k from all units which represent the special state

hq�i or states of the scheme h � � � � qi� i �see Figure ��� The empty tree �corresponding to state hq�i�
is coded by e�� Finally we add a single output unit in the transformation part of the FA which

acts as a jF �j�ary logical � and receives inputs from each unit ��q�� from the transformation layer
with q� � F �� The weights and biases are tuned according to Lemma � �and Lemma �b
c� and the

discretization parameter is chosen by applying the Circuit Lemma �Lemma ��� The �unde�ned

state argumentation� for DTA that are not completely speci�ed can be borrowed from the proof

construction to Theorem �

Obviously �compare Equation ��
 the tree t is mapped by the FA to a high output i� the DTA

A accepts t�

Since m�  jQ�j  nR !� the complexity of the above FA construction can be expressed using

the complexity of the original DTA A �see Table �� Again
 let nf be the number of transitions

leading to �nal states
 i�e� nf  jf�p�� � � � � pk� p� � � j � � R� p � Fgj�

nR n
�
R

neurons m
� � nR � � � m

� � m
k
n� � �

O�nR	 O�mk
n	

weights �n� km�	m� � �m� � � � �n� k�mk
n� �		�mk

n� �	 � ��mk
n� �	 � � �

�full connectivity	 km
�� �m

��n� �	 � � � k�mk
n� �	� � �mk

n� �	�n� �	 � � �

O�kn�R � nnR	 O�km�k
n
�	

weights �non�zero	 see text O�km�k��
n
�	� see Lemma �

Table � Complexity of the DTA implementation given by the state�splitting technique �proof of

Theorem ���

The non�trivial case of counting the number of non�zero weights �see the last row of Table �

requires a detailed explanation� Equation �� leads to following formula for the number of non�zero

��
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Figure �� Sketch of the layout of FA#s for simulating DTA with �rst�order connections
 one layer

in the folding part and one output unit as the transformation part� Neurons are denoted by

circles
 those acting as Boolean functions are �lled with �� �see Condition ��� and � signs
 groups
of semantically similar neurons are enclosed by boxes� The solid lines with arrows exemplify

connections to be inserted for a automaton transition function that has maximum rank k� dashed

lines the case for a transition with rank k!� using the special state �denoted by �hq�i� inside the
circles��

weights �here the number of biases are omitted� in the case where not all possible state transitions

are explicitely given by the DTA speci�cation�

nf ! nR !
X
q�Q

�
� X

�q������qj �q������q��q��	�	�R



jX

i��

jf�p�� � � � � pk� qi� � � j � � Rgj! k � j

��A ����

The number of connections received by the output neuron is nf � One connection is required from

the label block of the input for each state q� � Q� �there are nR states in total
 not counting the

special state�� The exact number of non�zero weights needed to implement the inner disjunction of

Condition �� depends on the concrete distribution of transitions to states� However
 the number

of weights in the case n
R gives also an valid upper bound for the former�

Lemma � The number of non�zero weights applying the state�splitting implementation technique

�proof construction of Theorem �� for the case when all possible transitions are speci�ed �n
R� can

be derived to O�km�k��n���

Proof Let all symbols have the same maximum rank k� For a DTA with m states and n input

symbols with maximum rank k there are n
R  mkn possible transitions which are distributed

among m di�erent target states� Let the partition size for state i be denoted by �i� Thus we get

n
R  mkn  

mX
i��

�i

Since the total number of occurrences of each state symbol in all left sides of transitions

�f�p�� ���� pk� j �p�� � � � � pk� q� � �� � � Rg is nkmk��
 the Equation �� can be rewritten to

nf ! nR ! n
X

i������ik�f������mg

��i� !   ! �ik �  nf !mkn! nkmk��
mX
i��

�i  nf !mkn! km�k��n�

�



resulting in an upper bound for the number of non�zero weights of O�km�k��n��
 which is not

a�ected by including the number of biases and is still valid when the DTA is �lled up �see De�ni�

tion �� to the maximum rank k�

One might assume that the transformation part is super�uous �in analogy to the two�layered

folding part construction by Corollary ��� However
 the next theorem gives a negative result�

Theorem 
 The FA with �rst�order connections� a monotonous general sigmoid transfer func�

tion� one layer in the folding part and no transformation part cannot achieve DTA power�

Proof We show that it is impossible to add special state neurons to the folding layer to compute

arbitrary output functions� Consider the �even�parity tree recognizer� presented as Example ��

The automaton is in the state p �q� if the presented tree is of even �odd� parity� Without loss of

generality
 we assume there is at least one neuron i in the folding part for which the output vectors

p and q representing p and q ��accepted� and �not accepted�� di�er� By transition �� node i must

assume one value whenever the two predecessor states are identical ��p� p� and �q� q�� and neuron

i must get a di�erent value for the other two cases ��p� q� and �q� p��� However
 this behavior is

that of the function XOR which is known as inseparable by �g �see also proof of Theorem ��� This

implies that neuron i cannot compute the desired output function�

If we want to do it without transformation part
 then the modus operandi of tree processing

�compare to Section ��� has to be changed in the following way�

Let a special output unit be added to the representation layer and connected via ��gate to all
units �of the k�th block� in the input layer that represent �nal states of the automaton� After a

tree is completely processed by the folding part the output of the representation layer is once again

fed back to the �k�th block of the� input layer �all other inputs are set to �� before the output of

the network is computed� Clearly
 the output unit is high i� the tree is accepted by the DTA�

Corollary � The FA with �rst�order connections� a monotonous general sigmoid transfer func�

tion� one layer in the folding part and no transformation part can achieve DTA power with a one

step delay of the output computation�

��� The Computational Power of the FA in the Threshold Case and the

Relation to Context�Free Word Languages

In the previous section several simple instances of the FA were proven to simulate arbitrary

DTA� The next result shows that the usage of threshold transfer functions in the FA limits the

computational power to that of DTA�

Theorem �� Let �� be a given �nite ranked alphabet� Any FA with threshold transfer function

�t� one output unit and operating on trees t � T ���� can be simulated by a DTA�

Obviously
 those FA can only model a �nite number of states and a �nite number of di�erent

state transitions�

��



Proof Any given FA� 
 
m
n
k
�
 
�t� can be simulated by a DTA A  ��� Q� F�R� with

�  ��

Q  f"g�t� j t � T ����g
F  f"g�t� j t � T �����$A�t�  �g
R  f�a j a � �g

where �a  f�q�� � � � � qk� q� j qi � Q� q  g�c�a�� q� �    � qk�g

The the resulting DTA A has at most �m di�erent states and at most j��j  �mk di�erent state

transitions�

Thus
 the FA is equivalent to DTA �and therefore to its nondeterministic counterpart and

the nondeterministic top�down tree automaton
 see remark at the end of Section �� in terms

of computational power when using threshold transfer functions and moderate constraints on the

architecture �as shown in the previous section�� In the constructive proofs presented for simulating

DTA by FA we applied a discretization scheme
 sigmoid transfer functions are only casted into

Boolean functions
 their full potential power was not explored�

Intuitively
 a FA with sigmoid transfer functions and two layers as folding and two layers as

transformation part should enable the realization of machines with in�nite states and arbitrary

state transitions�

But it is still an open question whether the FA equipped with sigmoid transfer functions

is strictly more powerful than DTA �see Section ���� To describe the interesting relationship

between context�free word languages �CFL� and the FA it is convenient to introduce a function

which extracts a word from the frontier of a tree�

De�nition � Yield� The yield yd�t� of a tree t � T ��� is de�ned inductively as follows�

yd�t�  

�
a if a � � with r�a�  ��
yd�t�� � � � yd�tn� if t  f�t�� � � � � tn� with f � � and r�f�  n�

The yield of a tree language L is the language yd�L�  fyd�t� j t � Lg� We say that a language L
is yd�recognized by a tree recognizer A if L  yd�L�A���

Theorem �� The FA equipped with sigmoid transfer functions can yd�recognize at least context�

free word languages�

Proof A well�known result tells us even a subclass of DTA yd�recognizable languages being

equivalent to CFL �see Doner ����
 G�ecseg and Steinby ������

Informally spoken
 that proof uses the fact that all derivation trees of a given CFL are DTA

recognizable� On the other hand
 the yield of any DTA�recognizable tree language is a context�free

language� Thus
 with Theorem  �or alternatively Theorem � or Theorem �� it is proven that the

FA can yd�recognize at least CFL�

De�nition  and Theorem �� give the impression that the FA with threshold transfer functions

should have the capability to represent CFL� However
 it is only a device which recognizes the

possible syntaxes of a given context�free word and cannot be practically used as recognizer of the

word itself�

�	



� Bounds on the Node Complexity of FA Implementations

of DTA

In Section 	 we gave several construction schemes to implement DTA into FA �under di�erent

constraints on the architecture�� So far
 the most economical �rst�order network implementation

was obtained by a FA with two layers in the folding part �O�mkn�
 in terms of node complexity��

An interesting question is whether the node complexity can in principle be further reduced by

using more layers in the folding part� Can we estimate the minimal number of neurons required

to accomplish the DTA simulations'

The static FA may be interpreted as a so�called linear threshold circuit �LTC� when instantiated

by the threshold function �t as transfer function �a neuron with �rst�order connections can be

identi�ed as a threshold gate�� There has been signi�cant work done on characterizing the node

complexity of neural networks by applying known results from the circuit complexity of linear

threshold circuits �see Alon et al� ���
 Horne and Hush ���
 �	�
 Siu et al� �	�
 	����

Next we show how some of these results can easily be lifted to the context of FA and DTA�

One might especially interested in deriving upper and lower bounds on the node complexity of

the FA such that arbitrary DTA can be implemented by� The line of argumentation is essentially

borrowed from the investigations on the node complexity of RNN implementations of FSA carried

out by Horne and Hush ��	��

	�� Upper Bounds

An upper bound on the node complexity can be derived by looking for a LTC �represented by

the folding part of the FA� that enables the implementation of arbitrary Boolean functions and

thereby arbitrary DTA state transition functions� The following lemmas recall well�known bounds

on the node complexity of LTC implementations of Boolean functions�

Lemma � Node Complexity� LTC� Arbitrary Boolean functions of the form � � f�� �gx �
f�� �gy can be implemented in a LTC using r layers with a node complexity of

�a� O�
p
y�x��x� log y���� r  � by Lupanov ����

�b� O�y�x���� r  �� multi�output extension of the single�output result of Siu et al� ��� ����

�c� O��x ! y�� r  �� by Horne and Hush ����

In the following we consider folding architectures where the transformation part consists of

two layers and exactly one output unit�

Theorem �� Any given DTA having m states� an alphabet of size n with maximum rank k can

be implemented by a FA�r���dlogme� dlogne�k�	�����t� with a node complexity of

�a� O
�q

nmk�k logm
logn�k logm

�
� r  �

�b� O�logm
p
nmk�k�� r  ��

�c� O�nmk�k�� r  ��

��



Proof A m�state DTA with an alphabet size n of maximum rank k can be implemented in a FA

where the folding part performs a mapping of the form 
�

� � f�� �gdlogne�kdlogme � f�� �gdlogme

When considering upper bounds the original problem can be reduced to the node complexity of

Boolean functions where�

logn! k logm � x � logn! � ! k�logm! ��

logm � y � logm! �

By Lemma � we obtain a r�layer LTC with a node complexity of

�a� O�
q

�logm�����logn���k�logm����

logn�k logm�log�logm��� �  O�
q

nmk�k logm
logn�k logm � �r  �

�b� O��logm! ��
p
�logn���k�logm����  O�logm

p
nmk�k� �r  ��

�c� O��logn���k�logm��� ! logm! ��  O�nmk�k� �r  ��

The discrimination of accepting automaton states can be implemented by a two�layered transfor�

mation part �yielding a node complexity of O�m�
 see Lemma � �c�� which performs a mapping

of the type � � f�� �gdlogme � f�� �g� Assuming k � �
 the overall node complexity is not a�ected�

As demonstrated by Corollary � we can do it without the transformation part by adding one

unit to the layer r which acts as the designated output unit of the network� By this modi�cation the

folding part computes a Boolean function of the type � � f�� �gdlogne�k�dlogme��� � f�� �gdlogme���

Corollary � The implementation of DTA into architectures of the type FA�r���dlogme ! ��
dlogne�k�	�����t� results in a slight increase of the node complexity to

O��k

s
nmk logm

logn! k logm
� � O��k logm

p
nmk� � O�nmk��k� for r  � �� ��

	�� A Way Directed to a Lower Bound

The upper bound is not a very surprising result� One might have expected that it is possible to

reduce the resource consumption by using more layers and a more economical way of state and

input encoding �in contrast to the �one�of�n� encodings applied in our hand�crafted constructive

proofs�� But what is the minimum number of neurons required to implement arbitrary DTA'

A �rst naive consideration would lead to O�logm� since m states can be e�ectively encoded by

dlogme neurons�
Here we want to follow the way shown by Alon et al� ��� and Horne and Hush ��	� in deriving

a lower bound for the node complexity of RNN implementations of FSA�

Let K�m� be the smallest number such that every DTA with m or less states can be imple�

mented by a FA using K�m� or fewer neurons� Let L�m� be the number of pairwise divergent �see

�By log we implicitly mean the logarithm to the base ��

��



De�nition �� DTA with m or fewer states and U�z� be the number of di�erent m�state DTA that

can be built from a FA using z neurons� Obviously


U�K�m�� � L�m� ����

and by deriving an good upper bound for U�z� and a lower bound L�m� we might be able to

compute a lower bound for K�m��

Lemma 	 The number U�z� of di�erent m�state DTA �over an alphabet of size n of maximum

rank k� that can be built from a FA with z neurons can be bounded to O�y�xz
�

�� where x  

dlogne! k�dlogme! �� and y  dlogme! ��

Proof Following Horne and Hush ���
 �	� we consider the folding part of a FA constituted by a

lower triangular network �LTN�
 i�e� a network where the l�th node is the only node in layer l and

receives input from all nodes in the previous layers �including input layer�� Multilayer feedforward

networks may be viewed as a special LTN where some weights are set to zero�

The folding part of a FA �implementing a DTA� can be interpreted as a function � � f�� �gx �
f�� �gy where

x  dlogne! k�dlogme! ��
y  dlogme! �

The total number of Boolean functions which are representable by a LTN with z units
 x inputs

and y outputs is bounded by the maximum number of functions that the �rst node can compute


multiplied by the maximum number of logic functions that the second can compute and so on�

According to Muroga ���� the number of logic functions de�ned over � vertices of the unit

hypercube L�
w that can be implemented by a single threshold neuron with w inputs can be bounded

by

L�
w � ��w

w(
���

if � � �w!�� The number of inputs in the ��th layer of the LTN is x and the number of inputs to
the i�th node �numbered from � to z��� is x! i� Thus
 by Equation � this node can compute at

most ���x�i���x! i�( logic functions� The maximum number of functions in a LTN with z nodes

is given by
z��Y
i��

���x�i�

�x ! i�(

We see that � is at most �x
 since this is the maximum number of di�erent inputs to the network�

Because the outputs are determined by input patterns
 �x is also the maximum number of di�erent

inputs that nodes at higher layers receive even though their fan�in is greater than x� Equation �

holds for � � ��x ! i� ! �
 which can be justi�ed for �  �x and z � �x��� The total number of
outputs of the LTN will be equivalent to y� The last node must be an output or state variable�

Of the remaining z � � nodes
 y � � must be chosen as outputs or state variables �this requires
z � y� yielding 

z � �
y � �

�

��



choices� Since the ordering of outputs is relevant
 we get for the maximum number of logic

functions that a LTN can compute
 i�e� an upper bound for U�z��

U�z� � y(


z � �
y � �

� z��Y
i��

�x�x�i���

�x! i�(
 

y�z � ��(
�z � y�(

z��Y
i��

�x�x�i���

�x ! i�(

By taking the logarithm of both sides �and using the inequality logx( � x logx� �x� �� ln ��� we
get

log�U�z�� � log y ! log z(� log��z � y�(� !
z��X
i��


� ! x�x ! i�� �x! i� log�x! i� !

x! i� �
ln �

�

Simpli�cation �by summation and elimination of some negative terms
 having in mind that z 	 x�

of the right side leads to

log�U�z�� � log y ! z log z ! z


� ! x� !

x� �
ln �

�
!
z�z � ��
�


x!

�

ln �

�

Assuming z � x � �
 then there exists a constant c such that

log�U�z�� � cz�x! log y

leading to an upper bound for U�z� of O�y�xz
�

��

In order to �nd a lower bound for L�m� we have to render more precisely what is meant by

�divergent� DTA�

De�nition � Divergent DTA� Two DTA Ai��� Qi� Fi� Ri� �i  �� �� are divergent i� L�A�� � 
L�A��
 i�e� there exists an input tree t � T ��� with "���t� � F� i� "���t� �� F��

Let A��� Q� F�R� be a DTA with n  j�j
 m  jQj
 nR  
P

	�R j�j and nF  jF j� By
considering transition functions as � � Qk 	 � � Q we can compute the number of di�erent

transition functions by m�nmk�� This gives an appealing approximation to the number of di�erent

DTA with m states
 
m

nF

�
m�nmk�

m(

but it is obvious that not each pair of them is divergent� So far
 the way for estimating a lower

bound K�m� for the node complexity of DTA into FA implementations can be done in analogy to

the RNN case �Horne and Hush ��	��� However
 the calculation of L�m� given by Alon et al� ���

is based on a sophisticated construction of Mealy Automata �i�e� FSA where simultaneously to a

state transition an output is generated depending on the input and the actual state� and cannot

simply be transferred to the DTA case�

The next Lemma and its proof is due to Hammer ���� and gives a rough estimation for the

number of divergent DTA�

Lemma 
 There are at least L�m�  ��n����m���k pairwise divergent DTA with alphabet size n

of maximum rank k and m states�

��



Proof Let �  fa�� a�� � � � � ang be an alphabet with r�a��  f�� �g and r�ai�  k
 � � i � n�

Further let Q  fq�� q�� � � � � qmg be a set of states
 F  fqmg be the set of �nal states and assume
n�m � �� De�ne q� � �a� and

�a��qi�  

�
qi�� if i 
 m�

qi otherwise�

The �n� ���m� ��k trees t�i�i������ik� of the form

ai� a��a��� � � a��a��� �z �
i�

� � ���� � � � � a��a��� � � a��a��� �z �
ik��

� � ���� a��a��� � � a��a��� �z �
ik

� � ��� �

where i � f�� � � � � n��g� i�� � � � � ik � f�� � � � �m��g have to be mapped by an automaton according
to "��t�i�i������ik��  �ai�qi� � � � � � qik �� For di�erent trees t�i�i������ik� the terms �ai�qi� � � � � � qik � are

di�erent
 therefore each mapping

"� � ft�i�i������ik� j i � f�� � � � � n� �g� i�� � � � � ik � f�� � � � �m� �gg � fq�� qmg

can be implemented by an appropriate choice of �ai and thus at least �
�n����m���k divergent tree

automata exist�

We are now ready to combine the presented results to a statement about a lower bound for

the node complexity of DTA into FA implementations�

Theorem �� Any given DTA having m states� an alphabet size of n with maximum rank k can

be implemented by an architecture FA� ���dlogme!�� dlogne�k�	�����t� with a node complexity of

)�

s
nmk

logn! k logm
��

Proof By combining Lemma � and Equation �� with Lemma � we get

L�m� � U�z� � cy�xz
�

z  K�m�  )


s
�

x
log

�
L�m�

cy

��

Substitute L�m� by ��n����m���k 
 x by dlogne! k�dlogme! �� and y by dlogme! ��

Remarks Lemma � gives only a very rough estimation of the number of divergent DTA� Thus


we conjecture that the lower bound on the node complexity of DTA into FA implementations

�Theorem ��� can be improved�

It seems that an increase in the number of layers allowed in the folding part of the FA results

in a decrease of the node complexity �see Section ���
 Theorem �� and Siu et al� �	���� One might

conjecture that the constraints imposed by a given automaton on the transition function do not

allow to cover the whole space of Boolean functions� Our greedy �using a �one�of�n� encoding for

labels and states� two�layered construction and Corollary �� with a node complexity of O�nmk�

is at least competitive to the result given in Theorem �� �c�� It is an open question whether the

��



upper bounds can be further improved �assuming a restricted number of layers r in the folding

part��

The implantation of sigmoid transfer functions might lead to a further reduction in the node

complexity� This hypothesis is supported by the observation that for certain Boolean functions

the size of the implementing network can be reduced by at least a logarithmic factor by using

continuous �e�g� sigmoid� instead of threshold gates �Siu et al� �	����

� On Pattern Languages and the Adequacy of the Automa�

ta Framework

We have seen that FA and DTA are equivalent regarding their computational power if the FA is

built of neurons with threshold transfer functions� But what is the situation with sigmoid transfer

functions' Theorem � tells us that such a FA has the computational power of at least DTA� But

is it strictly more powerful than DTA' Can the computational power be adequately characterized

by the classical formal language �automata� framework'

In the past
 a bunch of empirical investigations on the learnability of arti�cially generated tree

languages �formulated as inductive grammatical inference task given positive and negative exam�

ples� have been carried out with the FA and gradient�based learning procedures �see Schmitt �	��


Goller ����
 Schulz et al� �	��
 Calmbach ���
 K�uchler and Goller �	�
 Goller and K�uchler ��	���

Even tasks intuitively estimated to be hard for the FA were solved with fairly high generalization

accuracy�

In this section we will identify the tree languages used in former experiments belonging to

the class of so�called pattern languages � We show that the DTA and thereby the FA has the

capability to recognize at least interesting subclasses if the de�ning pattern is constrained to be

linear� Nonlinear pattern languages turn out to be beyond the representational power of the DTA�

However
 the FA performs surprisingly well on grammatical inference tasks over non�linear pattern

languages�

This phenomenon seems to give evidence that the full computational power of the FA with

sigmoid transfer functions is strictly stronger than that of DTA� We formulate some conjectures

about the adequacy of the formal automata framework to characterize the computational power

of the FA� Some experiments carried out with the FA will serve as an illustration of the questions

raised above�


�� Pattern Languages and the Language Boundary Induced by Occur�

rence Constraints on Variables

Pattern languages and the inductive inference of pattern languages are well�known formal concepts

in computer science �for example see Shinohara and Arikawa �	�� which recently gained growing

attention due to the application potential in computational biology �Arikawa et al� ����� Here
 we

are specially interested in tree patterns
 i�e� terms with variables
 and languages induced by tree

patterns�

De�nition � Pattern� Let � be a ranked alphabet and V be a �nite set of variables with

� � V  �� A term t of T ���V� is synonymously called a pattern� A pattern is said to be linear

if no variable occurs in it more than once and non�linear
 otherwise�

��



Next
 we de�ne a tree language by a pattern occurrence condition�

De�nition � Pattern Occurrence Language� Let p be a pattern of T ���V�� The pattern

occurrence language �OL� induced by p is de�ned as

OL�p�  ft j t � T ���� there exists a position i and a substitution � with tji  ��p�g

The language is called linear pattern occurrence language �LOL� if the de�ning pattern is linear�

Lemma �� The class of LOL is a proper subset of the class of languages recognizable by DTA�

The way from linear patterns to tree automata is well�known and for example applied in the

compiler construction �eld to automatically generate pattern matching devices for rewrite rules

describing code optimization strategies �see Wilhelm and Maurer ������

Proof

�� Wilhelm and Maurer ���� presented a simple construction scheme where a non�deterministic

bottom�up tree automaton is built from a given linear pattern �� Since �here� variables do

not need to be distinguishable
 we replace all the variables in � by � ��a variable matching

everything�� resulting in � � T ��� f�g��
We de�ne the nondeterministic bottom�up tree automaton A  ��� Q� F � R� as follows�

�  � � f�g
Q  ft j t v �g
F  f�g
R  f��a j a � �g where ��a  

f��� � � � ����� � Qn��
 j r�a�  ng �

f�t�� � � � � tn� t� j t � Q and t  a�t�� � � � � tn�g �
f�q�� � � � � qn� �� j r�a�  n� qi � Q and there is a i with qi  �g�

Obviously
 for every tree t there are transitions in A and there is a sequence of transitions

leading to the �nal state � if t matches �� Finally
 the subset construction technique is

applied to transform the automaton A to a deterministic one�

�� There are languages which are recognizable by DTA but that are not in the class OL� Consider

the �even�parity tree recognizer� from Example �� Suppose that � is a pattern that is capable

of inducing the even�parity tree language L� Let � be an arbitrary substitution� Then we
get ���� � L which leads to the contradiction ���� ����� �� L�

The pattern language is beyond the representational capability of the class of DTA if the

linearity condition is dropped�

Lemma �� The class OL cannot be recognized by DTA�

��



Proof Let � be a non�linear pattern with exactly one variable X occurring exactly twice� Sup�

pose there exists a DTA A which maps a term u to a �nal state i� u � OL����

Due to the �nite�state behavior of a DTA there must be at least two di�erent terms s� t � T ���
such that "��s�  "��t�� If we substitute s for one occurrence and t for the other occurrence of the

variable X into � then a term �� is generated that does not belong to the pattern language OL����

But A would map �� to a �nal state �because of the compositionality of the mapping "�� which

leads to an obvious contradiction�

Example � Let V  fXg be a set of variables and �  fa� b� fg be a ranked alphabet with
r�a�  r�b�  � and r�f�  �� L�
 L� are de�ned as pattern matching languages�

L�  OL�f�a� b��

L�  OL�f�X�X��

For example
 f�a� b�
 f�a� f�a� b��
 f�f�a� b�� f�a� b�� � L� while f�b� a�
 f�f�a� a�� f�b� a�� �� L�

and f�f�a� b�� f�a� b��
 f�f�a� a�� f�b� a�� � L� while f�a� b�
 f�a� f�a� b��
 f�b� a� �� L�� Clearly
 L�

belongs to LOL while L� is in not�

The pattern language can be enriched by allowing arbitrary Boolean combinations of patterns

as occurrence condition�

De�nition 	 Boolean Occurrence Combination� Let P be a �nite set of variable�disjoint

patterns over T ���V� �with f���g� �V ���  �� and F be a Boolean combination of patterns in
P � The language BOL�F � induced by F is recursively de�ned as

BOL�F �  

���
��

OL��� if F  � and � � P

T ��� nBOL�G� if F  �G�
BOL�F�� � BOL�F�� if F  F� � F��

and nothing else is in BOL�F �� Let BOL denote the class of languages induced by arbitrary �nite

variable�disjoint pattern sets and Boolean combinations over it� The linear fragment LBOL is

de�ned as a proper subclass of BOL by allowing only pattern sets where each pattern is linear�

Example � BOL� Let � be a ranked alphabet
 V a set of variables and F a Boolean pattern

combination with �  ff� g� a� bg
 r�f�  r�g�  �
 r�a�  r�b�  �
 V  fX�Y g and F  

f�X�X� � �g�a� Y �� For example
 f�a� a�� f�f�a� a�� g�b� a��� f�g�b� b�� g�b� b�� � BOL�F � while

f�a� b�� g�f�a� a�� g�a� a��� g�a� b� �� BOL�F ��

Theorem �� The class LBOL is a proper subset of the class of languages recognizable by the FA�

Proof Lemma �� together with Theorem  �or alternatively Theorem � or Theorem �� shows

that LOL is a proper subset of the class of languages recognizable �RTL� by DTA which in turn is

a subset of the class of languages recognizable by FA� Further
 RTL is known to be closed under

complement
 union and intersection �see G�ecseg and Steinby ������

And again �following the line of argumentation given by the proof of Lemma ��
 ��
 the �even�

parity tree language� can be recognized by a DTA
 but cannot be captured by a Boolean occurrence

condition over a �nite set of patterns�

�



Note that the results presented above are still valid when the pattern language is de�ned by

instantiation instead of occurrence conditions �as given by De�nition ��� In this case a pattern �

has to match the given term t at its root position
 i�e� t is an instance of � i� there is a substition

� with ����  t� Analogously to LOL
 OL
 LBOL and BOL one can de�ne the language classes

LIL
 IL
 LBIL and BIL� Clearly
 instantiation is a special case of occurrence �at the root

position� which implies a subset relation between the languages de�ned by the corresponding

matching conditions
 i�e� LIL��� � LOL���
 IL��� � OL���
 BIL�F � � BOL�F � and LBIL�F � �
LBOL�F � for any pattern � and Boolean combination F �

BOL BIL

OL IL

BOL OL

BIL IL LBIL

LOL RTL

LIL

LBOL

RTL LOL LIL

LBILLBOL

Tree Languages

Figure 	� Venn diagram illustrating the relations between RTL and the pattern languages� The

size of the area does not re�ect the cardinality of the sets� The �rst subjective visual impression

is that of �sunglasses�
 OL and IL constitute the lenses
 framed by BOL � OL and BIL � IL


connected by RTL�

Lemma �� Let � be a non�trivial ranked alphabet consisting of at least one symbol with rank �

and another one with rank greater �� Further� let TI denote the trivial set intersections TI  

f�� T ���g� The relations between pattern language classes and to the language RTL �which is

exactly the class of languages that corresponds to the machine DTA� can be summarized as follows

�see Figure ���

	� LIL � LOL  � and IL �OL  ��


� LBIL � LBOL  BIL �BOL  TI�

�� RTL� BOL � � and RTL � BOL � �� RTL� BIL � � and RTL �BIL � ��

�� LOL � LBOL � RTL and LOL � OL � BOL and LBOL � BOL�

��



LIL � LBIL � RTL and LIL � IL � BIL and LBIL � BIL�

�� RTL� OL  LOL and RTL � BOL  LBOL � TI�

RTL� IL  LIL and RTL � BIL  LBIL � TI�

�� LBOL � OL  LOL� LBIL � IL  LIL�

Proof Sketch�

�� Obviously
 the classes LIL
 LOL and IL
 OL are incomparable� Given a pattern �� the

instantiation condition cannot be generated by an occurrence condition and a pattern ��

and vice versa�

�� The Boolean conditions are constituted over a �nite set of pattern� Thus
 we have the same

situation as in ���
 but due to the possibility of generating logical tautologies and antilogies

the trivial set TI is contained in both classes�

�� The �even�parity tree language� is in RTL but not in BOL �BIL� �proof of Theorem ��

and the non�linear pattern languages belong to BOL �BIL� but not to RTL �proof of

Lemma ����

� LOL � LBOL
 LOL � OL � BOL and LBOL � BOL by De�nition and due to the fact

that one cannot generate a non�linear matching condition by a Boolean combination over a

�nite set of linear patterns� Theorem � implies LBOL � RTL� The same argumentation

holds for instance conditions�

�� Consequences from ��� and ���

	� By De�nition�

The language classes LOL
 LBOL
 OL
 BOL �and their counterparts obtained by using the

instance condition for matching� cover the languages that were formerly used in experiments to ex�

plore the learnability capabilities of the FA �see Schmitt �	��
 Goller ����
 K�uchler and Goller �	���

The learning tasks have been organized as inductive inference tasks �see e�g� Angluin and Smith ���

or Knuutila ����� Here we use this term in the following sense�

De�nition 
 Inductive Grammatical Inference� Inductive Grammatical Inference �IGI� is

the process where a learning system attempts to identify a �nite representation for a potential

in�nite set of trees
 called a tree language
 based on a �nite set of examples chosen from the

language and its complement�

Theorem � shows that the FA with sigmoid transfer functions can at least represent the classes

LOL�LBOL�LIL�LBIL� But can the FA represent non�linear pattern languages which are proven

to be beyond the regular tree languages RTL' Since learnability prerequisites representability one

might draw conclusions from empirical results on IGI tasks�

Before proceeding in this direction �Section ��� let us take the previously introduced languages

L� � LOL
 L� �� RTL to illustrate how the IGI task can be accomplished by the FA�

�	




�� The Experimental Setup

Table � reports the characteristics of the six term sets that were generated to accomplish the IGI

task with the FA for the languages L� and L�� The �rst column speci�es the allowed complexity

of the terms
 i�e� T ��� is constrained to terms up to a maximum depth x and a maximum number
of nodes y �denoted by T �x� y��� For each set independently ���� terms were randomly �under an
uniform distribution� drawn from the space T �x� y� �the cardinality is given in column four� and
subsequently labeled �!���� for membership� yes�no� according to the speci�cation for L� and

L�� The average depth and average size of a term in each data set is shown in the second and

third column� The last two columns give the classi�cation performance a naive guesser should

achieve when knowing the class label distribution� The same set T �	� ��� is used for both tasks

containing �	�� * positive and ��� * negative examples for L�
 while getting ���� * positive and

���� * negative example terms for L��

T �x� y� � depth � size term space largest class 	
�

L� L�

��� ���� ����� ��� ���� ���� ����

��� ���� ����� ��� ���� ���� ����

��� ���� ����� ��� ���	 ���� ����

���� ���� ����� ��� ���
 ���� ����

���� ���� ����� ��� ���
 ���� ����

���� ���� ����� ��� ���� ���� ����

Table �� Characteristics of the generated term data sets�

The symbols from �  ff� a� bg are coded in a one�of�three style
 i�e� the mapping is c � � �
f���!�g
� The used architectures can be speci�ed by FA�r  �� s  ��m� n  �� k  �� q  

�� ��� �c� where �� stands for �rst�order connections
 �c the classical sigmoid transfer function

tanh � IR��� ��!�� and the size of the representation layer is varied across m  �� � �� ���

The training procedure is backpropagation through structure �BPTS� �an algorithmic form

of steepest descent
 see K�uchler and Goller �	
 �	�� augmented by an automatic learning rate

adaption and weight decay scheme similar to Rprop �Riedmiller ������ The training process was

carried out in batch modus �weight update after the presentation of all terms in the training set


counts as one epoch� and stopped after ���� epochs� All results reported here have been obtained

by a ���fold strati�ed cross�validation �e�g� see Kohavi ���� on T �	� ��� with � random �uniform

distribution from ������!����� weight initializations per fold yielding �� distinct experiments for
each language�

Each of the �� architectures trained on T �	� ��� has been tested on the six data sets of higher
term complexity in order to estimate the generalization performance� A weak recognition criterion

was used� A term was counted as correctly classi�ed if the absolute value of the di�erence between

membership value and output of the network was less than ��


�� Results

Table 	 shows the training performance on T �	� ��� �the row denoted with #train#� and the gener�
alization accuracy on the six test sets �the other rows
 for the characteristics see Table �� obtained

for L�
 L� with folding architectures of di�erent number of representation units m  �� � �� ���

��



T m � � m � � m � � m � ��

�x� y� � � max � � max � � max � � max

L�

train ����� ���� ������ ������ ���� ������ ������ ���� ������ ������ ���� ������

��� ����� ���� ������ ����� ���� ������ ������ ���� ������ ������ ���� ������

��� ����� ���� ������ ����� ���� ������ ����� ���� ������ ������ ���� ������

��� ����� ����� ������ ����� ���� ������ ����� ���� ������ ����� ���� ������

���� ����� ����� ����� ����� ���� ������ ����� ���� ������ ����� ���� ������

���� ����� ����� ����� ����� ���� ������ ����� ���� ������ ����� ���� ������

���� ����� ����� ����� ����� ���� ������ ����� ���� ������ ����� ���� ������

L�

train ����� ���� ����� ����� ���� ����� ����� ���� ������ ����� ���� ������

��� ����� ���� ����� ����� ���� ����� ����� ���� ������ ����� ���� ������

��� ����� ���� ����� ����� ���� ����� ����� ���� ����� ����� ���� �����

��� ����� ���� ����� ����� ���� ����� ����� ���� ����� ����� ���� �����

���� ����� ���� ����� ����� ���� ����� ����� ���� ����� ����� ���� �����

���� ����� ���� ����� ����� ���� ����� ����� ���� ����� ����� ���� �����

���� ����� ���� ����� ����� ���� ����� ����� ���� ����� ����� ���� �����

Table 	� Generalization capabilities of the FA
 learning tasks L� and L��

For each architecture size and language the mean �+�
 the standard deviation ��� and the
maximum value �max� of the recognition performance �in * according to the recognition criterion�

over the �� single experiments is listed�

L� The mean recognition rates increase with larger architectures and decrease with tests on

term sets of growing term complexity� For the representation layer size m  � we observe a very

large standard deviation caused by a strong sensitivity of the network against di�erent weight

initializations� For m  � �� �� the FA achieved a fairly good mean recognition rate close to

��� *� Nevertheless there exists at least one experiment �one trained architecture� which gives a

perfect recognition of the language with a mean square error very close to zero �these values are

not reported here� consistently throughout the six test sets� During the ���� epochs training and

testing on di�erent partitions of T �	� ��� no over��tting e�ects were detected �neither in the case
of L���

L� With few exceptions the larger the term complexity in the test set the worse is the recognition

rate� The performance is consistently worse than in the case of L�
 but nevertheless there is at

least one experiment which yields a rate above �� * ��� * for m  �� throughout the six test

sets� In contrast to L� the best performance can be observed at m  �
 while m  �� gives no

better result�

Remarks The last observation might be origined in the fact that there are too few training sam�

ples ����
 remind the ���fold cross�validation scheme� compared to the number of programmable

parameters �weights and thresholds� in our learning system� The FA considered here �m  ���

counts �� ! � 	 ��� 	 �� ! ��	 � ! �� ! �  ��	 programmable parameters� This conjecture is
consistent with theoretical results on the sample complexity of the FA �see Section ����

Although there is not an exact match between VC�dimension and sample complexity in the

��



context of neural network learning and although there is always a theoretical�practical gap
 The�

orem � �O�u�w	� as an upper bound for the VC�dimension of the FA
 where w is the number

of weights and u the size of the input trees� gives some evidence and plausibility for the above

conjecture for the decrease of performance of the FA from n  � to n  �� in the case of L��


�� Implications and Conjectures about the Full Computational Power

of the FA

The experiments on the two simple IGI tasks shown in the previous section can only be regarded as

illustration of the basic procedure� However
 the theoretical considerations presented in this paper

together with the empirical results gathered by applying the FA to IGI tasks on pattern languages

�reported elsewhere
 see Goller ����
 Schmitt �	��
 K�uchler and Goller �	�
 Calmbach ���� motivates

the formulation of the following conjectures on the computational power of the FA which might

guide further theoretical research and empirical investigations�

For each conjecture stated we try to collect evidence and arguments for its plausibility�

Conjecture � Computational Power� The FA equipped with sigmoid transfer functions is

strictly more powerful than DTA� i�e� there are tree languages that are not in RTL but can be

recognized�represented by the FA �assuming in�nite arithmetic precision��

The empirical results show that the FA performs surprisingly �with a generalization accuracy

near to ��� *� well on IGI tasks over non�linear pattern languages from BOL�LOL �BIL�LIL�
and other languages beyond RTL� However
 this can only be regarded as support but not as

proof� As illustrated �in Section ���� by the experiment on the IGI of the language L� one can

test the accuracy only on a �nite number of trees of a �nite size�

Recently
 the question in the case of word languages
 whether RNN with sigmoid transfer

functions are strictly more powerful than FSA has been answered positive� H�olldobler et al� ����

showed how a very simple RNN can be implemented to recognize the context�free language anbn

for any n if in�nite arithmetic precision is assumed� The solution has been analytically derived

by an analysis of the non�linear dynamics in the state space of the network� �see also comments

on Conjecture ���

The proposed RNN architecture may be viewed as a �trivial� folding architecture of the type

FA��� �� �� �� �� �� ��� �c�� Let �  fa� bg be a ranked alphabet with r�b�  � and r�a�  f�� �g�
Obviously
 the pathological tree language

L  fb�b�� � � b� �z �
n

�a�a�� � � a�a� �z �
n

� � � ���� � � ��� j n � �g

is beyond the class RTL �this can be easily proven by applying the pumping lemma for regular

tree languages
 see G�ecseg and Steinby ������ The FA recognizes L by choosing the parameters
�thresholds
 weights
 input and output encodings� exactly as given by H�olldobler et al� ����� The

original language is �mirrored� and the initial state of the RNN has to be chosen as encoding for

the empty tree nil since the processing mode in the FA is directed from the leaves to the root�

Further
 it is known that a RNN �equivalent to a FA with k  �� can simulate a real�time n�

stack Turing machine �Siegelmann and Sontag �		��� Thus
 it seems very likely that one can build

a FA that has the capability to recognizes even non�pathological tree languages beyond RTL�

��



Conjecture � Adequacy of the Automata Framework� The classical formal language the�

ory �Chomsky hierarchy� automata� is not the adequate tool to analyze and understand the behavior

and �full� computational power of the analog device FA exhibiting potentially in�nite states�

For the threshold case there is the exact equivalence between FA and DTA� Empirical expe�

riences applying the FA with sigmoid transfer functions �and gradient�based learning procedures

like BPTS� to IGI tasks on tree pattern languages consistently show that languages belonging to

the class RTL are �easier� �in terms of convergence speed and absolute generalization accuracy�

to learn than those beyond RTL �see also the remarks at the end of this section��

However
 there is no guarantee that the result of a learning process yields a �neural� DTA

implementation �in the sense of the FA construction schemes presented in Section 	�� It is unlikely

that a FA instance trained to recognize the pattern language L� will behave like a corresponding

DTA recognizer� Neither means the representability of one language example beyond the class

RTL that we will be able to identify a class out of the classical formal automata framework that

characterize exactly the computational power of the FA�

Things become more di�cult if we allow the nodes of trees from the domain being labeled by

continuous�valued vectors from IRn� In that case the formal language framework might at most

serve as a discrete approximation to a completely continuous phenomenon�

Nevertheless
 in the sigmoid case the automata framework can be used to explore the �lower

limits� of the principled capabilities of the FA� The membership of a given tree language to the

class RTL seems to be an indicator that the IGI problem can be solved by the FA with high

accuracy� The automata view may also be of bene�t when it can be guaranteed that a DTA is

injected directly into the FA �e�g� according to the proof construction for Theorem � and the

hypothesis space is explicitly constrained to automata during the training process �see Section ���

Recently
 discrete�time recurrent neural networks �RNN� were viewed from a non�linear dy�

namical systems perspective �e�g� see Kolen ���
 Casey ���
 Tino et al� ����
 Tino ����� Wiles and

Elman ���� demonstrated that a simple recurrent network architecture can be trained to perform

an example of a context�free language prediction task� They discovered that this phenomenon

can be perfectly explained by di�erent dynamical regimes interacting in the state space of the

network� Steijvers and Gr�unwald ���� were even able to tune �by simulation� few parameters

of a recurrent network such it can accomplish a context�sensitive language prediction task� They

showed that the dynamics of the network can be controlled in a way that regions of the state space

that correspond to the symbols to be predicted are linearly separable� H�olldobler et al� ���� �see

the discussion of Conjecture � above� were able to analytically derive a RNN that recognizes the

context�free language anbn� They utilized the network as something like a �continuous counter� in

the state space
 the dynamics is controlled in a way that the presentation of the symbol a triggers

the increment and the symbol b the decrement operation�

For discrete�time recurrent neural networks the term �time� is de�ned as a linear point struc�

ture
 i�e� as a set of discrete time points constrained by a strict partial ordering
 continuous


left�bounded and linear� If we want to apply the dynamical system point of view to the FA we

have to deal with a non�linear time ontology� Let us reconsider and adapt the description of the

processing dynamics of the FA �see Section ��
 Equation ��� The state "g�t� of the system at time

t is computed by

"g�t�  g
�
I�t�� "g�t��� "g�t���    � "g�tk�

�
�

where t 	 ti �i  �� �� � � � � k�
 the function g � IRn�k�m � IRm is constituted by the folding part

�



and I�t� is the external input �in our case the coding of a symbol from the alphabet� at time t�

The output $�t� of the system at time t is determined by�

$�t�  h�"g�t���

where the function h � IRm � IRq is given by the transformation part�

Thus
 the state of the system depends on a sequence of k prior states� In contrary to RNN

the concept �time� in the FA dynamics is de�ned by a right�linear ordering and a k�fold branching

past �see Figure ��� Clearly
 these concepts are equivalent for k  ��

Figure �� Sketch of two di�erent ontologies in discrete time� On the left� concept of time exhibited

by the dynamics of a RNN� On the right� a three�fold branching past induced by the FA �k  ��

dynamics� Time points are denoted by black bullets
 arrows illustrate the prior�to relation between

the left and the right time point�

The dynamical system point of view might be fruitful �and more adequate than the formal

automata theory� to analyze the behavior of architectures like the FA� However
 in order apply

tools and concepts from the non�linear dynamical systems theory one has �rst to ask the question

whether and how these can be lifted from �linear� to the �branching past� dynamics�

Remarks Although not explicitly addressed in this paper
 it may be clear that questions on the

learnability of tree languages are much harder to answer than questions about the representation�

Even the formulation of an adequate de�nition of �learnability� is a non�trivial problem� The

classical concepts known from the computational learning theory like learning in the limit from

positive and negative examples �Gold ���� or the probably approximately correct identi�cation

�PAC� model �Valiant ����� do not �t very well to the continuous optimization process carried out

during the training of the FA
 to the convergence criterion and the quality of the �nal solution�

Further
 the gradient�based optimization algorithms are known to get stuck into local minima,

the absence from local minima and thereby convergence to the global minimum can only be

guaranteed in trivial cases �Frasconi et al� ������

Themodel selection problem
 i�e� the question about the right scaling of the folding architecture

�number of layers
 number of neurons in each layer
 dimension m of the representation layer� can

be only partially answered� The constraints on the FA �derived in Section 	� to achieve the

computational power of DTA give only very rough decision factors and assume a priori knowledge

about the class of languages to be presented� If one knows the language to be learned in advance

one might use some good heuristics to estimate the number of neurons required �see Siegelmann

and Giles �	�� in the case of regular languages
 FSA and RNN�� Another alternative to get rid

with the model selection problem might be in the use of constructive learning algorithms
 i�e�

algorithms which lead to an incremental growth of the network if the current one cannot solve the

�



problem accurately� Sperduti ���� shows that techniques like cascade�correlation can be extended

to network models like FA� However
 special care has to be taken �see Giles et al� ���� to conserve

the computational power�

The empirical results sketch a much more friendlier picture �see Goller ����
 Schmitt �	��


K�uchler and Goller �	�
 Calmbach ����� IGI tasks on languages beyond RTL were solved by the

FA �using gradient�based learning algorithms� with fairly high generalization accuracy� We have

the conjecture that even if the concept to be learned is beyond the representational capability of

the FA �or beyond that of a given �nite�size instance of the FA� it is likely that the concept can

be approximated well �for trees of bounded size� by the restricted means�

� Remarks on Combining Symbolic and Neural Learning

The previous section indicate that the FA can be used as a �neural learning device� to inductively

acquire automata behavior given positive and negative examples for of the corresponding language�

On the other side there are several �symbolic approaches� to solve the inductive grammatical

inference task for tree languages resp� tree automata �see Knuutila ���
 a collection of further

references can be found in Miclet ����
 Schalkho� ���� and Steinby ������ The metaphor applied in

the later case is the hypothesis space spread out by all automata instances of a given language class�

IGI means a clever navigation through this space in order to �nd the best hypothesis consistent

with the given training data� Each of both approaches is characterized by its own merits and

disadvantages�

��� The Injection�Re�nement�Extraction Framework

Recently
 a general framework has been identi�ed in order to combine the strength of symbolic

with those of neural learning �Shavlik �	���� It can be roughly outlined as constituted by the

following three phases�

��� Injection �� ��� Re�nement �� ��� Extraction

��� Symbolic knowledge prior available about the application domain is given by a human expert

or�and acquired by a �symbolic learning device�� The ideal notion is that this knowledge

does not necessarily has to be a complete
 minimal and perfect solution of the problem


but only a rough approximation thereof� The next step is to transform �inject� it into an

equivalent neural network�

��� Then possibly some additional degrees of freedom are added to the network architecture�

Further
 the network has to be prepared to become trainable by an available neural training

procedure� Now
 known �and additional� training data is used to re�ne�improve the �rst

approximative solution�

��� Ideally the trained network represents a better solution of the initial problem� But one does

not want to accept the network as a �black�box� result
 the objective rather is to extract it

into a �comprehensible� symbolic way �e�g� in the same language the prior knowledge was

given��

In spite of some principled problems within this framework �not discussed here
 see Shavlik �	���

several researchers were able to successfully apply this idea and empirically demonstrated that this

�



combination of symbolic and neural approaches yields better accuracy than each individual� Towell

and Shavlik ���� instantiated this framework into a method to transform symbolic knowledge �in

form of propositional Horn logic� given by human experts into a special feedforward network

architecture
 which was subsequently trained� Knowledge extraction is done by an algorithm that

produces so called �N�of�M� rules� Ivanova and Kubat ���� fruitfully combined the well�known

symbolic decision tree learning approach with re�nement of the acquired knowledge by a multilayer

network and a standard neural training procedure�

Similar strategies were also applied in the context of FSA �IGI of regular languages� and RNN

�e�g� see Omlin and Giles ����
 Frasconi et al� ��	��� However
 special measures have to be taken to

ensure that not only the automaton behavior but also the structure is preserved during re�nement

by neural training� This was shown as a necessary condition to have a chance to extract useful

�automata knowledge� from the state space information of the network �Kolen ���
 Casey �����

��� Robust Injection of a DTA into the FA

The general combination framework might in principle be also applicable to the context of FA

and DTA� Prior knowledge given by experts in form of a DTA �or implicitly in form of a regular

tree grammar that has been transformed to a minimal equivalent DTA� or induced by symbolic

machine learning approaches �see Knuutila ���� can directly be injected into an equivalent FA

with sigmoid transfer functions�

Assuming an in�nite arithmetic precision one can choose among the di�erent possible instances

of the FA ��rst�order vs� higher�order connections
 two�layered vs� one�layered folding part� and

apply the corresponding construction schemes established in Section 	 �see proof constructions to

Theorem 
 Theorem � or Theorem ���

Before re�nement �Phase � of the framework sketched in Section ���� usually some preprocess�

ing steps are carried out �Towell and Shavlik ����
 Ivanova and Kubat ������ The connection scheme

between successive layers is extended to a fully�connected one
 the weights of regular connections

�that are required for the construction scheme� and of irregular connections �new connections with

weights that were formerly set to zero� are slightly perturbed by small random values to provide a

suitable initialization for subsequent re�nement by a numerical training �optimization� algorithm�

Further
 for practical implementations �specially on digital parallel hardware� one can only

rely on a �nite precision of the number representation and the arithmetic operations�

Therefore we will investigate whether and how the FA construction schemes given in Section 	

can be adapted to cope with irregular connections based on the following noisy neuron model�

De�nition �� Noisy Neuron Model� Let oi be the output of the neuron indexed by the

number i with �rst�order activation function �� and the classical sigmoid function �c
 �i be the

bias and oj � � � j � n!m be the outputs from neurons connected to by n regular and m irregular

connections with weight wij � Further let -� � ����!� ��-� � ����!�� and - � ����!�� be
random variables �under arbitrary distributions� with �� �� � � IR� The output oi is computed

according to

oi  �c

�
�n�mX

j��

�wij !-� � oj ! ��i !-� � ! -�

�
A!-

where -� represents noise on the weights
 - noise on the output and the activation is corrupted

by -��

�



Again
 we start with the neuron as the basic building block of the FA� The next Lemma shows

that the simulation of Boolean gates �see also Section �� by a single sigmoid neuron in a noisy

environment �as speci�ed by De�nition ��� can only be accomplished by restricting the amount

of noise - on the output� The weights can be tuned to tolerate any given �but a priori known�

amount of noise -� on the weights and noise -� on the activation�

Lemma �� A single neuron provided with �rst�order connections and the classical sigmoid trans�

fer function �c can simulate

a� The n�ary Boolean ��

b� the n�ary Boolean ��

obeying the following additional constraints�

	� There are n regular �for the n Boolean arguments� and m irregular incoming connections

with weights w and the bias � which are allowed to be perturbed by given noise -� � ����!� ��


� The activation of the neuron is corrupted by given noise -� � ����!���

�� The noise - � ����!�� tolerated on the output �input� is restricted to � 
 � 
 � 
 �
�n

where � is the discretization parameter applied to map the continuous output to a Boolean

value�

Proof We apply the same discretization scheme as given by the proof of Lemma �� Since �c

has a continuous range of ��� �� we choose an � � ��� �� � and interpret the output of a neuron in
the following way� We say that �the output of� a neuron is high if ��x ! -�� ! - � � � �


low if ��x ! -�� ! - � � and unde�ned
 else� Thus
 the Boolean values f�� �g correspond to
flow� highg� Let �  �! ln ����

�� with � 
 �� Due to the monotonicity and symmetry of �c the

output will be high if the activation of the neuron is x � �
 low if x � �� and unde�ned
 else�

a� A neuron receiving input from n neurons connected by identical weights w � IR�w 	 �

�possibly perturbed by noise -� � and from m irregular connections �with weights arbitrarily

distributed in ����!� �� behaves as a n�ary Boolean � i� the following constraints can be
satis�ed�

��� ��  n  �w � �� �m  �� ! ��  � ! � � � � �

�� ! ��  �n� ��  �w ! �� ! �  �  �w ! �� !m  �� ! ��� ! � ! � � ��

By turning these constraints into equations we get at least one solution

w  
��� ! ���� �m! � ��� ! n�� �n! ��� �m� n� �� �

�� ! � �� ! n� ! ��� ! n� �

�  
��! ��� �� n! ��� ! n� �� ! ��� � ! ���n�m� �� �� ��

�� ! � �� ! n� ! ��� ! n� �

where ���n�m� �� �� �� is a polynomial of order � and �� � are constrained by

� 
 � 
 � 

�

�n





b� For simulating a n�ary Boolean � we get the following conditions �w 	 ���

��� ��  �  �w � ��� �  �n� ��  �w � �� �m  �� ! ��  � ! � � � � �

�  n  �w ! �� !m  �� ! ��  � ! � ! � � ��

resulting in at least one solution

w  
��� ! ���� �m! � ��� n� ! ���� �m! n� �� �

�� ! �! � n� � ! n�

�  
��� �! � n� ��� ! n� �� � ! ���n�m� �� �� ��

�� ! �! � n� � ! n�

where ���n�m� �� �� �� is a polynomial of order � and �� � are constrained by

� 
 � 
 � 

�

�n

For example a Boolean � with n  � regular and m  � irregular connections and the noise

levels �  �  �
�� can be implemented in a robust way choosing �  ���
 �  

�
�� and calculating

w  ��	��	 and �  ����� according to the proof of Lemma ��� Again
 the single neuron can
be used as basic building block to implement any given DTA by the folding architecture�

Theorem �� Robust Injection� The FA with �rst�order connections and the classical sigmoid

transfer function �c can simulate any DTA using two layers in the folding part and only one unit

in the transformation part �layers are fully�connected�� This implementation is robust �w�r�t� the

noise model speci�ed in De�nition 	�� if the noise level on the output of each neuron is bounded

by the discretization parameter�

Proof Robust Injection� Take the building plan from the proof of Theorem � Let n�

be the maximum fan�in among all neurons
 �  �
�n��� be the discretization parameter and

����!� �� ����!��� ����!�� � IR three given intervals with � 
 �� Insert new �irregular� con�

nections so that all layers are fully connected and initialize them with zero� Regular links are

weighted and the thresholds are set according to the proof of Lemma ���

Lemma �� guarantees the injection of the DTA to be robust against arbitrarily distributed noise

-� � ����!� � on the weights
 noise -� � ����!�� on the activation and noise - � ����!�� on
the outputs of the neurons�

Remarks Maass and Sontag ��� showed �using a noise model slightly di�erent to that speci�

�ed by De�nition ��� that discrete�time recurrent neural networks with noise �under very mild

assumptions� on the output of neurons can only recognize a subclass of regular languages� As

demonstrated by Theorem �� our construction for a DTA injection can be tuned to tolerate a very

small noise level on the outputs of neurons�

The proof construction �belonging to Theorem ��� gives us a scheme for the injection of an

arbitrary DTA into an equivalent FA� The addition of irregular links and a random perturbation

of the weights within the � �interval prepares the neural network for the re�nement phase� Thus


standard training algorithms like BPTS �K�uchler and Goller �	�� can be applied�

�



For the re�nement and extraction phase concepts and methods might be borrowed from ex�

isting knowledge about the instantiation of the framework to FSA and RNN �e�g� see Omlin and

Giles ����
 Alqu�ezar and Sanfeliu ��� Tino and Sajda ��	�
 Frasconi et al� ��	��� If one wants to

also extract knowledge in �automata form� special measures � e�g� by regularization techniques

�Frasconi et al� ����� or by explicitly constraining the weight space to feasible regions �Frasconi et

al� ��	�� � have to be taken to prevent the dynamical system from leaving the automata hypothesis

space during retraining �compare also Section ��
 Conjecture ���

The extraction of FSA from successfully trained discrete�time recurrent networks is usually

accomplished by a discretization and exploration of the state space �e�g� see Omlin and Giles ��	�


Tino and Sajda ��	�
 Frasconi et al� ������

To avoid the combinatorial explosion of the exploration process �imposed by the tree domain

T ��� in the case of DTA and FA� it might be a good idea to navigate through the state space
using the known training resp� test data or only a small fraction of the tree domain�

	� Related Work

The correspondence between special recurrent neural network architectures and tree automata

was �rst shown by Sperduti ���
 	��� One layer equipped with so�called �rst�order generalized

recursive neurons and threshold transfer functions has been proven to have the power to simulate

any deterministic bottom�up tree automaton� Without explicitly referencing the state�splitting

approach of Goudreau et al� ���� and without explicitly identifying neurons as Boolean gates a

construction scheme was developed for the case of threshold functions� For the case of sigmoid

transfer functions the approximation �of threshold functions by sigmoid ones� argument is supplied�

Generalized recursive neurons implanted into Elman�style networks are a special case of the

folding architecture
 i�e� are equivalent to FA with one layer as the folding and one as the trans�

formation part� Obviously
 the mentioned result of Sperduti ���� is a special case of Theorem �

and its proof construction �for veri�cation one can substitute the sigmoid neurons by the thresh�

old gate neurons given in Lemma �� The discretization scheme used here �see Lemma �
 proof

construction� allows �contrary to Sperduti ����� the exact simulation of any DTA by a FA with

sigmoid transfer functions� As shown in Section � our constructions can be extended to a DTA

injection scheme which is robust against a small amount of noise �on the weights and the output

of neurons� and that is ready for subsequent re�nement�

The recipe for simulating Boolean functions by single neurons using various transfer functions

was partially taken from Ivanova and Kubat ����
 extended and adapted for our purposes �see

Section ��� This abstraction technique � using neurons which simulate Boolean functions as

primitive building block for complex network architectures � may be found in several similar

contexts �e�g� see Frasconi et al� ��	� or Towell and Shavlik ������

Our investigations are driven by the observation that folding architectures limited to the arity

k  � are equivalent to the class of multilayer discrete�time recursive networks used for sequence

processing �K�uchler and Goller �	�
 Giles et al� ������ Thus
 most of the argumentations
 theo�

rems and proof techniques presented in Section 	 are directly lifted from the excellent framework

developed by Kremer ��
 � �for the correspondence of di�erent discrete�time recurrent network

architectures to the formal language theory� to di�erent instances of the FA and their correspon�

dence to tree automata�

	



New insights for discrete�time recurrent networks are obtained by specializing the FA to the

�xed arity k  �� The proof construction to Theorem  gives a �to our knowledge� novel scheme

for injecting FSA into �rst�order discrete�time recurrent networks� In contrary to the state�

splitting technique �Kremer ��
 Goudreau et al� ����� to implant a FSA into one�layer Elman�style

networks �Elman ����� our construction requires only a moderate resource �in terms of the number

of neurons and weights needed
 see Section 	� consumption which makes it attractive for practical

applications�

The theorems and proofs concerning the node complexity of FA implementations of DTA are

directly transferred from the work of Horne and Hush ��	
 ���� Setting the maximum arity k to

k  � and the cardinality n of the automaton alphabet to n  � yields exactly their upper bound

results for discrete�time recurrent networks with transfer functions� The proof technique for the

lower bound is due to Alon et al� ���� However
 we were not able to lift their construction for a

lower bound on the number of divergent mealy machines to the DTA case�

Various research on the computational power of discrete�time recurrent neural network models

can be found in literature� Siegelmann and Sontag �		� demonstrated the Super�Turing power

�real�time processing mode
 with a four�step slowdown� for �rst�order single�layer recurrent neural

networks with saturated linear transfer functions by a constructive proof using an a priori �xed

number of neurons� Later
 Kilian and Siegelmann ���� provided a proof for the Turing universality

in the case of sigmoid transfer functions� Assuming real�time processing the Turing universality

also holds for the FA�

There are several attempts to represent and to learn examples of context�free languages with

discrete�time recurrent neurons network models� Das et al� ���� and Zeng et al� ���� study re�

current architectures which are augmented by an external �continuous� stack� Internal signals to

control the stack operations are implicitly included into the given learning task and the input is

still represented as sequence� The FA directly operates on structured objects �trees�
 structured

expressions as usually described by CFL can be represented in a �natural� way� However
 external

memory �for the storage of at least k prior state representations� is also required for the operation

of a trained FA �see Section ��

Wiles and Elman ���� were able to train a simple discrete�time recurrent neural network to

accomplish a beyond�regular�language �CFL� prediction task� The underlying mechanisms could

be explained by taking the dynamical systems point of view� Steijvers and Gr�unwald ���� followed

this idea idea and showed that even examples of languages beyond the context�free border can

be represented by simple discrete�time recurrent architectures� The same phenomena can be

observed in the context of the FA� The arguments and empirical results presented in Section �

�and other experimental results reported elsewhere �	
 	��� give strong evidence that there are

languages beyond the regular tree language class which can be represented by a FA �and for

which the FA can be e�ectively and e�ciently trained to behave as recognizer�� This conjecture

is also supported by two computation models related to discrete�time recurrent neural networks

that recently emerged� Moore ���� presented classes of iterated functions systems that are �in

the case of piecewise linear maps and beyond� strictly more powerful than deterministic real�time

pushdown automata� Tabor ���� speci�ed classes of so�called pushdown dynamical automata and

metrics on its members that can be constrained to be equivalent to classical pushdown automata�

The application of the known framework �see Shavlik �	��� for the combination of symbolic

and neural learning to DTA and FA is essentially inspired by the work of Ivanova and Kubat ����

on combining decision tree induction with neural learning� Decision trees �induced by classical

�



machine learning approaches� are interpreted as Boolean expressions
 transformed into disjunctive

normal form and directly transferred into an equivalent three�layered feedforward network archi�

tecture� Each Boolean gate is simulated by a sigmoid neuron� Before re�nement new degrees of

freedom are added to the architecture
 weights are slightly perturbed� In this paper we followed

the same strategy to develop a robust scheme for injecting given DTA into FA �see Section � and

Theorem ����

From the research methodology point of view we have seen that many concepts and results

known in the �eld of sequence processing with recurrent neural network models can be fruitfully

transferred to structure �tree� processing by the folding architecture� Sperduti ���� proved this way

as successful by lifting the well�known cascaded recurrent networks and neural trees to structure

processing� Recently
 Frasconi et al� ���� gave a probabilistic framework for the adaptive processing

of structures and show how the well�known hidden markov models for temporal sequence processing

can be lifted to �t into that framework�

		 Conclusions

In this work we explored some obvious correspondences between neural folding architectures and

tree automata� Our investigations were guided by two observations� First
 both models operate in

the same way
 i�e� both compute a new state by combining a sequence of prior states with symbols

read from the input� Secondly
 the known class of discrete�time recurrent neural network models

may be viewed as a special case of the FA �by constraining the maximum rank to k  ���

Figure � gives an overview over the most important machine models and formal language

classes and their mutual relations considered in this article� It is well�known that FSA correspond

to regular word languages �REG� which in turn is a strict subclass of the class of context�free

languages �CFL� �see Relations �
� and Hopcroft and Ullman ����� Further
 tree automata and

regular tree languages �RTL� are known to be a straight forward generalization of FSA and REG

�see Relations 
�
� and Doner ������ Deterministic bottom�up tree automata �DTA� have the same

computational power as the non�deterministic variant and as their non�deterministic top�down

counterpart �G�ecseg and Steinby ������ RNN are known to possess at least the computational power

of FSA �see Relation �
 and e�g� Kremer ��
 �
 Giles ����
 Goudreau et al� ����
 Minsky ������

Here we closed the triangle of Relations �
�
 by proving that the FA has at least the computa�

tional power of DTA �Relation 	�� Several instances of the generic architecture were investigated

�see also Table ��� For �rst�order activation functions at least two layers are required � either two

in the folding part or one there and one in the transformation part� By using activation functions

of order k ! � �where k is the maximum rank of the given tree automata� a given DTA can be

simulated by exactly one layer as folding part� In the case of threshold transfer functions the

Relations � and 	 are reduced to equivalence�

We investigated the node complexity of DTA implementations for folding architectures with

threshold transfer functions� Upper bounds depending on the number of layers in the folding part

�see also Table �� and a �weak� lower bound were derived�

Terms sets extracted from the application �eld of learning search control functions for symbolic

deduction systems and formerly used in experiments to test the representational capabilities of the

FA �see Goller ����
 Schmitt �	��
 K�uchler and Goller �	�� are identi�ed to belong to the class of

tree �term� pattern languages� Pattern occurrence languages �OL� are speci�ed by a term pattern�

�
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Figure �� Visualization of the basic relations between di�erent machine models and language

classes �denoted by solid lines and labeled by numbers to facilitate referencing from the text��

The result that one machine is strictly more powerful than the other is expressed by ���� �
L��

denotes the correspondence between a machine and its recognizable language class
 ��� is the
usual strict subset relation� �'� indicate interesting open questions� Implicitly
 the usage of the

sigmoid transfer function is assumed for RNN and FA�

A given term is in a given pattern language i� the speci�ed pattern occurs as subterm� Linear

pattern languages �LOL� are de�ned by patterns where each variable occurs not more than once

�see Relation ��
���� The expressiveness of pattern languages can be enhanced by allowing a �nite

Boolean combination occurrence constraints �BOL and LBOL
 Relations ��
���� Linear pattern

languages �like LBOL and LOL� were shown to be in RTL while the non�linear pattern languages

�like BOL and OL� are beyond RTL �Relation ��� Thus
 by the chain of Relations 	
�
� the FA

has at least the representational capability of linear pattern languages�

Recently
 Relation � has been proven to be strict �see H�olldobler et al� ����� by constructing

a RNN that is capable to recognize the context�free language anbn �assuming in�nite precision

representation of the arithmetic operations and the weights�� This language can be taken as a

pathological example of a language beyond RTL that is recognizable by a trivial FA� We conject

that Relation 	 is strict also for non�trivial tree languages� Empirical results show that inductive

inference tasks on non�linear pattern languages �which are beyond RTL� can be solved by the

FA with a high generalization accuracy� This may be counted as support for this conjecture� A

further interesting open question is in the relationship between the FA and the non�linear pattern

languages BOL and OL �Relation ��� What is and how to describe the �full� computational

power of the generic architecture that allows a discrete�time analog computation in a potentially

in�nite state space' The dynamical systems point of view �see e�g� Blair and Pollack ���
 Casey ���


Kolen ���
 Moore ����
 Tabor ����� might be helpful in �nding answers�

The theoretical results presented here together with former empirical results on arti�cial data

�
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Table �� Bounds on the node complexity of DTA in FA ��rst�order activation function ��
 threshold

transfer unction �t� implementations using r layers in the folding part� The complexity is measured

by the number of states m
 the size of the alphabet n with maximum rank k of the given DTA�

FA neurons weights weights

r s � �full connectivity� �non�zero�

� � �� O�mkn� O�kmk��n!mkn�� O�kmkn�

� � �� O�mkn� O�km�kn�� O�km�k��n��

� � �h O�m� O�n�m ! ���k���� O�mkn�

Table �� Comparison of di�erent tree automata injection schemes in terms of their space com�

plexity� The three folding architectures are di�erentiated from the type of activation functions

���
 �rst�order vs� �h
 higher�order� and the number of layers r and s required in the folding and

transformation part� The resource consumption for the injection of a given DTA A  ��� Q� F�R�
is characterized by the number of automata states m  jQj
 the size of the alphabet n  j�j and
the maximum rank k of � and is measured by the number of neurons and number of weights

�connections� required in the folding architecture� Here
 only the case of a complete speci�cation

of nmk automata transitions is shown� The sixth column counts the number of connections with

non�zero weights while a full connectivity is assumed in column �ve�

give some practical hints for the application of the FA in inductive inference tasks� The FA together

with appropriate training algorithms is a promising candidate in a scenario where objects can be

adequately represented by rooted labeled ordered trees
 the size of the representations cannot be

�xed a priori
 there is enough training data available and structural concepts have to be captured

in order to solve the task �but unknown in advance�� Concepts belonging to regular tree languages

can be represented by the FA� One has several design alternatives concerning the layout of the

architecture
 we give some minimum �in terms of layers used in the folding respectively in the

transformation part� instances that guarantee the representational capapability of RTL�

The constructive proofs give e�ective knowledge injection schemes �see also Table �� that can

be made robust against weight perturbations and tolerates a small noise level on the output of

neurons� Especially the Boolean combination of pattern occurrence languages seems to be an useful

formalism to describe knowledge partially available in a pattern recognition domain� However
 the

embedding of the FA into a practical and advantageous injection�re�nment�extraction framework

has to be evaluated by solid experiments�

The correspondences established between folding architectures and tree automata further show

that there are indeed connectionist models that are capable to perform structure�sensitive oper�

ations� This property is postulated by some schools of cognitive science for any adequate model

��



describing the higher�level cognitive tasks carried out by the human brain �e�g� see Fodor and

Pylyshyn ���
 van Gelder ����
 Niklasson and Sharkey ����� However
 the FA is far away from

any biological reality�
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