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Abstract. We show the following new lowness results for the proba-
bilistic class ZPPNF.

— The class AM N coAM is low for ZPPNF. As a consequence it fol-
lows that Graph Isomorphism and several group-theoretic problems
known to be in AM N coAM are low for ZPPNF,

— The class IP[P/poly], consisting of sets that have interactive proof
systems with honest provers in P/poly, is also low for ZPPNP,

We consider lowness properties of nonuniform function classes, namely,
NPMV/poly, NPSV /poly, NPMV,/poly, and NPSV,/poly. Specifically,
we show that

— Sets whose characteristic functions are in NPSV /poly and that have
program checkers (in the sense of Blum and Kannan [9]) are low for
AM and ZPPN".

— Sets whose characteristic functions are in NPMV,/poly are low for
x5,

1 Introduction

In the recent past the probabilistic class ZPPNF has appeared in different re-
sults and contexts in complexity theory research. E.g. consider the result MA C
ZPPNP [1,14] which sharpens and improves Sipser’s theorem BPP C X¥. The
proof in [1] uses derandomization techniques based on hardness assumptions [22].
Another example is the result that if SAT € P/poly then PH = ZPPNF [21,5],
which improves the classic Karp-Lipton theorem. ! Actually, Kébler and Watan-
abe in [21] prove that every self-reducible set? A in (NP N co-NP)/poly is low for
ZPPP_ie. ZPPNP" = ZPPNP. This stronger result is in a sense natural, since
there is usually an underlying lowness result that implies a collapse consequence
result like the Karp-Lipton theorem. We may recall here that the lowness result
underlying the Karp-Lipton theorem is that self-reducible sets in P /poly are low
for X7 [25].

The notion of lowness was first introduced in complexity theory by Schéning
in [25]. It has since then been an important conceptual tool in complexity theory,
see e.g. the survey paper [17].

! The Karp-Lipton theorem states that if SAT € P/poly then PH collapses to X%.

2 By self-reducibility we mean word-decreasing self-reducibility which is adequate be-
cause standard complexity classes contained in EXP have such self-reducible com-
plete problems.



1.1 Lowness for ZPPNP

We recall the formal definition of lowness [25]. For a relativizable complexity
class C such that for all sets A, A € C4, let Low(C) denote {A | C* = C}.
Clearly, Low(C) is contained in C and consists of languages that are powerless as
oracle for C.

Few complexity classes have their low sets exactly characterized. These are
well-known examples: Low(NP) = NP N co-NP, Low(AM) = AM N coAM [26].
For most complexity classes however, a complete characterization of the low
sets appears to be a challenging open question. Regarding Low(X¥), Schoning
proved [26] that AMNcoAM is contained in Low(X?Y), implying that Low(AM) C
Low(X?¥). This containment is anomalous because AM ¢ X¥ in some relativized
worlds [24]. Indeed, lowness appears to have other anomalous properties: it is
not known to preserve containment of complexity classes, for example NP C PP
but NP N co-NP is not known to be in Low(PP). Similarly, NP C MA but
NP N co-NP is not known to be in Low(MA). Little is known about Low(MA)
except that it contains BPP and is contained in MA N co-MA [19].

Regarding ZPPNF | it is shown in [21] that Low(ZPPNF) C Low(X%). No
characterization of Low(ZPPNF) is known. Our aim is to show some inclusions
in Low(ZPPNF) as a first step.

We first show in this paper that AM N coAM is low for ZPP™F, i.e. AMN
coAM C Low(ZPPN?). Hence we have the inclusion chain

Low(MA) C Low(AM) C Low(ZPPN?) C Low(X?Y).

It follows that Graph Isomorphism and other group-theoretic problems known
to be in AM N coAM [4] are low for ZPPNP.

We prove another lowness result for ZPPNY: Let IP[P/poly] denote languages
that have interactive proof systems with honest prover in P /poly. We show that
IP[P/poly] C Low(ZPPNY), improving the containment IP[P/poly] C Low(X?Y)
shown in [3]. Our proof has a derandomization component in which the Nisan-
Wigderson pseudorandom generator [22] is used to derandomize the verifier in
the IP[P /poly] protocol. The rest of the proof is based on the random sampling
technique as applied in [5, 18].

1.2 NP/poly N co-NP/poly and subclasses

As shown in [21], self-reducible sets in (NP N co-NP)/poly are low for ZPPNP.
However, there are technical difficulties due to which this result does not carry
over to NP/poly N co-NP/poly. The best known collapse consequence of NP C
NP /poly Nco-NP /poly (equivalently, NP C co-NP/poly) is PH C ZPP(X?F) [21].

In order to better understand this aspect of NP /poly N co-NP/poly the
authors of [11] introduce two interesting subclasses of NP /poly N co-NP/poly
which we discuss in Section 5. We notice firstly that NP /poly Nco-NP/poly and
the above-mentioned subclasses are closely connected to the function classes
NPMYV /poly, NPSV /poly, NPMV,/poly, and NPSV;/poly, which are nonuni-
form analogues of the function classes NPMV, NPSV, NPMV;, and NPSV,



introduced and studied by Selman and other researchers [27,12]. More pre-
cisely, we note that A € (NP N co-NP)/poly if and only if x4 € NPSV,/poly,
where x4 denotes the characteristic function of a language A. Similarly, A €
NP /poly N co-NP /poly if and only if x4 € NPMV/poly. Likewise, NPSV /poly
and NPMV;/poly capture the two new subclasses of NP /poly N co-NP/poly
defined in [11].

We prove the following new lowness results for these classes:

— We show that self-reducible sets whose characteristic functions are in the
function class NPMV,/poly are low for X% (this result is essentially the
lowness result underlying the collapse consequence i.e. Theorem 5.2 in [11]).

— We show that all self-checkable sets — In the program checking sense of
Blum and Kannan [9]— whose characteristic functions are in NPSV/poly
are low for AM.

Several proofs are omitted from this extended abstract. A full version of the
paper is available as a technical report [2].

2 Preliminaries

Let ¥ = {0,1}. We denote the cardinality of a set X by ||X|| and the length
of a string x € X* by |z|. The characteristic function of a language L C X* is
denoted by xr. The definitions of standard complexity classes like P, NP, E,
EXP etc. can be found in standard books [8,23]. A relativized complexity class
C with oracle A is denoted by either C* or C(A). Likewise, we denote an oracle
Turing machine M with oracle A by M# or M(A).

For a class C of sets and a class F of functions from 1* to X*, let C/F [15]
be the class of sets A such that there is a set B € C and a function h € F such
that for all z € X*,

z e Ae (z,h(1%h) e B.

The function h is called an advice function for A.
We recall definitions of AM and MA. A language L is in AM if there exist a
polynomial p and a set B € P such that for all z, |z| = n,

reA= PrObrER{O,l}P(")[aya |y| = p(n) : ('TayaTI) € B] = ]-7
x g A= Prob.c. o1y [y, [yl = p(n) : (z,y,7) € B] < 1/4.

A language L is in MA if there exist a polynomial p and a set B € P such
that for all z, |z| = n,

reA= 321: |y| :p(n) : PrObTGR{O,l}P(")[<m7yvr> € B] > 3/4a
2 & A = Yy ly] = p(n) : Prob,c,, oy (2,7} € B] < 1/4.

Notice that we have taken the definition of AM with 1-sided error, known to
be equivalent to AM with 2-sided error. Definitions for single and multiprover



interactive proof systems can be found in standard texts, e.g. [23]. Let MIP de-
note the class of languages with multiprover interactive protocols and IP denote
the class of languages with single-prover interactive protocols. We denote by
MIP[C] and IP|[C] the respective language classes where the prover complexity
is bounded by FP(C), which is the set of functions that can be computed by a
polynomial-time oracle transducer with oracle in C.

3 AMN coAM is low for ZPPNP

In this section we show that AMNcoAM is low for ZPP™Y | It follows that Graph
Isomorphism and a host of group-theoretic problems known to be in AMNcoAM
[4] are all low for ZPPNY. We recall here that it is already known that AMNcoAM
is low for X% [26] and also for AM [19].

We notice first that although AM N coAM C ZPPNF ( because AM C coRNF
and the equality ZPP = RN coR relativizes) and AM N coAM is low for itself, it
doesn’t follow that AM N coAM is low for ZPPNP. As mentioned before, NP N
co-NP is trivially low for NP but is not known to be low for PP or MA.

Theorem 1. AM N coAM is low for ZPPNF,

Proof. Let L be any set in AM N coAM. We need to show that a given ZPpNP”
machine M can be simulated in ZPPNF. Consider an input z of length bounded
by n to the machine M. Suppose the lengths of all the queries made to L during
the computation are bounded by m. Since L € AM N coAM, it follows from
standard probability amplification techniques and quantifier swapping (cf. [26])
that there are NP sets A and B and a polynomial p such that Yy : |y| < m, there
is a subset S C {0, 1}7(™) of size ||S|| > 2P(™)~! with the following property:
y € L implies

Vw: {(y,w) € Aand Vw € S : (y,w) ¢ B
and y € L implies
Vw : {(y,w) € Band Yw € S : (y,w) ¢ A.

Notice that in the above we are using the fact that AM protocols can be
assumed to have one-sided error.

In other words, a large fraction of the w’s act as advice strings using which
membership in L for strings of length m can be decided with an NP N co-NP
computation. Notice, however, that it would be incorrect for us to claim from
here that I € (NP Nco-NP)/poly, because if we use a string from {0,1}?(m) — §
as advice, the resulting combination of machines for A and B may not yield an
NP N co-NP computation for some input y € X<". However, we observe that
the above property of advice strings in S implies that w € S if and only if using
w as advice yields an NP N co-NP computation for all inputs y € X<™.



Thus, a candidate advice w € (™) is not in S if and only if it satisfies the
following NP predicate:

Jy € X< (y,w) € ANB.

We now describe the ZPPNP machine N that simulates the given ZPPNF"
machine M on some input . Machine N first randomly guesses an advice string
in w € Y™ which, by assumption, is in S with probability 1 /2. A single NP
query using the above NP predicate is now used to certify that w € S. Using
such a w as advice, NV can replace the oracle L with an NP Nco-NP computation
when it simulates M.

Corollary 1. Graph Isomorphism is low for ZPPNF.

The above corollary follows since Graph Isomorphism is in AM N coAM [13].
The lowness result also holds for various group-theoretic problems known to be
in AM N coAM [4].

Notice that the previous theorem essentially shows that we can simulate
AMNcoAM with an NPNco-NP computation using a random string in a coNP set
as advice for the computation. This observation combined with the result of [21]
(that self-reducible sets in (NP N co-NP)/poly are low for ZPPNY) immediately
yields the following corollary.

Corollary 2. Self-reducible sets in (AM N coAM)/poly are low for ZPPNF

Additionally, we also have the following corollary in the average-case com-
plexity setting. We first recall the definition of AP (see, e.g. [20] for a de-
tailed treatment): AP is the class of decision problems A such that for every
polynomial-time computable distribution there is an algorithm that decides A
and is polynomial-time on the average for that distribution.

Corollary 3. If NP C AP then AM N coAM = NP N co-NP.

The proof follows from the assumption NP C AP combined with the fact that
for any set in AM NcoAM a large fraction of strings satisfying a coNP predicate
are good advice strings, as we have already seen in the proof of Theorem 1.
Thus, a ZPP computation can randomly guess such an advice string and use an
AP algorithm for the uniform distribution to decide the coNP predicate. This
AP algorithm, with its running time truncated to a suitable polynomial bound,
will still accept many of the randomly picked good advice strings. This is an
application of ideas from [20].

4 IP[P/poly] is low for ZPPNP

The class IP[P/poly] already figures, though implicitly, in the proof of the result
in [6] that if EXP C P/poly then EXP = MA. We quickly recall the proof:
Suppose EXP C P/poly. Note that each language in EXP has a multiprover



interactive protocol in which the provers are in EXP. By assumption, therefore,
the honest provers can be simulated by polynomial size circuits. Thus the (MIP)
protocol can be simulated by an MA protocol where Merlin simply sends the
circuits for the provers to Arthur in the first round. In other words, the proof
shows the inclusion chain EXP C MIP[P/poly] C MA. Since the MA protocol is
a single prover interactive protocol, we also have MIP[P /poly] = IP[P/poly] C
MA.

The above collapse consequence result of [6] motivates the study of lowness
properties of IP[P/poly]. Our next result states that IP[P/poly] C Low(ZPPNF),
improving the containment IP[P/poly] C Low(X%) shown in [3]. Our result
strengthens the result of [18] that NP sets in P/poly with self-computable wit-
nesses are low for ZPPNY, IP[P /poly] contains such NP sets, but IP[P/poly] may
not even be contained in NP. Although IP[P/poly] C MA C AM, IP[P/poly] is
not known to be closed under complement, and it is not known if IP[P/poly]
is contained in coAM. Thus, IP[P/poly] C Low(ZPPNF) appears incomparable
to AM N coAM C Low(ZPPNP) shown in Theorem 1 in the previous section.
Our result is also incomparable to the result in [21] that self-reducible sets in
P /poly are low for ZPPNP. An interesting aspect of our proof is that it combines
derandomization and almost uniform random sampling.

Theorem 2. IP[P/poly] is low for ZPPNY,

The above lowness result easily extends to IP[(NP N co-NP)/poly] by ob-
serving that the proof relativizes in the following sense: for any oracle set A,
NPIPIP*/poly]  7ppNP*

We conclude this section with another connection to the average-case com-
plexity setting.

Theorem 3. If NP C AP and NP C P/poly then PH collapses to AY.

5 Nonuniform function classes and lowness

We now study lowness properties of NPMV /poly, NPSV/poly, NPMV,/poly,
and NPSV,/poly. These are nonuniform analogs of the function classes NPMV,
NPSV, NPMV,, and NPSV; studied by Selman [27] and other researchers,
e.g. [12]. These nonuniform classes are interesting because when restricted to
characteristic functions of sets, NPSV;/poly coincides with (NP N co-NP)/poly
and NPMV /poly coincides with NP /poly N co-NP/poly. Likewise, we note that
the two subclasses of NP /poly N co-NP/poly studied in [11], namely all sets un-
derproductively reducible to sparse sets and all sets overproductively reducible
to sparse sets, also coincide with NPSV /poly and NPMV, /poly, respectively.
Following Selman’s notation in [27], a transducer is an NDTM T with a
write-only output tape. On input z machine T outputs y € X* if there is an
accepting path on input 2 along which y is output. Hence, the function defined
by T on X* could be multivalued and partial. Given a multivalued function f



on X* and ¢ € X* we use the notation

set-f(x) ={y | f:z— y}

to denote the (possibly empty) set of function values for input x. We recall the
basic definitions.

Definition 1. [10]

1. NPMV s the class of multivalued, partial functions f for which there is a
polynomial-time NDTM N such that
(a) f(z) is defined (i.e., set-f(x) # 0) if and only if N(z) has an accepting
path.
(b) y € set-f(x) if and only if there is an accepting path of N(x) where y is
output.
. NPSV is the class of single-valued partial functions in NPMV.
. NPMV, is the class of total functions in NPMV.
4. NPSV; is the class of total single-valued functions in NPMV.

RS

The classes NPMV /poly, NPSV /poly, NPMV,/poly, and NPSV,/poly are
the standard nonuniform analogs of the above classes defined as usual [15]: for
F € {NPMV,NPSV,NPMV,;NPSV,;}, a multivalued partial function f is in
F/poly if there is a function g € F, a polynomial p, and an advice function
h:1* — X* with |h(1™)| < p(n) for all n, such that for all z € X*,

set-f(x) = set-g((z, h(1))).

Before we connect these classes to NP /poly N co-NP /poly and its subclasses
defined in [11], we recall definitions from [11]: Consider polynomial-time nonde-
terministic oracle machines NV whose computation paths can have three possible
outcomes: accept, reject, or 7. The machine N can also be viewed as a transducer
which computes, for given oracle D and input z, a multivalued function. More
precisely, if we identify accept with value 1 and reject with 0, and consider the
? computation paths as rejecting paths then NP defines a partial multivalued
function: set-NP(x) C {0,1}. Machine NP is said to be underproductive if for
each x we have {0,1} Z set-NP(z), and N is said to be robustly underproductive
if for each oracle D and input = we have {0,1} Z set-NP (). Likewise, NP is
overproductive if for each = we have set-NP(z) # 0, and N is said to be robustly
overproductive if for each oracle D and input = we have set-NP(z) # 0.

With standard arguments we can convert a sparse set into a polynomial-
size advice string and vice-versa (see, e.g. [8]). It follows that A € NP /poly N
co-NP /poly if and only if there is a sparse set S and a nondeterministic machine
N such that N is both overproductive and underproductive and A = L(N®).
Similarly, A € (NP Nco-NP)/poly if and only if there is a sparse set S and
a nondeterministic machine N such that A = L(N®) and N is both robustly
overproductive and robustly underproductive and A = L(N?).

Proposition 1. Let x4 denote the characteristic function for a set A C X*:
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X4 s in NPMV/poly if and only if A is in NP /poly N co-NP /poly.

X4 is in NPSV,/poly if and only if A is in (NP N co-NP)/poly.

3. xa is in NPSV/poly if and only if there are a sparse set S and a robustly
underproductive machine N such that A = L(N®).

4. xa is in NPMV;/poly if and only if there are a sparse set S and a robustly

overproductive machine N such that A = L(N¥).

o

By abuse of notation, we identify y4 with A in this section. E.g. we write
A € NPSV/poly when we mean x4 € NPSV/poly. We now turn to lowness
questions for the nonuniform function classes. The classes NP /polyNco-NP /poly
and (NP Nco-NP)/poly are of interest in the context of deriving strong collapse
consequences from the assumption that NP (or other hard complexity classes)
is contained in one of these classes. We recall the known collapse consequence
result shown in [21] for NP /poly Nco-NP /poly under the assumption that NP is
contained therein: If NP C NP/poly Nco-NP/poly then PH collapses to ZPP> .
The open question here is whether the collapse consequence can possibly be
improved to ZPPNP. This is one reason to consider classes that lie between
NP /poly N co-NP/poly and (NP N co-NP)/poly.

5.1 A lowness result for NPMV,/poly

It is shown in [11] that if an NP-complete problem is in NPMV;/poly then
PH collapses to X¥. In [11] the authors actually state this result in terms of
overproductive reductions to sparse sets. We use ideas in their proof to show
the underlying lowness result for functions: all word-decreasing self-reducible
functions in NPMV, /poly are low for . We first recall the definition of word-
decreasing self-reducible sets (and define its obvious extension to total single-
valued functions).

Definition 2. [7] For strings x,y € X*, © <y if |z| < |y| or |z| = |y| and =
is lexicographically smaller than y. A set A is word-decreasing self-reducible if
there is a polynomial-time oracle machine M such that A = L(M*), where on
any input x the machine M queries the oracle only about strings y such that
y < z. Similarly, a total single-valued function f on X* is word-decreasing self-
reducible if there is a polynomial-time oracle transducer T such that TS computes
f, where on any input x, transducer T can query the oracle only about strings y
such that y < x.

The definition of lowness extends naturally to total, single-valued functions:
A functional oracle f returns f(z) on query x. For any relativizable complexity
class C we say that f € Low(C) if C/ = C. We show next that self-reducible sets
and self-reducible functions in NPMV /poly have identical lowness properties.
Hence it suffices to prove lowness of self-reducible sets in NPMV/poly.

Theorem 4. Let F contain all self-reducible functions in any of the four func-
tion classes {NPMV /poly, NPSV /poly, NPMV;/poly, NPSV,/poly}. Let C be
the subclass of F consisting of characteristic functions (making C a language



class, essentially). For every self-reducible function f € F there is a self-reducible
set A € C such that f and A are polynomial-time Turing equivalent.

Proof. Given f € F, we can define the corresponding set A € Cx by suitably
encoding, for each z, the bits of f(z) in A. We can easily ensure that the self-
reducibility of f carries over to A and f and A are polynomial-time Turing
equivalent.

Theorem 5. Word-decreasing self-reducible sets in NPMV,/poly are low for
xr.

Since X, II, PP, C_P, Mod,,P, PSPACE, and EXP have many-one com-
plete word-decreasing self-reducible sets [7], the following corollary is immediate.

Corollary 4. IfC € {X}, II;, PP, C_P, Mod,,,P, PSPACE, EXP}, for k > 1,
has a complete set in NPMV, /poly then C C X% and PH = X¥.

The proof follows since for each C € {Z¥, IT¥, PP, C_P, Mod,,,P, PSPACE,
EXP} and any set A complete for C w.r.t. polynomial-time Turing reductions
we have X% C Y3l

We end this section with the observation that AM N coAM is contained in
NPMV,/poly. It is interesting to now compare the lowness results (Theorems 1
and 5) for these classes.

Proposition 2. If L € AM N coAM then L is in NPMV;/poly.

Proof. Given L € AMNcoAM, as already observed in an earlier proof by proba-
bility amplification techniques and quantifier swapping, there are NP sets A and
B and a polynomial p such that Vz : |z| < m, there is a subset § C {0, 1}?(™)
of size ||S]| > 2P("™)~! with the following property: 2 € L implies

Vw : (z,w) € Aand Vw € S : (z,w) ¢ B
and x & L implies
Yw: (x,w) € Band Yw € S : (z,w) ¢ A.

We can combine the NP machines for A and B and build a transducer I
that takes pair (xz,w) as input, where w is the advice string. Observe that S
constitutes the set of w’s that are correct advice strings. Using a w € S mem-
bership in L for strings of length m can be decided and for such advice strings
the transducer I will always yield a single-valued, total computation for all in-
puts of length m, outputing either 1 or 0 depending on the membership of input
x. Notice that the above properties also already imply L is in NPMV,/poly,
because no matter which w € {0, 1}*("™ is used as advice, (z,w) is either in the
NP set A or in the NP set B and so the transducer I always outputs at least
one of 0 or 1 for any advice string and any input.



5.2 A lowness result for NPSV /poly

In [11] it is left as an open problem to discover new lowness (or collapse con-
sequence) results for NPSV/poly. As noted in [11], nothing better is known
for NPSV/poly than the collapse consequence result: if SAT is in NPSV /poly
then PH collapses to ZPPEg, which holds even for the larger class NP /poly N
co-NP/poly [21].

We show that sets in NPSV /poly that are checkable, in the sense of program
checking as defined by Blum and Kannan [9], are low for AM and for ZPPNP,
Since ®P, PP,PSPACE, and EXP have checkable complete problems, it follows
that for any of these classes inclusion in NPSV /poly implies its containment in
AMNcoAM. This result is proved on the same lines as the Babai et al result [6]:
If EXP is contained in P/poly then EXP C MA.

Recall the definitions of MIP[C] and IP[C] for a class C of languages. We prove
a technical lemma that immediately yields the lowness result.

Lemma 1. If A € NPSV/poly then MIP[A] C AM.

Proof. Let L € MIP[A] for some set A € NPSV/poly. Let T be the nondeter-
ministic transducer that witnesses that A € NPSV /poly. We describe an MAM
protocol for L:

1. Let  be an input of length n to the protocol. Let m = p(n), where p is a
polynomial bounding the size of the queries to A made by the verifier during
the protocol for inputs of length n.

2. Merlin sends advice w of length ¢(m) to Arthur.

3. Arthur sends a polynomial random string r (used for simulating the original
IP protocol) to Merlin.

4. Merlin sends back the list of successive queries to set A (generated by
simulating the original IP protocol with random string r), the list of answers
to those queries along with the computation paths of transducer T' with
advice w that certify the answers to the queries.

5. Arthur can verify in polynomial time that Merlin’s message is all correct
and accept if and only if the original IP protocol accepts.

By the fact that 7" computes a single-valued partial function for any advice
w, although the verifier is simulating the nondeterministic transducer 7', it is
guaranteed that each accepting computation path has identical output and hence
does identical computation. Thus, what makes the above MAM protocol work
is the fact that for any advice w and query ¢ all accepting computation paths of
T(q,w) output the same value. So, regardless of which computation paths are
sent to Arthur by Merlin in Step 4 of the above protocol, Arthur’s decision will
be the same. In other words, Arthur’s acceptance depends only on the random
string r, hence exactly preserving the acceptance probability of the original IP
protocol.

Standard techniques (cf. [4]) can be used to convert the MAM protocol to
an AM protocol. This completes the proof.



We have as immediate consequence the following lowness result.

Theorem 6. If L is a checkable set in NPSV /poly then L € AM N coAM and
hence low for AM and ZPPNF .

Proof. The assumption in the theorem’s statement implies that both L and L
are in MIP[L] by the checker characterization theorem of [9]. Now, applying
Lemma, 1 yields that both L and L are in AM and the result follows.

We can derive new collapse consequences as corollary, since the classes ®P,
PP, PSPACE, and EXP all have checkable complete problems. It follows that
for any of these classes inclusion in NPSV /poly implies its containment in AM N
coAM.

Corollary 5. If any of the classes @P, PP, PSPACE, and EXP is contained in
NPSV /poly then it is low for AM and hence PH = AM.

Notice that we have the same lowness for checkable functions in NPSV/poly.
Theorem 7. Checkable functions in NPSV /poly are low for AM and ZPPNP.

Proof. Let f be a checkable function in NPSV /poly. We can suitably encode,
for each x, the bits of f(z) in a language A which is polynomial-time Turing
equivalent to f and hence A is also checkable. The lowness result now follows by
invoking Theorem 6.
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