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ABSTRACT

Classifying the sounds of species is a fundamental challenge in the study of animal
vocalizations. Most of these studies are based on manual inspection and labeling of
sound spectra, which relies on agreement between human experts.

In this study recorded songs of crickets (Grylloidea) from Thailand and Ecuador
are analysed and classified automatically. For this, the locations of pulses are de-
termined and different features from the time and frequency domain are extracted
automatically from the time series. For the categorization of the sound patterns these
different features are combined through data fusion, temporal fusion and decision fu-
sion. Local features and global features of the sound patterns are distinguished. For
the classification a fuzzy-k-nearest-neighbour classifier is used. This classifier scheme
exhibits a large similarity to artificial neural networks, in particular to radial ba-
sis function neural networks. We present classification results for a data set of 28

different species.



I. INTRODUCTION

Many insects produce sounds, either for defence or sexual communication. Males of crickets,
katydids and grasshoppers (Orthoptera) ”sing” by using specialised, chitinous structures
on wings and legs as stridulatory apparatus [Rie98]. Crickets (Grylloidea) in particular are
well known for their production of pure tone pulses between 2 and 11 kHz [IK98, Nis99],
i.e. well within the human audible range.

The temporal structure is species-specific and highly organised on time scales of different
orders of magnitude (see Figure 1). Besides sonograms, biologists use three features to
label species-specific song parameters: frequency (2-11 kHz), pulse interval (10-150 Hz)
and chirp interval (2 - 0.01 Hz, often irregular) [Ott92]. Female crickets are attracted
by songs of conspecific males. This so-called phonotazis has been studied extensively for
several species of Gryllus spp. [HML89]. Schildberger (1994) has shown for these species
the pulse repition rate is the principal feature for song recognition, and found neural
correlates of female phonotactic behaviour. Grylloidea are a species-rich group comprising
about 8,000 described species, and reach their highest diversity in the tropics. There are
probably many more undescribed species. Recent estimates of species numbers within
tropical forests exceed the number of described taxa by one order of magnitude [HKA95].
This diversity is threatened by the ongoing rapid destruction of tropical habitats and has
led to the necessity for quick surveys to identify areas rich in biodiversity. Sound recordings
are a valuable tool for non-invasive monitoring of singing animals, especially in tropical
areas under threat. In addition, many Orthoptera are sensitive indicator species for habitat
quality [Rie98].

Bioacoustic song analysis already forms an integral part within species descriptions of
"new” Orthoptera [Ing97]. Cricket songs recorded from one tropical location in Ecuador
could be classified qualitatetively within a parameter space of carrier frequency and pulse
intervals [Rie98]. By catching voucher specimens, Nischk (1999) could show that each
cluster of feature vectors is indeed produced by a distinct species. His dataset has been
used for the numerical evaluation presented below (Section 6). At present, a specimen-
based multimedia database is set up, bringing together data from different sound archives
within the ”virtual phonothek” (http://www.dorsa.de). Besides the mentioned features
used by traditional, descriptive bioacoustics, other signal parameters can be analysed in

order to classify animal sounds. Examples for such parameters are the periodogram, the



energy contour and the frequency contour.

The major topic of this paper is the automated classification of crickets based on their
sound patterns. The whole classification task includes pulse detection, feature extraction,
classification and classification fusion. In the pulse detection previously filtered signals
are used to estimate the location of the pulses on the basis of the signal’s energy. These
extracted pulses are used in all feature extraction steps.

In this investigation six different features are considered:
1. Frequency contour of pulses (C)
2. Energy contour of pulses (E)
3. Parzen density of pulse distances (D)
4. Temporal structure of the pulses (T)
5. Pulse length (L)
6. Pulse frequency (F)

We distinguish between global features (C, E, D) which are defined on the whole cricket
song, and local features (T, L, F) which are characteristic for single pulses. Features C,
E and F are calculated in the frequency domain and the features D, T and L in the time
domain. The classification of the cricket’s sounds or more precisely the classification of
the feature vectors extracted from the sounds is performed through the nearest-neighbour
classifier. In order to combine different features we utilize the so-called fuzzy-k-nearest-
neighbour classifier.

The paper is organized as follows: In Section 2 the pulse detection algorithm is introduced;
Section 3 deals with the extraction of the six different features. The k-nearest-neighbour
classifiers (standard and fuzzy) are presented in Section 4. The fusion of different features
and classifier decisions is shown in Section 5. In Section 6 the dataset and the numerical

evaluation is presented. Finally a conclusion is given in Section 7.

II. PULSE DETECTION

The unaided human ear neither resolves the temporal structure nor the full frequency range

of insect songs [Rie98]. In automated bioacoustics the temporal structure of the pulses is



an important feature for the classification of crickets [Nis99]. Therefore the detection of
pulses is an important issue for the following feature extraction and the classification task.

The pulse detection algorithm performs:

1. Normalisation and filtering of the raw time signal, and

2. Signal segmentation of the filtered signal into single pulses based on the signal’s

energy.

The result of this pulse detection algorithm are the onsets and offsets of the pulses. These
pulses are used in the further feature extraction procedures to derive the characteristic

features.

A. Signal normalisation and filtering

Let s(t),t = 1,...,T, be the a finite signal which contains the sound pattern of a single
cricket. To prevent the influence of the sound volume for the further classification the

signal’s amplitude is normalized through

5(t) = (1)

where ||s||c = max{|s(t)|:t=1,...,T} denotes the maximum norm.

For the signal segmentation a bandpass-filtered signal 5(¢) is used to suppress the sounds of
the environment. Fourier analysis is applied to calculate the filtered signal §(¢). Nowadays,
in almost all software packages for signal processing an efficient Fast-Fourier-Transformation
(FFT) implementation is available. We use Matlab and a set of programs written in C++
for the numerical experiments in this study.

Frequencies of a certain cricket are restricted to a narrow band (see Figure 1b) because
the sound of single crickets is strongly resonant [CFS98]. To get rid of the sounds of the
environment the signal is filtered with a highly selective bandpass-filter, the passband can
be determined automatically at the frequency range of the cricket.

In the following we describe this automated filtering. First the frequency with the highest

intensity is determined through
w* = argmax,,|S(w)W (w)] (2)

where W (w) is a probability density function defined in the frequency range of the crickets

sounds and S (w) is the frequency spectra of the normalized signal § (see Eq. 1).
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Figure 1: A short "song” of a cricket from the species Noctitrella glabra (time window
1500 ms).

For w* the transfer function (or frequency response) of the bandpass-filter if defined through

Hy(w) = 1, |w|—|w<é )
0, otherwise
where 20 is the size of the passband. This filter is used to calculate the filtered signal (see
Figure 1c)

3(t) = F~{S(w)Hs(w)} (4)
where F1{-} denotes the inverse Fourier transform. The filtered signal 5(¢) is limited to
the frequency range [w* — §,w* + 0] which is assumed to contain the sounds of a cricket.
After normalisation and filtering the signal s(t) with Hs(w) the filtered signal §(t) is free

from background sounds, such as the voices of birds.

B. Signal segmentation through the signal’s energy

An important problem in signal processing is the detection of the presence of a signal within

a background of noise. This problem is often referred to as the end point location problem
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[RS97]. In speech recognition systems end point detection is used to get the relevant parts
of the speech signal where the speaker is active. We use end point detection to locate the
cricket’s pulses.

Rabiner and Sambur 75 published an end point algoritm for speech segmentation using
the signal-energy and the zero-crossing-rate of the signal to localize the onset and offset of
an utterance. This algorithm can be used in almost any background environment with a
signal-to-noise ratio of at least 30 dB. The differences between human speech and animal
vocalizations, and the different conditions under which they are recorded, are significant
and have to be taken into account [KM98|. For pulse segmentation we use an algorithm
which determines the onset and offset of the pulses of cricket songs. The algorithm is
similar to that of Rabiner and Sambur, but with significant modifications, particularly for
the threshold function.

For the pulse detection algorithm the total energy E of the previously filtered signal 5 is
defined by

E= ) [37) (5)

and the short time energy of the signal § inside a window WY is given through

Z [5()W (7) (6)
T=—00
where
1, ret-Yt+Y¢
W) = R "
0, otherwise
is a centered rectangular window of size U at time ¢. A threshold-function F, () is used to
determine the pulses of the cricket’s sound. In speech recognition this threshold F,(t) is
typically a constant function [RS97].
It can be observed that for some species the short time energy function Ey(t) increases

inside chirps. In Figure 2 an energy function Ey(¢) is shown where the minimal energy

between two pulses gets higher during a chirp. Therefore, a dynamic threshold-function is

applied:
F,(t) =e+§ S WY () =e+§Ev(t> (8)



with parameter a > 0, rectangle window size V' > U (see Eq. 7) and scaling parameter
&> % Such a threshold-function is depending on the short time energy of the filtered
time signal $ in a finite time window W) .

The silence energy E,,;, and the peak energy FE,,, given through

FErar = maz Ey(t)
Emin = mintEU (t)

are used to define the minimal threshold 6 (see Eq. 8) which is set to
0= Emm + fY(Emax - Emm) (9)

with 0 <y < 1.

Figure 2: Detection of 5 pulses inside a single chirp of the species Zvenella transversa. The
Figure shows the thresholds Fi(t), F,(t) and the energy function Ey(t)

Our algorithm uses two threshold-functions: the lower energy threshold F(t) and the upper
energy threshold F,(t) with a > 1, obviously Fi(t) < F,(t). The estimation of the onsets
through the energy function Ey(t) (see Eq. 6) and the thresholds Fi(t) and Fy(t) (see
Eq. 8) is accomplished by Algorithm 1.



T=0p=0A=1
for t = %,.. T — % step At
if (Ey(t) = Fi(t))
if (1 > 0)
if (A=1)
if (Ep(t) > Fu(?))
p=p+1; =05 A=0
else
if (r>¢)7=0
else 7 =7+ At end
end
end
else
T=T+At; 0S =t
end
else
T=0; A=1,;
end
end

Algorithm 1: Searching the onsets A, of the energy function Ey ().

To detect an onset of a pulse the short time energy Ey(t) has to exceed both threshold
functions F(t) and F,(t) within a specified time interval ¢). A similar algorithm is used
to estimate the offset locations of the pulses.

In the numerical experiments the pulse segmentation algorithm is used with the parameters
listed in Table I. It should be noticed that these parameters are completely different to
the parameters in speech recognition systems. For example, the window size U = 2.7 ms
is much smaller than the windows in speech recognition systems (10 ms) [RJ93].

The results of the signal segmentation algorithm is n the number of pulses in the signal
and the sequences of onsets A = (Aq,...,\,;) and offsets p = (u1, ..., ) of the detected

pulses.



III. FEATURE EXTRACTION

For the classification of the cricket songs the sounds must be transformed into feature vec-
tors suited for the pattern recognition task. A pattern recognition system can be considered
as a two stage system: the extraction of features from the time signal and the classifica-
tion of the feature vectors [BJ92]. In the feature extraction different feature detectors are
defined in order to extract a set of characteristic signal properties which can be used as
input features for the automatic classifier system.

In principle there are two approaches of feature extraction for time series:

1. Global features. These features based on global characteristics or information of

the whole time series (see Section B., C.and D.).

2. Local features. These local features are derived from subsets of the whole time
series, which are usually determined by local time windows. In the context of this
paper the time windows are located at the detected pulses. Moving the window over

the whole time series leads to a sequence of feature vectors (see Section E., F. and

G.).

A. Sonograms of individual pulses

Sonograms may not be the best input features for classifying with artificial neural networks
or other statistical classifier schemes [MMRO98|, because the number of features is too
high. But they allow accurate measurement of the durations and frequencies of notes and
illustrate the way in which the frequency and amplitude of a sound change in time [EE94].
Therefore, sonograms may be a good basis to extract features like the frequency and the
energy contour of a sound pattern, e.g. a chirp or a pulse.

We distinguish two types of sonograms: sonograms with a fized time-resolution and sono-
grams with a fized number of sampling points.

Let s(t) be the signal which contains the sound of a cricket. Then the amplitude signal of

the k-th pulse is given by
s(t), t € [Ak,

vg(t) = . (10)
0, otherwise

For simplicity we set v := vy, p := pu and A := \z. Then the sonogram of a single pulse v



is calculated by m short time Fourier transformations defined as

+00

Ey= Y oW/ (n)e V", j=1,.m (11)
where [ =0, ..., 5 is the frequency band [RJ93]. Here WV is a rectangular window of size
V' (see Eq. 7) and the sampling vector T = (t1, ..., t,,) is given by

1
th=X— (5 —a)V
ti=ti+(—1)pV (12)

j =2,...,m. The overlap between two consecutive sampling windows is (1 — )V and oV
is the overlap between the first window W,” and the time signal v (see Figure 3).

oV

‘ ‘

,.,._.||..|||||||..|||||..|||.|
LR A I A

Figure 3: Sampling Windows to extract frequency spectra from a single pulse

The length of the sampling vector 7" is then given by
p—A+(1—-a)V—-aV
m = :
%

This is the common type of sonogram where the number of spectra depends on the length
of the analyzed signal part.

(13)

Sonograms with a constant number of spectra are of interest in order to extract feature vec-
tors of constant length m. These sonograms can be calculated by modifying the sampling
vector 1. For window size V' and signal length [ = ;1 — A two cases have to be distinguished
(see Eq. 12 and Figure 3):

1. mV <l
Here a is set equal to 1 and B =1 + (l m‘)/v
2. mV >
Here the parameters o and [ are set toa = =1 — %

10



B. Frequency contour of pulses

The frequency contour of vocalisations is a signal parameter which is often used to classify
sounds of animals. Murray et al. 98 extracted the frequency contour by fundamental
frequency analysis in order to classify whistles of killer whales. One method to extract the
frequency contour f from a discrete spectra is to determine the band of the frequency with
maximal energy [VHH98].

For a sonogram with fixed length m of a single pulse, let w; be the mean frequency of the
l-th frequency band and Ej; be the energy of the [-th frequency band within the j-th time
window (see Eq. 11). Then

I; = argmax, Fy; (14)

is the frequency band with the maximal energy. Including adjacent frequency bands and
time windows is sharpening the result. Therefore we do not use wr the frequency band

with the maximal energy but the weighted average

l;-(‘i‘p j—l—o’

fi= Z Z I +p ME;L (15)

I=l;—p k=j—0 Zl:l;_p k=j—o Eu

Here the parameters p and o determine the size of the averaging window in the frequency
and time domain.
The frequency contour of a single pulse is then given by C' = (fi, ..., fm) € R™. Now we
assume a sequence of n pulses, each represented through a sonogram of fixed length m.
Then we denote with C* € IR™ the frequency contour of the k-th pulse. The characteristic
contour O is defined as the frequency contour with the minimal Euclidean distance to all
other contours C”. .

i* = argmin{ ) _[|C" = C*|| :i=1,...,n} (16)

h=1

The vector C*" € IR™ is used as feature for the classification. For the parameters used in

the numerical evaluation see Table 1.

C. Energy contour of pulses

For the extraction of the energy contour the spectral energys Fj; can be used. In difference
to the frequency contour C' € IR™ the energy contour is extracted from sonograms with

a fixed time resolution. Using the parameters o and ( (see Eq. 11 and 12) as defined in

11



Table I leads to a time resolution of 1.3 ms (60 samples). Then the total energy of the j-th
spectrum Ej (see Eq. 11) is given by

E; =) Ej;. (17)
=1

Again we assume a sequence of n pulses, each represented through a sonogram where the
number of spectra depends on the pulse length. Then we denote E¥ = (E¥, ..., E,’ﬁlk) as the
energy course of the k-th pulse where m; defines the number of spectra of this pulse. To

extract feature vectors of length d we set

(E%, ..., B € RY, d<m;
(E¥,..,Er ,0,..,0) € RY, d>m,.

EF = (18)
The discrete feature vector E for the classification is the mean of the energy courses

E', ..., E" of the single pulses (see Figure 4d).

D. Parzen density of pulse distances

To determine a probability density function over the distance between two consecutive
pulses a histogram procedure is used [Par62]. Let A = (\y, ..., A,,) be a sequence containing

the onsets of the pulses. Then
Aj :)‘j+1_)‘j7 jE {1,...,n—1} (19)

is the distance between the j-th and the (j + 1)-th pulse. These distances are used to
estimate a one dimensional density function D based on the Gaussian density as kernel
function [KB9S§]

(t=4))?

fa, () =€ 2, (20)

with variance 02 > 0. The Gaussian may be used under the assumption that the estimated

density function Dy is continuous [Rus88]. Then the density function Dy is given by

n—1

126

7=1

(t— A>2

Da

(21)

To approximate a discrete feature vector the function D, is sampled with linear increasing
time steps t = (t1, ..., ty):
ti :’)/tz',l—i-(s, 1= 1,...,m (22)

12
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Figure 4: Some features extracted from a single pulse of the species Noctitrella plurilingua:
a) time signal, b) sonogram as contour plot, c) individual pulse frequencies (small dots)

and their characteristic frequency (bold line), d) energy course

from ty = 0 to t,,. Here m is determined in such a way that ¢,, is approximately 500 ms

depending on the parameters of v and ¢ (see Table I and Figure 6).
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Figure 5: Distances between pulses of the Noctitrella glabra (signal length 1.5 sec). Each

bar shows the distance between two adjacent pulses A;.

E. Temporal structure of pulses

The basis to extract these classification vectors are the distances between pulses A =

(Aq, ..., A, 1) (see Eq. 19). These features are extracted using a d—tuple encoding scheme

13



producing n — d feature vectors T; € IR?
T% = (AiaAi-l—l;---aAi-l—d—l) S IRd, 1= 1,...,n—d. (23)

which are used for the automated classification.

b oo
T

Y
N>

Fime an=>

Figure 6: The probability density function of the pulse distances of the species Noctitrella

glabra shows clusters of pulse distances with centers at 74 ms and 220 ms (see also Figure 5).

F. Pulse length

The mean pulse length L; for a set of d adjacent pulses is determined from the onsets A

and offsets u of single pulses
Li:_ Z (/Lj_Aj)a z:l,,n—d (24)
j=i
G. Pulse frequency

Let f* € R™, k=1, ...,n be the frequency contour of the k-th pulse and f* = % Z;n:l ff
be the average frequency of this pulse. Then the average frequency over d pulses is

i+d—1

1 _
Fi:ajzifk, i=1,..,n—d (25)

which is used as input for the classifier.

IV. CLASSIFICATION WITH THE
FUZZY-K-NEAREST-NEIGHBOUR RULE

Nischk 99 indicated that cricket songs can be categorized. He showed that clusters can be
detected in the parameter space made up by the average length of the interval between

two pulses and the carrier frequency of the sound.

14



One of the most elegant and simplest classification techniques is the k-nearest-neighbour
rule [Fuk90] which is used to classify feature vectors x € IR%. The classifier searches at
first for the k£ nearest neighbours among a set of m prototypes for an input vector x. The k
nearest neighbours are calculated utilizing the L,-norm (p € [1,00), often the Manhattan
distance (p = 1) or the Euclidean distance (p = 2) is used)

d

dj(z,27) = ||z — 2’|y = (D _ lzs — 2] P)". (26)

i=1
For the distances d’; there is a sequence ()72, C {1,...,m} with the property ¢? < .. <
d? . The k nearest neighbours of x are defined by

Ni(z) == {a™, ..., 2™} (27)
with & <m. Let ¢; = c¢(z,,), i =1, ..., k, be the classes of the k nearest neighbours and
Ni(z) = {y € Ni(z)lc(y) = j} (28)

be the subset of nearest neighbours of class j. Then the classification for input x is defined
through the majority:
j* = argmax;_ |\ (2)| (29)

where j* is the class which occurs most often among the £ nearest neighbours. Here [ is
the number of classes.

To determine the class membership of an input vector x to all [ classes, a fuzzy-k-nearest-
neighbour classifier is used [Sin98]. Such a fuzzy classifier A is a mapping A : R — [0, 1],
i.e., the output A(z) = (A¢(x), ..., Ay(x)) contains the membership of x to each class. Let

1
§;(x) = .

’ Zmie/\f,{(m) |z = 2], + o
be the support for the hypothesis that j is the true label of z. We set §;(z) = 0 if

N/ (x) = 0. The parameter a > 0 is used to grade low values of ||z — z|,.

(30)

After normalisation by

0;(x)
Aj(z) == =2 (31)
D=1 0i()
we have Aj(x) € [0,1] and 22:1 Aj(x) = 1 and call the classifier outputs soft labels
[Kun00]. The parameter k determines the fuzzyness of the classification result. The fuzzy-
k-nearest-neighbour classifier shows a similarity to artificial neural networks, in particular

to competitive neural networks and radial basis function networks [PG90, SKPO01].
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V. FUSION

The individual features alone are not sufficent for a proper classification of the cricket song
(see Table III). Furthermore the number of local feature vectors T;, L; and F;, i = 1,...,n—d
(see Eq. 23, 24 and 25) derived from the individual pulses depends on n of the number of
pulses. So fusion can be used to combine these features. In the following three different

fusion methods are distinguished

1. Data fusion is the combination of a set of different feature vectors by concatenation

these feature vectors into one feature vector.

2. Decision fusion is the combination of a set of decisions based on different feature

detectors into one decision through a fusion function.

3. Temporal fusion is the combination of a sequence of decisions calculated in different
parts of the time series into a decision. The same fusion functions as for decision

fusion may be used.

The decisions of a set of classifiers are used to build the decision profile which is a matrix
of soft labels

Al Al Al
DP(x)=|A} ... AL ... Al (32)
| A? Aj A7

where o determines the number of classifiers and A’ is the output of the i-th classifier.
The classification fusion may be applied through several fusion mappings e.g. symmet-
rical probabilistic fusion or average fusion [KB98]. Symmetrical probabilistic fusion is a
straightforward approach to combine the classification results applying the Bayes’ rule
[Pea88] under the assumption that the classification results are independent. The symmet-
rical probabilistic fusion [TB96] is defined by

- 1-P\' & A
Aj(ﬂU):l—(l—i-a( Pj”) EI—A?) : (33)

Here P; denotes the prior probability for class j and « is a normalizing constant. The
degree of fuzzyness and the certainty of the single classifiers is important utilizing this

function, because the product is zero if just a single decision A? is zero.

16



The average of the classification results is given by
- I o
Aj(x) = SZA]-. (34)
i=1

VI. NUMERICAL EVALUATION

A. Dataset

In this section we present results achieved by testing the algorithms on a dataset containing
sound patterns from 28 different species from Thailand and Ecuador.The dataset consists
of recordings from 108 different animals with 3 or 4 recordings per species. The cricket
songs from Thailand were recorded by Ingrisch [IK98]|, the recordings from Ecuador were
used in the doctoral thesis of Nischk 99. The sound patterns are stored in the standard
WAV-format (44.100 Hz sampling frequency, 16 Bit sampling accuracy) which is also used
for audio CDs.

B. Results

Because of the limited data we apply the k-fold cross-validation method [Bis95] to evaluate
the proposed classification algorithms. In the k-fold cross-validation testing procedure the
dataset is divided into k disjoint subsets. Then the classifier is trained k£ times, each time
using a version of the dataset omitting exactly one of the k subsets. The omitted subset
is then used to test the trained classifier. Finally the achieved classification results are
averaged over all k classifier tests. In the numerical evaluation presented in this paper
the cross-validation procedure has been performed for £ = 4 using exactly one record per
species for the classification test and the rest for the classifier training. In Table II, III
and IV and Figure 8, 10 and 12 the calculated means of the k cross-validation testings are
given.

The parameters used for the pulse segmentation and feature extraction algorithms in the

classifier evaluation of this study are given in Table I.
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Table I: The parameters for the pulse segmentation (upper part) and the feature extraction

(lower part).

Algorithm

Parameters

Pulse segmentation

a=14 v=0.05

U = 2.7 ms (120 samples)
V' =10.8 ms (480 samples)
B=Y ¢=32

4

Sonograms
Frequency contour
Energy contour
Parzen density
Temporal structure
Pulse length

Pulse frequency

V' = 5.4 ms (240 samples)
m=25p=5,0=0

d=25 a=0=1
v =1.05, 0 = 0.2268 ms

d=5
d=5
d=5

The classification based on global and local features and their combination has been in-

vestigated. First results of the extracted global features are presented. In Table II the

classification error rates of the cross-validation procedure are shown for the Parzen density

of pulse distances (D), the frequency contour of pulses (C), and the energy contour of

pulses (E). In order to illustrate the influence of k£ (the number of the nearest neighbours

of the fuzzy-k-nearest-neighbour classifier) which is taken into account for the classifier

decision, classification results for k£ between £ = 1 and k£ = 50 are given. The parameter k

determines the fuzzyness of the classifier output (see Eq. 27).

18



Table IT: Classification results for the individual global features (upper part) and the global

features combined through data fusion (lower part).

Global features Classification error in %

parameter k 1 3 5 7 10 15 20 30 40 50
Parzen Density (D) 45.4 52.8 55.6 54.6 55.6 54.6 54.6 53.7 53.7 53.7
Frequency contour (C) 60.2 62.0 59.3 65.7 63.0 63.9 63.0 63.9 63.9 63.9

Energy (E) 07.4 51.9 58.3 61.1 61.1 62.0 63.0 60.2 60.2 60.2
DC 36.1 48.1 48.1 44.4 52.8 50.0 50.0 49.1 49.1 49.1
DE 34.3 41.7 45.4 49.1 46.3 47.2 46.3 43.5 43.5 42.6
CE 37.0 40.7 38.9 41.7 43.5 40.7 40.7 40.7 40.7 40.7
DCE 35.1 34.3 43.5 43.5 41.7 45.4 44.4 41.7 40.7 40.7

For each of the three features (D, C and E) the observed error rates are rather high (in
the range of 45 — 65% depending on k and the feature type). The classifier performance of
each global feature (D, C, E) is improved through a combination of these global features
through concatenation of the single feature vectors (data fusion). But still the classification
error rates for the feature pairs (DC, DE, CE) and the feature triplet (DCE) are rather

high. This phenomenon can be observed in more detail in the confusion matrices of the

classifiers.
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Figure 8: Mean of the confusion matrices of the cross validation runs D) Parzen density
function, C) characteristic frequency contour, E) energy contour within pulses, global

features combined through data fusion.
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For example in Figure 8 the confusion matrices of the fuzzy-k-nearest neighbour classifiers
(with & = 10) are given for the three single global features (column 1: Parzen density
of pulse distances (D), column 2: frequency contour of pulses (C) and column 3: energy
contour of pulses (E)) and for the combined feature triplet (column 4: DCE). Here,
positive confusion frequencies between individuals of different species are represented as
pixels with large grey values outside the diagonal of the confusion matrix. All four confusion

matrices show lots of positive confusion frequencies between different species.

The overall classification based on local features is calculated through temporal fusion by
averaging all local soft classifier decisions over the whole sound pattern, see Eq. 34. The
combination of local features is again calculated through data fusion, e.g. the concatenation
of the single feature vectors. On the combined features the local decision is calculated
through the fuzzy-k-nearest-neighbour-classifier, and then these soft decisions are averaged
over the whole sound pattern (temporal fusion), see Eq. 34. The classification results for
the single local features pulse length (L), pulse frequency (F) and temporal structure of
pulses (T) and for the combined features (LF, LT, FT, LFT) are given in Table III, again
for k =1 to k = 50.

Table III: Classification results of the local features after temporal fusion (upper part) and

the local features combined through data fusion (lower part).

Local features Classification error in %
parameter k 1 3 5 7 10 15 20 30 40 50
Pulse length (L) 84.3 83.3 85.2 82.4 81.5 82.4 79.6 78.7 80.6 78.7

Pulse frequency (F) 68.5 69.4 69.4 68.5 66.7 67.6 69.4 68.5 72.2 72.2
Temporal structure(T) 26.9 25.9 25.9 25.9 27.8 29.6 28.7 30.6 28.7 30.6

LF 45.4 47.2 454 42.6 43.5 44.4 46.3 49.1 49.1 51.9
LT 17.6 14.8 14.8 15.7 19.4 19.4 23.1 23.1 25.9 26.9
FT 13.0 11.1 13.0 13.9 14.8 14.8 15.7 15.7 19.4 18.5
LFT 83 65 74 74 93 10.2 11.1 10.2 11.1 13.0

The best classification result based on a single feature is achieved with the temporal struc-
ture of pulses (T) (error rate ~ 28 %). This result is significantly improved using additional

features from the frequency and time domain. We use the pulse frequency (F) and the
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pulse length (L). Whereas the classifier performances based on the single features F or L
are really bad with error rates of approximately 65-85 %, the combination of all three fea-
tures (FLT) performs significantly better than the best single feature T. For this feature
combination (FLT) the error rates are in the range of 6 — 10 % depending on k. This
is a very good result for such a multi-class pattern recognition problem with 28 different
categories. The confusion matrices of the fuzzy-k-nearest-neighbour classifiers based on the
single local features (column 1: pulse length (L), column 2: pulse frequency (F) and col-
umn 3: temporal structure of pulses (T)) and their combination (FLT) given in Figure 10

show the classification results in more detail.
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Figure 10: Mean of the confusion matrices of the cross validation runs. L) pulse length,
F) pulse frequency, T) temporal structure of the pulses, local features combined through

data fusion.

Here it can be observed that feature T is the best local feature with a small number of
positive confusion frequencies.

Comparing the classification results of the global and the local features (see Table II and
[II) points out that the local features are better suited for the classification, particularly
the combination of all three local features. Combining the decisions of the local and global

features leads to the classification results depicted in Table IV.
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Table IV: The classification results for the combined local and global classifier outputs
utilizing average fusion are shown for different £ in the range of £k = 1 to & = 50. In the
first column (see L] ) are the classification results for the local features and in the first row

(see G—) are the classification results for the global features.

G &L Classification error in %
Par. £ L| 1 3 5 7 10 15 20 30 40 50
G— 35.1 34.3 43.5 43.5 41.7 45.4 444 41.7 40.7 40.7

8.3 28.7 120 93 93 83 83 74 74 83 83

6.5 296 11.1 93 83 83 6.5 6.5 6.5 6.5 6.5
5 74296 120 93 74 74 74 65 65 6.5 6.5

7.4 306 139 93 74 74 74 65 65 6.5 6.5
10 9.3 306 15.7 93 74 74 74 74 65 6.5 6.5
15 10.2 30.6 16.7 9.3 83 74 83 74 6.5 83 83
20 11.1 315 157102 93 74 83 74 74 74 T4
30 10.2 31.5 15.7 12.0 10.2 10.2 83 83 74 74 74
40 11.1 31.5 19.4 139 10.2 11.1 93 93 74 74 74
50 13.0 31.5 20.4 139 12.0 11.1 12.0 11.1 10.2 9.3 9.3

Table IV also contains the classification rates for the global feature combination (DCE)
and the local feature combination (FLT) from Table IT and III. For the local classifiers
and the final classification the best error rate is 6.5 %, so the performance of the best local
classifier can not be improved using additional information from the global features.

The classification error of all fuzzy-k-nearest-neighbour classifiers (based on global fea-
tures, local features, and the combination of global and local features) dependends of the
parameter k. With this parameter k the fuzzyness of the classifier output is determined. In
Table IV it can be observed that it can be useful to combine the fuzzy-k-nearest neighbour
decisions of the global and local features with different values of k. The best classification
results for the combination of the global and local features are achieved with a lower fuzzy-
ness level for the more accurate classifier (local features, £ = 3—10) and a higher fuzzyness
level for the weaker classifier (global features, £ > 10). This is due to the fact that the
correct class of the classifiers of the local features is found in 98 % within the largest four

soft labels, but the correct class of the classifiers of the global features is found in 98 %
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within the largest 17 soft labels.

Figure 12: Mean of the confusion matrices of the cross validation rund of the combined

local and global a) average fusion, b) symmetrical probabilistic fusion

In Figure 12 the confusion matrices for the combination of local and global decisions built
by average and symmetrical probabilistic fusion is shown. Here it can be observed that the
errors appear only for a few species.

It must be emphasized that typically a certain feature is not important for all species.
For example feature T is more important for species producing quasi-deterministically
oscillating time series (see Figure 5) [BD87]. Here the distances between the pulses A;
create small regions of prototypes in the feature space of the d—tuple codes. On the other
hand some species produce stochastically oscillating time series, where the future evolution
can not be determined. For crickets the oscillation of the pulse distances is often quasi-
deterministic because the condition for strong periodicity z(t + T') = x(t), where T is the

period of the oscillation, is never completely fulfilled.
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Figure 14: The space between the pulses A; of a 2.5sec sound signal of the species Zvenella

geniculata

In contrast the pulses A; of the Zvenella geniculata creates straggled prototypes all over

the feature space of the d-tuple codes (see Figure 14), leading to misclassifications.
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VII. CONCLUSION

In this study cricket songs are classified utilizing different types of features extracted from
the time signal, classification fusion and a fuzzy k-nearest-neighbour classifier. Fuzzy
classification techniques are deemed to be a viable extension of classical ones towards
handling nonstochastic uncertainty involved in the classification process [Kun96], especially
if multiple classification results are combined into one.

The classifiers based on single features are not suited for this recognition task because their
error rates are in the range of 25 % to 85 % (for the global features: 45 % to 65 %, see
Table IT; for the local features: 25 % to 85 %, see Table III). The combination of multiple
features leads to a high performance of the classifier system. In particular the fusion of
the local features is very promising, leading to an error rate of 6.5 % (see Table III), which
is a good result for such a multi-class pattern recognition problem. The best classification
results with local features are achieved taking k = 3, 5 or 7 nearest neighbours into account.
Fusion of global features also leads to a better classification performance, but the error rates
are still approximately 35 % — 40 %.

A Combinination of global and local features through classifier fusion can not improve the
classification results of the local features (6,5 % error rate). In Figure 12 it can be observed
that the misclassifications appear between a small set of species and that sound patterns of
22 species can be categorized without any errors. Furthermore, we found that the correct

class is among the two largest soft labels in more than 98 % of all cases.

The study also shows that cricket songs can be classified reliably by artificial neural net-
works. Basically, they had to solve the same task as cricket females with their ”real”
neuronal substrate. The results presented here might serve as a heuristic tool for new
experiments to understand cricket phonotaxis and neural processing, especially for tropi-
cal species. Up to now, neurophysiological experiments have been limited to Gryllus spp.,
which inhabit acoustically less complex biotopes, with much lesser cricket diversity. Though
it might be naive to assume that there is any such thing as a neuronal correlate of the mech-
anisms described here, our results provide important hints for crucial experiments. Parzen
density emerged as an important feature which has been overlooked by traditional neuro-
biologists [Gla96]. Finally, and independent from these questions of fundamental research,
the classifiers described here could be implemented into Rapid Assessment protocols, to

detect, classify and monitor tropical cricket diversity.
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