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Abstract

We show that every language in RP has subexponential-time ap-
proximations for infinitely many input lengths if boolean circuits are not
polynomial-time pac-learnable with membership queries under the uniform
distribution.

1 Introduction

How to derandomize probabilistic computations, that is, how to efficiently sim-
ulate randomized computations by means of deterministic ones is an important
and active research area in complexity theory. A central open question in this
area regards the power of BPP , the class of languages decidable in probabilistic
polynomial time with small error. Obviously, BPP � EXP , but it is not known
whether BPP is in fact equal to EXP . However, starting with the seminal work
of Yao on pseudo-random generators [Yao82], there have been advances indicat-
ing that BPP algorithms can be simulated significantly faster than by browsing
through the whole underlying probability space. These results assume the exis-
tence of cryptographically secure one-way functions [Yao82, BH89], the hardness
of problems in EXP [BM84, NW94, BFNW93, IW97], or the existence of hitting
set generators [ACR98], among others.

In this paper we build on yet another hypothesis regarding the learnability of
boolean circuits, and show that RP , the one-sided error version of BPP , has
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subexponential-time approximations if boolean circuits are not polynomial-time
pac-learnable with membership queries under the uniform distribution. This hy-
pothesis is known to follow from the existence of polynomially secure pseudoran-
dom generators [GGM86], and has RP �� NP as a consequence [BEHW87].

In the proof we use the well-known construction of a pseudorandom generator
based on a hard function due to Nisan and Wigderson [NW94]. This construction
is applied in a similar fashion as done by Impagliazzo and Wigderson [IW98] to
obtain subexponential-time approximations for BPP , based on the assumption
EXP �� BPP . The main departure from the arguments given in [IW98] is that
here we have to deal with a whole concept class rather than a single language.
We further make use of the equivalence of weak and strong learning under the
uniform distribution as shown by Boneh and Lipton [BL93].

2 Preliminaries

Probability. We follow the notation used in the book [Lub97]. In particular,
f � f�� �gk�n� � f�� �g��n� denotes a function ensemble, that is, for each fixed n,
fn is a mapping from f�� �gk�n� to f�� �g��n�.

We let D � f�� �gn denote a probability ensemble, where for each fixed n, Dn

is a probability distribution on f�� �gn. Throughout the paper, the uniform dis-
tribution is denoted by U . We write X �D f�� �gn to indicate that X is a ran-
dom variable on f�� �gn that is distributed according to Dn. A probability en-
semble D � f�� �gn is polynomial-time samplable if there is a function ensemble
f � f�� �gr�n� � f�� �gn such that f is computable in time polynomial in n, and
for X �U f�� �g

r�n�, f�X� is distributed according to Dn.

Learning. A concept c over a predefined instance space U is a subset c � U .
A concept class over U is a collection of concepts over U . We identify a concept
c � U with its characteristic function c � U � f�� �g. A representation class is a
quadruple

R � ����� R�	��

where � and � are finite alphabets, R � �� is the set of representations, and 	 is
a mapping from R to subsets of ��. The concept class C represented by R is the
set of concepts 	�r� � �� for r � R. The size of a representation r � R is just its
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length jrj. The size of a concept c � C is jcj � min��r��c jrj, i.e., the size of the
smallest representation of c. Concepts c �� C are defined to have infinite size.

In this paper we will only consider boolean concepts c. This means that for some
positive integer n, c is a subset of the finite instance space f�� �gn. A boolean
concept class consists only of boolean concepts. A boolean representation class
R is a representation class representing a boolean concept class C. We use Cn to
denote the set of concepts c � f�� �gn � f�� �g in C, and we use Cn�s to denote all
concepts c � Cn of size at most s.

Let R be a boolean representation class, and let D � f�� �gn be a probability
ensemble. In the pac-learning model [Val84], a learning algorithm attempts to
determine an unknown target concept 
c from the boolean concept class C repre-
sented byR. The learning algorithm may make calls to an oracleEX�
c�D� which
in unit time returns a labeled example �x� 
c�x��, where x is drawn randomly and
independently according to D. The goal of the learning algorithm is to output a
representation of a concept that approximates the target well, where the quality
of the approximation is measured w.r.t. D. The boolean representation class R is
polynomial-time pac-learnable on the distributionD if there exists a probabilistic
algorithm A with the following property: for all integers n and s, for every target
concept 
c � Cn�s, for all rationals � � � and � � �, A runs in time polynomial in
n, s, ��� and ���, and if A is given inputs n, s, �, � and access to Ex�
c�D�, then
with probability at least �� �, A outputs a hypothesis h � R satisfying

Pr �h�X� � 
c�X�� � �� ��

where X �D f�� �gn. We refer to the algorithm A as the learning algorithm for
R. Further we refer to the input � as the error parameter, and to the input � as the
confidence parameter.

The representation class R is polynomial-time pac-learnable with membership
queries on the distribution D if the learning algorithm for R has additionally
access to the oracle 
c.

Kearns and Valiant [KV94] studied the weak variant of pac-learning where the hy-
pothesis produced by the learning algorithm is required to perform only slightly
better than a random guess. The boolean representation class R is weakly
polynomial-time pac-learnable on the distribution D if there exists a probabilistic
algorithm A and a polynomial p such that for all integers n and s, for every target
concept 
c � Cn�s, and for all rationals � � �, A runs in time polynomial in n, s and
���, and if A is given inputs n, s, � and access to Ex�
c�D�, then with probability
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at least �� �, A outputs a hypothesis h � R satisfying

Pr �h�X� � 
c�X�� �
�

�
�

�

p�n� s�
�

where X �D f�� �gn. Weak polynomial-time pac-learnability with membership
queries is defined analogously.

Let the m-fold xor of a boolean function f � f�� �gn � f�� �g be the function
f��m� � f�� �gmn � f�� �g defined as

f��m��x�� � � � � xm��� �
m��M

i��

f�xi��

where x�� � � � � xm�� � f�� �gn. We say that a boolean representation class R
is polynomially closed under � if there exists a polynomial p such that for all
integers m and for all c in the concept class C represented byR, the concept c��m�

has size at most p�jcj� m�.

Theorem 1 ([BL93]). Let R be a boolean representation class which is polyno-
mially closed under �. Then the following are equivalent:

1. R is weakly polynomial-time learnable under the uniform distribution.

2. R is polynomial-time learnable under the uniform distribution.

This equivalence also holds in the presence of membership queries.

Subexponential-time approximations.

Definition (cf. [IW98]). A language L has subexponential-time approximations
if for all � � �, there exists a �n

�

-time bounded deterministic Turing machine
M such that for all polynomial-time samplable probability ensembles D, for all
polynomials p, for almost all n, and for X randomly chosen according to Dn,

Pr �L�X� �� M�X�� 	
�

p�n�
�

If this holds only for infinitely manyn, thenL is said to have weak subexponential-
time approximations.
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3 Derandomization ofRP

In this section, we prove the following theorem.

Theorem 2. Suppose that boolean circuits are not weakly polynomial-time learn-
able with membership queries under the uniform distribution. Then RP admits
weak subexponential-time approximations.

We first recall some notation from [NW94].

Definition. A �
�m� n� k�-design is a collectionD � �D�� � � � � D���� of setsDi �
f�� � � � � m� �g, each of which has cardinality n, such that for all i �� j, jDi 	
Djj 
 k. Given a function f � f�� �gn � f�� �g, the nearly disjoint sets generator
(based on f andD), fD � f�� �gm � f�� �g�, is for every seed x � x� � � �xm�� of
length m defined by

fD�x� � f�xD��� � � � f�xD������

where D � fD�� � � � � D���g, and xDi�, for � 
 i 
 
� �, denotes the restriction
of x to Di � fi� 	 � � � 	 in��g defined as xDi� � xi� � � �xin�� .

We also need the following lemma.

Lemma 3 ([NW94]). For all integers n and 
 with 
 
 �n, there exists a
�
� �n�� n� dlog 
e�-design D. Moreover, there is an algorithm which for every
n and l computes D in time polynomial in n and 
.

Remark 1. In the following, we will refer to the design D computed by the algo-
rithm in the previous lemma as the generic �
� �n�� n� dlog 
e�-design.

Nisan and Wigderson showed that if the function f is hard to approximate by
polynomial-size circuits, then the generator fD has polynomial non-uniform se-
curity. This means that if there is a polynomial-size test T with sufficiently large
distinguishing probability for fD, then there is a polynomial-size circuitC approx-
imating f . Impagliazzo and Wigderson [IW98] showed that C can be uniformly
obtained from T with polynomially many membership queries to f .

Lemma 4 (cf. [IW98]). There is a probabilistic oracle algorithm A with the fol-
lowing property: For all integers n and 
 
 �n, for every probabilistic circuit C
with input length 
, and for every function f � f�� �gn � f�� �g, for all rationals
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� � �, � � �, if A gets inputs n, 
, �, �, C and oracle f , then A runs in time
polynomial in n, 
, jCj, ���, and log�����, and with probability at least �� �, A
outputs a deterministic circuit D which for Z �U f�� �gn satisfies

Pr �D�Z� � f�Z�� �
�

�
� ��
� ��

where for X �U f�� �g�n
�

and Y �U f�� �g�,

� � jPr
�
C�fD�X�� � �

�
� Pr �C�Y � � �� j

and D is the generic �
� �n�� n� dlog 
e�-design.

For the proof of our theorem we also need the following two lemmas.

Lemma 5. For functions f � f�� �gn � f�� �g and g � f�� �gn�f�� �gr � f�� �g,
and for y � f�� �gr and X �U f�� �gn, let

��y� � Pr �g�X� y� � f�X�� �

and let � be the expected value of ��Y �, where Y �U f�� �gr. Furthermore,
for an integer q, for x�� � � � � xq�� � f�� �gn and y�� � � � � yq�� � f�� �gr, define
h�x�� � � � � xq��� y�� � � � � yq��� to be the smallest index j � f�� � � � � q��g such that
the cardinality

jfi � f�� � � � � q � �g � g�xi� yj� � f�xi�gj

is maximal. Then there exists a polynomial p such that for all functions f �
f�� �gn � f�� �g and g � f�� �gn � f�� �gr � f�� �g, for all rationals � � �,
� � �, for q � p����� log������ and for independently chosen X�� � � � � Xq�� �U
f�� �gn and Y�� � � � � Yq�� �U f�� �gr, it holds that

��Yh�X������Xq���Y������Yq���� � � � ��

with probability at least �� �.

Proof. For Y �U f�� �gr, ��Y � is a random variable that takes only values in the
interval �� ��. Since the expectation of ��Y � is �, this implies that ��Y � 	 �����
with probability at most �����. Hence, for t � ��� ln����� independently chosen
Y�� � � � � Yt�� �U f�� �gr, it holds that ��Yj� 	 � � ��� for all j � f�� � � � � t� �g
with probability at most

��� ����t 
 e�t��	 
 ����
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For x�� � � � � xs�� � f�� �gn and y � f�� �gr define

���x�� � � � � xs��� y� �
jfi � f�� � � � � s� �g � g�xi� y� � f�xi�gj

s
�

For every y � f�� �gr and for X�� � � � � Xs�� �U f�� �gn, the expected value of
���X�� � � � � Xs��� y� is ��y�. Applying Chernoff Bounds, it is possible to choose s
polynomial in ��� and log�t��� such that for every y,

j���X�� � � � � Xs��� y�� ��y�j � ���

holds with probability at most ����t�. Hence, for Y�� � � � � Yt�� �U f�� �gr, the
probability that

 there exists some j � f�� � � � � t� �g with ��Yj� � � � ���, and

 for all j � f�� � � � � t� �g, j���X�� � � � � Xs��� Yj�� ��Yj�j 
 ���

is at least �� �.

In the case that there exists some j � f�� � � � � t � �g with ��yi� � � � ��� and
that j���x�� � � � � xs��� yj�� ��yi�j 
 ��� holds for all i � f�� � � � � s� �g, we have

���x�� � � � � xs��� yh�x������xs���y������yt���� � � � �����

implying that
��yh�x������xs���y������yt���� � � � ��

Hence it follows that

��Yh�X������Xt���Y������Ys���� � � � �

holds with probability at least � � �. Now the lemma follows by choosing q �
s � t.

Lemma 6. If boolean circuits of size at most �n are weakly polynomial-time pac-
learnable under the uniform distribution, then boolean circuits of arbitrary size
are weakly polynomial-time pac-learnable under the uniform distribution. This
also holds in the presence of membership queries.
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Proof. Let A be a weak polynomial-time learning algorithm for boolean circuits
of size at most �n, i.e., for some polynomial p, any circuit 
c � f�� �gn � f�� �g of
size at most �n, A on input n, � outputs with probability at least �� � a circuit c
satisfying

Pr �c�X� � 
c�X�� �
�

�
�

�

p�n�
�

where X �U f�� �gn. We describe the learning algorithm A� for boolean circuits
of arbitrary size in two steps. In the first step, it uses A to compute a circuit C as
follows.

For given inputs n, size s, confidence parameter �, and with respect
to a target 
c � f�� �gn � f�� �g computable by a circuit of size s,
simulate A with parameters s for the domain of the target concept, �s
for the size and confidence parameter ���. Whenever A requests a
random labeled example, request a labeled example �x� 
c�x��, choose
y �U f�� �gs�n, and provide A with �xy� 
c�x��. In case A makes a
membership query z of length s, then make a membership query x,
where x consists of the first n bits of z, and provideA with the answer

c�x�. Let C be the circuit produced by A.

In other words, A is used by A� to compute a hypothesis C for the target
�c � f�� �gs � f�� �g defined as �c�xy� � 
c�x� for all x � f�� �gn and all
y � f�� �gs�n. Since the size of �c is at most s � s � n 
 �s, it follows that
with probability at least �� ���, the circuit C satisfies

Pr �C�X� Y � � 
c�X�� �
�

�
�

�

p�s�
�

where X �U f�� �gn and Y �U f�� �gs�n. Now let q and h be as in Lemma 5 with
respect to the functions C and 
c, and parameters � � �

�p�s�
and � � ��� and let the

algorithm A� continue as follows.

Request q random labeled examples �x�� 
c�x���� � � � � �xq��� 
c�xq����.
Choose y�� � � � � yq�� �U f�� �gs�n, compute j� � h�x�� � � � � xq���
y�� � � � � yq���, and output the circuit C � that computes C ��x� �
C�x� yj�� for all x � f�� �gn.

By Lemma 5, Pr
�
C�X� Yh�X������Xq���Y������Yq���� � 
c�X�

�
� �

�
� �

p�s�
� �

�p�s�
�

�
�
� �

�p�s�
holds with probability at least �����, whereX�X�� � � � � Xq�� �U f�� �gn
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and Y�� � � � � Yq�� �U f�� �gs�n, implying that C � satisfies

Pr �C ��X� � 
c�X�� �
�

�
�

�

�p�s�

with probability at least �� �.

Now we are ready to proof our main result.

Proof of Theorem 2. Let L be a language in RP . Then, for some polynomial r
there is a polynomial-time function ensemble R � f�� �gn � f�� �gr�n� � f�� �g
such that for all strings x � f�� �gn and for Y �U f�� �gr�n�,

1. x � L �� Pr �R�x� Y � � �� � ���, and

2. x �� L �� Pr �R�x� Y � � �� � �.

For a given rational � � � and input length n, let k�n� � bn���c and let
m�n� � �k�n��. Consider a procedure that on input x of length n accepts if
and only if there is a circuit C � f�� �gk�n� � f�� �g of size at most �k�n� and
a seed z of length m�n� such that R�x� CD�z�� � �, where D is the generic
�k�n�� m�n�� r�n�� dlog r�n�e�-design provided by Lemma 4. Since D can be
computed in time polynomial in n and r�n�, and since m�n� � O�n��, the proce-
dure runs in time �O�n��.

We now assume that the procedure fails to weakly approximate L. Based on this
assumption we give a learning algorithm for boolean circuits, contradicting the
assumption of the theorem. So let p be a polynomial and let D � f�� �gn be a
polynomial-time samplable probability ensemble such that for almost all n, the
procedure disagrees with L with probability at least ��p�n�, if the input is chosen
according to Dn. First we prove the following claim.

Claim 1. For almost all n, and for all functions f � f�� �gk�n� � f�� �g com-
putable by a circuit of size at most �k�n�,

jPr
�
R�X� fD�Z�� � �

�
� Pr �R�X� Y � � �� j �

�

�p�n�
�

where X �D f�� �gn, Y �U f�� �gr�n�, Z �U f�� �gm�n�, and D is the generic
�r�n�� m�n�� k�n�� dlog r�n�e�-design.
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Proof. The procedure can only disagree with L on a string x of length n, if x is in
L but the procedure rejects. This means that Pr �R�x� Y � � �� � ���, but for all
functions f � f�� �gk�n� � f�� �g computable by a circuit of size at most �k�n�,
and for all seeds z of length m�n�, R�x� fD�z�� � �, implying that

jPr
�
R�x� fD�Z�� � �

�
� Pr �R�x� Y � � �� j �

�

�
�

where Z �U f�� �gm�n� and Y �U f�� �gr�n�. The claim follows, since the proce-
dure disagrees with L on a randomly chosen string (according to Dn) with proba-
bility at least ��p�n�.

Let Cn be a probabilistic circuit that for y � f�� �gr�n�, computes C�y� �
R�X� y�, where X �D f�� �gn. Based on the claim we give an algorithm that
weakly learns any target circuit 
c � f�� �gk � f�� �g of size at most �k.

On input k and confidence parameter �, choose n to be the
smallest integer such that k � k�n� and compute the generic
�r�n�� m�n�� k� dlog r�n�e�-designD. Run the algorithm of Lemma 4
with the circuit Cn, oracle 
c, and parameters � � ����r�n�p�n�� and
� � �. Output the resulting circuit C ��.

Because D � f�� �gn is polynomial-time samplable, the probabilistic circuit Cn

can be obtained from (finite) descriptions of the Turing machines computing R
and D, respectively. Since the target 
c has size at most �k, it follows from the
claim that the distinguishing probability of Cn for 
cD is at least ���p�n�, i.e., for
Y �U f�� �gr�n� and Z �U f�� �gm�n�, Cn satisfies

jPr
�
Cn�
c

D�Z�� � �
�
� Pr �Cn�Y � � �� j �

�

�p�n�
�

Hence, the algorithm of Lemma 4 produces with probability at least ��� a circuit
C �� such that

Pr �C ���W � � 
c�W �� �
�

�
�

�

�r�n�p�n�
�

where W �U f�� �g
k. Thus we have shown that the class of circuits c � f�� �gk �

f�� �g of size �k is weakly polynomial-time learnable with membership queries
under the uniform distribution, provided that there is some language L in RP for
which the procedure given above fails to weakly approximate L. Therefore, the
theorem follows by applying Lemma 6.
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From Theorem 1 we immediately get the following corollary.

Corollary 7. Suppose that boolean circuits are not polynomial-time learnable
with membership queries under the uniform distribution. Then RP admits weak
subexponential-time approximations.

Since the existence of weak subexponential-time approximations for a language
class C implies that C has EXP-measure zero (in the sense of resource bounded
measure as introduced by Lutz [Lut92]) we additionally get the following corol-
lary.

Corollary 8. Suppose that boolean circuits are not polynomial-time learnable
with membership queries under the uniform distribution. Then RP has EXP-
measure zero.
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