
Combined space�variant maps for optical �ow based navigation

Gregory Barato�� Christian Toepfer� Heiko Neumann

Dept� of Neural Information Processing� Faculty of Computer Science�

University of Ulm� ����� Ulm� Germany

fbarato�� ct� hneumanng�neuro�informatik�uni�ulm�de

Abstract � A robot navigating in an unstructured environment needs to avoid obstacles in its way and determine

free spaces through which it can safely pass� We present here a set of optical �ow based behaviors which allow a

robot moving on a ground plane to perform these tasks� The behaviors operate on a purposive representation of the

environment called the �virtual corridor� which is computed as follows � The images captured by a forward�facing

camera rigidly attached to the robot are �rst remapped using a space�variant transformation� Then	 optical �ow

is computed from the remapped image stream� Finally	 the virtual corridor is extracted from the optical �ow by

applying simple but robust statistics� The introduction of a space�variant image preprocessing stage is inspired by

biological sensory processing	 where the projection and remapping of a sensory input �eld onto higher�level cortical

areas represents a central processing mechanism� Such transformations lead to a signi�cant data reduction	 making

real�time execution possible� Additionally	 they serve to �re�present� the sensory data in terms of ecologically relevant

features	 thereby simplifying the interpretation by subsequent processing stages� In accordance with these biological

principles we have designed a space�variant image transformation	 called the polar sector map 
PSM�	 which is ideally

suited to the navigational task� We have validated our design with simulations in synthetic environments and in

experiments with real robots�

� Introduction and Motivation

An autonomous system � be it biological or technical � navigating through an unknown or only partially
known environment needs to be able to detect obstacles in its heading direction and turn to avoid collisions
with them� Furthermore� it needs to be able to gauge the width and height of free spaces to determine
whether it can safely pass through� Neither of these tasks requires a detailed internal reconstruction of the
three�dimensional structure of the environment ���� In section � we present a description of a set of behaviors
which we have implemented in simulations and in real robots� and derive a purposive representation ���
of the environment in terms of a 	virtual corridor
� based on which the robot reliably performs these
navigational tasks� Our virtual corridor is an extension of Coombs et al��s ��� 
� 	conceptual corridor
 and
of other 	minimalist
 representations designed for the basic navigational tasks considered here ���� ����

The inspiration for such representations comes from studies by Srinivasan ���� on the �ight behavior of
bees� which showed that bees perform seemingly complex �ight maneuvers reliably based on very coarse
information extracted from the optical �ow �eld� These bee behaviors can be successfully used in ground�
based robotic vehicles ��� 
� ��� ���� In section 
 we present a short summary of the properties of the optical
�ow �eld during typical ground�plane motion� and show how the information necessary for performing the
navigational tasks can be derived from it�

Since the robot moves� it is required to react in time to obstacles in its heading direction� e�g� by
triggering an avoidance maneuver� For this to be possible� sensory processing must be fast enough to
guarantee real�time reaction� At the present time it is� however� not possible to process optical �ow at high
enough speed at full camera resolution with standard PC hardware� Some kind of data reduction is therefore
necessary� Simple uniform subsampling of the input image is not a viable option� because it reduces the
resolution in the central region where high resolution is crucial for detection of imminent collisions� A
space�variant transformation of the input images is called for� Here� biological principles provide further
inspiration� The projection and remapping of a sensory input �eld onto higher cortical areas is a central
feature of biological sensory processing� especially in higher animals� An important aspect of many of
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mappings relevant to our problem are the models of the retino�cortical projection in primates ���� �
��
Besides introducing a signi�cant data reduction� which makes real�time execution possible� these mappings
simultaneously allow a coarsely resolved wide �eld of view and a region of high visual resolution for
more detailed processing� The former is necessary for monitoring the environment� the latter for object
discrimination and recognition� Additionally� of particular interest in the navigational context is the
suggestion by Wright � Johnston���� that ���� the morphology of cortical maps may have a functional

signi�cance ��� related to the visual control of locomotion ����� In section � we discuss Schwartz�s ����
model of the primate retino�cortical projection in terms of the complex logarithmic mapping �CLM�� and
analyze it with respect to its suitability for our navigational tasks� This model� however� does not satisfy
all of the requirements� Therefore� we have designed a new space�variant transformation� the polar sector

map �PSM�� which is optimized with regard to the subsequent interpretation of the optical �ow by the
navigation and collision avoidance behaviors� It satis�es the following design goals �

�� In the central image region optical �ow should directly signal 	time�to�collision
���� i�e� the time until
collision with an obstacle would occur if the robot were to continue at the current speed in the same
direction�

�� In the image periphery optical �ow should be a monotonic function of �a� the side�ways distance in
left and right peripheral image regions and of �b� the height above ground in the lower and upper
peripheral image regions�

The �rst property allows the robot to avoid collisions with obstacles in the heading direction� The second
property leads to an ordinal representation� of the periphery that is invariant over time under forward

translational motion� Due to these properties� the PSM provides a representation from which the control
signals driving the navigation behaviors can be e�ciently extracted� Indeed� as we show in section ��
simple robust statistics of the optical �ow �eld in the central and peripheral image regions yield stable
control signals for the collision avoidance and navigation behaviors� respectively� Since the choice of these
statistics re�ects the structure of the environment as well as the task to be performed� we have termed
them 	purposive statistics
� We also show how the virtual corridor is built from these purposive statistics�
give the control laws for the behaviors� and demonstrate the performance of the system by experiments
in a synthetic simulation environment and with real robots� In section �� we discuss our approach and
summarize our contributions�

� Navigational Behaviors and Purposive Representation

��� The behavioral repertoire

In order to achieve collision�free navigation in an unknown environment� we propose the following repertoire
of behaviors for a ground�based mobile robot �

� The collision�avoidance �CA� behavior detects obstacles in front of the robot and turns to avoid
them�

� The centering �CE� behavior steers the robot through the middle of a passage�

� The adaptive speed �AS� behavior adjusts the robot�s speed in proportion to the width of a
passage� yielding safe navigation through narrow alleys�

� The free�space �FS� behavior monitors the width of a passage and triggers an avoidance maneuver
whenever it is too narrow for the robot to pass through�

The CA behavior has the highest priority� It can interrupt the other behaviors whenever it determines
that the robot is on collision course with an obstacle in its heading direction� Similarly� the FS behavior
can abort the CE and AS behaviors whenever it determines that the passage gets too narrow for the robot
to pass through�

�An ordinal representation is one in which absolute distances are compressed� but the depth order along a given direction
is preserved�
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The simple behaviors introduced above do not have to operate on a rich internal representation of the

D structure of the environment� Indeed� a representation of the environment consisting of only �ve
quantities� which we term 	virtual corridor
� is su�cient to perform these navigational tasks� Figure �
illustrates this representation� The virtual corridor represents the free space around the robot� and consists

V

Figure �� Virtual corridor consisting of left and right side walls� ground �oor and ceiling� and frontal wall�

of a ground plane� a ceiling� left and right side walls� and a frontal wall� Each 	wall
 is determined by the
closest obstacle in the corresponding region of robot�centric space� The information about obstacles in the
heading direction required by the collision�avoidance behavior is provided by the frontal� lower and upper
walls� The other three behaviors use the information about the left and right walls as input� The centering
behavior navigates the robot down the middle of a passage by keeping the left and right virtual walls at the
same distance� The width of the passage computed from the left and right walls is used by the adaptive
speed behavior to adjust the robot speed and by the free�space behavior to determine whether the passage
is wide enough for the robot� Thus� with respect to these navigational tasks� the virtual corridor is an
example of a purposive representation ���� since it only represents the information about the environment
necessary for the purpose of executing the navigational tasks�

According to Gibson�s ��� theory of ecological perception� task�related representations should be directly
extracted from sensory information� In section 
 we show that the quantities making up the virtual corridor
can be easily extracted from the optical �ow �eld� An even more direct 	pick�up
 ��� of the information is
made possible by the introduction of the polar sector map� which we introduce in section ��

A further property of the set of behaviors is that most of them do not require absolute obstacle distances�
It is su�cient if they know an ordinal representation of these distances within each image sector� since this
would not a�ect which object is considered closest� The only exception is the free�space behavior which
needs to be able to compare the obstacles� distances to the robot�s own width� We address this issue in
section ����

��� Image partition

In our system� the virtual corridor is extracted from visual information captured by a forward�facing
camera rigidly attached to the robot� The partition of robot�centric space into �ve regions is paralleled
by a partition of the image into �ve sectors � a central sector� and four peripheral sectors �left� right�
lower� and upper�� This image partition is illustrated in Figure �� In each image sector the optical �ow is
computed� and a representative �ow vector corresponding to the closest obstacle in the associated region
of space is chosen� It is these �ve �ow representatives that de�ne the virtual corridor�

� Optical Flow

��� General Motion

Consider a robot moving in a stationary environment with translational velocity T and instantaneous
rotational velocity �� Let a camera be rigidly mounted on the robot platform� We place the origin of
the camera coordinate system at the optical center of the camera� align the Z�axis with the optical axis�
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coordinates in the camera coordinate frame� moves with velocity �R � �T� � �R relative to the robot�
Let r � �x� y�T � �X�Z� Y�Z�T be the image projection of R according to the pin�hole camera model�
The optical �ow �or image motion� �r � � �x� �y�T �obtained by di�erentiating r with respect to time� is given
by ���� �

�x �
�

Z
�xVz � Vx� � xy�x � �� � x���y � y�z ���

�y �
�

Z
�yVz � Vy� � �� � y���x � xy�y � x�z ���

��� Ground�plane motion

For ground�based vehicles the 	ground�plane motion
 model� in which translation is limited to the XZ�
plane and rotation is only around the Y �axis� is especially relevant� Typically� the dominant motion of such
a robot is forward� in which case the robot looks in the heading direction �the optical axis of its camera
is aligned with its translational direction� and does not rotate� Its motion parameters are then given by
T � ��� �� V �T and � � �� Since in this case �Z � �V � the image �ow becomes �

�r � � �x� �y�T �
V

Z
�x� y�T �

V

Z
r �
�

This form of the �ow equation highlights the main characteristics of image �ow due to translational
motion ��� �

�� its direction is always radial�

�� its magnitude increases linearly with eccentricity r � krk� thus �ow is small in the center and large

in the periphery�


� its magnitude scales linearly with robot forward velocity V �

�� if facing a perpendicular wall� i�e� for Z�x� y� � Z�� the �ow is proportional to ��� � where � � Z��V
is the 	time�to�collision
 �TTC� ��� �� ��� ����

In practice� the assumptions about perfectly translational robot motion do not strictly hold� Although
the heading direction can generally be kept parallel to the optical axis� i�e� T � ��� �� V �T � non�negligible
rotational motion components �principally �x and �y� are caused by uneven ground and turning maneuvers�
These components must �rst be eliminated �by estimating them� and by subtracting the associated �ow
components from the �ow �eld� before the �ow �eld can be interpreted according to the simpli�ed eq� �
��
Since �ow vectors in the central region are small� a precise compensation of the rotational component is
necessary if the central �ow is to be evaluated for collision detection�

��� �D Structure from motion

Assuming that the robot moves straight ahead without rotating� the 
D structure of the environment can
be reconstructed if the velocity V of the robot is known� If it is not known� the 
D structure can only
be reconstructed up to scale� This represents the well�known 	velocity�scale
 ambiguity of the structure�
from�motion problem� The reconstruction up to scale is given by �

�

V
�X� Y� Z� � �

x�

�x
�
y�

�y
�
krk

k �rk
� ���

which can be veri�ed by substituting eq� �
� into the above equation� The equation shows that velocity�
scaled distances along the di�erent coordinate axes can be extracted from the image �ow� As noted in
section ���� this provides the information necessary for the CA� CE� and AS behaviors�
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The last section showed that the optical �ow �eld contains the necessary information to build the virtual
corridor� However� real�time execution constraints make a reduction of the input data necessary� Besides
this computational constraint� there are other constraints on the design of a space�variant transformation
that we would like to impose� In this section we analyze the CLM model with respect to these constraints�
and then introduce the PSM which provides the desired ordinal representation of the periphery�

��� Design constraints

The optical �ow of the homogeneously resolved image does not present the sought�for information in a
directly accessible way� Firstly� the magnitude of the optical �ow depends on eccentricity� as evidenced by
the x�� y�� and krk factors in eq� ���� Secondly� the �ow has non�zero components along both x� and y�axes�
although it is intrinsically one�dimensional� We would like the space�variant transformation to take into
account these functional�structural constraints� In addition� the following behavioral constraints need to
be accommodated� ��� In the central region the resolution must be high� since during forward motion the
resulting �ow vectors are small� A reduction of the resolution in the center would impair the ability of
the robot to detect obstacles and avoid collisions with them� ��� In the periphery the resolution can be
lower� This is acceptable for two reasons � �a� peripheral �ow vectors are larger than central ones and
could still be detected reliably even if compressed �b� the robot does not move towards the objects in
the periphery� and therefore the danger of collision is not as high as with objects in the heading direction�
These considerations motivate the introduction of a space�variant computational map with high resolution
at the center and gradually decreasing resolution towards the periphery�

��� The Complex�Logarithmic Map �CLM�

The CLM was �rst proposed by ���� as a model of the retino�cortical mapping in primates� See also ��
��
It was later picked up by the computational vision community ��
� �� ���� and is also known under the
name 	log�polar mapping
� In this model� the image plane is identi�ed with the complex plane �

z � x � i y � rei� ���

The complex�logarithmic mapping separates the angular component from the log�scaled radial component �

� � log z � log r � i � ���

Since under forward motion the original image �ow is given by �z � �V�Z� z� the �ow in the transformed
image is simply �

�� �
�

z
�z �

V

Z
���

The CLM has some advantages for optical �ow processing� since ��� the optic �ow is restricted to one
coordinate �no �ow along the angular component�� and ��� the �ow is equal to the reciprocal of the
time�to�contact� and thus directly encodes the relevant quantity for the collision�avoidance behavior� One
disadvantage of the CLM is the singularity of the logarithm at the origin� In a practical implementation�
this problem is circumvented by cutting out a disk around the origin of the image ��
� �
� ����

��� Ordinal representation of the periphery

Recall from the introduction that the space�variant transformation should be de�ned in such a way that
the peripheral optical �ow �eld yields an ordinal representation of the surroundings� To understand the
importance of this requirement� consider a column alley through which the robot travels at constant speed�
as shown in Fig� �� In such a situation� it is desirable that each column generate a constant �ow over time
as the robot travels through the alley� In other words� the optical �ow for the columns forming the alley
should be a monotonic function of the side�ways distance d only� and should not depend on the changing
distance Z�t� along the heading direction of the robot� Note that the image �ow in both the original and
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Figure �� Robot in column alley� Peripheral optical �ow in the PSM is a function of the side�ways distance
d� not of the changing distance Z�t� in the heading direction�

the CLM�transformed image does not satisfy this requirement� since it varies with eccentricity� In the
�rst case it depends quadratically on eccentricity �see eq� ����� in the second case linearly� as is seen by
substituting x � X�Z in eq� ��� �

�� �
V

Z
�

V

X
x ���

The main advantage of an ordinal representation is that the robot can directly interpret it to decide how to
adjust its lateral position within the hallway� which would not be possible without additional computations
with an eccentricity�dependent �ow �eld�

��� De	nition of the polar sector map �PSM�

The polar sector map is a compound map consisting of a di�erent space�variant transformation for each of
�ve image sectors� Figure 
 shows an example of the PSM transformation� This transformation satis�es

50 100 150 200 250 300 350

50

100
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Figure 
� Image transformation by the PSM� Left � Original camera image� Right � PSM�transformed
image� The data reduction is ���� in each of the peripheral sectors and ���� in the central CLM�

the following criteria �

�� One coordinate of the PSM transformation �x� y� �� �u� v� is a monotonic function of the polar

angle � v � f���� where � � arctan�y�x�� with the additional constraint f��� � ��

�� Di�erent 	radial
 mapping functions u��� �� � fr� x� yg� are applied along radial lines in each
image sector� For comparison� the CLM u � log r de�nes a global mapping� and may� therefore� be
considered as a special case of the PSM in which for all sectors the same function for u has been
de�ned�


� The radial mappings are chosen in such a way that �ow magnitude is a monotonic function

of obstacle distance along the associated coordinate axis �see section ����� For comparison� in the
CLM �u � V�Z holds globally� i�e� even in the periphery�
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Table �� Individual sector maps �radial component u�� radial compression ��u
��

���� areal compression

�det J���� and optical �ow �u�

De�nitions of the individual sector maps are given in Table �� �Parameters of the mapping are illustrated
in Figure ��� In the central sector we have a plain CLM given by u�r� � a log�r�r��� where a � ��� �� is a
constant controlling the desired resolution and r� is the radius of the cut�out disk� In the right sector the
mapping is given by u�x� � bx����

x�
x

�� where b � ��� �� is a constant controlling the desired resolution and
x� is the horizontal half�width of the central sector� The other peripheral mappings are obtained from the
right sector map by symmetry� It turns out that the lower sector map is almost identical� with Mallot�s
inverse perspective map �IPM� �����

y0

x0
0r right

upper

left

lower

x

y
r

φ

central

Figure �� Parameters of the PSM �x�� y� � half�width and �height of central sector� r� � radius of cut�out
disk to avoid singularity at origin��

The di�erent mapping functions result in di�erent compression functions for each image sector� The
radial compression of the original image by the PSM is given by ��u

��
���� i�e� by the reciprocal of the

derivative of u with respect to the radial coordinate � � fr� x� yg� As shown in Table �� the compression
is linear for the central sector and quadratic for the peripheral sectors� The areal compression is given by
the reciprocal of the Jacobian J � ��u�v�

��x�y� of the mapping� It is quadratic in the central and cubic in the
peripheral sectors� Thus� a signi�cant data reduction is achieved by representing peripheral areas more
coarsely�

��
 Optical Flow in the PSM

Since the v�coordinate of the PSM is a function of the polar angle only� the optical �ow along this coordinate
is zero under forward motion � �v � �� This applies to the entire PSM� not just to the central log�polar
mapping� Optical �ow along the u�coordinate is given in Table �� and is obtained by the chain rule �
�u � �u

��
��� Note that the �ow magnitude in each sector is indeed a monotonic function of the distance along

the associated coordinate axis� Figure � illustrates this feature of the PSM� Two images were taken from a
simple simulated world in which a wall parallel to the YZ�plane and a column in front of it are visible in the
right image sector� Whereas the �ow in the original image shows a wide distribution� the right PSM �ow
histogram has two relatively sharp peaks� one indicating a vertical wall parallel to the heading direction

�Identity is achieved when v is chosen to be y�x�
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Figure �� Optical �ow for a vertical column in front of a vertical wall parallel to the heading direction
�simulated environment�� Top image pair shows view of the environment �right sector highlighted in
original image�� middle row shows optical �ow in right image sector� and bottom row shows histograms of
horizontal �ow� Left column � original image� Right column � right sector of PSM�
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and one slightly broader peak corresponding to the column�� The reason why the wall and the column are
not separated in the �ow histogram for the original image is that the optical �ow in the original image is
scaled by eccentricity�

��� Implementation Issues

Let wx and wy be the number of horizontal and vertical pixels of the input image� For the experiments
reported in the following sections� we have chosen the central sector to be square �x� � y�� and half as
wide or high �whichever was smaller� as the input image� We always picked a � b � c � �� which is the
least possible compression of the radial dimension� �Choosing these parameters greater than one would
lead to super�resolved images�� Table � shows image dimensions and PSM parameter settings used in our

Image w x��y�� FOV FOVc nu nv Ry

Sim �x� ��� �� ��� ��� �� �� ���
Sim �y� ��� �� ��� ��� �� �� ���

Real �x� 
�� �� ��� ��� �� �� ����
Real �y� ��� �� 
�� ��� 
� �� ���

Table �� Image and PSM parameter settings used for simulated and real images�

simulated environment and with real camera images grabbed by the robot� The parameters are � image
dimension �w�� half�width �x��� resp� half�height �y�� of central sector� half �eld of view �FOV �� half �eld
of view of central sector �FOVc�� peripheral PSM sector dimensions �nu� nv�� and data reduction factor
for peripheral sectors �R�� For the angular dimension �v�coordinate� of each peripheral sector� we used
the function v � ���� yielding a resolution of �� pixels� each pixel corresponding to �� polar angle� The
data reduction factor R is de�ned here as the number of pixels in the original image sector divided by the
number of pixels in the corresponding PSM sector�

The mapping from original image to the PSM was performed by averaging for each PSM pixel the
original image pixels corresponding to its preimage� A fast implementation was realized using look�up
tables����� Optical �ow was computed in the PSM using a correlation�based method using zero�mean
normalized cross�correlation as a similarity measure ���� with a correlation patch size of � pixels� followed
by subpixel localization using quadratic interpolation of the correlation surface� In the peripheral sectors
search was performed along the u�direction only with a search range from �� to � pixels� The same method
was used for the central sector in the simulated environment� On the real robot� however� we performed a
�D search in the central sector of the original image� This yields more accurate �ow estimates which are
necessary for ��� reliable TTC estimation� and ��� for the compensation of rotational motion components
present in real vehicles �see section 
����

� Purposive statistics and control of behavior


�� Extraction of the virtual corridor

According to the de�nition of the virtual corridor in section ��� the distance of each virtual wall is de�
termined by the closest obstacle in the corresponding region of space� Since �ow in each PSM sector is
inversely proportional to distance� one would ideally like to extract the �ow with the largest magnitude in
each sector� However� because of image noise and mismatches in the �ow detection procedure computing
the maximal �ow does not provide very reliable results� Instead� we apply more robust statistics to extract
the � �ow representatives !left�!right�!lower�!upper�!center forming the virtual corridor �

�The broader peak for the column is due to the fact that a column generates a range of �ow magnitudes corresponding to
the range in depth �here measured along the X�axis� it occupies�
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this yields the largest �ow vector after discarding the largest ��"� which are presumably due to noise
and mismatches�

� In the central sector the median �� ��	�quantile� of the �ow vectors is computed� The rationale
for this choice is the following �


 The median is more robust than higher quantiles� since central �ow vectors are smaller and less
reliably estimated than peripheral �ow vectors�


 Although the median overestimates the distance of the closest obstacle� the likelihood of de�
tection increases for the next frame� This follows from the fact that a stationary obstacle in
heading direction will be even closer in the next frame its image will therefore also be larger�
and more likely to be detected�

Referring back to Figure �� the �ow histogram of the right PSM sector illustrates the importance of using
the ����quantile of the �ows in the peripheral sectors� In that situation� the right �ow representative !right

would be given by the position of the peak corresponding to the column� As a result� !right would correctly
encode the column as being the closest obstacle� a property that is crucial for avoiding collisions� This is in
contrast to the mean or the median� both of which would encode an incorrect distance� The mean would
encode some intermediate distance between the column and the wall� and the median would encode that
of the wall�


�� The centering behavior

For the CE behavior� which controls the robot�s heading direction� we have implemented a leaky integrator
controller with output thresholding� The input to the controller at time t is the di�erence between left and
right �ow representatives � #!t � !t

left � !t
right� The state variable I is updated as follows �

It�� � 
�It � #!t�� ���

where � � 
 � � is a forgetting constant currently set at ���� The output is one of three discrete actions �
keep the current heading direction if jIt��j � � � turn by �� if It�� � � � or turn by ��� if It�� 	 �� � where
� is the �xed output threshold� Initially� and after each turning action I is reset to �� The turns are ballistic
movements� executed with high speed� While the robot is turning� optical �ow is not evaluated� Figure �
shows an externally recorded sequence in which the robot navigates through the middle of a hallway using
the CE behavior�
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Figure �� Experiment showing successful navigation down the middle of a hallway� Left � superposition
of three snapshots from the beginning of the sequence� Middle � snapshot towards end of sequence with
robot at end of hallway� Right � top view of the robot trajectory �from odometry� in the hallway �sketch
based on laser scan��
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If an obstacle is high enough to appear in the image center over a period of several frames� then a collision
with the obstacle can be computed by evaluating the TTC from the central image �ow� In our implementa�
tion of the CA behavior� the robot turns away from an obstacle by rotating ���� around its axis whenever
the TTC remains below a �xed threshold for three consecutive frames� Currently� our system moves at a
speed of ���mm�sec and operates at a frame rate of 
 Hz� Figure � shows an externally recorded sequence
in which the robot performs a TTC�based avoidance maneuver�
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Figure �� Experiment showing successful collision avoidance� The obstacle �wall� is detected from the
TTC values in the central sector� Left � Two superimposed snapshots before the turn� Middle � Two
superimposed snapshots after the turn� Right � Robot trajectory from odometry �dotted� and environment
�from laser scan�


�� Detection of low�lying obstacles

Figure � shows an experiment with a real image sequence recorded by the 	Soccerbot
 robot approaching a
box� A su�ciently high obstacle would be detected by its small TTC in the central sector� However� since
this box is fairly low its image quickly wanders out of the central sector without being detected there� It
must therefore be detected in the lower sector� At �rst� no �ow due to the box is present in the lower sector�
only �ow due to the ground plane� By the ��st frame the box occupies the entire left half of the lower
sector� but only now has the textured upper side of the box entered it� The top of the box is detected in
the �ow �eld� which is also re�ected in the small additional peak in the �ow histogram� In the ��th frame�
the well�textured top of the box accounts for the majority of the �ow vectors� and the peak due to the box
dominates the �ow histogram� As shown in Figure �� the trace of the ����quantile of the �ow starts rapidly
increasing at the ��st frame� indicating an obstacle above ground� In contrast� the ����quantile maintains
a value around ��� pixels�frame throughout the sequence� corresponding to the motion due to the ground
�oor� This measure is much more robust than the mean� which is strongly a�ected by outliers �not shown��
or even the median� which breaks down when the obstacles makes up more than half of the �ow vectors in
the lower sector �as is the case in frame ���� If the �oor is always su�ciently textured� then thresholding
the di�erence of the ��� and ��� quantiles represents a simple method for detecting above�ground obstacles�


�
 Behavior integration

We have implemented the �rst three behaviors� namely CA� CE� and AS� in a virtual simulation envi�
ronment embedded in MATLAB� The AS behavior controls the forward speed of the robot by keeping
!left � !right constant using a simple proportional controller� So far� we have ported and integrated the
CA and the CE behaviors onto the two real robot platforms 	Ulm Sparrow Soccerbot
 �local development�
and 	B��
 �developed by RWI Inc��� Experiments such as the ones depicted in Figures � and � show
that the robot is able to successfully navigate through hallways containing columns or other obstacles and
avoid driving into walls� We have implemented by not yet integrated the parts of the architecture which
rely on the knowledge of the robot velocity� This concerns the detection of low above�ground obstacles
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Figure �� A few frames ��� ��� ��� from a real image sequence� Top row � original images� Second row �
lower PSM sector� Third row � histograms of lower sector �ow�
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Figure �� Traces of ��������������quantiles for real image sequence�
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measurements from the central sector by the CA behavior� The robot velocity is also required by the FS
behavior for determining the width of the passage from the left and right �ow representatives !left and
!right� The simplest way to obtain the robot velocity is to simply �x it to some known value� Indeed� this
is the approach taken in other systems for collision detection based on obstacle height above ground �����
Note� however� that this precludes the adaptive speed behavior from being used� Another way to obtain
the robot velocity is to use the odometric information provided by the robot base� Alternatively� the
velocity�distance ambiguity can be resolved by estimating the �ow �eld due to the ground �oor ����� The
data presented in section ��� show� however� that robust methods % such as the proposed evaluation of the
����quantile % are necessary� We are currently adapting the simulation environment and the robot imple�
mentation to include the free�space behavior in the robot�s repertoire� For the implementation on the real
robot platforms we are planning to use a sensor�fusion approach� where the robot velocity is determined
from combined odometric and �ow�based information�

� Discussion and Conclusions

We have presented a processing architecture for a mobile robot navigating in an unstructured environment
based on information from the optical �ow� Biology has inspired us at two levels � ��� at the image
representation level� where we were led to consider space�variant transformations similar to the �rst stage
of the visual processing architecture of primates� and ��� at the behavioral level� where we implemented
simple optical �ow based behaviors modeled after the �ight behavior of bees� Clearly� the obtained model
architecture is neither that of a bee nor that of a primate� In fact� bees have two laterally looking eyes�
not one forward looking one� and they do not perform a space�variant processing of the image� With these
constraints� a more appropriate solution to collision detection might consist in using 	zig�zag
 motions
observed in �ies����� rather than the TTC�based approach implemented here� since the latter requires a
high resolution in the central visual �eld� Still� in our view it is not a contradiction to combine aspects
of primates� and bees� processing architecture when the goal is not to model a particular animal� but to
make judicious use of biological principles to solve the navigation and collision avoidance tasks for a mobile
robot�

A central aspect of our work is the use of space�variant transformations� which represent a powerful
mechanism for optimizing the processing of sensory data in view of a particular set of behavioral tasks�����
Starting out with a set of four robot behaviors� we derived a purposive representation of the environment
in terms of a virtual corridor� and designed a space�variant transformation� the PSM� which subserves
all four behaviors in a single cortical image format� The advantages of the PSM are multi�faceted �
computational �data reduction� real�time execution�� functional �direct signaling of TTC or side�ways
distance�� behavioral �wide �eld of view� high resolution in center for collision detection�� and structural
��ow along one dimension only�� In particular� a novel aspect of this transformation is the remapping of the
peripheral image regions� which is de�ned in such a way that the peripheral optical �ow yields an ordinal
representation of the environment which is invariant under translational forward motion� This invariance
allows e�cient extraction of the virtual corridor and quick action determination�
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