On the Complexity of Constraint Satisfaction
Problems

Uwe Schoning*
Universitat Ulm, Abteilung Theoretische Informatik
James-Franck-Ring, D-89069 Ulm, Germany

e-mail: schoenin@informatik.uni-ulm.de

Abstract

We present a quite simple probabilistic algorithm for solving general
constraint satisfaction problems (CSP). Given a CSP with n variables, each
variable taking at most d values, and constraints of order [, the complexity

n
of our algorithm is within a polynomial factor of (l‘_li_—ll) .
2k

As an application, this yields an O((7 +1)n : poly(n)) algorithm for k-
SAT which is among the fastest known algorithms for k-SAT.

As another application, this yields an O((%)n . poly(n)) algorithm for
k-colorability.

1 Introduction and Notation

A (discrete) constraint satisfaction problem consists of the following components:

e A set of n wvariables xy,...,x,. The variables take values from some finite
domain D where d = |D|. An assignment is a tuple of n values from D
assigned to the variables.

*This work was supported by a DFG grant.

e A set of constraints C,...,C,,. A constraint is a 0-1-valued function on the
domain D". For computational purposes a constraint can be represented as
a formula, a circuit, a finite table, or an algorithm. If Cj(ay,...,a,) =1
we say that constraint C; is satisfied by the assignment (a4,...,a,) € D™
If a constraint C; depends only on [arguments, then it is of order .

The algorithmic task is, given a CSP (its representation), find an assignment that
satisfies all constraints (if one exists).

There is considerable interest in algorithms for constraint satisfaction prob-
lems since constraint satisfaction problems occur extremly common (see [7], [4],
(3] Chapter 36). Many NP-complete problems are (or can be formulated as)
CSP’s. Two popular examples are k-SAT (find a satisfying assignment for a
given formula in k-CNF) and k-colorability (given a graph, find a coloring of the
nodes with %k colors such that no adjacent nodes get the same color). In the
case of k-SAT we have D = {0,1}, i.e. d = 2, and the constraints are of order
[= k and are represented by CNF clauses consisting of at most k£ variables. In
the case of k-colorability we have that n is the number of nodes in the graph,
|D| = d = k, and each edge in the graph gives rise to a constraint C' of order
2 where the constraint is satisfied iff the colors assigned to the two nodes of the
edge are different.

Since k-SAT and k-colorability are NP-complete problems provided that & > 3
6], these examples show that the CSP is NP-hard if either (d > 3,1 > 2) or
(d>2,1>3). The case (d =2, [= 2) is solvable in polynomial time. This case
corresponds to (or can be formulated as) a 2-SAT problem and it is known that
2-SAT is in P.

In the following we want to compare certain exponentially growing functions,
and at the same time we want to ignore polynomial factors which do not influence
the overall behavior of the function. Therefore we use the following definition.
Say functions f(n) and g(n) are polynomially related, if there is a polynomial
p(n) such that for all but finitely many n,

The naive algorithm for a CSP with parameters n (number of variables), d
(size of the domain), and [(the order of the constraints) is polynomially related

to d" since one can cycle through all potential assignments from D™ and check for
each assignment whether it satisfies all constraints. Even a small improvement in
the base value of this exponential function has a significant effect with respect to
the size of CSP problems that can be solved within a given time. For example,
if the base value d could be lowered to v/d then we could solve CSP’s of about
double the size within the same time.

In this paper we present a quite simple probabilistic algorithm that solves all

CSP’s in time which is polynomially related to (li—ll)n For CSP’s with constraints

of small order [, this is an significant improvement. Applied to the case of k-SAT

this gives an algorithm for k-SAT of complexity O((%)" : poly(n)) which is
within the range of the best known algorithms for k-SAT (see [10, 12, 13]). Our
approach is totally different than any of these cited papers. In the case of k-

colorability this gives an algorithm of complexity O((%)n . poly(n)).

The idea of our algorithm follows a simple and well known paradigm in heuris-
tic search algorithm design (see e.g. [9]): produce some randomly generated initial
assignments and guided by those constraints that are not yet satisfied try to “re-
pair” the assignment by a certain number of modifications. In the following we
present a theoretical analysis which shows how to choose the parameters of this
approach (the number of initial assignments versus the number of modifications)
optimally such that on the one hand “completeness” is achieved (i.e. the whole
search space is covered) and on the other hand the complexity of the algorithm
is minimized.

2 Searching for a satisfying assignment within
a fixed Hamming distance

Suppose we are given an initial assignment a € D™ where n is the number of
variables. Let d = |D|. There are

> (") (d-1)

i=0 *
many assignments within Hamming distance fn from a. (We assume 0 < § <1
and that fn is an integer). This is the set of assignments (called the Hamming

sphere around a) which can be obtained from @ by changing at most Sn many
values in a = (ay, ..., a,).

This number can be bounded as follows (see [8], Chapter X, or [2], page 121)

BnB(1 - B)] 2 - 2" (d — 1) < f;(j.‘)(d—w < 2" (d — 1)

where
h(B) = —Blog, B — (1 — B) log,(1 — J)
is the binary entropy function.

These estimations show that for constant [the value of the expression
D (’Z) (d — 1) is polynomially related to (Qh(ﬁ)(d — 1)ﬁ)n.

An important feature of our algorithm is that, given an initial assignment a, it
is not necessary to search through this number of assignments that we estimated
above for to find some satisfying assignment within Hamming distance fn (if
one exists). The given CSP can be used to prune the tree of assignments that
has to be searched. Let C' be a constraint that is not satisfied under the actual
assignment a. The constraint C' has order [, i.e. it depends only on [variables,
say i, Tiy, - .., %;. At least one of the assignments to these variables has to be
changed to (possibly) achieve an assignment that satisfies all constraints.

The following recursive backtracking procedure implements this idea:

procedure test (a, m): boolean

{ Here a is an assignment and m < n is an integer.
The procedure returns true if and only if an
assignment exists that satisfies all constraints and that

can be obtained from a by changing at most m values}
if a satisfies all constraints then return true
else if m = 0 then return false

let C' be some constraint that is not satisfied by a

suppose C depends on the variables x;,, x;,,...,z;
for j:=1tol do
forp:=1tod—1do

14

if test (al;; ,, m — 1) then return true

return false

Here, al;; , denotes the assignment that is obtained from a = (a1, ...,a,) by
changing the value a;, to a;; +p (mod d). Here we suppose that D = {0,1,...,d—
1}.

Suppose there exists at least one satisfying assignment a* of the CSP within
Hamming distance m of the initial assignment a. If m = 0, i.e. @ = a*, this is
detected in the beginning of the procedure. If m > 0 and a does not yet satisfy
all constraints of the CSP so that C is some constraint not being satisfied by a,
then at least one of the assignments to the variables on which C' depends has
to be changed. Say, the value of a;, has to be changed such that the Hamming
distance between a and a* decreases by 1. Therefore, by induction hypothesis, at
least one of the recursive calls test (al;,,, m—1) forp=1,...,d—1 will return
true. This proves the correctness of the procedure.

By the fact that the recursion depth is bounded by m, and the number of
recursive calls is at most [(d — 1), the recursion tree has therefore at most (I(d —
1))™ many leaves, and the complexity of the procedure is polynomially related to

(I(d = 1)™

Observe that, depending on the choice of the value m = fn, the value (I(d —
1))P" can be much smaller than (Qh(ﬁ)(d - 1)/3)n. (Example: let 3 = 1/4 and
suppose d = 3 and [= 3. Then we get (I(d—1))"" ~ 1.57" and (Qh(ﬁ)(d— 1)/3)n ~
2.09".)

3 Algorithm Analysis

Now the entire algorithm consists of an outer loop which selects appropriate (or
randomly chosen) assignments a such that the whole search space D" is finally
covered by the (fSn)-Hamming spheres around the a’s (with high probability).
Within each loop, a call of test(a, Sn) is then performed. The complexity of the
algorithm (up to a polynomial factor) is obtained by multiplying the necessary
number of a’s with the term (I(d — 1))?" that we obtained above.

Ideally, the set of a’s constitutes a perfect code (cf. [8]), i.e. all the fn-
Hamming spheres are mutually disjoint and the whole space D™ is covered. (What

actually is sufficient here is a covering code [5]). In this case, the number of a’s is
dn
> (1) (d = 1)

This corresonds to the well known sphere bound from Coding Theory [5, 3, 8].
According to our above estimations this expression is polynomially related to

d n
@ —1)

Therefore, the overall complexity of the algorithm is polynomially related to
d n Bn d-1°\n
(Qh(ﬁ)(d _ 1)6) (l(d - 1)) - (Qh(ﬁ))

The base value of this exponential function is minimized by the choice § = H%
Substituting this into the expression yields that the overall complexity, by this
(d-l)n
[+1

This corresponds to the complexity in the ideal case that the set of initial assign-

choice of 3, can be bounded by

ments forms a perfect code.

Next we analyze how often we need to guess a random assignment a such

that with high probability, the fn-spheres around the a’s cover all of D™. (We
keep the above calculated choice § = 14%1) The probability that a single random
assignment a lies within Hamming distance fn of a fixed satisfying assignment
a* is
=2 (3)(d - 1)
dn
By the above estimations, this probability is at least

[+1 d -n
n (Qh(ﬁ)(d_ 1)6)

Suppose we randomly and independently choose t many starting assignments a.
The probability that a* is not within Hamming distance Sn with any of the a’s

l+1 d —n\t
(1_ sn '(gh(ﬁ)(d_l)ﬁ))

6

is at most

Using 1—x < e~ it can be seen that for to achieve an acceptable error probability

20 n

of, say e=*" or even e~ ", it is enough to choose

t=20rg Gego) o =y Gegos)

respectively. That is, the number of random assignments that has to be chosen is

within a polynomial factor of the ideal number of assignments in a perfect code.

Therefore, we have demonstrated that the complexity of the entire probabilis-

tic algorithm is polynomially related to (li—ll)n

4 Discussion

We have presented a general algorithm to solve a CSP which improves upon the
naive exponential-time algorithm considerably, and will therefore have some prac-
tical relevance. In the special case of k-SAT the achieved complexity bound is
within the range of the best known algorithms for this problem [10, 12, 13]. The
algorithm is another example with respect to Pudlak’s proposal [14] to find algo-
rithms for (k-)SAT which are not instantiations of the Davis-Putnam procedure.

The algorithm is probabilistic because the set of centers of the Hamming
spheres that have to be searched (deterministically) are chosen randomly. By
this we introduce a new paradigm for probabilistic algorithms. We have not seen
this concept before in the context of probabilistic algorithms (see [11]) (although,
somewhat related is Shannon’s probabilistic construction of an error correcting
code in the proof of the main theorem of Coding Theory [2, 8]). A somewhat
similar philosophy is in the randomized “color-coding” algorithm from [1]: first
a random structure is selected. The probability that the structure is “good”, in
some sense, should not be too low. Then, using this structure, under the condition
that the structure is “good”, the second (deterministic) part of the algorithm can
prune the search for the solution.

It would be interesting to find a deterministic way of picking the centers of the
Hamming spheres such that the whole search space is covered. The complexity of
such a potential deterministic algorithm will asymptotically, within a polynomial
factor, not be better than our probabilistic algorithms, as we have seen.

In some sense, half-way to a total derandomization of the algorithm is an
approach that reduces the number of necessary random bits, e.g. from exponential
to polynomial. Indeed this can be achieved. In [5] it is shown that almost every
linear code asymptotically achieves the sphere bound. That is, it is enough to
randomly guess a code matrix (of appropriate dimensions) and then use the linear
code defined by this code matrix. With high probability the Hamming spheres
cover the total search space. Apart from this probabilistc “precomputation”
the rest of the algorithm is deterministic in this case. One just needs to cycle
systematically through all codewords of this linear code.

Acknowledgements

For valuable remarks and discussions I want to thank V. Arvind, S. Baumer,
M. Bossert, J. Kobler, and P. Pudlak.

References

[1] N. Alon, R. Yuster, U. Zwick: Color-coding. 26th Symp. on Theory of Com-
puting, ACM 1994.

[2] R.B. Ash: Information Theory. Dover 1965.

[3] M.J. Attallah (ed.): Algorithms and Theory of Computation Handbook. CRC
Press 1999.

[4] L. Bole, J. Cytowski: Search Methods for Artificial Intelligence. Academic
Press 1992.

[5] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein: Covering Codes. North-
Holland 1997.

[6] M.R. Garey, D.S. Johnson: Computers and Intractability - A Guide to the
Theory of NP-Completeness. Freeman 1979.

[7] J. Gu, P. Purdom, J. Franco, B. Wah: Algorithms for the Satisfiability Prob-
lem. Cambridge University Press, to appear.

8]

[11]

[12]

[13]

[14]

F.J. MacWilliams, N.J.A. Sloane: The Theory of Error-Correcting Codes.
North-Holland 1983.

S. Minton, M.D. Johnston, A.B. Philips, P. Laird: Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence 58 (1992) 161-205.

B. Monien, E. Speckenmeyer: Solving satisfiability in less than 2" steps.
Discrete Applied Mathematics 10 (1985) 287-295.

R. Motwani, P. Raghavan: Randomized Algorithms. Cambridge University
Press 1995.

R. Paturi, P. Pudldk, F. Zane: Satisfiability coding lemma. Proceedings 38th
IEEE Symposium on Foundations of Computing 1997, 566-574.

R. Paturi, P. Pudldk, M.E. Saks, F. Zane: An improved exponential-time
algorithm for k-SAT. Proceedings 39th IEEE Symposium on Foundations of
Computing 1998, 628—637.

P. Pudlak: Satisfiability - Algorithms and Logic. Proceedings Mathem. Foun-
dations of Computer Science (MFCS) 1998. Lecture Notes in Computer Sci-
ence 1450, Springer-Verlag 1998, 129-141.

