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In this chapter we present a 3-D visual object recognition system for an
autonomous mobile robot. This object recognition system performs the
following three tasks: Object localisation in the camera images, feature
extraction, and classification of the extracted feature vectors with hierar-
chical radial basis function (RBF) networks.

1 Introduction

The recognition of 3-D objects from 2-D camera images is one of the
most important goals in computer vision. There is a large number of
contributions to this field of research from various disciplines, e.g. arti-
ficial intelligence and autonomous mobile robots [1, 2], artificial neural
networks [3-5], computer vision and pattern recognition [6-10], psy-
chophysics and brain theory [11-13]. Due to the increasing performance
of current computer systems and the increasing development of computer
vision and pattern recognition techniques several 3-D object recognition
systems have been developed [14-17]. Among these many different ap-
proaches to 3-D object recognition two main streams can be detected:
structural-based or primitives-based approaches and view-based meth-
ods.



In primitives-based approaches the 3-D objects are modelled using a
small set of 3-D volumetric primitives (cubes, cylinders, cones, etc) in
a CAD-like model. In the recognition phase the most important step is
to identify the primitives that are visible in the camera image. This ap-
proach is derived from the recognition-by-componentstheory developped
by Biederman in [18, 19]. It seems that this approach is reasonable for
CAD applications, but has its limitations for the recognition of free-form
objects, for example in face recognition.

Psychophysical results achieved during the last years have shown that
humans are able to learn to recognize 3-D objects from different charac-
teristic 2-D views. In these view-based approaches a set of 2-D views of
each object is stored or learned in order to build an internal object rep-
resentation of the 3-D object. In the recognition phase of such a view-
based system a single 2-D view of an object is compared to the learnt 2-D
views. This processing step is related to methods like template matching
and nearest neighbor classification. One of the main tasks in these view-
based approaches is the selection of characteristic object views. The ob-
jects have to be recorded from various viewpoints, in different poses and
with different illumination in order to build a recognition system which
is robust under all such transformations.

Artificial neural network models can be used to learn to recognize 3-
D objects on the basis of a small set of 2-D camera images which are
recorded from distinct view points [4]. Based on a training set of fea-
ture vectors, the network learns a discrimination function in the highdi-
mensional feature space. For this kind of classification task supervised
network training procedures must be utilized.

Often synthetic images or well prepared data sets ignoring problems
which are present at lower processing levels have been used in order to
simplify the recognition problem, e.g. the 3-D objects are always in the
center of the camera images. We attempt to solve a more realistic prob-
lem and use camera images recorded from real 3-D objects for training
and testing the recognition system. In the recognition phase scenes with
multiple 3-D objects may be presented to the recognition system.

The recognition of a 3-D object consisted of the following three subtasks
which will be discussed throughout this chapter:

1. Localization of objectsin the cameraimage.
In this processing step the entire camera image is segmented into



regions. Each region should contain exactly one single 3-D object.
Only these marked regions, which we call the regions of interest
(ROI), are used for further image processing. Colour-based ap-
proaches for the ROI-detection are used.

2. Extraction of characteristic features.

From each ROI within the camera image a set of features is com-
puted. For this, the ROIs are divided into subimages and for each
subimage an orientation histogram with eight orientation bins is
calculated from the gray valued image. The orientation histograms
of all subimages are concatenated into the characterizing feature
vector.

3. Classification of the extr acted feature vectors.

The extracted feature vectors together with the target classification
are used in a supervised learning phase to build the neural net-
work classifier. After network training novel feature vectors are
presented to the classifier which outputs the estimated class labels.

We address all these three topics in this chapter, but we will focus on
the classification task. The chapter is organized in the following way: In
Section 2 the methods for 3-D object localization and feature extraction
are described. RBF networks and support vector learning in RBF net-
works including multiclass SVM classifiers are discussed in Section 3.
The construction of binary classifier trees is the topic of Section 4. In
Section 5 we present some numerical classification results for the recog-
nition system and finally a conclusion is given.

2 Object Localisation and Feature Extraction

Visual Attention—Regions of interest in the camera im-
age.

The classification of visual 3-D objects in camera images requires their
reasonable delimitation from background. A possible way to achieve this
is to locate regions of interest within the camera image. For this visual
attention task biologically motivated models, like saliency-based meth-
ods have been intensively investigated during the last years [20-22]. In
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our case the regions of interest should contain areas of single objects.
From the subimages enclosed by these regions, features are then ex-
tracted for the object classification. Because computational requirements
are tight, currently a colour-based approach for the object detection is
used, see [23] and Figure 1. After downsampling the original camera
image the resulting image is transformed from RGB (red, green, blue)
to HSV-colour space (hue, saturation, value) [24]. HSV colour space is
used, because this colour model makes it very easy to describe colour
ranges independent of saturation and lightness. Downsampling has the
effect of a low pass filtering and also reduces the computational com-
plexity. After downsampling and colour space transformation, each pixel
inside a valid colour range is labeled, and sets of connected labeled pixels
(so-called colour blobs) are calculated. For every found colour-blob the
colour range and number of pixels is determined. If the number of pixels
of a colour-blob is larger then a predefined threshold value, a bounding
box for this blob is calculated.

9 5

Figure 1. Examples of class bucket of the data set (left) and the calculated region of
interest (right)

In addition to these processing steps, the following heuristics for merging
regions are applied:

1. In the first step, bounding boxes which are contained in larger ones
are merged. This is typically applied to objects, whose colour
range does not match a single valid range, but matches two or more
valid colour ranges.

2. After this pre-processing step, the distances between centers of re-
gions within the same colour range are calculated. If the distance
between two regions is less than a predefined value, they will be
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merged. This is useful for merging small colour blobs, for example
bottles, whose colour regions are usually separated by the label of
the bottle.

3. In a last processing step, the bounding boxes determined on the
downsampled image are rescaled to the original image size and are
slightly enlarged.

N

Figure 2. Elements of the feature extraction method. The grey valued image (left)
is convolved with the masks .S, and S, (see text) resulting in the gradient image (cen-
ter; absolute value of the gradient). Orientation histograms (right) of non—overlapping
subimages constitute the feature vector.

| I -

Feature Extraction

The image within the region of interest is divided into n x n non-over-
lapping subimages and for each subimage the orientation histogram of
eight orientations (range: 0 — 2, dark/light edges) is calculated [25]
from the gray valued image. The orientation histograms of all subimages
are concatenated into the characterizing feature vector.

The gradient of an image f(x, y) at location (z, y) is the two dimensional

vector . o fhs
(6 )=(%)=(73)

(x denotes the convolution operation). Gradient directions (S, S,) were
calculated with 3 x 3 Sobel operators. The gradient directions are calcu-
lated with respect to the z-axis:

a(z,y) =atan2 (f = .Sy, f * Sy)

The atan2 function corresponds to the atan but additionally uses the sign
of the arguments to determine the quadrant of the result. The eight bins
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of the histogram all have equal size (27/8). The histogram values are
calculated by counting the number of angles falling into the respective
bin. Histograms are normalized to the size of their subimages.

3 Learningin RBF Networks

RBF networks were introduced into the neural network literature by Broom-
head and Lowe in 1988 [26]. The RBF network model is motivated by
the locally tuned response observed in biologic neurons. Neurons with
a locally tuned response charateristic can be found in several parts of
the nervous system, for example cells in the auditory system selective
to small bands of frequencies or cells in the visual cortex sensitive to
bars oriented in a certain direction. These locally tuned neurons show
response characteristics bounded to a small range of the input space.
The theoretical basis of the RBF approach lies in the field of interpolation
of multivariate functions. We consider multivariate functions f : R¢ —
IR™. Without loss of generality we may assume that m is equal to 1.
The goal of interpolating a set of tupels (z*, y“)ﬁil is to find a function
F : R* —» R with F(2#) = y* forall u = 1,..., M, where F is an
element of a predefined set (often a vector space) of functions. In the
RBF approach the interpolating function F' is a linear combination of
basis functions:

F(r) = ;buh(llw—x“ll)w(w) (1)

where || - || denotes the Euclidean norm, by, ..., by, are real numbers,
h a real valued function, and p a polynomial p € I1¢ (polynomials of
degree at most n in d variables). The degree of the polynomial term
has to be fixed in advance. The interpolation problem is to determine
the real coefficients by, ..., bys and the polynomial term p := >/ | a;p;
where py, ..., pp is a basis of 1% and a4, ..., ap are real numbers. The
function F has to satisfy the conditions:

F")y=9"*, p=1,....M
and
M
> bupi(a*) =0, j=1,...,D.
n=1
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Sufficient conditions for the unique solvability of the interpolation prob-
lem were given by several authors e.g. see results due to Micchelli, Pow-
ell, or Light [27-29]. The function A is called a radial basis function
if the interpolation problem has a unique solution. In some cases the
polynomial term in equation (1) can be omitted, then the interpolation
problem is equivalent to the matrix equation

Hb=y (2)

where b = (by,...,by),y = (y',...,y™),and M x M matrix H defined
by

H = (h(|]a” = ="]])) p=1,...0-
Provided the inverse of H exists, the solution of the interpolation prob-

lem has the form:
b=H'y. (3)

Examples for radial basis functions A often used in applications are:

hr) = e
h(r) = (r?+ 0?2
h(r) = (r+02)71/2

Here, o is a positive real number which we call the scaling parameter or
the width of the radial basis functions. The most popular and widely used
radial basis function is the Gaussian function i(||z — ¢||) = exp(—||z —
c||2/o?) with peak at center ¢ € IR* and decreasing as the distance from
the center increases.

The solution of the exact interpolating RBF mapping passes through ev-
ery data point (z#, y*). In the presence of noise in the data the exact solu-
tion of the interpolation problem is typically a function badly oscillating
between the given data points. An additional problem with the exact in-
terpolation procedure is that the number of basis functions is equal to the
number of data points and so calculating the inverse of the M x M ma-
trix H becomes intractable in practice. In applications, where we have to
deal with many thousands of noisy data points an approximative solution
to the data is more desirable than an interpolative one. Broomhead and
Lowe [26] first proposed to reduce the number of basis functions in order
to reduce the computational complexity. This technique produces a solu-
tion approximating instead of interpolating the data points. Furthermore,

7



in [26] an interpretation of the RBF method as an artificial neural net-
work model is given. It consists of three neural layers: a layer of input
neurons feeding the feature vectors into the network, a hidden layer of
RBF neurons, calculating the outcome of the basis functions, and a layer
of output neurons, calculating a linear combination of the basis functions.
Under some additional conditions to the basis function A the set of RBF
networks with free adjustable prototype vectors are shown to be universal
approximators, so that any continous function can be approximated with
arbitrary precision [30]. This implies that RBF-networks with adjustable
prototypes can also be used for classification tasks [31].

Support Vector Learning

Three different training procedures to train an RBF network are known:
Two-stage training, Backpropagation training, and Support vector train-
ing. We concentrate on support vector learning [32-34]. The support
vector machine (SVM) was initially developed by Vapnik to classify data
points of a linear separable data set. In this case a training set consisting
of M examples (z*,y*), z* € RY, and y* € {—1,1} can be divided
up into two sets by a separating hyperplane. Such a hyperplane is de-
termined by a weight vector b € IR? and a bias or threshold # € R
satisfying the separating contraints

y" (" by +0)>1 p=1,..., M.

The distance between the separating hyperplane and the closest data
points of the training set is called the margin. Intuitively, the larger the
margin, the higher the generalization ability of the separating hyperplane.
The optimal separating hyperplane with maximal margin is unique and
can be expressed by a linear combination of those training examples ly-
ing exactly at the margin. These data points are called the support vec-
tors. The separating hyperplane has the form

M
H(z) =) apy*(z,a") + op
p=1
where of, ..., a}, is the solution optimizing the functional
M 1 M
Qa) = Z Q, — Z a,a,yty” (', )
p=1 2 pr=1



subject to the constraints o, > O forall = 1,..., M and nyzl a,yt =
0. Then a training vector x* is a support vector if the corresponding coef-
ficient o, > 0. Then the weight vector b is determined, b = >3, o, 2"
and the bias term o is defined by a single support vector (z*, 3*):

ay =y — (2°,b).

The SVM approach has been extended to the nonseparable situation and
to the regression problem. In most applications (regression or pattern
recognition problems) linear solutions are insufficient. For example, in
real world pattern recognition problems it is common to define an appro-
priate set of nonlinear mappings ¢ := (g1, g2, - . .), €ach g; defined as a
real valued function, transforming the input vectors x* to a vector g(x*)
which is element of a new feature space . Then the separating hyper-
plane can be constructed in the feature space # and can be expressed

by
H(z) = Z:l ay*(g(x), g(=")) + aq.

Provided # is a Hilbert space, the explicit mapping g(x) does not need
to be known since it can implicitly be defined by a kernel function

K(z,2") = (g(x), g(z"))

representing the inner product of the feature space. With a suitable choice
of a kernel function the data can become separable in feature space de-
spite being not separable in the input space. Using a kernel function K
satisfying the condition of Mercer’s theorem (see [34] for details), the
separating hyperplane is given by

M

H(z) =Y ay"K(z,2") + ay.
pn=1

The coefficients o, can be found by solving the optimization problem

M 1 M
Q@)=Y oy =5 3 auonyy K (", 2)
p=1 pv=1

subject to the contraints 0 < o, < C'forall p=1,..., M and
M
Z ayt =0
n=1
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where C'is a predefined positive number. An important kernel function
satisfying Mercers condition is the Gaussian kernel function

lle=yli3

K(l‘ay):e o

The separating surface obtained by the SVM approach is a linear combi-
nation of Gaussian functions located on the support vectors. The SVM
reduces to an RBF network. In contrast to RBF networks trained by
backpropagation learning the centers are located at the data points of the
training set. Furthermore, the number of centers is automatically deter-
mined in the SVM approach.

Multiclass Classification

In many real world applications, e.g. speech recognition or optical char-
acter recognition, a multi-class pattern recognition problem has to be
solved. The SVM classifiers as previously described are formulated as
binary classifiers. Various approaches have been developed in order to
deal with multi-class classification problems. The following strategies
can be applied to build N-class classifiers utilizing binary SVM classi-
fiers:

1. N one-against-rest classifiers.

In this approach N different classifiers are constructed, one classi-
fier for each class. Here the [-th classifier is trained on the whole
training data set in order to classify the members of class [ against
the rest. For this, the training examples have to be re-labeled:
Members of the [-th class are labeled to 1; members of the other
classes to —1. In the classification phase the classifier with the
maximal output defines the estimated class label of the current in-
put vector.

2. N(N —1)/2 one-against-one classifiers.

For each possible pair of classes a binary classifier is calculated.
Each classifier is trained on a subset of the training set containing
only training examples of the two involved classes. As for the one-
against-rest strategy the training sets have to be re-labeled. All
N(N — 1)/2 classifiers are combined through a majority voting
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scheme to estimate the final classification [35, 36]. Here the class
with the maximal number of votes among all N(N — 1)/2 classi-
fiers is the estimation.

3. Extension of the original SVM formulation to the N-class clas-
sification problem.

Weston and Watkins proposed in [37] a natural extension to the
binary SVM approch to solve the N-class classification problem
directly. Here re-labeling of the training data is not necessary. All
the NV classes are considered at once, and the separating condi-
tions are integrated into the same optimization problem. As for the
one-against-rest classifiers, the result is a N-class classifier with
N weight vectors and N threshold values. The recall phase is or-
ganised as for the one-against-rest classifier strategy.

4. Hierarchiesor treesof binary SVM classifiers.

Here the multi-class classification problem is decomposed into a
series of binary classification sub-problems organized in a hierar-
chy, see Figure 3. We discuss this approach in the next section.

4 SVM Classifier Trees

One of the most important problems in multi-class pattern recognition
problems is the existence of confusion classes. A confusion class is a
subset of the set of the classes {1,..., N} in which very small differ-
ences in the feature vectors may lead to misclassifications. For example,
in OCR the measured features for members of the classes o, 0, 0 and Q
are typically very similar, so {o, O, 0, Q} definesa confusion class.
The major idea of hierarchical classification is to make a coarse discrim-
ination between confusion classes first and a finer discrimination within
the confusion classes later [38].

In Figure 3 examples of hierarchical classifiers are depicted. Each node
within the graph represents a SVM classifier discriminating feature vec-
tors of a confusion class into one of two smaller confusion classes or
possibly into indiviual classes. The terminal nodes of the graph (called
leaves) represent these individual classes, and the other nodes are clas-
sifiers performing a binary decision task, thus these nodes have exactly
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{ABCDEF}

(a) Binary tree classifier

{AB,CDEF}

(b) General hierarchical classifier

Figure 3. Two examples of hierarchical classifiers. The graphs are directed acyclic
graphs with a single root node at the top of the graph and with terminal nodes (leaves)
at the bottom. Individual classes are represented in the leaves, the other nodes within
the graph are classifiers performing a binary decision task, which is defined through the
annotations at the incoming and the outgoing edges.

two children. Nodes within the graph may have more than one incoming
edge. Figure 3a shows a tree-structured classifier, where each node has
exactly one incoming edge. In Figure 3b a more general classifier struc-
ture defined through a special directed acyclic graph is depicted. In the
following we restrict our considerations to SVM trees.

The classification subtask is defined through the annotations at the in-
coming and outgoing edges of the node. Let us consider for example the
SVM classifier at the root of the tree in Figure 3a. The label of the in-
coming edge is { A, ..., F'}, so for this (sub-)tree a 6-class classification
task is given. The edges to the children are annotated with {A, C, D}
(left child) and { B, E, F'} (right child). This means that this SVM has
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to classify feature vectors into confusion class {A, C, D} or {B, E, F'}.
To achieve this, all members of the six classes {A4, ..., F'} have to be
re-labeled: Feature vectors with class labels A, C', or D get the new label
—1 and those with class label B, E, or F' get the new label 1. After this
re-labeling procedure the SVM is trained as described in the previous
section. Note, that re-labeling has to be done for each classifier training.
So far we have not answered the question how to construct the hierarchy
of subsets of classes. In some cases it may be a priori defined. For ex-
ample in applications where the set of classes is hierarchically arranged
based on some kinds of symbolic properties which are in general differ-
ent from the measured features. In OCR for example, the set of charac-
ters can be divided into digits and letters, etc, and further the letters into
upper and lower caser letters.

An attempt to design a hierarchy of confusion classes is to consider the
confusion matrices. Let K be a set of classes that should be divided into
two disjoint subsets Ky and K. A partition has to be evaluated by some
kind of error function counting the number of errors made through the
current class assignments of K and Kos:

E(Ky, K,) = > gy

(iEK{AjEK)V

(JEK1NIEKD)
here ¢,; is the frequency of feature vectors from class : classified to class
j. To design the whole hierarchy this procedure has to be applied until
all confusion classes have exactly a single class.
This approach has two main disadvantages: a) The whole N-class classi-
fication problem has to be solved to determine the confusion matrix. To
determine the confusion matrices, either classifiers have to be trained by
supervision or the confusion matrices have to be calculated by k-nearest-
neighbor procedures. b) The exact evaluation of all possible partitions is
computational expensive for large N, because the number of possible bi-
nary partitions is equal to 2V—' — 1. For large NV an exact enumeration of
all possible binary partitions is intractable, and so the confusion classes
have to be calculated heuristically [23].
Another approach is the partition of classes K into subsets K, and K,
by clustering or vector quantisation methods. In clustering and vector
gquantisation a set of representative prototypes {ci,...,c;} < R? is
determined by unsupervised learning from the feature vectors z*, u =
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1,..., M of the training set. For each prototype c; the Voronoi cells R;
and clusters C; are defined by

R;={x ¢ R* : j=argmin,|c; — =}

and
Cj:Rjﬁ{x" : /JJ:L,M}
The relative frequency of members of class ¢ in cluster j is
1€ N |
Pij = T
|Cj]
For class  the set Q; is defined by

Q={z" : p=1,....M, y* =1}

where y* denotes the teacher signal of feature vector z*. The k-means
clustering with £ = 2 cluster centers ¢; and ¢, defines a hyperplane
within the feature space IR separating two sets of feature vectors. From
the corresponding clusters C; and C; a partition of the set of classes K
into two subsets K; and K5 can be achieved through the following as-
signment:

K;={ic K : j=argmax {pi1,pia}}, J=1,2.

Recursively applied, this procedure leads to a binary tree of confusion
classes as depicted in Figure 3a, where each node within the tree is la-
beled with a confusion class and defines a partition into two sub-confusion
classes. This assignment scheme can be extended in several directions,
e.g. for schemes with £ > 2 cluster centers or for non-binary trees.

5 Dataand Classification Results

Data Sets

Two different data sets were used in performance evaluation of the clas-
sifier, artificially generated and a data set of real camera images.
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Figure 4. Examples of all 23 classes. Labels are from top left to right bottom: cone,
pyramid, cube, cylinder, bowl, table, chair, bottle 1 to 4, tetrahedron, octahedron, do-
decahedron, gem, coffee mug, column, clipped column, office chair, monitor, bucket,
office table and drawer.

Artificial data

Images of 23 different objects were generated with the raytracing soft-
ware PoV-Ray. Examples of the 5920 objects (class 0 to 5: 250 images;
class 6 to 22: 260 images) are given in Figure 4. Images (256 x 256
pixel) were created through a virtual helical movement of the observer
around the object (constant distance). The anzimut angle, was varied in
steps of 36°(0°to 360°) with reference to the object. The declination an-
gle was varied in steps of 1.5°(0°to 15°). A point light source made the
same circular movement 45°ahead of the observer but at a constant dec-
lination angle of 45°. During this "movement” the objects were rotated
at random (uniform distribution) around their vertical axis, the scaling of
the objects (x,y,z -axis) was varied uniformly distributed in the range of
0.7 to 1.3 and the ambient light was varied at random (uniform) in the
range of 0.2 to 0.6. An example of the variation within one class is given
in Figure 5. From all images, 5 x 5 histograms (see Section 2 and Fig-
ure 2) were concatenated into a feature vector that serves as input to the
classifier.
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Figure 5. Examples illustrating the variation inside the class office chair.

Real-world data set of cameraimages

Camera images were recorded for six different 3-D objects (orange juice
bottle, small cylinder, large cylinder, cube, ball and bucket) with an ini-
tial resolution of 768 x 576 pixels. To these five objects nine classes were
assigned (bottle lying/upright, cylinders lying/upright). The test scenes
were acquired under mixed natural and artificial lighting. Regions of
interest where calculated from 1800 images using the colour-blob detec-
tion method. These regions where checked and labeled by hand, 1786
images remained for evaluation. Regions of interest are detected using
three colour ranges, one for red (bucket, cylinder, ball), blue (cylinder)
and yellow (cylinder, bucket, orange juice). The image in Figure 1 gives
an example of the automatically extracted regions of interest. Feature
vectors were calculated concatenating 5 x 5 orientation histograms cal-
culated through 3 x 3 Sobel operator, see Section 2 and Figure 2.

Results

In order to get an overview over the underlying structure of the data, two
data analysis tools are briefly mentioned. They are useful to explore large
sets of highdimensional feature vectors:

1. Clustering of the high dimensional feature vectors utilizing for ex-
ample the k-means clustering algorithm in order to get a smaller set
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Figure 6. Examples illustrating the real-world data set. Labels are from top left to
right bottom: class 0/1: orange juice bottle upright/lying, class 2/3: large cylinder up-
right/lying, class 4/5: small cylinder upright/lying, class 6: cube, class 7: ball, class 8:
bucket.

of representative prototypes. The feature vectors from each class
are clustered separately leading to a set of prototypes, each repre-
senting a certain class. For the union of all prototypes a distance
matrix is calculated. This distance matrix can be plotted as a matrix
of gray values (see Figure 7) and used for further data analysis.

The distance matrix of 6 x 9 = 54 k-means prototypes of the
recorded camera images is shown in Figure 7. Small distances can
be observed between prototypes within the classes {2, 3,4, 5,6, 8}
and within {0, 1}. The prototypes of class 7 seem to be separated
from the others, but some smaller distances to prototypes of classes
{0,1,4,5,6} can be detected. These smaller distances between
prototypes of different classes typically lead to misclassifications.

no

Nonlinear distance preserving proj ections of the data points into
a lowdimensional projection space (typically IR?) may be used to
explore the data set. The projection of large data sets is computa-
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Figure 7. A 54 x 54 (Euclidean) distance matrix for 54 k-means prototyes (6 pro-
totypes per class) of the recorded camera images. The 54 prototypes are sorted by its
class memberships in such a way that the prototypes c1, .. ., cg are members of class
0, ¢7,...,c10 have class label 1, etc. Distances between prototypes have been encoded
into gray values (small distances black, large distance white).

tional expensive and intractable, therefore only the prototypes are
projected which gives a rough overview over the data (see [39]
for some more details on clustering and visualization of large and
highdimensional data sets). In Figure 8 the 54 prototypes of the
k-means cluster procedure are shown as projections (with class la-
bels) to IR?. Here, in the lower left part of Figure 8 the projections
of the prototypes of classes 0,1 and 7 are located, the prototypes
of the other classes cover the rest of the projection area. This is
a similar observation as already seen for distance matrix of the
cluster centers. This result is not surprising because Spearman’s
rank order coefficient of the two sorted distance sequences (dis-
tances in feature space vs. distances in projection space) has been
determined to r; = 0.98. The value of Spearman’s rank order co-
efficient r, is within the interval [—1, 1], where larger values close
to 1 indicate similar rank orders of the sequences, so that the cal-
culated value of r, = 0.98 shows that the order of the distances
between the cluster centers in the feature space are fairly well rep-
resented by the distances of the corresponding projections in IR?.
For a more detailed visualization of the data set clustering and pro-
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Figure 8. A distance preserving 2-D projection of the 54 prototypes (see text). The
class membership of a prototype is used to annotate of its 2-D projection.

jection algorithms have to be applied to the feature vectors of the
confusion classes.

In Figure 9 the structure of the confusion classes for the real-world data
set of recorded camera images is given. The binary tree of the confu-
sion classes has been determined by 2-means clustering followed by the
assignment scheme previously described. For a partition of a certain
confusion class, 5 clustering runs have been applied to the feature vec-
tors of this confusion class. Each clustering run has been initialized with
a randomly selected subset of the data set serving as initial setting of
the cluster centers. Except for the confusion class {4, 5,6}, always the
same split of the confusion classes has been found. For confusion class
{4,5,6} the partition {4,5} and {6} which is shown in Figure 9 has
been found once, the trivial partition {4,5,6} and () has been found in
the other four clustering runs. In the nodes the classification accuracies
of the particular classification task are given. As already observed for the
distance matrix of the class specific prototypes and in the 2-D projection
of the prototypes the two confusion classes {0, 1,7} and {2, 3,4, 5,6, 8}
may be defined and have been determined by the 2-means clustering pro-
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{0,1,2,...8}

{2,3,4,5,6,8

{0} {8}

{4} {5} {2} 3}

Figure 9. Binary tree classifier for the set of feature vectors derived from the ROIs of
the camera images from the real-world data set. Each node within the tree is labeled
with a confusion class and the classification rate of the defined sub-classification prob-
lem (mean of three 5-fold crossvalidation runs). In the leaves the original individual
classes are represented.

cedure at the root level.
The classification results of four different classifiers are presented for
both data sets:

INN: 1-nearest neighbor classifier with Euclidean distance.

LVQ: 1-nearest neighbor classifier trained by Kohonen’s software pack-
age OLVQ1 and LVQ3 training each algorithm for 50 training epoches;
10 prototypes per class.

RBF-SVM: A set of support vector networks each with Gaussian kernel
function; N-against-rest learning/voting strategy; NAG library for opti-
mization.

RBF-SVM-HC: A binary tree of support vector networks each with
Gaussian kernel function; a binary tree of confusion classes is determined
with 2-means clustering; NAG library for optimization.
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Classifier Cameralmages | PoV-RAY Data
INN 91.04 92.45
LVQ 92.44 92.80
RBF-SVM 93.89 93.32
RBF-SVM-HC 94.28 93.06

Table 1. Classification accuracies of the real-world camera images and the artifically
generated PoV-RAY data set for the 1-nearest-neighbor classifier, an LVQ-classifier
trained by OLVQ1 and LVQ3 with & = 90 prototypes (for the camera images) respec-
tively k& = 230 (for the POV-RAY data set) prototypes, an RBF network trained by
support vector learning (N-against-rest strategy), and a binary tree of RBF classifiers
each trained by support vector learning. The mean of three 5-fold crossvalidation runs
is given.

The classification results given in Table 1 are the means of three 5-fold
crossvalidation runs. The classification rates of the SVM classifiers are
significantly higher than the accuracies for the INN and LVQ classi-
fiers. For the real world data set the results of the SVM tree classifier are
remarkably good, slightly better as for the flat SVM classifier with the N-
against-rest strategy. It can be observed in Figure 9 that many misclassi-
fications appear by discriminating between the classes {4, 5, 6}, because
the extracted feature vectors looked very similar. In such cases different
features have to be extracted, e.g. edges, colours or texture.

6 Conclusion

In this chapter, we presented a 3-D visual object recognition system for
a mobile robot. The components of this system perform the subtasks:
(1) Localization of the 3-D objects in the camera images based on colour
blob detection, the ROIls in the camera images, (2) extraction of low-level
features within the determined ROls—a set of orientation histograms cal-
culated from the ROIs, and (3) classification of the extracted feature vec-
tors utilizing a tree of RBF-classifiers, each classifier trained by support
vector learning. Classification results based on crossvalidation have been
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presented for 1-NN, LVQ, SVM, and SVM-trees. We have assessed the
potential of nonlinear SVMs and trees of nonlinear SVMs in the prob-
lem of recognizing 3-D objects from a single object view. In comparison
to other algorithms, it appears that the classification results of SVM tree
classifiers are remarkably good. The proposed SVM tree classifier is a
flexible classifier architecture which is able to deal with different sets
of features which may be useful in applications with many thousands of
different objects to classify. Future work in this area includes the in-
tegration of additional features like edges, colours, texture, etc. where
different features should be used in the visual attention module and in
particular for the hierarchical classifier.
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