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Non-invasive risk assessment after myocardial infarction is a major but still unresolved

goal in clinical cardiology. Various parameters such as ventricular late potentials, T-

wave alternans, and repetitive ventricular extrasystoles have been shown to indicate an

increased risk of sudden cardiac death. However, the practical use of these arrhyth-

mic markers into clinical decision making remains difficult. In this chapter we will

describe two approaches of risk stratification with RBF networks using high–fidelity

ECG recordings. Based on these high–fidelity recordings different aspects of conduc-

tion defects are exemplarily investigated. The first utilizes established features derived

from signal averaged QRS complexes (heartbeats) and the second investigation centers

on capturing morphology changes within the QRS complex.

1 Introduction

The non–invasive risk stratification of patients prone to sudden cardiac
death is an important problem in modern cardiology. The incidence of
sudden cardiac death (SCD) in the area of Germany is about 80,000 to
160,000 cases per year. Apart from cases of ventricular fibrillation (VF)



related to myocardial ischaemia, the main reason for SCD is the occur-
rence of ventricular tachyarrhythmias as a cause of a chronic arrhythmo-
genic substrate. Sudden cardiac death most often occurs in the presence
of coronary artery disease (CAD) (90% of SCD patients). In a signifi-
cant number of patients (13% – 20%) it is the initial symptom of CAD.
Ventricular fibrillation emerges in most cases (70%) secondarily from a
ventricular tachycardia.
Various parameters such as ventricular late potentials, T-wave alternans,
and repetitive ventricular extrasystoles have been shown to indicate an in-
creased risk of sudden cardiac death. However, the practical use of these
arrhythmic markers into clinical decision making remains difficult. The
positive predictive value of all non-invasive parameters is limited espe-
cially when not combined with a reduced left ventricular function. On the
other hand the available therapeutic options, the implantable cardioverter
defibrillator or long term amiodarone drug therapy, have side effects,
strain the patient and are cost intensive, thus requiring a highly selective
usage. Recently the MUSTT [1] and the MADIT [2, 3] study proved the
effect of defibrillator therapy in post infarction patients pre-selected by a
reduced left ventricular function and spontaneous non-sustained ventric-
ular tachycardia, with inducible sustained ventricular tachycardia during
electrophysiologic study. In this chapter we summarize the clinical re-
sults of the currently available methods for non-invasive risk assessment
and describe two approaches of risk stratification with RBF networks
based on high–fidelity ECG recordings. In post-infarction studies with
animals it has been shown that the substrate for singular or repeated ven-
tricular arrhythmias is a localized damaged myocardium with abnormal
conduction characteristics [4–6]. This causes slow or irregular propaga-
tion of activation. It is possible to detect these delayed signals with the
high–resolution electrocardiogram. Based on these high–fidelity record-
ings different aspects of conduction defects are exemplarily investigated.
The first is based on established features derived from signal averaged
QRS complexes (heartbeats) and mainly describes a prolongation of car-
diac exitation that extends beyond the normal heartbeat (late potentials).
The second investigation centers on capturing morphology changes of
the QRS complex (segment of the ECG signal associated with depolar-
ization) in beat–to–beat recordings.
Within this problem context of non-invasive risk stratification the topics
of data acquisition, group description and evaluation are treated together
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with the initialization and training algorithms of the used RBF networks.

2 Medical Background: Review of Non–
Invasive Risk Stratification in Patients after
Myocardial Infarction

Even in the thrombolytic era with its generally accepted reduction of
hospital mortality, patients with acute myocardial infarction remain at an
increased risk of sudden death at least in the first year after the acute
event [7]. Based on large multi center studies post myocardial infarction
there is still a remarkable rate of total death (7% to 23%) and sudden
cardiac death (4% to 8%) within the first one or two years after infarc-
tion, particularly in patients with reduced left ventricular function, as
seen from the placebo arms of several studies [8–12] (Table 1).
Various non-invasive tests have been developed and clinically evaluated
for risk assessment after myocardial infarction to detect subgroups of
high risk patients for preventive treatment. From the current concept ar-
rhythmogenesis is an integrative process dependent on the existence of an
arrhythmogenic substrate (the infarction zone with abnormal automatism
and slowed conduction), the autonomic tone, spontaneous trigger events
(ventricular extrasystoles) [13], and other modulating environmental fac-
tors (electrolytes, drugs). The available non-invasive tests cover different
aspects of this scenario (Table 2). Late potential analysis concentrates on
the detection of myocardium with slow conduction. Holter monitoring
allows to measure the incidence and complexity of spontaneous trigger
events. Baroreflex sensitivity and heart rate variability reflect the auto-
nomic tone. Most recently T–wave alternans has been introduced into
clinical application as a marker of repolarization abnormalities.

Ambulatory Electrocardiography. With the ambulatory ECG the dif-
ferent types of ectopic beats can be documented that may trigger the ini-
tiation of ventricular tachycardias and/or fibrillation. Among those are
frequent and repetitive ventricular premature beats (VPBs) up to non-
sustained or sustained ventricular tachycardias. In addition to the quan-
tification of spontaneous arrhythmias, modern Holter ECG equipment
allows ST-segment analysis for ischaemia detection, heart rate variabil-
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Table 1. Mortality rates after myocardial infarction (total deaths and sudden cardiac

deaths) in the era of thrombolysis, as taken from the placebo arms of recent large ran-

domized trials. Abbreviations: SCD: sudden cardiac death, FU: follow-up, yrs: years,

AMI: acute myocardial infarction, LVEF: left ventricular ejection fraction, f/r VPBs:

frequent (�10/h) or repetitive (�3 beats) ventricular premature beats, HF: heart fail-

ure, CHF: congestive heart failure, AIRE: Acute Infarction Ramipril Efficacy study,

SAVE: Survival And Ventricular Enlargement study, EMIAT: European Myocardial In-

farct Amiodarone Trial, CAMIAT: Canadian Amiodarone Myocardial Infarction Ar-

rhythmia Trial, AMIO: Amiodarone.

Author Year Study Target Number Total SCD FU (yrs)

AIRE Inves-
tigators [11]

1993 AIRE AMI +
HF

992 23.0% – 1.25

Lamas et al.
[8]

1995 SAVE AMI 946 6.6% – 1 (3.5)

Julian et al.
[9]

1997 EMIAT AMI,
LVEF�
40%

743 12.0% 8.2% 1.75

Cairns et al.
[10]

1997 CAMIAT AMI, f/r
VPBs

596 8.3% 5.2% 1.79

Amiodarone
Trials Meta–
Analysis
Investiga-
tors [12]

1997 AMIO
META
ANALY-
SIS (13
Trials)

AMI �
CHF

6553
(5101+1452)

12.3% 5.7% 1.4
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Table 2. Association of certain electrocardiographic methods and parameters to cel-

lular functions of the myocardium and to electrophysiological mechanisms of tach-

yarrhythmias. Abbreviations: ECG: electrocardiogram, SAECG: signal averaged sur-

face ECG, VLP: ventricular late potentials, HR: heart rate, HRECG: high resolution

ECG.

ECG - Parameter Cellular Function VT/VF – Mechanism

SAECG: VLP Conduction delay (static) Reentry
Bystander area?

Holter-ECG:
spontaneous arrhythmias

Trigger events Abnormal automatism
Reentry-induction

Real time-HRECG: QRS
variability (QRV)

Dynamic conduction
delay

Reentry

Real time-HRECG:
variant VLP

Wenckebach conduction
delay

Reentry
Bystander area?

Surface ECG:
QT-Dispersion

Dispersion of local
repolarization

Reentry

Holter ECG:
QT-Variability

Dynamic behaviour of
action potential duration

Reentry
Autonomic tone
Triggered Activity

Surface ECG: T-wave
alternans

Dynamic behaviour of
repolarization

Reentry
Autonomic tone

Holter ECG:
HR-variability

Sympathetic-
parasympathetic
balance

Reentry?
Autonomic tone
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ity analysis, the detection of ventricular late potentials by signal averag-
ing, and QT variability analysis. Late potentials may be considered as a
marker of delayed depolarization from areas of damaged ventricular my-
ocardium, thus forming one pre-requisite of a reentrant circuit. However,
it has been claimed from both experimental and clinical studies that in a
significant proportion late potentials may represent only bystander areas,
which are not an essential anatomical part of the reentrant circuit. Be-
cause dynamic events of ventricular depolarization are lost by the averag-
ing process, beat-to-beat real time high resolution ECG equipment have
been developed and clinically tested [14, 15], and indeed increased beat-
to-beat variations of the QRS-complex (QRV) and the T-wave have been
demonstrated in patients at high risk for malignant arrhythmias [15–17].
Two new ECG methods have been extensively investigated in recent
years, aimed at detecting repolarization inhomogeneities, namely QT-
dispersion from the conventional 12-lead surface ECG [18] and QT-
variability mainly from 24-hour ambulatory ECG recordings [19]. Most
recently a special technique and algorithm has been described to detect
beat by beat T-wave alternans at the microvolt level [20]. T-wave macro-
alternans is a well known phenomenon in severe myocardial ischaemia,
experimental myocardial infarction, vasospastic angina and other patho-
physiological conditions (neuro-hormonal imbalance). Increased beat-
by-beat micro-fluctuations of the amplitude and shape of the T-wave (re-
polarization process) are thought to reveal an increased local inhomo-
geneity of repolarization within the entire ventricular myocardium [21].

Assessment of imbalances of the autonomic nervous system. To de-
tect influences of the autonomic nervous system, heart rate variability
(HRV) has been tested in short term (5 minutes to hours) and long term
(24 hours) approaches, using either surface ECG monitoring or 24 hour
Holter recorders, both in the time and frequency domain [22–24]. A
large number of time domain indices have been developed and clini-
cally tested such as SDNN, SDANN, RMSSD, NN50 and pNN50 (all
statistical methods), and HRV-triangular index, TINN, Differential in-
dex and Logarithmic index (all geometrical methods). According to
the Task Force Committee on Heart Rate Variability both SDNN and
HRV triangular index should be used for the assessment of overall HRV,
whereas short term components of HRV may be estimated by SDANN
and RMSSD [25]. Power spectral analysis using fast Fourier transform
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allows the separation of the total power spectrum into high frequency
(HF), low frequency (LF), very low frequency (VLF) and the ultra-low
frequency range (ULF). The physiological correlate to HF components
is attributed to ventilation, of LF to baroreflexes, of VLF to sympathetic
activity (?), and of ULF possibly to the activity of the Renin-Angiotensin
system. The LF/HR ratio may reflect sympatho-vagal balance, sym-
pathetic modulations or baroreflex activity [24]. It should be stressed
that for physiological and mathematical reasons there are strong correla-
tions between certain time and frequency parameters of heart rate vari-
ability: SDNN, HRV triangular index, and TINN correlate to the total
frequency power spectrum; SDNN index correlates to mean 5-min to-
tal power; RMSSD, SDSD, NN50 count, pNN50, differential index and
logarithmic index correlate to the HF spectrum [25]. Changes in HRV
have been found in patients after myocardial infarction, in diabetic neu-
ropathy, in transplanted hearts, in cardiac failure and in patients with
tetraplegia [25]. A number of drugs like beta-adrenergic blockers, anti-
arrhythmic drugs and muscarinic receptor blockers have been found to
influence HRV. Beta blockers enhance HRV, antiarrhythmics like fle-
cainide and propafenonene decrease HRV, and scopolamine paradoxi-
cally also decreases HRV. For risk stratification in post-MI patients both
SDNN and HRV triangular index proved to be a powerful tool for pre-
dicting sudden cardiac death. In the study of Kleiger et al. [22] a SDNN
cut-off value of 50-100 ms differentiated well between patients at low
risk (50-100 ms) and those at high risk (�50 ms), as did a cut-off value
of the HRV triangular index of 20 in the study of Malik et al [23].

Electrophysiological testing (EPS). Between 1982 and 1992 a con-
siderable number of studies have been published on the value of elec-
trophysiological testing (EPS) for predicting the risk of sustained VT or
SCD in post-MI patients [26–39]. The parameter used initially, repetitive
ventricular response, namely (�3 VPBs following one or two extrastim-
uli) proved to be too unspecific and over sensitive as a marker of ventric-
ular electrical instability, and today only the induction of sustained VT
is considered a meaningful and more specific risk marker for ventricular
vulnerability [40]. Among 14 selected prognostic studies of EPS follow-
ing acute myocardial infarction only 8 proved to be prognostic for SCD
(Table 3). The positive predictive value of EPS following MI, ranges be-
tween 13% to 42%, whereas the negative predictive value is as high as
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95% to 100%.
In the clinical setting the value of all non-invasive methods and risk mark-
ers on its own, including of programmed ventricular stimulation, is lim-
ited since the positive predictive values of all of theses methods range
from 4% to 42% (Table 4), i.e. there is a significant number of false
positive candidates with a pathological finding in either of these tests,
who never will experience a sudden cardiac death in the first one or two
years after myocardial infarction. A combination of two or more non-
invasive risk markers, e.g. left ventricular ejection fraction below 40%,
ventricular late potentials, frequent and/or repetitive extrasystoles, may
enhance the positive predictive value to 50% or more, but at the expense
of sensitivity, which may drop below 50% [42–45].

Risk stratification in patients with cardiomyopathies and chronic
congestive heart failure. Risk stratification in patients with hyper-
trophic obstructive cardiomyopathy (HOCM) or dilative cardiomyopa-
thy (DCM) seems to be less substantiated, since at least PVS proved to
be too insensitive and unspecific for differentiating patients at high risk
of SCD. Therefore other risk markers for HOCM such as sudden unex-
pected death in family relatives, sudden unexplained syncope in the indi-
vidual patient or syncope on exertion, the presence of sustained VT and
a high pressure gradient with exaggerated septal hypertrophy seem to be
more predictive [47]. For DCM the degree of left ventricular dysfunction,
the clinical status of cardiac failure, and the presence of non-sustained
VT may be predictive of increased mortality. The degree of left ventric-
ular dysfunction may also be useful for predicting reduced survival rates
in patients with other types of chronic severe heart failure (CHF), which
may be tested by the degree of exercise tolerance. This has been shown
by Mancini et al. [48], who demonstrated that CHF patients on a wait-
ing list for heart transplantation being able to perform an exercise work
load with a peak oxygen uptake of �14 ml/kg/min had an equal survival
rate compared to those who already had a heart transplant. In contrast,
those patients with a peak exercise capacity of � 14 ml/kg/min had a
one year survival rate of only 47%, and a two year survival rate of 32%.
The role of left ventricular dysfunction and particularly of repetitive ven-
tricular arrhythmias including non-sustained VT in predicting the risk of
sudden arrhythmic death remains unclear in patients with severe CHF. At
least in those with sustained VT or arrhythmic syncope an implantable
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Table 3. Prognostic significance of programmed ventricular stimulation (PVS) for the

incidence of ventricular tachycardia (VT) or fibrillation (VF) and for sudden cardiac

death (SCD) in the first to second year after acute myocardial infarction. Abbreviations:

n: patient number studied, FU: follow-up, Ind �: inducible by PVS, Ind �: non-

inducible by PVS, Rec: recurrences.

Author Year n FU
month

Ind�
(%)

Rec
(%)

Ind�
(%)

Rec
(%)

Prognostic
for SCD

Breithardt
[26]

1982 132 15 46 16 54 4 �

Hamer
[28]

1982 70 12 17 33 83 9 �

Richards
[29]

1983 165 12 23 21 77 2 �

Marchlinski
[30]

1983 46 18 22 6 78 14 �

Gonzalez
[27]

1984 84 20 23 0 77 6 �

Waspe [31] 1985 50 23 34 41 61 0 �

Roy [32] 1985 150 10 23 6 72 2 �

Santarelli
[33]

1985 50 11 46 0 54 0 �

Bhandari
[34]

1985 45 12 44 10 56 3 �

Kowey
[35]

1990 187 18 64 21 36 29 �

Iesaka [36] 1990 133 21 19 47 81 3 �

Bourke
[37]

1991 1209 12 6 19 94 3 �

Bhandari
[41]

1992 86 18 22 32 78 7 �

Steinbeck
[39]

1992 152 11 16 13 84 2 �
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Table 4. Predictive value of different non-invasive and invasive markers for sudden

cardiac death given with their corresponding cut-off values. Abbreviations: VTA: ven-

tricular tachyarrhythmias, SCD: sudden cardiac death, ECG: electrocardiogram, VT:

ventricular tachycardia, VPB: ventricular premature beat, QTD: QT-dispersion, TD:

time domain, AE: serious arrhythmic event.

Method Marker Positive
Predictive Value
(%)

Negative
Predictive Value
(%)

Holter ECG non-sustained
VT Pairs �

10/24h Salvos
� 2/24h fre-
quent VPBs
�10/h

10 – 20 70 – 90

Signal Averaged
ECG (at rest,
Holter)

Ventricular late
potentials (2/3
Simson criteria
positive)

4 – 30 95 – 99

12 lead ECG QTD � 80ms inconsistent, 0 –
100 (see Zabel et
al. [46])

inconsistent, 0 –
100 (see Zabel et
al. [46])

Surface ECG T-wave alter-
nans ratio �

3.0

54 (AE) 90 (AE)

Holter ECG Heart Rate Vari-
ability SDNN �

50ms (TD)

17 77

Electrophysio-
logical Study

Repetitive
ventricular
response,
sustained
ventricular
tachycardia

13 – 42 96 - 100
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cardioverter defibrillator (ICD) should be implanted prophylactically in
order to bridge the patient alive to the time of heart transplantation.

Sequential non-invasive and invasive risk stratification protocols.
Instead of an alternative application of non-invasive or invasive strate-
gies, a two-step risk stratification procedure using non-invasive screen-
ing followed by an invasive electrophysiological study seems to be more
appropriate, as has been proposed and investigated by Pedretti et al. [49].
In a total of 303 post-myocardial infarction patients a number of clinical
risk markers such as age, previous myocardial infarction, non-Q-wave
infarction, left ventricular dyskinesia, ejection fraction � 40%, filtered
QRS duration of � 115 ms (VLP), VPBs � 6/hour, presence of non-
sustained VT, HRV index of � 29 and mean RR interval � 750 ms were
tested by stepwise logistic regression analysis. The following markers
proved to be most significant: EF � 40%, VLP present, and detection
of repetitive VPBs. Patients with none or one non-invasive risk marker
were classified as low risk patients and followed for a mean of 15 months
post infarction. Those with two or three non-invasive risk markers were
classified as intermediate to high risk and subjected to invasive electro-
physiologic testing. Patients with inducible sustained VT were classified
as high risk patients, and those without inducibility of sustained VT to
the low risk group. The mortality rate for SCD was 13/20 (65%) in the
group with inducible sustained VT, whereas mortality in the low risk
group was 3/263 patients (1.1%). The sensitivity for predicting SCD by
the two-step program was 81%, the specificity 89%, the positive predic-
tive value was 65% and the negative predictive value was 99%, i.e. 65%
of patients were correctly classified as SCD candidates. The study of
Pedretti et al. [49] has been confirmed in essence by the publication of
Zoni-Berisso et al. [50].

Current status. In daily practice the diagnosis of an increased arrhyth-
mic risk has to be followed by the clinical decision whether the risk of
the individual patient is high enough to require aggressive and cost inten-
sive treatment strategies such as long term amiodarone or cardioverter
defibrillator implantation. Despite the large number of studies dealing
with risk assessment from different parameters, data concerning proven
therapeutic consequences of risk assessment are still limited to very high
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risk patient groups. The MUSTT [1] and MADIT [2, 3] trials ascertain
the use of a stepwise approach based on non-sustained ventricular tachy-
cardia (nsVT) and a reduced left ventricular ejection fraction (EF) for
the selection of patients for electrophysiologic testing (EPS). In patients
with inducible sustained VT implantation of an cardioverter defibrillator
was proven to be an effective therapy. Despite the fact that these studies
could demonstrate the successful transposition of risk assessment into
therapy, there are still many open questions. The level of risk as well
as the optimum of equivalent combinations of risk factors have to be de-
fined. Currently all risk assessment strategies are based on a significantly
depressed left ventricular function. However it remains to be defined
whether LV dysfunction needs to be always heavily reduced or whether
certain combinations of risk parameters require treatment even with mod-
erate or low LV-impairment. Only recently Ikeda et al. [51] showed that
the combined assessment of T–wave alternans and late potentials is asso-
ciated with a high positive predictive value for an arrhythmic event after
acute MI. Furthermore current risk assessment strategies mostly serve as
pre-screening of patients for subsequent programmed ventricular stimu-
lation still regarded as the gold standard of risk evaluation. Although this
might be acceptable in post MI patients, EPS does not capture all relevant
mechanisms of malignant ventricular tachyarrhythmias [52]. Especially
in patients with cardiomyopathy the inducibility of sustained VT dur-
ing electrophysiological stimulation is less specific. In clinical practice
a two step stratification program in post infarction patients seems to be
an adequate and cost effective approach. The positive predictive value of
all individual non-invasive parameters is limited. However the negative
predictive value is relatively high (� 90%) and can be further increased
by combining them using the OR relation. Thus pre-selection of high
risk patients with a set of non-invasive markers will markedly enhance
the specificity and predictive accuracy of the subsequent invasive elec-
trophysiological test. A different test characteristic can be reached by
combining several screening parameters in an AND relation resulting in
an improved positive predictive value of the subsequent EPS. Further-
more the use of multiple pre-screening non-invasive tests allows to cover
different pathophysiological aspects of arrhythmogenesis (see Table 2).
A potential risk stratification strategy including both established parame-
ters (EF � 40%, non-sustained VT, see MUSTT, MADIT) and new non-
invasive tests is shown in Figure 1. After myocardial infarction patients
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will first be studied for post-MI ischaemia (angina, ST-segment depres-
sion) and will be revascularized if needed (PTCA or bypass grafting).
Two to three weeks post MI, left ventricular function will be measured
(echo, angiogram, scintigraphy), and a Holter ECG will be recorded. In
addition a set of new risk markers including ventricular late potentials,
heart rate variability, T-wave alternans, and the recently described heart
rate turbulence [53] can be recorded. In patients with EF � 40% and
non-sustained VT (which corresponds to MUSTT and MADIT) or a re-
duced LV function in combination with at least three other risk markers
an electrophysiologic study will be performed. Patients not undergoing
EP study as well as patients with a negative EP test result will receive beta
blocker therapy. Patients with inducible VT (due to the protocol always
on top of the above mentioned pre-screening risk factors) represent a true
high risk population requiring ICD therapy. Further studies are necessary
to clarify the role of long term amiodarone drug therapy plus beta blocker
as an alternative to the ICD strategy in certain patient subgroups. New
technologies of signal analysis have broadened our apparatus for risk as-
sessment allowing to measure very diverse aspects of arrhythmogenesis.
The above proposed strategy is a careful approach to include these new
technologies into clinical practice although other combinations of risk
markers might replace the reduced left ventricular ejection fraction [51].
Several studies with long term follow-up are necessary to clarify their
final role in different patient subgroups and pathophysiological entities.
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Figure 1. Flow chart showing the proposed two-step risk stratification procedure in

patients after acute myocardial infarction (see text). Abbreviations: EF: ejection frac-

tion, VEA: ventricular ectopic activity, HRT: heart rate turbulence, HRV: heart rate

variability, TWA: T-wave alternans, VLP: ventricular late potentials, QRV: QRS mi-

crovariability, nsVT: non-sustained ventricular tachycardia, EPS: electrophysiological

testing (by programmed ventricular stimulation), sVT: sustained VT, ICD: implantable

cardioverter defibrillator, BB: beta blocking drug, AMIO: amiodarone.
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3 Selected methods for training RBF classi-
fiers

In this section we present the different RBF initialization and training
strategies used in this investigation.
In the classification scenario a neural network performs a mapping from
a continuous input space � (� ���) into a finite set of classes � �
���� � � � � ���. In the training phase the parameters of the network are
determined from a finite training set: � � ����� ����	 � �� � � � 
�, each
feature vector �� � ��� is labeled with its class membership �� � � . In
the recall phase further unlabeled observations � � ��� are presented to
the network which estimates their class membership �.
Here, we restrict ourselves to Gaussian basis functions [54] of the type

����� � ��	

�
����� ����

�


���

�

where � is the d–dimensional input vector with elements � � ��, and
�� � ��� is the vector determining the center of the basis function �� and
has elements ��� � ��, �� � �� denotes the Euclidean norm. The radial basis
function neural network mapping with� basis functions is then

����� �
��
���

�������� � ���

where the��� denote the biases, which may be absorbed into the summa-
tion by including an extra basis function �� whose activation is set equal
to 1. This mapping can be represented as the network diagram of Figure
2 with the radial basis functions in the hidden layer and linear summation
on the output layer. In our classification scenario the number of output
units corresponds to the number of classes (1 of � coding). Categoriza-
tion is performed by assigning the input vector � the class of the output
unit with maximum activation:

class��� � ��� where �� � argmax
����			 ��

������

To simplify notation and without any loss of generality we identify

�� � � and thus � � ��� � � � � ���
Typically, training an RBF network is separated into two phases:
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RBF-layer, prototypesInput Output
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���
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�

�
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���

Figure 2. Architecture of the radial basis function neural network with Gaussian

basis functions �� � ����� � ��	
�
�

��������
�

���
�

�
and linear output units ����� �

��

��� �������� � ���.

(a) Adaptation of the centers of the prototype with a supervised or
unsupervised training procedure and

(b) adaptation of the output layer together with the setting of the width
of the RBF functions.

In the following methods for these two phases, which were applied in this
investigation are described together with a procedure for the selection of
initial prototypes.

3.1 Selection of seed prototypes

Different methods for the selection or generation of seed prototypes are
possible. One of them, a random selection of prototypes from the avail-
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able training data does not fulfill the requirements of good seed proto-
types in terms of their equal distribution among the classes and good
classification properties within a reasonable neighbourhood of their lo-
cation. We therefore used an algorithm for finding seed prototypes from
the training data which selects if possible an equal number of prototypes
from each class with the additional requirement of having within the �
nearest neighbours a majority of the same class. If that is not possible
the neighbourhood requirement is dropped. If that is still not possible a
data point of any class is used as a seed prototype.
More formally we define:

��� � ���� � ����
for � � ��� � � � ��� and 	 � ��� � � � � 
�. With the sequence
	�� � � � � 	� and

���� � ���� � � � � � ���� �

�
���� � ���� � � � � �����
is the set of � nearest neighbours (data points) of prototype �� and

�

� ���� �

�
�
� � �
���� � class���� � �

�
is the set of nearest neighbours (data points) of class � among the �
nearest neighbours (data points) of prototype �� .
The procedure for the selection of seed prototypes is described in Algo-
rithm 1.

3.2 Adapting the prototype location

Supervised: OLVQ1. Kohonen [55] proposed a supervised version
of a vector quantization algorithm called Learning Vector Quantization
(LVQ). From the basic LVQ1 version, the OLVQ1, LVQ2, and LVQ3
competitive training procedures have been derived. In the following the
OLVQ1 algorithm, which is used in the experiments, will be briefly il-
lustrated. After the initialization of the prototypes �� and upon the pre-
sentation of a feature vector from the training set ��, the location of the
winning prototype ��� with

�� � argmin
�

���� � ����
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Algorithm 1 Selection of seed prototypes
Require: � , �
� � �, � � �
while � � � do

for � � � to � do
for � � ��	 
 
 
 	 ���� do
�� � ��


� ����� � max
����

��

� �����

end for
�� � argmax

�
��

� � � 	 ����
�� � ��

�
, class���� � �

m = m + 1
end for

end while
if � � � then

select � �� prototypes at random
end if

is adapted according to the learning rule:

���� �

�
���������

� � ����� if class����� � class����
���������� � ����� if class����� 	� class����

.

In contrast to the LVQ1 algorithm, OLVQ1 exhibits an individual learn-
ing rate ����� for each prototype �� . Usually ����� is positively decreas-
ing. The class labels of the prototypes are not changed during adaptation,
they remain constant after initialization.

Unsupervised: Batch k–means. It is possible to adapt the prototype
location in a non-trivial way without using any class information of the
training patterns. This is done by utilizing the neighbourhood relation-
ships within the data points imposed by a distance measure. The k–
means clustering procedure [56–58] is among the most popular methods
in cluster analysis [59]. After initialization of the prototypes �� their
location is adapted after every epoch according to (batch k–means algo-
rithm):

�� �
�

�
��
�
�����

�
�
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with


� �
�
�
� � � �� � � argmin

�

���� � ����
�

being the set of hits at prototype �� and� � ���� � � � ���� being the set
of feature vectors of the training set �. It is easily shown that this update
rule minimizes the error function:

����� � � � � ��� �
��
���

�
�����

���� � ����� .

Dynamic LVQ. The previous two approaches for adapting the hidden
layer require the a priori setting of the number of prototypes. Here, we
present a simple data driven codebook generation scheme, which is sim-
ilar to [60, 61]. Adaptation of the prototype location is done by OLVQ1
(although k–means could be used as well). During training a statistic for
each prototype �� is maintained, which contains the number of class spe-
cific hits ��� with � 	� class����. Based upon this statistic new prototypes
are inserted, and if after the temporarily insertion of the new prototype
the classification error does not decrease, the prototype inserted last is
pruned from the network, see Algorithm 2 and Figure 3.
For � � ��� � � � ��� and � � ��� � � � � �� we define


�� �
�
�
� � 
�

�� class���� � �
�

and for � � ��� � � � � ���class���� we set

��� � �
����
Then, there exists a sequence ���� ���� � � � � ��� �� with � � ��� � ��
such that

����� � ����� � � � � � ������
Candidate prototypes for the temporary insertion into the codebook are
defined as follows:

�
�
��
�

�

�����

�
�������

� and class������ � ���
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Algorithm 2 Dynamic LVQ
Require: , �, ���

OLVQ1 training: ��	 
 
 
 	 ��
� � error���	 
 
 
 	 �� �

while (� 
 �) or (� ���� � �) do
Calculate all ��� for � � ��	 
 
 
 	�� and � � ��	 
 
 
 	 ���class����
Sort ��� such that ����� � ����� � 
 
 
 � �����
� � �

while � 
 � do
�
�
��
� �

�����

�
�������

�

class����� � � ��
OLVQ1 (��	 
 
 
 	 �� 	 ���� )
if � � �� � error���	 
 
 
 	 �� 	 ���� �� then
� �� � �, � � �
�� � ���� , class��� � � ��

else
� � � � �

end if
end while
OLVQ1 training: ��	 
 
 
 	 ��
� � error���	 
 
 
 	 �� �

end while
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Figure 3. Illustration of prototype insertion with dynamic LVQ in a three class scenario

(�, Æ, �). The prototype �� makes five misclassifications with class � and three with

class Æ. At first a new prototype is added at the center of gravity ��� . If the overall

classification rate does not rise, location ��� is tried.

3.3 Construction of the RBF network

So far we have only dealt with different vector quantization schemes for
the adaptation of prototype locations. For the transition to a RBF net-
work these prototype locations are used as centers of the radial basis
functions. Additionally the initial setting and possible adaptation of the
kernel widths �� of the radial basis functions and of the hidden to output
layer connections ��� is required. Here, we restrict ourselves to initial-
izing the output weights to 1 for ’prototype-of-that-class’ to ’output-of-
that-class’ connections and the others to small values (see Section 5).
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3.3.1 Setting of the kernel widths.

The setting of the kernel widths is a critical issue in the transition to
the RBF network. When the kernel width � is too large the estimated
probability density is over-smoothed and the nature of the underlying
true density may be lost. Conversely, when � is too small there may be
an over-adaptation to the particular data set. In addition very small �
tend to cause numerical problems with gradient descent methods as their
gradients vanish. We investigated three different schemes for the initial
setting of the kernel widths in transition to the RBF network (� is set
heuristically):

1. The kernel width �� is set to the mean of the distance to the �
nearest prototypes ����� of prototype ��:

�� � �
�

�

�
�������

���� ����

2. Use the distance to the nearest prototype with a different class label
for initialization:

�� � � ��
����

�	
���������	
������

���� � ����

3. All �� are set to the same value, which is proportional to the aver-
age minimal distance between all prototypes:

�� � � � �
�

�

��
���

��
����

���� � ����

3.3.2 Gradient descent

The adaptation of the output weights and of the kernel widths was done
with two gradient descent methods, i.e. plain back-propagation and back-
propagation enhanced by Armijo line search.

Back-propagation. We give a brief summary of the use of error-back-
propagation in the context of radial basis function network training, for a
more detailed treatment see [54, 62, 63].
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If we define as the error function of the network a differentiable function
like the sum-of-squares error E,

� �
�




��
���

��
���

���� � �����

with ��� and ��� as the actual and target output values respectively, and
we consider a network with differentiable activation functions – which
we have see Figure 2 – then a necessary condition for a minimal error
is that its derivatives with respect to the parameters center location �,
kernel width � and output weights � vanish. The resulting equations
are only solvable explicitly if the activation functions are linear and with
a sum-of-squares error function. An iterative procedure for finding a
solution to this problem is gradient descent. Here, the full parameter set
� � ���� ������ is moved by a small distance � (the learning rate) –
in their respective spaces – in the direction in which � decreases most
rapidly, i.e. in the direction of the negative gradient ��:

�
����� ��

��� � ��������

The update of the other parameters (�, �) is performed in a similar fash-
ion. For the network of Figure 2 we obtain the following expressions for
the derivatives of the error function with respect to the network parame-
ters:

��

���
�

�
�

�
�

���� � ������� ��	
�
����

� � �����

���

� ���� � �����
���

��

����
�

�
�

�
�

���� � ������� ��	
�
����

� � �����

���

�
�� � ���
���

��

����
�

�
�

���� � ������� �

Back-propagation with variable stepsize. Choosing the right learn-
ing rate or stepsize � is sometimes a critical issue in neural network train-
ing. If its value is too low convergence to a minimum is slow, conversely
if it is chosen too high successive steps in parameter space overshot the
minimum of the error surface. This problem can be avoided by a proper
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stepsize tuning. A procedure for obtaining such a stepsize was proposed
by Armijo [64] in 1966. In the following very brief description of the
method we draw heavily from the papers of Armijo [64] and Magoulas
et al. [65], for details see the respective articles. Under mild conditions
on the error function �, which are satisfied in our setting the following
theorem holds:

Theorem (Armijo, 1966) If �� is an arbitrarily assigned positive num-
ber, �� � ��

���
,  � �� �� � � � . Then the sequence of weight vectors

�������� with

�
����� ��

��� � ����������� ! � �� �� 
� � � �

where  � is the smallest positive integer for which

������ � ������������ ������� � ��



��� �������������

converges to the point �� which minimizes (locally) �.

Using Armijo’s theorem Magoulas et al. [65] proposed a back-
propagation algorithm with variable stepsize, see Algorithm 3.

Algorithm 3 Back-propagation with variable stepsize
Require: ����, ����, ����

Epochs: � � �

while ������� � ���� & � 
 ���� do
if � � � then
� � �
�

else
� � �
���������������������������� ���������

end if
while � � ���� do
� � 	�

end while
while ������ � ����������������� � ��

������
����� do

� � ��	
end while
�

����� ����� � ��������

� � � � �

end while
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4 Data

Subject groups. We compared a group of 51 healthy subjects (group
A) with 44 cardiac patients at a high risk for malignant ventricular ar-
rhythmias (group B, VT patients). All healthy volunteers (mean age
24.0�4.1 years) had a normal resting ECG and a normal echocardio-
gram, and no cardiac symptoms or coronary risk factors. The pa-
tients with a high–risk for malignant ventricular arrhythmias (mean age
61.2�8.9 years) were selected from our electrophysiologic database. In-
clusion criteria were the presence of coronary artery disease, a previous
myocardial infarction, a history of at least one symptomatic arrhythmia,
and inducible sustained ventricular tachycardia (� 30 seconds) at electro-
physiologic testing. Patients with bundle branch block or atrial fibrilla-
tion were excluded. All patients of group B underwent coronary angiog-
raphy and programmed right ventricular stimulation due to clinical indi-
cations. Stimulation was done from the right apex and the right outflow
tract. The stimulation protocol included up to 3 extrastimuli during sinus
rhythm and at baseline pacing with a cycle length of 500 ms, and a max-
imum of 2 extrastimuli at baseline pacing with cycle lengths of 430 ms,
370 ms, and 330 ms. Group B consisted of 10 patients with single ves-
sel disease, 17 patients with double vessel disease, and 17 patients with
triple vessel coronary artery disease. Nineteen patients had a previous
posterior infarction, 14 patients had a previous anterior infarction, and 11
patients had both a previous anterior and a previous posterior infarction.
Mean left ventricular ejection fraction was 44.0%�14.9%. Forty-one
patients had a documented episode of spontaneous, sustained ventricu-
lar tachycardia or ventricular fibrillation. Out of the remaining three pa-
tients, 1 patient had syncopes and non–sustained ventricular tachycardias
on Holter monitoring, and 2 patients had syncopes of presumed cardiac
origin.

Signal–Averaged ECG recordings. Ventricular late potential analysis
(VLP) is a non-invasive method to identify patients with an increased risk
for reentrant ventricular tachycardias and for risk stratification after my-
ocardial infarction [66–68]. Techniques commonly applied in this purely
time–domain based analysis are signal-averaging, high-pass filtering and
late potential analysis of the terminal part of the QRS complex. The
assessment of VLP’s depends on three empirically defined limits of the
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Figure 4. Placement of the three bipolar leads for the recording of high–resolution

ECG’s

total duration of the QRS and the duration and amplitude of the terminal
low–amplitude portion of the QRS complex [69, 70].
High–resolution signal averaged electrocardiograms are recorded during
sinus rhythm from three bipolar orthogonal � , � , " leads, see Figure
4. Before ECG recording antiarrhythmic drugs were stopped for at least
four half–lives. The skin was carefully prepared and recordings were
done with the subjects in reclining position in a Faraday cage, see Figure
5.
Sampling rate was 2000 Hz, A/D resolution was 16 bit, and an analog
bandpass filter of 0.05-300 Hz was used (anti–aliasing). The ECG’s were
recorded with the Predictor system (Corasonix Inc., Oklahoma, USA).
The three leads were averaged and combined into a vector magnitude
signal # �

�
�� � � � � "� and bidirectionally filtered with a 4–pole

Butterworth filter (40–250 Hz), see Figure 6.
From this vector magnitude signal # three features are extracted:

� QRSd (QRS duration):

��� 
� �������� ��������
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Figure 5. Picture of the high resolution ECG recording facilities. The subject is lying

inside the Faraday cage.

�

��

�

��

��

��� ��� ���

��

�������� ����������

	��

Figure 6. Signal averaged ECG: Example of the vector magnitude signal � of a patient

with late potentials.
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� RMS (Time A: � 
� �������� � ����):

�� 
�

���� �

�������� ��

����������
���

� �
�

� LAS (Duration of the low amplitude signal below 40�V):

 �� 
� �������� � argmax�� � �� � ���� �

In standard late potential analysis a subject is termed “VLP positive” if
2 of the 3 following criteria are met: $%�& � ��� ', %�� � 
�	# ,
�(� � �� ', see Table 4. In this investigation these three features
are used as inputs to a classifying RBF network, which is trained to
predict the group status, see subject groups. Figure 7 (left) shows a 2-
dimensional visualization of the complete dataset.

Figure 7. Mapping (Sammon mapping [71]) of the signal averaged ECG features (3D,

left) and the beat-to-beat QRS variability features (141D, right) onto the 2 dimensional

plane visualizing distance relations (using LVQ-Pak 3.1 Helsinki University of Tech-

nology). Samples from the healthy subject group are marked with � those from the VT

patient group with Æ.

Beat-to-beat ECG recordings. High–resolution beat–to–beat electro-
cardiograms of 30 min duration were recorded during sinus rhythm from
bipolar orthogonal � , � , " leads using the same equipment as with
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the signal–averaged recordings. Sampling rate was reduced to 1000
Hz. QRS triggering, reviewing of the ECG, and arrhythmia detection
was done on a high–resolution ECG analysis platform developed by our
group [72]. The three leads were summed into a signal # � � �� �".
From each recording 250 consecutive sinus beats preceded by another
sinus beat were selected for subsequent beat–to–beat variability analysis.
In a first step the signals were aligned by maximizing the cross–
correlation function [73] between the first and all following beats. Prior
to the quantification of signal variability the beats were pre-processed
to suppress the main ECG waveform, bringing the beat–to–beat micro-
variations into clearer focus. To achieve this, the individual signal was
subtracted from its cubic spline smoothed version (spline filtering, spline
interpolation through every seventh sample using the not–a–knot end
condition) [74, 75], compare Figure 8. This method resembles a wave-
form adaptive, high–pass filtering without inducing phase–shift related
artefacts. Next, for each individual beat the amplitude of the difference
signal was normalized to zero mean and a standard deviation of 1 	V.
Beat–to–beat variation of each point was measured as the standard devi-
ation of the amplitude of corresponding points across all 250 beats. For
the QRS we used a constant analysis window of 141 ms which covered
all QRS complexes of this series [17].
The resulting 141 dimensional variability vector was used as input for
classification into subject group A or B. Figure 7 (right) shows a 2-
dimensional visualization of the complete dataset.

5 Results

Different types of classification experiments with the Gaussian basis
function networks of Section 3 were performed. The selection of seed
prototypes was done with Algorithm 1 (� = 5).
The following taxonomy gives an overview of the experiments and the
notation:

1. Adaptation of the prototype layer (see Section 3.2). Figures 9 and
10, and Tables 5 and 6 give the nearest neighbour classification
results on the prototype layer.

OLVQ1 : Initial and maximal learning rate was set to 0.3.
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Figure 8. Diagram of the spline–filtering procedure. The upper panel shows both

signals, the QRS–complex (sum of the three leads) and the cubic spline. A zoom–in

makes the differences more apparent (lower left panel). The resulting signal difference

is shown on the lower right panel (note the different scaling of the Y-axis).
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Number of adaptation steps: �
�� .

Batch k–means : Training until the assignment of data points to
prototypes does not change with each epoch. Class labels are
not used in this adaptation step. After training class labels are
assigned to prototypes by majority vote of those class labels
of data points having minimal distance to the prototype.

Dynamic LVQ : List size � (see Algorithm 2) was set to 12. Af-
ter every inserted prototype 
�� OLVQ1 iterations were
performed. Learning rate was set to ���. Following the
growth process the prototypes were finally adapted with
�
�� OLVQ1 iterations. The initial number of prototypes
was 2 in all cases and was bounded by the preset value. In
some cases the preset number of prototypes was not attained.
This occurred for � � �� on the 3D data set and � � 
�
on the 141D data set.

2. Training of the RBF network (see Section 3.3). Figures 11 and
12 give the classification results for the RBF networks with a re-
training of the output layer only (online back-propagation). Kernel
widths were set with the three methods given below. Figures 13
and 14, and Tables 7 and 8 show the classification results on the
completely re-trained RBF network (� initialization was done with
method '�) with Algorithm 3.

(a) Initialization of RBF widths (see Section 3.3.1)
� was heuristically set to 2 in all cases.

��: �� were set to the average distance to the nearest three
prototypes.

��: �� were set with the distance to the nearest prototype of
a different class.

��: All �� were set to the same value, proportional to the
average minimal distance between all prototypes.

(b) Initialization of the output weights ���: Output weights were
always initialized to 1 for connections between prototypes of
a class and their corresponding output unit, otherwise they
were set to small random values (uniform distribution) in the
range of [-1E-6, +1E-6].
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(c) Gradient descent (see Section 3.3.2)

Back-propagation on the output layer: Online back-
propagation training, i.e. weight update after every pre-
sentation of a training pattern (learning rate � � ����)	
for every epoch 	). Every epoch consisted of 
 � ��
random presentations of a training pattern. A total of 100
training epochs was performed.

Re-training of the complete network: Complete re-
training of the network with back-propagation with vari-
able stepsize (Algorithm 3) for 80 epochs. Every epoch
consists of a complete presentation of the training data.

The classification performance is given in terms of re-validation and 10-
fold cross-validation results. Re-validation means training and test on
the whole data set. 10-fold cross-validation means partitioning the whole
data set into 10 disjoint subsets and carrying out 10 training and test runs
always using 9 subsets as the training set and testing on the remaining
one. The results are those on the test sets. Each of these re-validation
or 10-fold cross-validation simulations was performed 10 times. The
difference between subsequent simulations was the initialization of the
random number generator and the random permutation of the data set.
The classification results of the different networks are summarized into
five measures of performance.

Actual Condition of Population

(true-negatives)(false-negatives)

c d

(false-positives)(true-positives)

a

Negative

b

      Patients
with Disease

Patients
without Disease

C
la

ss
if

ic
at

io
n

 R
es

u
lt

Positive

Accuracy (Acc) = (a + d) / (a + b + c + d)
Sensitivity (Sensi) = a / (a + c)
Specificity (Speci) = d / (b + d)
Positive predictive value (PPV) = a / (a + b)
Negative predictive value (NPV) = d / (c + d)
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Nearest neighbour classification (prototype layer)
re-validation, 3D data
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Nearest neighbour classification (prototype layer)
10-fold cross-validation, 3D data
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Figure 9. Signal–averaged 3D data: Re-classification (training and test set are the

same) and 10–fold cross–validation results (accuracy) for the three prototype adaptation

schemes (OLVQ1, k-means, dynamic LVQ) using the nearest neighbour rule on the

hidden layer. Results are averages over 10 training and test runs for re-classification

and over ten 10-fold cross-validation runs with their standard deviations.
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Nearest neighbour classification (prototype layer)
re-validation, 141D data
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Nearest neighbour classification (prototype layer)
10-fold cross-validation, 141D data
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Figure 10. Beat-to-beat variability data: Re-classification (training and test set are the

same) and 10–fold cross–validation results (accuracy) for the three prototype adaptation

schemes (OLVQ1, k-means, dynamic LVQ) using the nearest neighbour rule on the

hidden layer. Results are averages over 10 training and test runs for re-classification

and over ten 10-fold cross-validation runs with their standard deviations.
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Classification results on the prototype layer of the signal–averaged
data (8 prototypes)

OLVQ1
Acc Sensi Speci PPV NPV

Re-val 85.7% 	 1.3% 70% 	 3.2% 99.2% 	 1% 98.8% 	 1.6% 79.3% 	 1.6%
Cross-val 84.8% 	 1.3% 69.3% 	 2.9% 98.2% 	 1.4% 97.2% 	 2.3% 78.8% 	 1.5%

k-means
Acc Sensi Speci PPV NPV

Re-val 83.1% 	 2.3% 67.7% 	 6.8% 96.3% 	 2.2% 94.3% 	 3.2% 77.7% 	 3.2%
Cross-val 83.3% 	 1.9% 67.7% 	 3.2% 96.7% 	 1.6% 94.6% 	 2.6% 77.7% 	 1.8%

dynamic LVQ
Acc Sensi Speci PPV NPV

Re-val 85.7% 	 1.7% 71.4% 	 3.9% 98% 	 1.6% 97% 	 2.5% 79.9% 	 2.1%
Cross-val 82.5% 	 1.4% 69.8% 	 2.2% 93.5% 	 1.9% 90.4% 	 2.6% 78.2% 	 1.3%

Table 5. Detailed classification results of the three prototype adaptation schemes for

the signal averaged data (3 dimensional, 8 prototypes): Re-classification and 10–fold

cross–validation results are given (ten runs, mean � standard deviation). Classification

was performed on the prototype layer with the nearest neighbour rule.

Classification results on the prototype layer of the beat-to-beat vari-
ability data (8 prototypes)

OLVQ1
Acc Sensi Speci PPV NPV

Re-val 81.8% 	 3.1% 71.8% 	 6.7% 90.4% 	 3.3% 86.7% 	 3.6% 79% 	 3.7%
Cross-val 73.3% 	 2.4% 62.7% 	 4.9% 82.4% 	 2.6% 75.4% 	 2.7% 72% 	 2.6%

k-means
Acc Sensi Speci PPV NPV

Re-val 73.5% 	 2% 60.7% 	 8.9% 84.5% 	 6.8% 78.7% 	 8.6% 71.6% 	 3%
Cross-val 67.8% 	 4% 52% 	 4.5% 81.4% 	 5.6% 71% 	 6.8% 66.3% 	 2.8%

dynamic LVQ
Acc Sensi Speci PPV NPV

Re-val 84.3% 	 3% 76.1% 	 5.2% 91.4% 	 3.5% 88.5% 	 4.2% 81.7% 	 3.4%
Cross-val 70.1% 	 3.3% 61.4% 	 2.6% 77.6% 	 5.8% 70.7% 	 6.3% 69.9% 	 1.9%

Table 6. Detailed classification results of the three prototype adaptation schemes for

the beat-to-beat data (141 dimensional, 8 prototypes): Re-classification and 10–fold

cross–validation results are given (ten runs, mean � standard deviation). Classification

was performed on the prototype layer with the nearest neighbour rule.
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OLVQ1 with different σ initialization schemes
re-validation, 3D data
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OLVQ1 with different σ initialization schemes
10-fold cross-validation, 3D data
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k-means with different σ initialization schemes
re-validation, 3D data

2 4 6 8 12 16 20 26 32 38 44 50 56
0.70

0.75

0.80

0.85

0.90

sa

sc

sb

number of prototypes

cl
as

si
fi

ca
ti

on
ra

te

k-means with different σ initialization schemes
10-fold cross-validation, 3D data
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dynamic LVQ with different σ initialization schemes
re-validation, 3D data
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dynamic LVQ with different σ initialization schemes
10-fold cross-validation, 3D data
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Figure 11. RBF results for the signal–averaged data. The figures show the results for

the OLVQ1 (top row) prototype adaptation scheme, k-means (middle) and dynamic

LVQ (bottom). Each figure gives the results for the three different � initialization

schemes (see text). Training of the output weights is done with back-propagation. Re-

classification results are shown in the graphs on the left and cross–validation results in

those on the right (accuracy, averages over ten runs and standard deviations are given).
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OLVQ1 with different σ initialization schemes
re-validation, 141D data
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OLVQ1 with different σ initialization schemes
10-fold cross-validation, 141D data
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k-means with different σ initialization schemes
re-validation, 141D data
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k-means with different σ initialization schemes
10-fold cross-validation, 141D data
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dynamic LVQ with different σ initialization schemes
re-validation, 141D data
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dynamic LVQ with different σ initialization schemes
10-fold cross-validation, 141D data
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Figure 12. RBF results for the beat-to-beat variability data. The figures show the

results for the OLVQ1 (top row) prototype adaptation scheme, k-means (middle) and

dynamic LVQ (bottom). Each figure gives the results for the three different � initializa-

tion schemes (see text). Training of the output weights is done with back-propagation.

Re-classification results are shown in the graphs on the left and cross–validation re-

sults in those on the right (accuracy, averages over ten runs and standard deviations are

given).
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RBF classification
re-validation, 3D data
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RBF classification
10-fold cross-validation, 3D data
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Figure 13. RBF results for the signal–averaged data. The graphs show the results

for the OLVQ1 prototype adaptation scheme, k-means and dynamic LVQ for different

numbers of hidden neurons. The widths of the RBF functions are initialized via their

distance to the next three prototypes (see text). Output weights are initialized to 1

for connections between prototypes of one class and their corresponding output unit,

otherwise small values. The complete network (�� , �� , ��) is re-trained with back-

propagation with variable stepsize. Re-classification results are shown in the figure on

the left and cross–validation results on the right (accuracy, averages over ten runs and

standard deviations are given)
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RBF classification
re-validation, 141D data
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RBF classification
10-fold cross-validation, 141D data
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Figure 14. RBF results for the beat-to-beat variability data. The graphs show the

results for the OLVQ1 prototype adaptation scheme, k-means and dynamic LVQ for

different numbers of hidden neurons. The widths of the RBF functions are initialized

via their distance to the next three prototypes (see text). Output weights are initialized to

1 for connections between prototypes of one class and their corresponding output unit,

otherwise small values. The complete network (�� , �� , ��) is re-trained with back-

propagation with variable stepsize. Re-classification results are shown in the figure on

the left and cross–validation results on the right (accuracy, averages over ten runs and

standard deviations are given)
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RBF results for the signal–averaged data (8 hidden neurons)

OLVQ1
Acc Sensi Speci PPV NPV

Re-val 86.1% 	 0.4% 70.9% 	 1.8% 99.2% 	 1.4% 98.8% 	 2% 79.8% 	 0.8%
Cross-val 84.4% 	 1% 69.8% 	 1.1% 97.1% 	 1.9% 95.4% 	 2.9% 78.8% 	 0.6%

k-means
Acc Sensi Speci PPV NPV

Re-val 85.9% 	 1% 70% 	 1.4% 99.6% 	 0.8% 99.4% 	 1.4% 79.4% 	 0.9%
Cross-val 84.8% 	 1.3% 70.5% 	 1.1% 97.3% 	 2.1% 95.8% 	 3.2% 79.2% 	 0.8%

dynamic LVQ
Acc Sensi Speci PPV NPV

Re-val 85.8% 	 0.9% 71.4% 	 1.2% 98.2% 	 1.4% 97.3% 	 2.2% 79.9% 	 0.7%
Cross-val 84.6% 	 0.9% 70.2% 	 0.7% 97.1% 	 1.7% 95.4% 	 2.4% 79.1% 	 0.4%

Table 7. Detailed RBF classification results of the three prototype adaptation schemes

for the signal averaged data (3 dimensional, 8 hidden neurons): Re-classification and

10–fold cross–validation results are given (ten runs, mean � standard deviation). The

widths of the RBF functions are initialized via their distance to the next three prototypes

(see text). The complete network (�� , �� , ��) is re-trained with back-propagation with

variable stepsize.

RBF results for the beat-to-beat data (8 hidden neurons)

OLVQ1
Acc Sensi Speci PPV NPV

Re-val 86.6% 	 4.3% 83.6% 	 5.7% 89.2% 	 3.7% 87% 	 4.5% 86.4% 	 4.5%
Cross-val 76.5% 	 1.8% 69.8% 	 3.2% 82.4% 	 1.3% 77.3% 	 1.7% 76% 	 2%

k-means
Acc Sensi Speci PPV NPV

Re-val 88.7% 	 3.5% 86.1% 	 5.8% 91% 	 3% 89.2% 	 3.6% 88.5% 	 4.2%
Cross-val 76.7% 	 1.4% 70.7% 	 2.5% 82% 	 1.2% 77.2% 	 1.5% 76.4% 	 1.6%

dynamic LVQ
Acc Sensi Speci PPV NPV

Re-val 88.5% 	 2.8% 85.9% 	 4% 90.8% 	 2.3% 88.9% 	 2.8% 88.2% 	 3.1%
Cross-val 75.8% 	 2.1% 69.1% 	 3.7% 81.6% 	 1.4% 76.4% 	 1.9% 75.4% 	 2.4%

Table 8. Detailed RBF classification results of the three prototype adaptation schemes

for the beat-to-beat data (141 dimensional, 8 hidden neurons): Re-classification and

10–fold cross–validation results are given (ten runs, mean � standard deviation). The

widths of the RBF functions are initialized via their distance to the next three prototypes

(see text). The complete network (�� , �� , ��) is re-trained with back-propagation with

variable stepsize.
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6 Concluding remarks

Several topics were touched in this investigation: The role of non-
invasive risk assessment in cardiology, new signal processing techniques
utilizing not only the three standard VLP parameters but processing se-
quences of beats, and the possible application of RBF networks in this
assessment.
By using the more elaborate categorization methods of RBF networks
compared to VLP assessment (see Section 4) on the 3 dimensional signal-
averaged data an increase in accuracy of about 10% could be gained
(VLP results: Acc = 72.6%, Sensi = 63.6%, Speci = 80.4%) in all cases
of prototype based or RBF classification (see Tables 5 and 7 and Fig-
ures 9,11 and 13). The increase from prototype based to RBF network
categorization was moderate but still visible and was accompanied by
a reduction of variance. All network classification results show only a
slight difference between re-validation and cross-validation for a small
number of prototypes or radial basis functions. This substantiates the
robustness of the methods on this data. Surprisingly does the accuracy
stagnate at about 86% for the re-validation case on all simulations, only
the dynamic LVQ makes an exception and shows an over-adaptation to
the data set, which is reflected in its poor generalization ability at higher
prototype numbers. Unfortunately the sensitivity of all methods on the
3D data is still too low to qualify as a single screening test (see Section 2,
Current status). Another issue of using signal-averaged features solely as
predictors of SCD are their moderate positive predictive value (see Table
4) and, as far as the simulations of this paper are concerned, a problem-
atic prognostic significance of the PVS result for SCD (see Table 3). The
positive and negative predictive values presented here should be treated
with care as the study population does not represent the true prevalence
of SCD.
In the case of the 141 dimensional best-to-beat variability data there is
also a substantial (7% - 15%) increase in classification accuracy (see Ta-
bles 6 and 8 and Figures 10, 12 and 14) compared to categorization via
a single cut-off value on the sum of the variability features (re-val: Acc
= 73.7%, Sensi = 68.2%, Speci = 78.4% [17]; 10-fold cross-val (mean
� stdev): Acc = 68.9% � 5%, Sensi = 66.1% � 8.7%, Speci = 71.4%
� 16.8%). Compared to the 3D data classification results drop when
switching to the RBF network and training the output layer only. Inter-
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estingly, is the performance not influenced by the type of initialization of
the kernel width in all cases on both data sets. Only on the high dimen-
sional data a re-tuning of the complete network seems to be mandatory
to recover from and even increase, the performance compared to a purely
prototype based classification.
All networks end, after being re-trained, in a comparable range of per-
formance (within their prototype number), although this is not the case
on the prototype layer. The difference between the supervised training
methods of OLVQ1 and dynamic LVQ and the unsupervised k-means is
most pronounced with the variability data (Figure 10). This is not too
surprising as the 2 dimensional projection (Figure 7) also points in that
direction.
The presented results indicate that both types of features are of a sup-
plementary nature (results on sensitivity). This calls for studies in which
both are combined. Further investigations into the uncertainty of the tar-
get classification (long term follow-up) are needed to assess the diagnos-
tic and prognostic value of the presented methods, their combination and
their applicability to different patient groups.
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[75] Kestler, H. A., M. Höher, G. Palm, M. Kochs, and V. Hombach (1996).
Time Domain Variability of High Resolution Beat-to-Beat Recordings
Classified by Neural Networks. In A. Murray and R. Arzbaecher, eds.,
Computers in Cardiology. IEEE Computer Society, pp. 317–320.

50


