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Abstract

We show that every language in RP has subexponential-time ap-
proximations for infinitely many input lengths if boolean circuits are not
polynomial-time pac-learnable with membership queries under the uniform
distribution.

1 Introduction

How to derandomize probabilistic computations, that is, how to efficiently sim-
ulate randomized computations by means of deterministic ones is an important
and active research area in complexity theory. A central open question in this
area regards the power of BPP, the class of languages decidable in probabilistic
polynomial time with small error. Obviously, BPP C £XP, but it is not known
whether BPP is in fact equal to £XP. However, starting with the seminal work
of Yao on pseudo-random generators [Yao82], there have been advances indicat-
ing that BP P algorithms can be simulated significantly faster than by browsing
through the whole underlying probability space. These results assume the exis-
tence of cryptographically secure one-way functions [Yao82, BH89], the hardness
of problems in EXP [BM84, NW94, BEFNW93, IW97], or the existence of hitting
set generators [ACR98], among others.

In this paper we build on yet another hypothesis regarding the learnability of
boolean circuits, and show that RP, the one-sided error version of BPP, has



subexponential-time approximations if boolean circuits are not polynomial-time
pac-learnable with membership queries under the uniform distribution. This hy-
pothesis is known to follow from the existence of polynomially secure pseudoran-
dom generators [GGM86], and has RP # NP as a consequence [BEHW87].

In the proof we use the well-known construction of a pseudorandom generator
based on a hard function due to Nisan and Wigderson [NW94]. This construction
is applied in a similar fashion as done by Impagliazzo and Wigderson [IW98] to
obtain subexponential-time approximations for BPP, based on the assumption
EXP ¢ BPP. The main departure from the arguments given in [IW98] is that
here we have to deal with a whole concept class rather than a single language.
We further make use of the equivalence of weak and strong learning under the
uniform distribution as shown by Boneh and Lipton [BL93].

2 Prédiminaries

Probability. We follow the notation used in the book [Lub97]. In particular,
f:{0,1}k() — £0,1}4™) denotes a function ensemble, that is, for each fixed n,
fn is @ mapping from {0, 1}¥(" to {0, 1},

We let D : {0,1}" denote a probability ensemble, where for each fixed n, D,
is a probability distribution on {0, 1}". Throughout the paper, the uniform dis-
tribution is denoted by ¢/. We write X €, {0,1}" to indicate that X is a ran-
dom variable on {0, 1}" that is distributed according to D,,. A probability en-
semble D : {0,1}" is polynomial-time samplable if there is a function ensemble
f:{0,1}™ — {0,1}™ such that f is computable in time polynomial in n, and
for X €, {0, 1}, f(X) is distributed according to D,,.

Learning. A concept ¢ over a predefined instance space U is a subset ¢ C U.
A concept classover U is a collection of concepts over U. We identify a concept
¢ C U with its characteristic function ¢ : U — {0,1}. A representation classis a
quadruple

R=(Z,AR,®),

where ¥ and A are finite alphabets, R C A* is the set of representations, and & is
a mapping from R to subsets of ¥*. The concept class C represented by R is the
set of concepts ®(r) C X* for r € R. The size of a representation » € R is just its



length |r|. The size of a concept ¢ € C is |c| = ming()— |7], i.e., the size of the
smallest representation of c. Concepts ¢ ¢ C are defined to have infinite size.

In this paper we will only consider boolean concepts ¢. This means that for some
positive integer n, ¢ is a subset of the finite instance space {0,1}". A boolean
concept class consists only of boolean concepts. A boolean representation class
R is a representation class representing a boolean concept class C. We use C, to
denote the set of concepts ¢ : {0,1}" — {0,1} in C, and we use C, ; to denote all
concepts ¢ € C, of size at most s.

Let R be a boolean representation class, and let D : {0,1}" be a probability
ensemble. In the pac-learning model [Val84], a learning algorithm attempts to
determine an unknown target concept ¢ from the boolean concept class C repre-
sented by R. The learning algorithm may make calls to an oracle £ X (¢, D) which
in unit time returns a labeled example (x, ¢(x)), where x is drawn randomly and
independently according to D. The goal of the learning algorithm is to output a
representation of a concept that approximates the target well, where the quality
of the approximation is measured w.r.t. D. The boolean representation class R is
polynomial-time pac-learnable on the distribution D if there exists a probabilistic
algorithm A with the following property: for all integers n and s, for every target
concept ¢ € C, s, for all rationals e > 0 and 6 > 0, A runs in time polynomial in
n, s, 1/eand 1/6, and if A is given inputs n, s, ¢, 6 and access to Ez(¢, D), then
with probability at least 1 — §, A outputs a hypothesish € R satisfying

Pr(h(X)=¢(X)) > 1—¢,

where X €p {0,1}"™. We refer to the algorithm A as the learning algorithm for
‘R. Further we refer to the input € as the error parameter, and to the input ¢ as the
confidence parameter.

The representation class R is polynomial-time pac-learnable with membership
queries on the distribution D if the learning algorithm for R has additionally
access to the oracle ¢.

Kearns and Valiant [KV94] studied the weak variant of pac-learning where the hy-
pothesis produced by the learning algorithm is required to perform only slightly
better than a random guess. The boolean representation class R is weakly
polynomial-time pac-learnable on the distribution D if there exists a probabilistic
algorithm A and a polynomial p such that for all integers »n and s, for every target
concept ¢ € C,, 5, and for all rationals § > 0, A runs in time polynomial in n, s and
1/6, and if A is given inputs n, s, 6 and access to Fx(¢, D), then with probability
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at least 1 — ~, A outputs a hypothesis i € R satisfying

1

PH((X) = e(X)) 2 5+ o

+

1
2
where X €p {0,1}™. Weak polynomial-time pac-learnability with membership
gueriesis defined analogously.

Let the m-fold xor of a boolean function f : {0,1}™ — {0, 1} be the function
FOm - L0, 1Y — {0,1} defined as

m—1

f@(m) (IL‘O, Ce ,l‘m_l) == @ f(l‘l),

1=0

where zo,...,z, 1 € {0,1}". We say that a boolean representation class R
is polynomially closed under & if there exists a polynomial p such that for all
integers m and for all ¢ in the concept class C represented by R, the concept (™)
has size at most p(|c|, m).

Theorem 1 ([BL93]). Let R be a boolean representation class which is polyno-
mially closed under &. Then the following are equivalent:

1. R isweakly polynomial-time |learnable under the uniform distribution.

2. R is polynomial-time learnable under the uniformdistribution.

This equivalence also holdsin the presence of membership queries.

Subexponential-time approximations.

Definition (cf. [IW98]). A language L has subexponential-time approximations
if for all v > 0, there exists a 2""-time bounded deterministic Turing machine
M such that for all polynomial-time samplable probability ensembles D, for all
polynomials p, for almost all n, and for X randomly chosen according to D,,,

1
Pr(L(X MX)) < —.
(LX) # M) < s
If this holds only for infinitely many n, then L is said to have weak subexponential-
time approximations.



3 Derandomization of RP

In this section, we prove the following theorem.

Theorem 2. Supposethat boolean circuits are not weakly polynomial-timelearn-
able with membership queries under the uniform distribution. Then RP admits
weak subexponential -time approximations.

We first recall some notation from [NW94].

Definition. A (¢, m,n, k)-designisacollection D = (D, ..., D, 1) of sets D; C
{0,...,m — 1}, each of which has cardinality », such that for all i« # j, |D; N
D;| < k. Givenafunction f : {0,1}" — {0, 1}, the nearly digjoint sets generator
(based on f and D), fP : {0,1}™ — {0,1}*, is for every seed z = zy - - - x,,_; Of
length m defined by

fP() = f(2[Do]) ... f(&[De-1]),

where D = {Dy, ..., D,—1}, and z[D;], for 0 < i < ¢ — 1, denotes the restriction
ofzto D; = {ip < -+ < i,_1} defined as z[D;] =z, - - - 24, ;.

We also need the following lemma.

Lemma 3 ([NW94]). For all integers n and ¢ with / < 2", there exists a
(¢,4n? n, [log (])-design D. Moreover, there is an algorithm which for every
n and [ computes D in time polynomial inn and /.

Remark 1. In the following, we will refer to the design D computed by the algo-
rithm in the previous lemma as the generic (¢, 4n?, n, [log ¢])-design.

Nisan and Wigderson showed that if the function f is hard to approximate by
polynomial-size circuits, then the generator fP has polynomial non-uniform se-
curity. This means that if there is a polynomial-size test 7" with sufficiently large
distinguishing probability for 7, then there is a polynomial-size circuit C' approx-
imating f. Impagliazzo and Wigderson [IW98] showed that C' can be uniformly
obtained from 7" with polynomially many membership queries to f.

Lemma 4 (cf. [IW98]). Thereisa probabilistic oracle algorithm A with the fol-
lowing property: For all integersn and ¢ < 2", for every probabilistic circuit C
with input length ¢, and for every function f : {0,1}" — {0, 1}, for all rationals
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e > 0,7 >0,if Agetsinputsn, /¢, ¢, v, C and oracle f, then A runsin time
polynomial inn, ¢, |C|, 1/¢, and log(1/+), and with probability at least 1 — ~, A
outputs a deterministic circuit D which for Z €, {0, 1} satisfies

Pr(D(Z) = f(2)) 2 5 +8/0

wherefor X ¢, {0,1}*** andY ¢ {0,1}¢,
0 =|Pr(C(f7(X))=1) —=Pr(C(Y) =1)|
and D isthe generic (¢, 4n?, n, [log /])-design.

For the proof of our theorem we also need the following two lemmas.

Lemma5. Forfunctionsf : {0,1}" — {0,1}andg: {0,1}"x{0,1}" — {0, 1},
andfor y € {0,1}" and X &, {0,1}", let

o(y) = Pr(g(X,y) = f(X)).

and let o be the expected value of o(Y"), where Y &, {0,1}". Furthermore,
for an integer ¢, for x,..., 2,1 € {0,1}" and yo,...,y,—1 € {0,1}", define
h(xg, ..., %41,Y0,---,Ys—1) tobethesmallestindex j € {0,...,¢—1} suchthat
the cardinality
{i€{0,...,qa =1} : g(wi ;) = f(wi)}|

is maximal. Then there exists a polynomial p such that for all functions f :
{0,1}" — {0,1} and g : {0,1}" x {0,1}" — {0,1}, for all rationalse > 0,
v > 0, for ¢ = p(1/e,1og(1/v)) and for independently chosen Xy, ..., X, | €y
{0,1}"and Yy, ..., Y, 1 €4 {0,1}", it holds that

with probability at least 1 — ~.

Proof. ForY &, {0,1}", o(Y") is a random variable that takes only values in the
interval [0, 1]. Since the expectation of o(Y") is o, this impliesthat o(Y") < 0—¢/3
with probability at most 1—¢/3. Hence, for ¢ > 3/e1n(2/+) independently chosen
Yo,..., Y1 €y {0,1}7, itholds that o(Y;) < o —¢/3 forall j € {0,...,t— 1}
with probability at most

(1 —¢/3) <e ™3 < y/2.
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For zg,...,zs 1 € {0,1}"and y € {0, 1}" define

_ {i e {0,...,s =1} : g(x;,y) = f(xl)}|

S

o(zo,. ., Ts_1,9)

For every y € {0,1}" and for X,,..., Xs 1 €y {0,1}", the expected value of
7(Xo, ..., X5 1,y) iso(y). Applying Chernoff Bounds, it is possible to choose s
polynomial in 1/e and log(¢/~) such that for every v,

|5-(X07 v 7Xs—17 y) - U(y)| > 6/3

holds with probability at most /(2¢). Hence, for Yg,...,Y;_1 €, {0,1}", the
probability that

e there exists some j € {0,...,t — 1} witho(Y;) > 0 —¢/3, and

o forallj e {0,....,t— 1}, |6(Xo,..., X,_1,Y;) — o(¥})] < ¢/3

is at least 1 — .

In the case that there exists some j € {0,...,t — 1} with o(y;) > 0 — ¢/3 and
that |5 (o, ..., 2s—1,y;) — o(y;)| < €¢/3 holds forall i € {0, ..., s — 1}, we have

6’((1/‘07 Tt 1.5_17 yh(l'O:---,CUs—lJ/Oru,yt—l)) 2 0 — 26/37

implying that
O-(yh(xo,...,xs_l,yo,...,yt_l)) Z 0 — €.

Hence it follows that

holds with probability at least 1 — v. Now the lemma follows by choosing ¢ =
s >t O

Lemma 6. If boolean circuits of size at most 2n are weakly polynomial-time pac-
learnable under the uniform distribution, then boolean circuits of arbitrary size
are weakly polynomial-time pac-learnable under the uniform distribution. This
also holds in the presence of membership queries.



Proof. Let A be a weak polynomial-time learning algorithm for boolean circuits
of size at most 2n, i.e., for some polynomial p, any circuit ¢ : {0,1}" — {0, 1} of
size at most 2n, A on input n,  outputs with probability at least 1 — ¢ a circuit ¢
satisfying X X
Pr(c(X) =¢(X)) > 5 +p(n),

where X &, {0, 1}™. We describe the learning algorithm A’ for boolean circuits
of arbitrary size in two steps. In the first step, it uses A to compute a circuit C' as
follows.

For given inputs n, size s, confidence parameter ¢, and with respect
to a target ¢ : {0,1}" — {0,1} computable by a circuit of size s,
simulate A with parameters s for the domain of the target concept, 2s
for the size and confidence parameter 6/2. Whenever A requests a
random labeled example, request a labeled example (i, é¢(x)), choose
y €y {0,1}*7", and provide A with (zy,¢(x)). In case A makes a
membership query z of length s, then make a membership query =z,
where z consists of the first » bits of z, and provide A with the answer
¢(x). Let C be the circuit produced by A.

In other words, A is used by A’ to compute a hypothesis C' for the target
¢ : {0,1}* — {0,1} defined as é(zy) = ¢é(z) for all x € {0,1}™ and all
y € {0,1}*7". Since the size of ¢ is at most s + s — n < 2s, it follows that
with probability at least 1 — /2, the circuit C satisfies
1 1
Pr(C(X,Y)=¢X))>=-+—
(COGY) = X)) 2 5+

where X &, {0,1}"and Y &, {0,1}*~". Now let g and h be as in Lemma 5 with
respect to the functions C' and ¢, and parameters e = #(S) and v = §/2 and let the
algorithm A’ continue as follows.

Request ¢ random labeled examples (zy, ¢(xo)), - - -, (Tg—1, ¢(@4-1))-
Choose yo, ..., y,—1 €u {0,1}°~™, compute jo = h(xg,...,Tq 1,
Yo, ---,Yg—1), and output the circuit C’ that computes C'(z) =
C(z,y;,) forall z € {0,1}™

By Lemma 5, Pr (C'(X, Yi(xo,..X,1,Yo,..v,-1)) = (X)) > 3 + ,ﬁ - 2p1(s) =

.....

%+#(s) holds with probability at least 1—¢§/2, where X, Xy, ..., X, €, {0,1}"
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and Yo, ..., Y, 1 €y {0,1}*7", implying that C" satisfies

+

Pr(C'(X) = ¢(X)) >

DN | =
DO

p(s)
with probability at least 1 — 6. O

Now we are ready to proof our main result.

Proof of Theorem 2. Let L be a language in RP. Then, for some polynomial r
there is a polynomial-time function ensemble R : {0,1}" x {0,1}"™ — {0,1}
such that for all strings = € {0,1}" and for Y &, {0,1}"™),

1. x€e L = Pr(R(z,Y)=1)>2/3,and
2. 2¢ L = Pr(R(z,Y)=1)=0.

For a given rational v > 0 and input length n, let k(n) = [n?/?] and let
m(n) = 4k(n)?. Consider a procedure that on input = of length n accepts if
and only if there is a circuit C' : {0, 1}*™ — {0,1} of size at most 2k(n) and
a seed z of length m(n) such that R(x,CP(z)) = 1, where D is the generic
(k(n),m(n),r(n), [logr(n)])-design provided by Lemma 4. Since D can be
computed in time polynomial in » and (n), and since m(n) = O(n?), the proce-
dure runs in time 29",

We now assume that the procedure fails to weakly approximate L. Based on this
assumption we give a learning algorithm for boolean circuits, contradicting the
assumption of the theorem. So let p be a polynomial and let D : {0,1}" be a
polynomial-time samplable probability ensemble such that for almost all n, the
procedure disagrees with L with probability at least 1/p(n), if the input is chosen
according to D,,. First we prove the following claim.

Claim 1. For aimogt all n, and for all functions f : {0, 1}*™ — {0,1} com-
putable by a circuit of size at most 2k(n),

Pr(ROX[2(2) = 1) = PrR(X,Y) = 1) |2 20,

where X €p {0,1}", Y €4 {0,1}'™, Z ¢, {0,1}™™), and D is the generic
(r(n),m(n), k(n), [logr(n)])-design.



Proof. The procedure can only disagree with L on a string = of length n, if z isin
L but the procedure rejects. This means that Pr (R(z,Y) = 1) > 2/3, but for all
functions £ : {0, 1}*™ — {0,1} computable by a circuit of size at most 2k (n),
and for all seeds = of length m(n), R(z, fP(z)) = 0, implying that

2
|Pr(R(z, fP(2)) =1) —Pr(R(z,Y)=1)| > 3
where Z €, {0,1}™™ and Y €, {0, 1}"(™. The claim follows, since the proce-
dure disagrees with L on a randomly chosen string (according to D,,) with proba-
bility at least 1/p(n). O

Let C, be a probabilistic circuit that for y € {0,1}"™, computes C(y) =
R(X,y), where X €p {0,1}". Based on the claim we give an algorithm that
weakly learns any target circuit ¢ : {0, 1}* — {0, 1} of size at most 2k.

On input £ and confidence parameter §, choose n to be the
smallest integer such that £ = k(n) and compute the generic
(r(n),m(n), k, [logr(n)])-design D. Run the algorithm of Lemma 4
with the circuit C,, oracle ¢, and parameters e = 1/(2r(n)p(n)) and
~ = 4. Output the resulting circuit C".

Because D : {0,1}" is polynomial-time samplable, the probabilistic circuit C),
can be obtained from (finite) descriptions of the Turing machines computing R
and D, respectively. Since the target ¢ has size at most 2k, it follows from the
claim that the distinguishing probability of C,, for ¢” is at least 2/3p(n), i.e., for
Y €, {0,1}™ and Z €, {0,1}™™), C, satisfies

P
3p(n)’

Hence, the algorithm of Lemma 4 produces with probability at least 1 — § a circuit
C" such that

| Pr (Cn(éD(Z)) = 1) —Pr(C,(Y)=1)| >

11
2 6r(n)p(n)’

where W &, {0, 1}*. Thus we have shown that the class of circuits ¢ : {0,1}* —
{0,1} of size 2k is weakly polynomial-time learnable with membership queries
under the uniform distribution, provided that there is some language L in RP for
which the procedure given above fails to weakly approximate L. Therefore, the
theorem follows by applying Lemma 6. O

Pr(c"(W)=¢(W)) =
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From Theorem 1 we immediately get the following corollary.

Corollary 7. Suppose that boolean circuits are not polynomial-time learnable
with membership queries under the uniform distribution. Then RP admits weak
subexponential-time approxi mations.

Since the existence of weak subexponential-time approximations for a language
class C implies that C has £ X P-measure zero (in the sense of resource bounded
measure as introduced by Lutz [Lut92]) we additionally get the following corol-
lary.

Corollary 8. Suppose that boolean circuits are not polynomial-time learnable
with membership queries under the uniform distribution. Then RP has £XP-
measure zero.
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