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Abstract

We report on a large formal verification effort in mechanically proving correct a compiling
specification for a realistic bootstrap compiler from ComLisp (a subset of ANSI Common Lisp
sufficiently expressive to serve as a compiler implementation language) to binary Transputer
code using the PVS system. The compilation is carried out in five steps through a series of
intermediate languages. In the first phase, ComLisp is translated into a stack intermediate
language (SIL), where parameter passing is implemented by a stack technique. Expressions
are transformed from a prefix notation into a postfix notation according to the stack princi-
ple. SIL is then compiled into Cint where the ComLisp data structures (s-expressions) and
operators are implemented in linear integer memory using a run-time stack and a heap. These
two steps are machine independent. In the compiler’s backend, first control structures (loops,
conditionals) of the intermediate language Cint are implemented by linear assembler code
with relative jumps, the infinite memory model of Cint is realized on the finite Transputer
memory, and the basic Cint statements for accessing the stack and heap are implemented
by a sequence of assembler instructions. The fourth phase consists of the implementation of
code instructions with large and negative word operands, while the last phase is concerned
with the integration of the assembly program into the memory. The context of this work is
the joint research effort Verifix aiming at developing methods for the construction of correct
compilers for realistic programming languages and real target architectures.

∗This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) under project “Verifix”.
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1 Introduction

The use of computer based systems for safety-critical applications requires high dependability of the
software components. In particular, it justifies and demands the verification of programs typically
written in high-level programming languages. Correct program execution, however, crucially depends
on the correctness of the binary machine code executable, and therefore, on the correctness of system
software, especially compilers.

Verifix [GZ99, Goe97] is a joint German research effort of groups at the universities Karlsruhe, Kiel,
and Ulm. The project aims at developing innovative methods for constructing provably correct compilers
which generate efficient code for realistic, practically relevant programming languages. Verifix assumes
hardware to behave correctly as described in the instruction manuals. The main achievements of the
project are

• the definition of appropriate realistic notions of correctness for the specification and implementation
level [GL01b, MOW99].

• the application of general approved compiler construction techniques including the use of (unveri-
fied) compiler generation tools (e.g. Lex, Yacc, BEG) [GZ99].

• to ensure the correctness of the generated code, the technique of algorithmic and a-posteriori
program checking is applied using verified program checkers [GGZ98].

• the construction of a trusted initial compiler for a realistic imperative high-level sytem programming
language [GH98a, GH98c] which serves as a sound bootstrapping and implementation basis (e.g.
for the program checkers) and lifts proof obligations from machine code level to the more abstract
source code level.

• the use of automated proof systems to support the different verification tasks of the project (e.g.
[DV00, DvHPR97]).

As already noted in 1986 by Chirica and Martin [CM86], full compiler correctness comprises both
the correctness of the compiling specification (with respect to the semantics of the languages involved)
as well as the correct implementation of the specification. The entire correctness proof of a compiler
executable running on a host machine can be modularized in three tasks where every step is represented
by a corresponding commuting diagram (see Fig. 1).

abstract programs

concrete programs

concrete programs
repr. as HML-data

repr. as HL-data

semantics spaces SemTL

TLSL

SL′ TL′

TL′′

ϕTL
TL′

[[ · ]]
TL

ϕTL
′

TL′′

[[ · ]]
SL

�

C

[[ τHL ]]
HL

ϕSL
SL′

SL′′

ϕSL
′

SL′′

SemSL

[[ τHML ]]
HML

semantics
relation �

compiling
specification (relation) C

high level compiler
implementation τHL

low level compiler
implementation τHML

Figure 1. Three steps for correct compiler implementation

1. Specification of a compiling relation C between abstract source and target languages SL and TL,
and compiling (specification) verification w.r.t. an appropriate semantics relation � between lan-
guage semantics [[ · ]]

SL
, [[ · ]]

TL
. Compiling specifications C typically allow for more than only one

target program, and also compiler program semantics may be non-deterministic. Hence, relations
are utilized for this purpose (A ⇀ B denotes the domain of relations between A and B). Notice
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that only well-formed programs (that is, static semantically correct programs) have a (dynamic)
semantics.

2. Implementation of a corresponding compiler program τHL in a high level host language HL close
to the specification language, and high level compiler implementation verification (w.r.t. C and to
program representations ϕSL

SL′ and ϕTL

TL′). Data and program representations, which map abstract
programs to concrete program representations and to their string representations (indicated by
primes), are in general relations. This step corresponds to programming. Here, either a constructive
approach can be applied which transforms the specification C into a high-level implementation by
applying correctness-preserving development steps or the program is verified a-posteriori using
classical program verification techniques.

3. Implementation of a corresponding compiler executable τHML written in binary host machine lan-
guage HML, and low level compiler implementation verification (with respect to [[ τHL ]]

HL
and

program representations ϕSL
′

SL′′ and ϕTL
′

TL′′). This step can be established by a trusted initial compiler,
or by syntactical a-posteriori result checking. It is important to note that this last step is absolutely
necessary to ensure correctness of the generated executable. If this step is neglected, security rele-
vant intentional errors such as Trojan Horses are hard to find as demonstrated by the construction
of a malicious compiler executable [Goe00, Tho84] and this might have harmful consequences.

The initial correct bootstrap compiler which has been constructed in the context of the Verifix project
transforms ComLisp programs into binary Transputer code. ComLisp is an imperative proper subset of
ANSI-Common Lisp and serves both as a source and implementation language for the compiler, that
is, source and host languages are identified (SL = HL = ComLisp). ComLisp programs are systems
of mutually recursive function procedures, working on the domain of s-expressions, which is a recursive
dynamic data type suitable for program and term manipulation. The target language and host machine
languages are identified as well: TL = HML = Transputer. The construction process of our initial
correct ComLisp compiler according to the three tasks above consists of the following steps:

• define and prove correct the compiling specification relating ComLisp programs with binary Trans-
puter code according to a suitable correctness criterion.

• construct a correct compiler implementation in the source language ComLisp itself by applying a
transformational constructive approach which builds a correct implementation from the specifica-
tion by stepwise applying correctness-preserving development steps [Dol00].

• use an existing (unverified) implementation of the source language (here: some arbitrary Common
Lisp compiler) to execute the program. Execute the program, apply it to itself and bootstrap a
compiler executable. Check syntactically, that the executable code has been generated according
to the compiling specification. For this last step, a realistic technique for low level compiler
verification has been developed which is based on rigorous a-posteriori syntactic code inspection
[GL01a, Hof98]. This closes the gap between high-level implementation and executable code and
lifts proof obligations from machine code level to the much more abstract level of ComLisp code.

The size and complexity of the verification task in constructing such a correct compiler is immense.
In order to manage it, suitable mechanized support for both specification and verification is necessary.
We have chosen the PVS specification and verification system [ORSvH95] to support the verification
of the compiling specification and the construction process of a compiler implementation in the source
language.

This report is concerned with the mechanical verification of the compiling specification (compiling
verification) for the ComLisp compiler (the first task above). This proof has completely been mechanized
and is one of the largest case-studies in formal verification we are aware of.

There are many different possibilities in order to define what a correct compiling specification and
compiler implementation means. It substantially depends on the application context in which the com-
piler is used. As mentioned above, one of the results of the Verifix project is the development of a
realistic correctness criterion for sequential imperative source languages and concrete target processors
which takes the finite resource limitations of the target architecture into account. Computations may
possibly fail and run into errors which should be one of an acceptable error. On the other hand, a
practical compiler may fail in most cases, anyway, on nearly every (sufficiently large) source program.
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A practical compiler executable cannot implement every source program behaviorally equivalently on
the target machine. There are trivial correct compilers which either always fail themselves or generate
code which always fails. Such a compiler is of no use at all, but it is impossible, to define a rigorous
notion of useful correct implementation. Another important fact is, that compiler constructors are not
responsible if source programs are not admissible (that is, they do not meet pre-conditions such as
well-formedness) which would lead to unacceptable outcomes. These considerations lead to a family of
notions of correctness which is parameterized with the set Ω of possible errors, consisting of two disjoint
sets of unacceptable and acceptable errors (Ω = A

•∪ U). Informally, the notion states that for admissible
inputs either the result of the target program semantics is correct (representation of a corresponding
source program output) or the target program execution aborts with an acceptable (resource) error (see
[GL01b] for the formal definitions).

For the compiling verification of the ComLisp compiler outlined in this report, we make use of a
specialization of the general notion, where the set U of unacceptable errors is empty and all acceptable
errors are identified. This notion then defines preservation of partial program correctness , that is, partial
correct source programs are mapped onto partial correct target programs.

Ds
o

ρo

Dt
o

ρi

Ds
i

Dt
i

fs

ft Figure 2. Preservation of partial program correctness

We formalize operational program semantics by relations f ⊆ Di × Do between input and output
domains. Let fs be a source and ft a target program semantics, and let ρi and ρo be (input and output)
data representation relations which relate source language domains with target language domains. Then
the notion of correctness is defined as follows:

Definition 1.1 (Preservation of Partial Correctness). ft is a correct translation of fs, if the di-
agram in Figure 2 commutes in the following sense:

ρi ; ft ⊆ fs ; ρo

where ; denotes (diagrammatic) relational composition.

Using this correctness criterion, the overall goal of the verification task outlined in this report is
to show the correctness of a compiling relation C(p, q) relating well-formed ComLisp programs p with
binary Transputer code q. The semantics of a ComLisp program (denoted by pComLisp) is a relation
between input character sequences is and output character lists ol; pTC0

denotes the semantics of binary
Transputer programs (a relation between byte sequences and byte lists). Figure 3 illustrates the main
theorem. Here, the input and output domain of the source language is the set of character sequences
Ds

i = seq[char] and character lists Ds
o = char∗, respectively, the input and output domain of the target

language is the set of byte sequences Dt
i = seq[byte] and byte lists Dt

o = byte∗, the data representation
relations ρi and ρo are functions mapping character sequences and lists to byte sequences and lists by
means of the character codes. Hence, the subset inclusion in definition 1.1 becomes an implication in
the following theorem:

Theorem 1.1 (Main Correctness Theorem).
∀p, q, is, ol. wf (p) ∧ C(p, q)⇒ p

TC0
(q)(char2byte(is))(char2byte(ol))⇒ pComLisp(p)(is)(ol)

char∗

byte∗

seq[char]

seq[byte]

char2byte

p
TC0

char2byte

pComLisp

Figure 3. Correctness of Compiling Specification

Since the distance between a high-level ComLisp program and the final binary Transputer code is
very large, the compilation is modularized suitably into five steps such that in each phase a specific
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compilation or implementation aspect is realized. The purpose of this verification project is to establish
a fully correct bootstrap compiler, henceforth the intermediate languages are chosen in a way such
that each of the three tasks, namely the compiling verification, high-level compiler implementation and
verification of the binary executable can be realized. Each compilation phase is implemented and verified
separately. The five steps are chosen as follows:

ComLisp → SIL → Cint → TASM → TC1 → TC0

First, ComLisp is translated into a stack intermediate language (SIL), where parameter passing is imple-
mented by a stack technique. Expressions are transformed from a prefix notation into a postfix notation
according to the stack principle. SIL is then compiled into Cint where the ComLisp data structures
(s-expressions) and operators are implemented in linear integer memory using a run-time stack and a
heap. These two steps are machine independent and constitute the compilers frontend. In the compilers
backend, in the next step, control structures of Cint (loops, conditionals, etc.) are implemented by linear
assembler code with jumps in TASM, the Cint memory model is integrated into the finite Transputer
memory, and the Cint statements for accessing the stack and heap are implemented by a sequence of
TASM instructions. The compilation from TASM to TC1 consists of the implementation of assembler
instructions containing large or negative operands by a sequence of pfix/nfix chains and the transfor-
mation of the assembler code into binary Transputer code, and finally the program is integrated into
the Transputer memory. Note that the last two steps are introduced only for mechanical verification
purposes to logically separate the two aspects. No compilation is carried out for the last step and hence
the last two phases are in fact implemented in one pass.

This report is organized as follows. In Sect. 2, other related compiler verification approaches found in
the literature are briefly presented. The following sections then present the main aspects of the formal-
izations and verifications of each of the five compilation phases. In each section, first the formalizations of
the languages, that is, their abstract syntax and semantics are outlined. Operational semantics in a struc-
tural operational style is used for ComLisp and for each of the intermediate languages in the compiler’s
frontend. The different abstract Transputer formalizations make use of a transition semantics. Then the
specific compilation process and its correctness is described. We further provide statistics concerning the
mechanical verification effort. Having proved correct each of the compilation steps, finally, the different
phases have to be combined in order to accomplish the global correctness proof, relating ComLisp source
programs with binary Transputer code as stated in theorem 1.1. Section 8 is concerned with this issue.
Finally, in Sect. 9 we summarize our work and discuss the results of this formal verification project.

2 Related Work

Verification of compiler correctness is a much-studied area starting with the work by McCarthy and
Painter in 1967 [MP67], where a simple compiler for arithmetic expressions has been proved correct.
Many different approaches have been taken since then, usually with mechanized support to manage the
complexity of the specifications and the proofs, for example [Pol81, Joy89, Bro92, Moo89, Cur94, BS98].
Most of the approaches only deal with the correctness of the compiling specification, while the approach
taken in the Verifix project also takes care of the implementation verification, even on the level of
binary machine code. Another difference of our approach is that we are concerned with the compilation
of “realistic” source languages and target architectures. A ComLisp implementation of the ComLisp
compiler as well as a binary Transputer executable is available.

Notable work in this area with mechanized support is CLInc’s verified stack of system components
ranging from a hardware-processor up to an imperative language [Moo89]. Both the compiling verification
and the high-level implementation (in ACL2 logic which is a LISP subset) have been carried out with
mechanized support using the ACL2 prover. Using our compiler, correct binary Transputer code could
be generated.

The impressive VLISP project [GMR+92] has focused on a correct translation for Scheme. However,
although the necessity of also verifying the compiler implementation has been expressed this has explicitly
been left out. Proofs were accomplished without mechanized support.

P. Curzon [Cur94] considers the verification of the compilation of a structured assembly language,
Vista, into code for the VIPER microprocessor using the HOL system. Vista is a low-level language
including arithmetic operators which correspond directly to those available on the target architecture.
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The compilation of PROLOG into WAM has been realized through a series of refinement steps and
has been mechanically verified using the KIV system [Sch99]. A (small-step) ASM semantics is used for
the languages.

More recently, M. Strecker [Str02] has carried out a formal verification of the compilation process
from a subset of the Java source language into Java bytecode using the Isabelle proof environment. The
verification effort here is comparable to the effort in proving correct one of the compilation phases of our
bootstrap compiler.

3 Compiling ComLisp to Stack Intermediate Code

3.1 ComLisp

A ComLisp program consists of

• a declaration part consisting of a list of function names Fl, a list of symbols (except NIL and T )
Sl, and a list of non-atomic program constants Cl. The declaration part is syntactical sugar and
semantically irrelevant, used to facilitate one pass compilation.

• a list of global variables,

• a list of possibly mutual recursive function definitions,

• a main form.

The abstract syntax of ComLisp is given as follows:

p ::= d;x1, . . . , xk; f1, . . . , fn; e
d ::= Fl;Sl;Cl

f ::= h(x1, . . . , xm)← e

e ::= abort | c | x | x := e | progn(e1, . . . , en) | if (e1, e2, e3) | do(e1, e2) | call (h, e1, . . . , en) |
uop(e) | bop(e1, e2) | let(x1 = e1, . . . , xn = en; e) | list∗(e1, . . . , en) |
cond(p1 → e1, . . . , pn → en) | read char | peek char | print char (e)

c ::= i | NIL | T | a | sb | st | (c1 . c2) (a ∈ Char ; sb,NIL,T ∈ Symbol ; st ∈ String)
uop ::= car | cdr | nullp | consp | symbolp | characterp | integerp |

length | char code | code char | symbol name | intern | coerce string
bop ::= cons | + | ∗ | < | ≥ | floor | mod | eql | aref

where n,m, k ≥ 0; t ≥ 1, c : SExpr, x, x1, . . . , xn : Ident are identifiers, h is a function name,
f, f1, . . . , fn are function definitions, uop : Unop are unary operators, bop : Binop are binary opera-
tors, and e, e1, . . . , en and p1, . . . , pn are expressions (forms).

ComLisp statements (expressions or forms) include the abort statement, s-expression constants, vari-
ables, assignments, sequential composition, conditional, do-loop, call of user defined functions, call of
built-in unary and binary ComLisp operators, local let-blocks, cond-instruction, and instructions for
reading from the input sequence and writing to the output. The form list∗ constructs a s-expression list
from its evaluated arguments. There must be at least one argument.

The only available datatype is the type of s-expressions which are binary trees built with constructor
“cons”, where the leafs are either integers, characters, strings, or symbols. The set of symbols include
T and NIL with T �= NIL. In addition, there are sets of unary and binary operators defined on s-
expressions. The operators include the standard operators for lists (e.g. length), type predicates for
the different kinds of s-expressions, and the standard arithmetic operations (e.g. +, ∗, f loor). ComLisp
operators denote partial functions on s-expressions which is expressed by two relations: relation v1 :
uop → v2 for unary operators uop, and v1, v2 : bop → v for binary operators. For example, the first
relation expresses that the application of unary operator uop to s-expression v1 is defined, terminates,
and yields s-expression v2 as result.

Having defined the abstract syntax of ComLisp, we now focus on the semantics. First, the static
semantics of ComLisp programs, declarations, and forms are specified by means of several well-formedness
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predicates for forms, function definitions, and programs. A ComLisp form is well-formed with respect to
a function environment Γ (a list of function definitions), a local variable environment ζ (a list of formal
parameters), a list of global variables γ, a list of symbols sl and a list of non-atomic constants cl, if

• the list of local and global variables are disjoint.

• all variables are declared, that is, occur in ζ or γ.

• all program constants and symbols are declared in the symbol list sl and list of constants cl,
respectively.

• each user-defined function is called with the correct number of arguments (correct parameter
passing) and the function identifiers are declared in Γ.

Formally, a relation wf(e, ζ, γ,Γ, cl, sl) is defined inductively on the structure of form e. Its formal
definition is straightforward and omitted here.

A function environment Γ is well-formed with respect to a list of global variables γ, a list of non-atomic
constants cl, and a list of symbols sl, if the function names in Γ are disjoint (no double declarations of
functions), and each function body in Γ is well-formed with respect to Γ, its local parameter list, γ, cl,
and sl. This is specified by a predicate wf(Γ, γ, cl, sl).

Finally, a ComLisp program is well-formed (wf(p)), if the function identifiers occuring in the function
definitions correspond to the list of names in the declaration part and are disjoint, and all function
definitions are well-formed with respect to the global variables, and the declarations, and the main
program is well-formed w.r.t. to the function declarations, the global variables, and the empty local
parameter list, the constant list, and the symbol list.

For all intermediate languages occuring in the different compilation phases of the ComLisp to Trans-
puter compiler, a uniform relational semantics description has been chosen. The (dynamic) semantics of
ComLisp is defined in a structural operational way by a set of inductive rules for the different ComLisp
forms. This kind of semantics is also referred to as big-step semantics or evaluation semantics in contrast
to a transition semantics (small-step semantics) such as abstract state machines (ASM’s). However, in
order to illustrate the definition of a small-step structural operational semantics for a high-level language,
we provide such an additional semantics for ComLisp in the appendix A.2. Notice that we do not make
use of this small-step semantics for the compiling verification outlined in this report.

A ComLisp state is a triple consisting of an (infinite) input sequence (stream) of characters, an output
list of characters, and the variable state which is a mapping from identifiers to values (s-expressions):

stateCL ::= seq[char ]× char∗ × (Ident → SExpr)

For a state s, we denote the input stream of s by sinput, the output list of s by soutput, and the variable
state of s by svar : Ident → SExpr. In the following to increase readability, we often write simply s
instead of svar; s[x← v] denotes the modification of svar at x by v.

ComLisp forms are expressions with side-effects, that is, they denote state transformers transforming
states to pairs of result value and result state. The definition of the semantics of forms uses the following
notation:

Γ  s : e→ (v, q)

where Γ is a function environment, s, q are states, and v is a value. The relation expresses that evaluating
form e in state s and function environment Γ terminates and results in a value v and final state q. Given
rules for each kind of form, the semantics is defined as the smallest relation→ satisfying the set of rules.
For example, the semantics of a function call is given by two rules. One for parameterless functions,
and one for functions with parameters, where the parameters are sequentially evaluated, the resulting
values being then bound to the parameters before evaluation of the body and unbound after returning
the value:

[f(x1 · · ·xn)← body ] ∈ Γ (n ≥ 1)
Γ  qi : ei → (vi, qi+1) (1 ≤ i ≤ n)

Γ  qn+1[x1 ← v1, . . . , xn ← vn] : body → (v, r)
Γ  q1 : call (f, e1, . . . , en)→ (v, r[x1 ← qn+1(x1), . . . , xn ← qn+1(xn)])

The complete set of rules for ComLisp forms can be found in the appendix A.
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The semantics of a ComLisp program is given by the input/output behavior of the program defined by
a relation pComLisp between input streams is and output lists ol. pComLisp(p)(is)(ol) holds if the evaluation
of the main form e in an initial state, where the input stream is given by is, the output list is empty
and all variables are initialized with NIL, terminates with a value v in some state q with output list ol.
Formally:

pComLisp(p)(is)(ol) ::= ∃v, q. (Γ  (is, [], λx.NIL) : e→ (v, q)) ∧ (qoutput = ol)

3.2 SIL

SIL, the stack intermediate language, is a language with parameterless procedures and s-expressions as
available datatype. Programs operate on a runtime stack with frame-pointer relative addresses. A SIL
program consists of a

• a declaration part (used to facilitate one pass compilation), consisting of a number denoting the
length of the global memory, and (like for ComLisp), the list of procedure names, the list of program
symbols and non-atomic constants.

• a list of parameterless procedure declarations, and

• a main statement.

There are no variables, only memory locations and the machine has statements for copying values from
the global to the local memory and vice versa. For example, copy(i, j) copies the content at stack relative
position i to relative position j, gcopy(g, i) copies from the global memory at position g to the relative
position i, and itef (i, s1, s2) executes instruction s2 if the content of stack relative position i is NIL,
otherwise s1 is executed. The unary and binary operators are the same as for ComLisp.

p ::= d; f1, . . . , fn; s
d ::= lg, Fl, Sl, Cl

f ::= h← s

s ::= abort | copyc(c, i) | copy(i, j) | gcopy(g, i) | copyg(g, i) | itef (i, s1, s2) | sq(s1, . . . , sn) |
fcall (h, i) | uop(i) | bop(i) | do(i, s1, s2) | read char (i) | peek char (i) | print char (i) | list∗(n, i)

The SIL statements have the following informal meaning:

• abort immediately aborts the execution.

• copyc(c, i) writes a constant c to stack relative position i.

• copy(i, j) copies the content at stack relative position i to stack relative position j.

• gcopy(g, i) copies the content of global memory cell g to stack relative position i.

• copyg(i, g) copies the content of stack relative position i to the global memory at position g.

• fcall(f, i) is a subroutine call that executes the code associated to f where the frame pointer is
increased by i. After the body code has been executed the frame pointer is reset to its old value.

• itef(i, t, f) executes instruction f if the content of stack relative position i is NIL, otherwise t is
executed.

• sq(s1, . . . , sn) executes the instructions s1, . . . , sn in sequence.

• uop(i) applies the unary operator uop to the stack cells at relative position i.

• bop(i) applies the binary operator bop to the stack cells at relative positions i and i+ 1.

• do(i, c, b) executes the statement c, and then terminates if the content of stack relative position i
is not NIL, otherwise executes the body b and then the loop again.
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• read char(i) writes the head of the input stream at relative position i, and removes the head from
the stream

• peek char(i), same as read char(i) but does not alter the input stream.

• print char(i) writes the content at relative position i to the output stream.

• list∗(n, i) construct an s-expression tree with n arguments and writes it at relative position i.

The static semantics is again specified by means of well-formedness predicates for SIL statements, SIL
procedure declarations, and SIL programs (definitions omitted here).

SIL statements denote state transformers, where a SIL state consists of the input stream, the output
list, the global memory (a list of s-expressions), and the local memory (consisting of the frame pointer
base : Nat and the stack, a function from natural numbers to s-expressions).

stateSIL ::= seq[char ]× char∗ × SExpr∗ ×Nat × (Nat → SExpr)

As for ComLisp, an evaluation semantics for SIL statements is defined as the smallest relation

Γ  s : cmd → q

satisfying the set of rules given for the language constructs. The relation states that executing the
statement cmd in state s and SIL procedure environment Γ (a list of procedure declarations) is defined,
terminates, and results in a new state q. The rules for SIL statements are listed in the appendix B.

As for ComLisp, the semantics of a SIL program is its I/O behavior:

p
SIL

(p)(is)(ol) ::= ∃q. (Γ  init : s→ q) ∧ (qoutput = ol)

where the initial state is defined by init ::= (is, [], [NIL, . . . ,NIL], 0, λn.NIL).

3.3 PVS Formalization of the Languages

Abstract syntax, static and dynamic semantics of the languages have to be formalized in the PVS
specification language. The language is based on classical higher-order logic with a rich type system
including dependent types. In addition, the PVS system provides an interactive proof checker that has
a reasonable amount of theorem proving capabilities. A strategy language enables to combine atomic
inference steps into more powerful proof strategies allowing to define reusable proof methods.

1. Abstract Syntax: the PVS abstract data type (ADT) construct is used. ComLisp forms, for exam-
ple, are defined by an ADT, where for each kind of form there exists a corresponding constructor.
For ADT definitions in PVS, a large theory is automatically generated including induction and
reduction schemes for the ADT, termination measures, and a set of axioms stating that the data
type denotes the initial algebra defined by the constructors. Note that the formalizations make
heavily use of library specifications. However, a lot of new types, functions, and predicates must
be added for the specifications, as well as lemmas for their useful properties (which have to be
proved).

2. Static Semantics: the well-formedness predicates must be formalized. Since each function must
be total in PVS, a termination measure must be provided for the recursive definitions. We have
specified the structural size of a ComLisp form using the reduction scheme from the ADT theory.

3. Dynamic Semantics: the rules must be represented in PVS. A set of structural rules is represented
as an inductive PVS relation which combines all the rules in one single definition E(Γ)(s, e, v, q,N)
which denotes Γ  s : e → (v, q). Free logical variables in the rules are existentially quantified in
the corresponding PVS relation. In general, properties about inductive relations can be proved
by rule induction. Here, the definition of relation E has an additional counter parameter N to
formulate an induction principle needed for the proof for the selected notion of correctness (see
Sect. 3.5). N is decreased when entering the body of a function or while loop, since in this case the
forms in the antecedents of the corresponding rules are not structurally smaller, and left unchanged
otherwise.
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3.4 Compiling ComLisp to SIL

The compilation from ComLisp to SIL generates code according to the stack principle and translates
parameter passing to statements which access the data stack. For a given expression e, a sequence of SIL
instructions is generated that computes its value and stores it at the top of the stack (relative position k
in the current frame). The parameters x1, . . . , xn of a function are stored at the bottom of the current
frame (at relative positions 0, . . . , n− 1) (see Fig. 4). A SIL function call fcall (h, i) increases the frame
pointer base by i which is reset to its old value after the call and local variables introduced by let are
represented within the current frame. For each syntactical ComLisp category, a compiling function is
specified.

base + k top of stack
...

base + n vn−1

...
base + 1 v2

base v1

...

Figure 4. Parameter passing on the stack

• Cform(e, γ, ρ, k) is defined inductively on e. It takes a form e, a global environment γ (a list of
identifiers), a compile time environment ρ (an association list which associates relative positions
in the current stack frame with local variables), and a natural number k (denoting the current top
of stack) and produces a SIL statement. Its definition can be found in the appendix C.

• A function definition is compiled by compiling the body in a new environment (where the formal
parameters are associated with relative positions 0, . . . , n− 1) with the top of stack set at position
n. Finally, the current stack frame has to be removed, leaving only the result on top (achieved by
a copy instruction from position n to 0).

Cdef(h(x1, . . . , xn)← e)(γ) ::= h← sq(Cform(e, γ, [xi ← (i− 1)], n), copy(n, 0))

• A function environment Γ is compiled by compiling each function definition in Γ:

Cdefs([f1, . . . , fn])(γ) ::= [Cdef(f1)(γ), . . . , Cdef(fn)(γ)]

• A program p = γ; Γ; e is compiled by compiling its function environment and main form:

Cprog(p) ::= Cdefs(Γ)(γ); Cform(e, γ, [], 0)

3.5 Correctness of the Compilation Process

char∗

char∗

seq[char]

seq[char]

id

p
SIL

id

pComLisp

Figure 5. ComLisp program compilation correctness

For this first phase there are no resource restrictions and the correctness of the compilation process
is stated as follows: for any well-formed ComLisp program p, whenever the semantics of the compiled
program is defined for some input stream is and output list ol, this is also the case for p for the same is
and ol (see Fig. 5).

Theorem 3.1 (Correctness of Program Compilation).
∀p, is, ol. wf (p)⇒ p

SIL
(Cprog(p))(is)(ol)⇒ pComLisp(p)(is)(ol)
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Unfolding p
SIL

and pComLisp, the semantics of forms and corresponding SIL statements have to be com-
pared. In particular, this requires relating source and target language states. ComLisp forms denote
state transformers transforming a state into a result value and a result state (if defined) σ →e (v, σ′). On
the other hand, SIL statements denote ordinary state transformers s→s s

′. Two relations are required:
one relation ρin relates ComLisp input states σ with SIL states s, while the other relation ρo relates
ComLisp output states (v, σ′) with SIL states s′. Figure 6 illustrates the correctness property for forms
by means of a commuting diagram.

→s

→e

ρi

stateCL � σ

stateSIL � s

(v, σ′) ∈ SExpr × stateCL

s′ ∈ stateSIL

ρo

Figure 6. Correctness property for the compilation
of ComLisp forms

The relations are parameterized with a list of global variables γ, the local compile time environment
ρ, and the current top of stack position k. Relation ρi distinguishes between local and global variables.
The relative address for variables for which ρ is defined is given by ρ(x), while the address of the global
variables in γ is given by γ(x). Relation ρo additionally assumes that the final value v is available at the
stack top (relative address k). In addition, it is required that the input streams and the output lists of
σ and s correspond. The data representation relations are defined as follows:

1. ρi(γ, ρ, k)(σ, s) ::=
[∀x ∈ dom(ρ). (ρ(x) < k) ∧ (σ(x) = slocal(sbase + ρ(x)))] ∧
[∀x ∈ γ. (γ(x) < |sglobal|) ∧ (σ(x) = sglobal(γ(x)))] ∧
(sinput = σinput) ∧ (soutput = σoutput)

2. ρo(γ, ρ, k)(v, σ′, s′) ::= (s′local(s
′
base + k) = v) ∧ (ρi(γ, ρ, k)(σ′, s′))

In order to state the correctness property for the compilation of forms two additional invariants are
required:

1. The first invariant relates ComLisp input and output states. It assures that identifiers not belonging
to ζ or γ (the local and global identifier lists) do not alter their values.

source invar?(ζ, γ)(σ, σ′) ::= ∀x. (x �∈ ζ ∧ x �∈ γ) ⇒ σ′(x) = σ(x)

2. The second one relates input SIL states s with output SIL states s′. It states that

(a) the frame pointers of s and s′ are identical.

(b) the contents of all stack cells with addresses not within the range of the local environment ρ
do not change from s to s′. In particular, this includes all stack cells below the current stack
frame.

invar?(ρ, k)(s, s′) ::=
sbase = s′base ∧
∀adr . adr < k ∧ adr �∈ ran(ρ)⇒ slocal(sbase + adr ) = s′local(s

′
base + adr) ∧

∀adr . adr < sbase ⇒ slocal(adr ) = s′local(adr )

This property is required to ensure that for function and operator calls the computed values of the
arguments are still available (and not overwritten) when the operator is applied or the function
body is executed.

All ingredients have now been collected to state the correctness property for the translation of forms.
The diagram in Fig. 6 has to commute in the sense of preservation of partial program correctness. The
property states that if the function environment and the ComLisp form is well-formed, the compile time
environment ρ is injective and its domain corresponds to the local variable list ζ, the initial ComLisp
and SIL states are related by ρi and the code resulting from compiling form e transforms SIL state s
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into s′, then there exists a value v and ComLisp state σ′ such that e evaluates in state σ to (v, σ′) and
the final ComLisp and SIL states are related by ρo and the target states and source states invariants
hold. Note that the additional parameters cl and sl denoting the list of non-atomic program constants
and symbols, respectively, are required for the well-formedness predicates.

Definition 3.1 (Correctness Property for Form Compilation).
correct prop(Γ, γ, ζ, ρ, cl, sl, k)(e) ::=
∀σ, s, s′. wf (Γ, γ, cl, sl) ∧ wf (e, ζ, γ,Γ, cl, sl) ∧ injective?(ρ) ∧

(dom(ρ) = ζ) ∧ ρi(γ, ρ, k)(σ, s) ∧ (Cdefs(Γ)(γ)  s : Cform(e, γ, ρ, k)→ s′)
⇒ ∃v, σ′ : (Γ  σ : e→ (v, σ′)) ∧ ρo(γ, ρ, k)(v, σ′, s′) ∧ invar?(ρ, k)(s, s′) ∧ source invar?(ζ, γ)(σ, σ′)

The main obligation is to prove that this property holds for each kind of form:

Theorem 3.2 (Correctness of Form Compilation).
∀e,Γ, γ, ζ, ρ, cl, sl, k. correct prop(Γ, γ, ζ, ρ, cl, sl, k)(e)

In the PVS formalization, the correctness property has an additional counter argument N according to
the inductive relations defining the semantics. This additional argument is required here since we prove
that the target semantics implies the source semantics but the compilation is defined structurally on the
source language. If we would prove the other way round, rule induction (without a counter argument)
would suffice. The PVS proof of this theorem is done by measure induction (a variant of well-founded
induction) using the lexicographic combination of the counter N and the structural size of form e as
termination measure:

(N ′, e′) < (N, e) ::= (N ′ < N ∨ (N ′ = N ∧ size(e′) < size(e)))

This measure ensures that for each kind of form the induction hypothesis is applicable. To suitably
manage the complexity of this proof, for each kind of form a separate compilation theorem is introduced.
The proof of Theorem 3.2 is then carried out by case analysis and application of the compilation theorems.

Most of the proofs of the compilation theorems follow a similar scheme according to the structure of
the correctness property (see Definition 3.1):

1. First, definitions must be unfolded and the SIL statement which results from compiling the ComLisp
form must be “executed” symbolically according to the operational SIL semantics.

2. The induction hypothesis (stated as a precondition in the compilation lemmas) must be instanti-
ated.

3. Instantiations for the result value v and result state σ′ (existentially quantified variables) of the
ComLisp form must be found.

4. The consequent part of the formula must be proved. This reduces to showing four properties:

(a) show that form e evaluates to the instantiated value and result state.

(b) show with the help of precondition ρi that the output source and target states are related by
ρo (Note that ρo is defined by means of ρi).

(c) show that the target state invariant holds.

(d) show that the source state invariant holds.

PVS strategies have been defined for some of the cases of the general scheme. These strategies enable the
(nearly) automatic discharge of the respective cases. The proofs of most of the compilation lemmas are
relatively straightforward and follow directly the scheme. However, some of the compilation theorems are
tedious, in particular the theorems for function call, let-form, and list∗. They make use of an additional
lemma which relates sequences of ComLisp forms with SIL statement sequences.
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Table 1. Formalization and verification statistics for the first phase

PVS theories LOC proof obligations proof steps
spec. of languages 7 759 139 575
compiling specification 1 122 36 95
compiling verification 1 219 30 1617
list, alist library 7 621 139 1048

16 1721 344 3335

Statistics

We present some statistics concerning the formalization and verification effort for this compilation step.
Table 1 summarizes the results. First of all, we have extended the built-in PVS library with additional
functions and properties for lists, and with a new theory for association lists (finite maps). This library
has already been reused for other verification tasks. There are 7 additional PVS theories with 621
lines of PVS specification code (LOC), 139 obligations to prove including all type correctness conditions
generated by the system. These obligations are proved interactively by invoking 1048 proof steps. The
specifications of the languages ComLisp and SIL including the definition of s-expressions and correspond-
ing unary and binary operators involve 7 theories. Not surprisingly, the most effort lies in the verification
of the compiling specification: 30 proof obligations (mainly the compiling theorems) have been proved
in more than 1600 proof steps. Most work has been put into the verification of the compilation theorems
for function call, let , and list∗.

4 Data and Operation Refinement

The second compilation phase is a classical data and operation refinement step, where ComLisp data
structures (s-expressions) and operators are implemented in linear integer memory using a runtime stack
and a heap for representing dynamic data structures.

4.1 A modified Semantics for SIL

To verify the compiling relation for this second compilation step, the semantics of SIL has to be slightly
modified. An additional pointer, referencing the top of stack has to be integrated into the SIL state.
This is required since SIL is not a (classical) stack machine with standard push and pop instructions,
instead it contains copy instructions which allow arbitrary read and write access within the current stack
frame. However, as SIL is only used as an intermediate language for compiling ComLisp programs, it
is well-known (from the verification outlined in the last section) that any correctly compiled ComLisp
program runs like a program on a classical stack machine. In order to be able to modularly verify the
two compilation phases, knowledge about the first compilation phase has to be integrated into SIL’s
semantics. An additional stack pointer is utilized for this purpose and a weaker SIL semantics is defined.
If a SIL program is not in correspondence with a stack machine behavior (that is, the stack pointer has
an erroneous value), the SIL machine may step non-deterministically into any possible successor state.
The modified SIL state includes the additional top-of-stack pointer of type Int .

stateSIL ::= seq[char ]× char∗ × SExpr∗ ×Nat × (Nat → SExpr)× Int

The rules for the relation Γ  s : cmd → q have to be updated such that the top pointer is modeled
suitably. As an example how the stack top pointer is integrated into the semantics, consider the semantics
for the SIL statement copy . It is specified by means of two rules. The first rule specifies the normal case.
The top pointer always points above sbase + i and the target location j (relative to the frame pointer
base could be equal to the top pointer plus 1. In this case, the copy instruction corresponds to a push
operation on a classical stack machine. The pointer is updated to point to the maximum of i and j. On
the other hand, the second rule specifies the erroneous behavior. In this case the semantics is defined
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non-deterministically and any successor state q will be allowed.

(sbase + i ≤ stop) ∧ (sbase + j ≤ stop + 1)
Γ  s : copy(i, j)→ s[j ← s(i), top← sbase + max(i, j)]

(sbase + i > stop) ∨ (sbase + j > stop + 1)
Γ  s : copy(i, j)→ q

The complete set of rules for this modified semantics can be found in the appendix D. Using a modified
semantics for the verification of this phase, effects the global correctness proof, since the first two phases
cannot be combined due to different semantics of SIL. Thus, it is required to either

• formally relate both SIL semantics or to

• repeat the verification of the first compilation phase from ComLisp to SIL using the modified SIL
semantics.

We have decided to use the second choice which has turned out to be much easier since nearly all of the
proofs could be reused without adaption.

4.2 The intermediate language Cint

Cint , the next intermediate language for our bootstrap compiler, is used to represent the s-expressions in
the SIL program and to define the core runtime system (a set of Cint procedures) which implements the
SIL (and ComLisp) unary and binary operators. Like SIL, Cint has parameterless procedures. Programs,
however, operate on integers of arbitrary size. Besides a stack with frame-pointer relative and random
access, there is a random access integer array heap for implementing dynamic data structures. There are
statements and expressions. A Cint program consists of a declaration part (the list of procedure names
Fl, initial stack (st0) and heap segments (h0) used to represent the global variables and the SIL program
symbols and non-atomic s-expression constants), a list of procedure declarations, and the main program
(statement). Each procedure has to specify in its heading the amount of stack spaces it directly uses
which can be determined statically (see below). This information is used in the next compilation phase,
when compiling Cint to abstract Transputer assembler (TASM) but is not relevant for the compilation
step outlined in this section.

p ::= Fl; st0;h0; f1, . . . , fn; s
f ::= h(size)← s

s ::= skip | abort | allocate(e) | set local(e, i) | set stack(e1, e2) | set heap(e1, e2) | s1; s2 |
if (e, s1, s2) | if (e, s1) | do(s1, e, s2) | call(h, i) | read char (i) | peek char (i) | print char (i)

e ::= heaptop | quotetop | stacktop | i | local (i) | stack (e1) |
heap(e1) | unavailable(e1) | 2 ∗ (e1) | op(e1, e2)

op ::= + | ∗ | − | div | rem | < | ≥ | = | �=
The statements consist of

• allocate(e): allocation and de-allocation of heap memory (by increasing or decrementing the heap-
top pointer)

• statements for accessing the stack and heap (set local (e, i) writes the value of expression e to stack
relative position i, set stack(e1, e2) for random access on the stack writing the value of e1 to stack
position denoted by e2; similarly set heap(e1, e2) for random access on the heap),

• control structures (loop, conditional, sequential composition, procedure call),

• I/O: reading from the input sequence and writing to the output list.

The expressions of Cint consist of expressions accessing the current top of heap, stack, and the top
of the initial heap segment (quotetop), integer constants, local and random stack access, random heap
access, and application of an unary and binary operator. In addition, the expression unavailable(e) has
a non-deterministic semantics (it returns some arbitrary integer value if e evaluates to a defined value)
and is used only in the core runtime system for memory management purpose. Cint stacks and heaps
are infinite arrays which have to be implemented in finite TASM memory.
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The static semantics of Cint programs, procedure definitions, and statements is specified by means
of several well-formedness predicates. Informally, a statement is well-formed if every function symbol
is declared, if there are no double definitions of procedure names, and if the names are different from
the operator names. Each procedure specifies in its heading the amount of stack spaces it uses directly
which is given by the highest relative stack index in its body. The specified amount has to be greater
than or equal the actual amount.

As for SIL, a big-step semantics is specified for Cint . A Cint state consists of the input stream, the
output list, the stack array (consisting of the frame pointer base : Nat and the stack, a function from
natural numbers to integers), the heap array, and the two heap pointers heaptop and quotetop which
point to heap addresses (natural numbers). The pointer quotetop references the end of the initial heap
segment, while heaptop points to the index of the first free heap cell.

stateCint ::= seq[char ]× char∗ × (Nat × (Nat → Int))× (Nat → Int)×Adr ×Adr

An evaluation semantics for Cint expressions and statements is provided. Expression evaluation uses
the following notation: s : e → v. This expresses that expression e evaluated in state s terminates and
evaluates to integer value v. Given rules for each kind of form, the semantics is defined as the smallest
relation → satisfying the set of rules. Similarly, an evaluation semantics for Cint statements is defined
as the smallest relation Γ  s : cmd → q satisfying the set of rules given for the language constructs.
The relation states that executing the statement cmd in state s and Cint procedure environment Γ (a
list of procedure declarations) is defined, terminates, and results in a new state q. The complete set of
rules for expressions and statements is listed in the appendix E.

The semantics of a Cint program p = Fl; st0;h0; Γ; cmd is given by the input/output behavior of the
program defined by a relation p

Cint between input streams is and output lists ol. p
Cint (p)(is)(ol) holds

if the evaluation of the main statement s in an initial state, where the input stream is given by is, the
output list is empty, the base pointer is set to the length of the initial stack segment st0, the initial stack
is st0, the initial heap segment is h0, and both, the heaptop and quotetop pointer point to the end of
the initial heap segment, terminates in a state q with output list ol.

p
Cint (p)(is)(ol) ::= ∃q. (Γ  init : cmd → q) ∧ (qoutput = ol)

where the initial state is defined by init ::= (is, [], (|st0|, st0), h0, |h0|, |h0|).

4.3 Compiling SIL to Cint

The main task of the compilation from SIL to Cint is a data and operation refinement step. Following
classical approaches (e.g. [Jon90]), the main idea of representing an (abstract) data type D by a more
concrete one Z is to introduce a subset R ⊆ Z (also referred to as data type invariant) denoting the
set of elements used to represent D together with an abstraction function ρ (also referred to as retrieve
mapping) mapping elements satisfying the invariant R to abstract values of D. For each operation on D
an implementation on Z must be defined. Correctness of operation refinement ensures that the data type
invariant is preserved by the implementation and that the implementation exhibits the same behavior
as the abstract operation with respect to the abstraction function ρ.

In our case, the task is to represent the s-expressions in the SIL program in linear integer memory
and to define a set of Cint procedures (core runtime system) which implement the ComLisp (and SIL)
unary and binary operators. An initial heap segment has to be constructed such that it is a correct
representation of the non-atomic s-expressions and symbols which are specified in the declaration part
of a SIL program. Analogously, an initial stack segment must be constructed which contains the global
variables and a reference to the symbol table.

4.3.1 Representation of S-Expressions

Data and operation refinement for s-expressions and ComLisp operators are according to a standard
scheme of mapping directed graphs to linear memory using tagged pointers. In Cint , nodes of an s-
expression tree are represented by a tag, value (t, v) pair of two consecutive stack/heap locations, where
the tag provides type information on how the value is to be interpreted. Table 2 presents seven different
tags and corresponding values. Atomic s-expressions have an immediate representation: the symbol NIL
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Tag Value

nil-tag(0) 0
T-tag(1) 1
sym-tag(2) adr
num-tag(3) i
chr-tag(4) [0, . . . , 255]
cons-tag(5) adr
stg-tag(6) adr

Table 2. Tags and Values

is represented by (0, 0), the symbol T is represented by (1, 1), a character c is represented by (4, code(c)),
an integer constant i is represented by (3, i).

For non-atomic s-expressions (symbols, strings, and binary trees (lists)), there are references into
the heap. Strings are represented by (6, adr), where adr is a reference to a heap cell which stores the
length of the string. The heap cells above this cell consecutively store the characters of the string. The
representation of a string s of length n needs 2 ∗ (n + 1) memory locations. Figure 7 illustrates the
representation of the string “ab”.

str−tag

2
num−tag

‘a‘
chr−tag

chr−tag

‘b‘

Figure 7. Representation of string “ab”

Binary trees (‘cons’-nodes (l . r)) are represented by two consecutive pairs of nodes. The tagged
pointer of a ‘cons’-node is given by (5, adr), where adr is a reference to a heap cell which represents the
‘car’-part. The left part of Figure 8 shows the representation of cons nodes in general, while the right
part illustrates the representation of list [1, 2] .= (1 . (2 . NIL)).

cons−tag

 tag−l
value−l

tag−r
value−r

...

... ...

cons−tag

1

cons−tag

num−tag
2

nil−tag

0

num−tag

...

Figure 8. Representation of cons
nodes and example list [1, 2]

For symbols, their print-names are stored uniquely in a symbol table implemented by a list of symbols.
Every program symbol is represented only once within this list. The representation of a symbol is given
by (2, adr), where adr is a reference to a ‘cons’-node the ‘car’ of which contains the representation of the
symbol’s print-name. The base address of the symbol table can be found at the absolute stack address
0.

The memory model utilized by Cint is depicted in Fig. 9. The initial stack segment contains a
reference to the symbol table and the global variables. Due to the garbage collector algorithm (see
Sect. 4.4), the heap above the initial segment is divided into two parts.

4.3.2 Representation Type and Abstraction Function

An arbitrary stack and heap does not necessarily represent an s-expression or a list of s-expressions. The
stack or heap may contain invalid addresses and the chains of references may be cyclic. Several invariants
must hold. The subset of stacks and heaps which represent s-expressions are to be characterized by a
predicate admissible. In addition, stacks and heaps are modeled as functions from natural numbers to
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Initial Heap

Heap

00

base

1
symbol table

global variables

  Stack exactht

quotetop

heaptop

Figure 9. Cint memory model

integers. However, each program only works on finite stacks and heaps. For this purpose, admissibility is
parameterized with upper stack and heap bounds, i.e. for a heap h with upper bound ht only the interval
[h(0), h(1), . . . , h(ht)) excluding h(ht) is considered (written as (h, ht)). A valid stack/heap address is
an even non-negative integer. The abstraction function to be defined below makes use of the following
properties (definitions omitted):

• admissible cons?(a, h, ht)
For a ‘cons’-node to be a valid representation, the pointer chains must be acyclic (see Fig. 8). This
can be assured if the references of the chain decrease which is specified by the recursive predicate
admissible cons?, where (h, ht) is a heap with upper bound ht and a is a valid address.

• admissible?((t, v), h, ht) specifies that a tagged value (t, v) is admissible for heap (h, ht). This is
the case, if the atomic and non-atomic s-expressions are correctly represented according to Table
2. For example, if t = 5 (cons-tag) then v must be a valid address and the pointer chains (if any)
starting with h(v) and h(v + 2) must be acyclic.

• admissible?(ht, h): a heap is admissible if every tagged value in (h, ht) is admissible for (h, ht)

• admissible?(st, h, ht, top)
Similarly, admissibility is defined for stacks with upper bounds. A stack (st, top) is admissible for
(h, ht), if every tagged value in (st, top) is admissible for (h, ht).

Having introduced the necessary constraints for representing s-expressions, the abstraction function
(which retrieves s-expressions from admissible stacks and heaps) can now be defined. The definition
makes use of two auxiliary functions: Φstring(adr, ht, h) retrieves the string at start address h(adr) and
function intern takes a string st and yields the unique symbol the print-name of which is st.

Definition 4.1 (Abstraction Function).
Suppose admissible?((t, v), h, ht) and admissible?(ht, h).

Φ((t, v), ht, h) ::=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0 : NIL
t = 1 : T
t = 2 : intern(Φstring(h(v + 1), ht, h))
t = 3 : v
t = 4 : Char (v)
t = 5 : (Φ((h(v), h(v + 1)), ht, h) . Φ((h(v + 2), h(v + 3)), ht, h))
t = 6 : Φstring(v, ht, h)

For a stack st and a valid stack address a with admissible?((st(a), st(a+ 1)), h, ht) we define

Φ(st, ht, a, h) ::= Φ((st(a), st(a + 1)), ht, h)

Some properties concerning admissibility of stacks and heaps and the abstraction function are required
in the sequel. They deal with the admissibility of stack and heap extensions and modifications. For
instance, a stack remains admissible if it is modified at a valid address with an admissible tagged value:

Lemma 4.1 (Stack Modification).
Suppose admissible?(st, h, ht, top) and admissible?((t, v), h, ht). Then for all valid addresses a with 0 ≤
a+ 1 ≤ top, admissible?(st[a← t, (a+ 1)← v], h, ht, top).
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The next lemma states that the upper heap bound can be increased without effecting the admissibility
of the pointer chains since the references of the pointer chains decrease.

Lemma 4.2 (Increasing Heap Bound, Valid Pointer Chains).
Suppose admissible cons?(a, h, ht) and ht′ ≥ ht. Then admissible cons?(a, h, ht′).

A tagged value abstracts to the same s-expressions if the upper heap bound is increased:

Lemma 4.3 (Increasing Heap Bound).
Suppose admissible?((t, v), h, ht) and admissible?(ht, h) and ht′ ≥ ht. Then admissible?((t, v), h, ht′) and
Φ((t, v), ht′, h) = Φ((t, v), ht, h).

Similar results hold, if the heap is correctly extended at the top. The new heap will be admissible
and any admissible tagged value in the old heap abstracts to the same s-expression in the new heap. The
following lemma is needed later for proving the correctness of heap extending operations such as cons.

Lemma 4.4 (Heap Extension).
Suppose admissible?((t1, v1), h, ht) and admissible?((t2, v2), h, ht) and admissible?(ht, h). Then

• admissible?(ht+ 2, h[ht← t2, (ht+ 1)← v2]) and

• admissible?((t1, v1), h[ht← t2, (ht+ 1)← v2], ht+ 2) and

• Φ((t1, v1), ht, h) = Φ((t1, v1), ht+ 2, h[ht← t2, (ht+ 1)← v2]).

4.3.3 The Compiling Relation

One of the task of this compilation is to represent the SIL program symbols and non-atomic s-expression
constants in an initial heap segment and to store the global variables in the initial stack segment. For
this purpose, a heap environment ζ, mapping the s-expression constants and symbols to a (tag, value)
pair in the initial heap, is utilized. SIL statement compilation is straightforward and defined using a
function

CCstmt(cmd, ζ)

It is defined inductively on the structure of SIL statements. Unary and binary operators are compiled into
a call of the corresponding procedure of the core runtime system, and the list∗ operator is implemented
by a sequence of calls of the “cons” procedure. Note that SIL stack position i corresponds to Cint stack
positions 2i and 2i+ 1. The compiling relation follows the technical report [GH98b] which also contains
the complete core runtime system. The complete definition of the relation is listed in the appendix F.
For example, non-atomic s-expressions and symbols are compiled as follows:

CCstmt(copyc(s, i), ζ) = set local(tag , 2i); set local(val , 2i+ 1) where (tag, val) = ζ(s)

A Cint procedure heading must contain the maximum number of stack locations the procedure
directly uses in its stack frame. (The information is only relevant for the compilation step to TASM
code with its finite memory). This is determined by twice the highest relative stack index in the SIL
function body plus one (function maxindex , omitted). Note that every SIL stack item consumes two
Cint memory cells.

Definition 4.2 (Procedure Compilation).
CCdef(h← s, ζ) = h(size)← CCstmt(s, ζ) where size = 2 ∗ (maxindex (s) + 1)
CCdefs(f1, . . . , fn, ζ) = [CCdef(f1, ζ), . . . , CCdef(fn, ζ)]

Finally, the initial stack and heap segments are specified declaratively using the following relation.
The construction of the initial segments including the heap environment ζ is the task of an additional
compiler implementation step.

Definition 4.3 (Initial Stack and Heap).
CCdecl(lg, Sl, Cl, st0, h0, ζ) ::=

• |st0| = 2 ∗ (lg + 1)
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• even(|h0|)

• admissible?(|h0|, h) (initial heap is admissible)

• admissible?(st0, h0, |h0|, |st0|) (initial stack is admissible w.r.t. initial heap)

• ∀g with 1 ≤ g ≤ lg. Φ(st0, |h0|, 2 ∗ g, h0) = NIL (the global variables are initialized with NIL on the
initial heap)

• Φ(st0, |h0|, 0, h0) = Sl (position 0 references the symbol table)

• ζ associates every non-atomic constant q of Cl and symbol of Sl with a pair (t, v) such that
φ((t, v), |h0|, h0) = q.

It remains to define the compiling relation for SIL programs; crts denotes the list of Cint procedures
which implement the ComLisp operations (core runtime system). It also includes a garbage collector.

Definition 4.4 (Compiling SIL Programs).
Suppose p = lg;Fl;Sl;Cl; Γ; s. Then

CCprog(p, q) ::=
∃st0, h0, ζ. CCdecl(lg, Sl, Cl, st0, h0, ζ) ∧ q = Fl ∪ crts ; st0;h0; crts ∪ CCdefs(Γ, ζ); CCstmt(s, ζ)

4.3.4 Notes on the PVS formalization

The PVS formalization of the admissibility predicates are relatively straightforward. Besides the lemmas
presented in subsection 4.3.2, a lot more additional corollaries have to be formalized and proved correct.
They are all concerned with admissibility of stack and heap modifications and are to be used in the
compiling correctness proofs. Furthermore, the abstraction function Φ is defined with the heavy use
of PVS’s predicate subtype concept. This has the consequence that many TCC’s (type correctness
conditions) are generated which must be proved in order to ensure type correctness of the specification.
For example, the signature of the abstraction function in PVS is as follows, where type TVal denotes the
type of tagged values.

phi(tv:TVal,
ht:(even),
h:{h1:Heap | admissible?(ht,h1) AND admissible?(tv,h1,ht)}) : RECURSIVE sexpr

Each time function phi is applied, TCC’s are generated to ensure that the arguments satisfy the type
constraints (admissibility). The compiling relations and functions are defined similarly as above.

4.4 Correctness of the Compilation Step

In the same way as for the first compilation phase, correctness of this compilation process is stated as
follows: for any well-formed SIL program p, whenever the semantics of the compiled program is defined
for some input stream is and output list ol, this is also the case for p for the same is and ol (Fig. 10).

char∗

char∗

seq[char]

seq[char]

id

p
Cint

id

p
SIL

Figure 10. SIL program compilation correctness

Theorem 4.1 (Correctness of Program Compilation).

∀p, q, is, ol. (wf (p) ∧ CCprog(p, q))⇒ (p
Cint (q)(is)(ol)⇒ p

SIL
(p)(is)(ol))
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Unfolding p
SIL

and p
Cint , the semantics of SIL statements and Cint statements have to be compared.

In particular, this requires relating source and target language states. Both SIL statements and Cint

statements denote state transformers. However, SIL states and Cint states differ in several respects. The
principle ideas of the data representation relation are as follows (see also Fig. 9):

• global variables of SIL are represented on the stack starting at address 2. Note that at stack
position (0, 1) there is a reference to the start address of the symbol table.

• the base pointer of SIL has a direct correspondence with its Cint counterpart. Each SIL memory
cell corresponds to two Cint cells. The pointers are related by

sbase = 2 ∗ (lg + 1) + 2 ∗ σbase.

• the local SIL memory (the runtime stack) corresponds to (the abstraction of) the runtime stack
of Cint up to the top of stack. The abstraction is only well-defined if the stack is admissible. The
reason why we have introduced a stack top pointer to SIL’s semantics is that the compilation only
ensures stack correspondence up to the top. Cint cells above the top do in general not correspond
with the respective SIL stack cells.

• the initial heap area contains representations of SIL’s non-atomic s-expression constants and sym-
bols and they can be retrieved from the references given by the heap environment ζ. This is stated
using the following relation:

correct heapenv?(ζ, Sl, Cl, h, ht) ::=
even(ht) ∧ admissible?(ht, h) ∧
[∀s ∈ (Sl ∪Cl). admissible?((tag, val), h, ht) ∧ Φ((tag, val), ht, h) = s, where (tag, val) = ζ(s)]

• part of the Cint core runtime system is a stop-and-copy garbage collector. The principle idea of
this garbage collector algorithm is to reserve two non-overlapping memory areas on the heap. The
first area is used to store the dynamic data structures generated during program execution, while
the second one is temporarily unused. In case the first area is full, the garbage collector is invoked
the next time new heap memory is to be allocated. Traversing the stack from top to the bottom
and following the references into the heap, the visited datas are copied into the second heap part.
References into the initial heap (the area below quotetop) which contains the SIL program constants
and symbols are not modified. They have fixed addresses provided by the heap environment ζ at
compile time. After the stack has been traversed, the second heap area is then copied back into
the first area and the process continues.

• the heaptop pointer points to the first unused heap location above the second heap part. Due to
the garbage collector algorithm, the current heaptop points to the first cell of the second heap part
which is used as a temporary buffer for the references. In case n new cells are to be allocated, the
heaptop pointer is increased by 2 ∗ n. The actual heaptop is referred to as exact heaptop and can
be calculated for a Cint state s by sexactht ::= div (sheaptop + squotetop, 2).

• an error SIL state σ (σtop = −2) (that is, the SIL program has not a stack machine behavior), is
related with any Cint state s, since we want (and are able) to prove correctness only for correctly
compiled ComLisp programs and not for an arbitrary SIL program.

• input and output of SIL and Cint correspond.

• the symbol list must be disjoint and can be retrieved from the stack at position 0.

The above remarks lead to the following definition of the data representation relation between SIL states
σ and Cint states s:

Definition 4.5 (Data Representation Relation).
ρ(ζ, Sl, Cl)(σ, s) ::=
if error?(σ) then true
else
sheaptop ≥ squotetop ∧ even(sexactht) ∧
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admissible?(sexactht, sheap) ∧
admissible?(sstack, sheap, sexactht, 2 ∗ (|σglobal|+ 1 + σtop) + 1) ∧
σinput = sinput ∧ σoutput = soutput ∧
[∀g. 1 ≤ g ≤ |σglobal| ⇒ σglobal.(g − 1) = Φ(sstack, sexactht, 2 ∗ g, sheap)] ∧
sbase = 2 ∗ (|σglobal|+ 1 + σbase) ∧
[∀a. a ≤ σtop ⇒ σlocal(a) = Φ(sstack, sexactht, 2 ∗ (|σglobal|+ 1 + a), sheap)] ∧
correct heapenv?(ζ, Sl, Cl, sheap, squotetop) ∧
disj list?(Φ(sstack, sexactht, 0, sheap))

endif

Figure 11 illustrates the correctness property for statements by means of a commuting diagram.

→SIL
σ′ ∈ stateSIL

ρ ρ

→Cint

s′ ∈ state
Cint

stateSIL � σ

state
Cint � s Figure 11. Correctness property for the compila-

tion of SIL statements

In order to state the correctness property two technical invariants are required in addition:

1. The first invariant states that the size of the global SIL memory equals to constant g.

correct globals?(g, σ) := (|σglobal| = g).

This invariant is trivially preserved since the size of the global memory does not change during
program execution.

2. The second one relates Cint input state s with Cint output states s′. It states that the frame-
pointers of s and s′ are identical, formally: base invariant?(s, s′) ::= (sbase = s′base).

All ingredients have now been collected to state the correctness property for the translation of statements.
The diagram in Fig. 11 has to commute in the sense of preservation of partial program correctness. The
property states that if the procedure definitions and the statement are well-formed, the procedure names
and the names of the core runtime system procedures are pairwise disjoint, the length of SIL’s global
memory equals to parameter g, the initial SIL and Cint states are related by ρ and the code resulting
from compiling statement cmd transforms Cint state s into s′, then there exists a SIL state σ′ such that
cmd evaluates in state σ to σ′ and the final SIL and Cint states are related by ρ and the invariants hold.

Definition 4.6 (Correctness Property for Statement Compilation).
correct prop(Γ, ζ, Sl, Cl, g)(cmd) ::=
∀σ, s, s′. wf (Γ, Sl, Cl, g) ∧ wf (cmd ,Γ, Sl, Cl, g) ∧ disj names?(Γ, crts) ∧ correct globals?(g, σ) ∧
ρ(ζ, Sl, Cl)(σ, s) ∧ (CCdefs(Γ, ζ) ∪ crts)  s : CCstmt(cmd , ζ)→ s′

⇒ ∃σ′ : (Γ  σ : cmd → σ′) ∧ ρ(ζ, Sl, Cl)(σ′, s′) ∧ correct globals?(g, σ′) ∧ base invariant?(s, s′)

The main obligation is to prove that this property holds for all SIL statements cmd:

Theorem 4.2 (Correctness of Statement Compilation).
∀Γ, ζ, Sl, Cl, g, cmd . correct prop(Γ, ζ, Sl, Cl, g)(cmd)

As for the verification of the first phase, in the PVS formalization, the correctness property has an
additional counter argument N according to the inductive relations defining the semantics and the PVS
proof of this theorem is done by measure-induction using the lexicographic combination of the counter N
and the structural size of the statement cmd as termination measure. To suitably manage the complexity
of this proof, for each kind of form a separate compilation theorem is introduced. The proof of Theorem
4.2 is then carried out by case analysis and application of the compilation theorems. Most of the proofs of
the compilation theorems follow a similar scheme according to the structure of the correctness property
(see Def. 4.6):

1. First, definitions must be unfolded, the Cint statement which results from compiling a SIL state-
ment must be executed symbolically according to its operational semantics.
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2. A case-analysis according to the value of the stack top pointer of SIL must be carried out: if the
pointer’s value is not in correspondence with a stack machine behavior (that is, any successor SIL
state is allowed in the semantics), the result state σ′ is instantiated with the error state σ[top ← −2].
In most cases the proof can be easily finished since ρ (see Def. 4.5) trivially evaluates to true. In
case the stack top pointer of SIL has a “correct” value, the proof continues as follows.

3. the induction hypothesis (if any) which is stated as a precondition in the compilation lemmas must
be instantiated.

4. Instantiations for the SIL result state σ′ (according to its semantics) must be found.

5. The consequent part of the formula must be proved:

(a) show that statement cmd evaluates to the instantiated state σ′.

(b) show (using ρ in the precondition) that the result source and target states are related by ρ

(c) show that the invariants hold.

PVS strategies have been defined for most of the cases of the general scheme: (UNFOLD DEFS) realizes
the first step. The most interesting step is to show ρ (see Def. 4.5) for the result states. Strategy
(SOLVE LOCAL) tries to prove the correspondence of the stacks, (SOLVE GLOBAL) tries to prove the
correspondence of SIL’s global variables with Cint ’s initial stack area, several strategies are utilized to
prove that the modified or extended stacks are still admissible by suitably applying the lemmas from
Sect. 4.3.2, and a strategy (SYMTAB STRAT) tries to prove that the list of symbols is still available at
stack position 0. In addition, a strategy has been defined for the error case.

In order to prove the compilation theorems for the unary and binary operators, it must be shown
that the corresponding procedure of the core runtime system crts satisfies the correctness property.
Since procedures of crts may call other procedures of crts, properties and the effect of each procedure
has to be stated. Thus, classical program verification of Cint code modules is necessary. This can be
realized in a modular way using code specifications: given a precondition (a Cint state predicate) P and
a postcondition Q (a relation between Cint states), show that if the code is executed in a state where P
holds, then the program terminates in a state s′ such that relation Q(s, s′) holds:

spec?(P, cmd,Q) ::= ∀s, s′Γ. (P (s) ∧ Γ ∪ crts  s : cmd → s′)⇒ Q(s, s′)

As an example, we present the implementation of the binary operator cons which generates a binary
tree from its arguments: cons(c1, c2) ::= (c1 . c2). Since cons extends the heap, the garbage collector
may be invoked in case the memory to be allocated is not available. Thus, verification of this code
requires verification of the garbage collector. Here, the properties of the garbage collector are stated
axiomatically and then used in the proof of procedure cons (omitted here).

The code for cons works as follows: first, the next free heap address is calculated which is given by
the exact heaptop pointer (first cell of the second heap part). It is stored at stack relative position 5. If
there are no 8 additional heap cells available (twice as much as needed), the garbage collector is invoked
and then the new exact heaptop is calculated. Then new heap memory is allocated by increasing the
heaptop pointer. The new allocated memory is then filled by storing the first stack argument (at relative
positions 0 and 1) in the ‘car’ part and the second stack argument (at positions 2, 3) in the ‘cdr’ part.
Finally the type tag of the result which is available at relative position 0 is set to 5 (‘cons’-tag), and
the reference to the ‘car’-part is stored at position 1. The code of the Cint procedure cons is listed in
Fig. 12.

The effect of procedure cons is formalized using the following lemma. If the procedure is called in a
state where the stack and heap are admissible, the exact heaptop pointer points to a valid heap address,
then executing the code does not modify the base pointer, input and output, and the quotetop pointer.
In addition, the exact heaptop pointer points again to a valid heap address, and it is required that the
code does not modify the heap below the quotetop pointer (the program constants and symbols have
constant references calculated at compile time and they have to be preserved (predicate upto equal?)),
and the abstraction of the old stack at relative position adr equals to the cons-cell consisting of the
abstraction of the new stack at positions adr and adr + 2.
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“cons′′(6)←
set local (div(heaptop + quotetop, 2), 5);
if (unavailable(8),

call(“collect garbage ′′, 4), set local(div(heaptop + quotetop, 2), 5);
allocate(8);
set local (local (0), local(5));
set local (local (1), local(5) + 1);
set local (local (2), local(5) + 2);
set local (local (3), local(5) + 3);
set local (5, 0);
set local (local (5), 1)
Figure 12. Cint code of core runtime procedure cons

Lemma 4.5 (Effect of cons).
spec?(P, call (”cons”, adr), Q), where
P (s) ::= TRUE and
Q(s, q) ::=
sheaptop ≥ squotetop ∧ even(sbase) ∧ even(sexactht) ∧
admissible?(sexactht, sheap) ∧ admissible?(sstack, sheap, sexactht, sbase + adr + 3)
⇒
qbase = sbase ∧ qquotetop = squotetop ∧ sinput = sinput ∧ qoutput = soutput ∧
upto equal?(sheap, qheap, qquotetop) ∧ qheaptop ≥ qquotetop ∧ even(qexactht) ∧
admissible?(qexactht, qheap) ∧ admissible?(qstack, qheap, qexactht, qbase + adr + 1) ∧
qstack(qbase + adr) = 5 ∧
(∀a. a < qbase + adr ∧ even(a) ⇒ Φ(qstack, qexactht, a, qheap) = Φ(sstack, sexactht, a, sheap)) ∧
Φ(qstack, qexactht, qbase + adr, qheap) =
(Φ(sstack, sexactht, sbase + adr, sheap) . Φ(sstack, sexactht, sbase + adr + 2, sheap)))

The proof of this code specification is by symbolically executing the Cint code in Fig. 12 and by
applying lemmas from Sect. 4.3.2. As above, PVS strategies have been defined to support these tasks.

Similar code specifications have to be established and proved for each of the crts procedures. These
specifications are then used to prove the compilation theorems for the corresponding unary and binary
operators. The most complicated proof obligation is the proof of the specification of procedure intern
which realizes the corresponding ComLisp operator. Operator intern takes a string ‘s’ as argument and
returns the unique symbol the print-name of which is ‘s’. The print-names of the program symbols are
stored within a symbol table (a list of symbols with base address at stack position 0). intern applied to
a string which is stored within the symbol list returns the reference to that symbol. On the other hand,
intern applied to a new symbol requires extending the list with this new symbol. Admissibility of the
extended heap must be proved.

4.4.1 Statistics

We present some statistics concerning the formalization and verification effort in PVS for this compilation
step. Table 3 summarizes the results. The compiling specification is formalized in 3 theories consisting of
the formalization of the representation type and abstraction function, the complete core runtime system,
and the compiling relations. Most of the proof obligations occur in the theory which specifies the
representation type and the abstraction function. Compiling verification is modularized in 19 theories
for the verification of the procedures of the core runtime system and one theory which contains the
compilation theorems. Most effort lies in the verification of the procedure intern (1320 proof steps).
The large interactive effort is due to the kind of chosen semantics. A relational semantics as used in
this verification project is easy to understand and to formalize and is suitable for typical compiling
verification proofs. However, program verification involves a lot of symbolic execution steps of code for
which such a declarative approach is not optimal since many term rewriting, replacing and deleting steps
are necessary while carrying out the proof. Here, of course, either a specialized verification calculus for
verifying Cint code modules or a more operational interpreter semantics would be desirable.
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Table 3. Formalization and verification statistics for the second phase

PVS theories LOC proof obligations proof steps
spec. of languages 8 1046 163 867
compiling specification 3 1072 305 1761
compiling verification 20 1268 399 6874
list,map libraries 6 448 112 776

37 3834 979 10278

The library theories stating well-known properties for lists, lists of tuples, and maps have in part
already been utilized for the verification of the first compilation phase. In addition, the theories for
s-expressions and operators have also been reused for this step.

5 Transputer Backend: Generating Assembler Code

The first phase of the Transputer backend is concerned with the implementation of Cint control structures
(loops, conditionals) by linear TASM assembler code with relative jumps, the realization of the basic
Cint statements and expressions for stack and heap access by TASM code sequences, the mapping of the
Cint runtime model consisting of the infinite stack and heap arrays onto the finite Transputer memory,
and the implementation of procedures using a jump table of subroutine entry points and a stack to save
the return addresses and frame pointers.

5.1 Transputer Assembler (TASM)

The purpose of our Transputer formalization is not to provide a complete model of the processor but
rather to specify the components and properties which are relevant for the compilation process.

The Transputer base model is a (mini)-stack machine with byte instructions and word values. It has
a RISC-like instruction set with 16 direct instructions with 4-bit opcodes and 4-bit operands. Large
operands have to be loaded to the operand register using pfix/nfix-chains. An extended set of in-
structions (operations) can be invoked using the opr instruction. Operations have no direct operands;
they find their arguments in registers (see Fig. 13). There is no operating system required, instead a
bootloader and hardware initializations bring the Transputer in a regular state which enables program
loading and execution.
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opcode operand
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Direct Operation CodesWord Length (e.g. 4 bytes = 32 bits )

Figure 13. Transputer base model and direct function codes. The Transputer-state consists of the
registers Areg, Breg and Creg, which form a mini stack with top Areg, the operand register Oreg, the
instruction pointer (program counter) Iptr, the workspace pointer Wptr, various flags like the error flag,
some more registers and the memory Mem. The registers contain Word valued quantities. The memory
is byte or word addressable.

In addition to the direct functions, a set of one-byte and two-byte operations are used in the compiling
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Operations opr-Code Description

rev opr 0 exchange Areg and Breg
diff opr 4 difference
add opr 5 addition
gcall opr 6 computed (absolute) jump
in opr 7 input via a link
gt opr 9 arithmetic greater than test
wsub opr 10 word memory subscript
out opr 11 output via a link
sub opr 12 subtraction

Table 4. One byte Transputer operations

Operations opr-Code Description

seterr opr 16 set the error flag
csub0 opr 19 check subscript
xdbl opr 29 convert single to double
rem opr 31 remainder
div opr 44 integer quotient
not opr 50 1 complement
xor opr 51 bitwise exclusive or
bcnt opr 52 word/byte calculation
wcnt opr 63 byte/word calculation
shr opr 64 shift right
shl opr 65 shift left
mint opr 66 load MinInt

and opr 70 bitwise and
or opr 75 bitwise or
mul opr 83 multiplication

Table 5. Two byte Transputer operations

specification. Two-byte operations will actually produce a 2-byte prefix-chain, first loading the operation
code into the operand register and then calling the opr direct function. The one-byte and two-byte
operations are listed in Table 4 and 5, respectively. Type Cmd combines the TASM instructions and
operations which are utilized for implementing Cint code:

Cmd ::= instr w | opr (w ∈Word)
instr ::= j | ldlp | ldnl | ldc | ldnlp | ldl | adc | cj | eqc | stl | stnl
opr ::= rev | diff | add | gcall | in | gt | wsub | out | sub | seterr | csub0 |

xdbl | rem | div | not | xor | bcnt | wcnt | shr | shl | mint | and | or | mul
For the abstract assembler of TASM, the only available datatype is the type of machine words with

word-size operands, hence no operand register is required. Transputers are parameterized with the
number of bytes of a machine word (Byte ::= [0, . . . , 255]). For the compilation step outlined in this
paper a concrete Transputer model is chosen where each word contains four bytes (32-bit):

Word ::= [−231, . . . , 231 − 1]

Since the address space is dense, that is, the number of bytes per word is a power of 2, every word is a
valid (byte) address. Thus, for our Transputer model we have ByteAddr ::= Word. Word addresses are
addresses on word boundaries, that is, addresses which can be divided by 4:

WordAddr ::= λ(w : Word) : rem(w, 4) = 0

In order to calculate word addresses, in the Transputer manual [Inm88] a mapping

Index : WordAddr ×Word →Word
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is utilized. For a word address x and a word y, Index (x, y) calculates the word address y words past the
base address x. Since each word contains four bytes, Index can be defined as

Index def : AXIOM ∀w, i. Word(w + 4 ∗ i)⇒ Index (w, i) = (w + 4 ∗ i)
Note that we do not specify Index in case of overflow. Often memory is addressed relative to the
workspace pointer. As a shorthand notation, we sometimes write

Wsp(adr) ::= Mem(Index (Wptr, adr))

that is, the contents of the memory cell adr words past the workspace pointer Wptr.
The semantics of a machine program executed on some processor is typically specified operationally by

means of transitions of machine configurations where a configuration consists of the machine components
which are relevant for the considered model and abstraction level of the processor. For our TASM model,
the machine configuration (state) consists of a subset of the components of the base model illustrated
in Fig. 13. In addition, for modelling I/O the state contains an input byte sequence and an output byte
list. The state includes the following components:

• the three register mini-stack (Areg, Breg, Creg) with top register Areg

• the workspace pointer Wptr pointing to a valid word address

• the error flag Eflg
This flag is used in order to indicate error situations (like overflow) or the result of test operations.
We suppose that the HaltOnErrorFlag is set, which has the effect that the TASM machine will stop
whenever Eflg is set.

• the memory (a mapping from machine words (addresses) to machine words),

• an input sequence of bytes

• an output list of bytes

• the instruction pointer
The instruction pointer is represented symbolically such that the program m is partitioned into
two parts u and i · v with m = u ◦ (i · v), where the instruction i is the next one to be executed.
For instructions which do not alter the flow of control, the new partition after the execution of i
will be m = (u · i) ◦ v. In case the second list of the partition is empty and the error flag is not set,
the TASM machine will regularly stop. Such a configuration will be referred to as final.

Figure 14 illustrates the TASM state (configuration). Its type is given by:

conf TASM ::=
(Word ×Word ×Word)×WordAddr × bool × (Word →Word)× seq [byte]× byte∗ ×Cmd∗ ×Cmd∗)

In the following, cAreg, cBreg, cCreg, cWptr, cEflg, cMem, cIn, cOut, cPrA, cPrB denote the respective (state)
components of a configuration c.

Areg
Breg
Creg Wptr

Eflg

MemMem

Program(cmd,...,cmd) (cmd,...,cmd)

OutputInput

Figure 14. Machine configuration of TASM

To specify the arithmetic operations, we use total operators on words. For example, addition on
words is specified using a total function plus : Word ×Word ⇒ Word . We do not specify wrapped
around addition but only specify plus in case there is no overflow. In this case, the addition on words
equals to the standard addition + on integer values:

plusovfl (x, y) ::= ¬Word(x+ y) plus def : AXIOM ∀x, y. ¬plusovfl(x, y)⇒ plus(x, y) = x+ y
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The other operators such as mult , div are defined in a similar way. Only those properties are modeled
which are required for the compilation step from Cint to TASM.

The semantics of the TASM instructions is given by specifying the effects of each instruction (of type
Cmd) using a relation

Effects(c1, c2)

which directly follows the Z-like specification of the instructions in the Transputer manual [Inm88]. The
complete specification of the effects can be found in the appendix G, where a rule-based notation for the
single effects is utilized: we write c : cmd → q for Effects(c, q), where the instruction to be executed in
configuration c is given by cmd (that is, cPrB = (cmd · v) for some instruction sequence v). For example,
the effect of TASM instruction rev which swaps the contents of Areg and Breg is specified as follows:

c : rev→ c[Areg := cBreg,Breg := cAreg]

This specifies the single effect of each TASM instruction. More information concerning this formalization
can be found in subsection 5.1.1.

The n-step relation starting from some configuration c1 up to a final configuration c2 is defined using
relation Rc(c1, c2), where Effects∗ denotes the reflexive, transitive closure of Effects .

Rc(c1, c2) ::= Effects∗(c1, c2) ∧ final?(c2)

A TASM program consists of two data modules (word sequences) (which are the result of compiling the
Cint initial stack and heap segments), a list of code modules (the compiled Cint procedures), and a main
code sequence (the main program):

TASM prg ::= Word∗ ×Word∗ × (Cmd∗)∗ × Cmd∗

For a TASM program p its components are denoted by pdata1, pdata2, pmodules, and pmain. The semantics
of a program is its input/output behavior (a relation between an input byte sequence and an output
byte list): starting in some initial TASM state c with input sequence bs, the relation holds if the machine
regularly terminates in a final state c′ which has bl as its output list:

p
TASM

(p)(bs)(bl) ::= ∃c, c′. init state?(p)(c) ∧ cIn = bs ∧ Rc(c, c′) ∧ c′Out = bl

Wptr

MemTop
PgrStart

Jump Table

Free Memory

TASM program

Figure 15. Initial TASM memory

It remains to define the initial TASM state. Before the TASM program can be executed, it is supposed
that the program is loaded into memory (in the region above MemTop) and that the start addresses of
the TASM code modules are available through a subroutine jump table which is located in the region
below the workspace pointer Wptr. Therefore, this jump table and memory partition must be specified
in the initial TASM configuration (see Fig. 15). More specifically, an initial TASM state (specified by
predicate init state?(p)(c)) is a configuration c, where

• the symbolic program counter is given by cPrA = pmodules and cPrB = pmain, that is, the first
instruction to be executed is the first instruction of pmain.

• the error flag is false (¬cEflg)
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• the output list is empty

• cMem(cWptr) is a word address (the start address of the jump table)

• cMem(cWptr) + 4n is a word (n is the size of the module sequence)

• cMem(cWptr) + 4n < cWptr (the jump table region is below Wptr)

• ∀i. 1 ≤ i ≤ n ⇒ cMem(Index(cMem(cWptr), i)) = PgrStart + startPos(mi) (the procedure start
address can be retrieved from the jump table). This property is needed even for this abstraction
level, since absolute jumps (gcall) are used in the compiling specification for procedure calls and
returns. For this reason, the low-level concept of a program which is stored in memory has to be
partly modeled on the abstraction level of TASM. The address PgrStart denotes the start address of
the program in memory. Note that a global constraint of the TASM model is: PgrStart > MemTop.

5.1.1 Remarks on the PVS formalization

For the effect of some instructions, the Transputer manual [Inm88] specifies the content of some register
to be undefined. This is modelled by choosing some arbitrary word value using the non-deterministic
choice operator choose. Other instructions have preconditions in order to be applicable. For example,
the shift left operation (shl) requires Areg to contain an unsigned word smaller than the wordlength (=
32). The manual specifies that the behavior of the Transputer is undefined if these preconditions do not
hold. In our model this behavior is represented using non-determinism by allowing the machine to step
in any successor state, that is, relation Effects(c1, c2) holds for all c2. The instruction rev for example
is specified in the manual as follows:

Areg’ = Breg
Breg’ = Creg
Iptr’ = NextInstr

swaprev           #00

In PVS, this is modeled: (Note that operation ++ denotes list concatenation).

% Effects of TASM instructions in PVS

Effects(c1,c2) : bool =
NOT(Eflg(c1)) AND cons?(PrB(c1)) AND
CASES car(PrB(c1)) OF
opr(o) :
CASES o OF
rev: c2 = c1 WITH [Areg:=Breg(c1), Breg:=Areg(c1),

PrA:= PrA(c1) ++ car(PrB(c1)), PrB:= cdr(PrB(c1))],
add: c2 = c1 WITH [Areg:=plus(Breg(c1), Areg(c1)), Breg:=Creg(c1),

Creg:=choose(Word?),
PrA:= PrA(c1) ++ car(PrB(c1)), PrB:= cdr(PrB(c1)),
Eflg:=plusovfl(Breg(c1),Areg(c1))]

[...]
ENDCASES

This specifies the single effect of each instruction. The complete specification of the single effects (in
a more readable rule-based notation) can be found in appendix G. The definition of the n-step relation
starting from some configuration c1 up to a final configuration c2 is straightforward. For a symbolic
execution of a code sequence (which is later required for the compiling verification) we will make use
of the following intuitive corollary in combination with a PVS strategy which then tries to symbolically
execute a single TASM instruction:

R definition: COROLLARY ∀(c1,c2:CONFC):
Rc(c1,c2) =
(IF final?(c1) THEN c1 = c2 ELSE ∃ c3: Effects(c1,c3) ∧ Rc(c3,c2) ENDIF)

Furthermore, we need the property which states that the machine will stop, in case the current state
is an error state:
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error stop: COROLLARY ∀(c1,c2:CONFC):
(Eflg(c1) ∧ NOT(final?(c1))) ⇒ NOT(Rc(c1,c2))

5.2 Compiling Cint to TASM

The objective of the compilation from Cint to TASM is to implement the control structures (loops,
conditionals, sequential composition) by linear TASM assembler code, and to realize the basic Cint

statements and expression for stack and heap access by a TASM code sequence (a kind of macro ex-
pansion). In addition, the runtime model of Cint consisting of the infinite stack and heap arrays has
to be mapped onto the finite Transputer memory. Procedures are compiled into TASM code modules
and calls are implemented by means of a jump table of subroutine entry points and a stack to store the
return addresses. The memory map of the Cint runtime model is illustrated in Fig. 16.
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Figure 16. Memory Map of Cint

runtime model

A translated Cint program uses the Transputer memory between Start and MemTop which is cal-
culated by the boot loader at program load time. For our TASM model, MemTop is used as a global
parameter. It points to the second last available memory location. The compilation makes use of 13
system variables that can be considered as additional registers some of which are used as pointers to the
specific memory areas. They are located in the Transputer workspace with workspace pointer relative
access (ldl, stl). MemTop is stored to variable memtop = 4 at workspace location 4. The jump
table used for procedure calls the start address of which is stored in system variable start = 0, is also
constructed by the boot loader. As stated in the last section, in the initial TASM state the jump table
has to be represented. The stack area starts just above the system variables at workspace location 13
(stack = 13), while the region for implementing Cint ’s heap starts at the address pointed by heap = 1.
To implement procedure calls, a stack of return addresses is maintained which starts at the address given
by rstack = 6. The top of this stack is accessible through system variable rp = 5 at workspace location
5. Absolute Cint addressing to the stack (set stack , stack) can be implemented by workspace pointer
relative addressing.

The Compiling Relation

The compilation from Cint to TASM must take the finite machine resources into account. A Cint

program may contain data of arbitrary size and can be arbitrary large, however TASM programs may
only contain words, and the size of the program is limited.

For compiling expressions only the Transputer mini-stack is available. Thus, only expressions which
can be translated with 3 registers are compilable. We further suppose that a binary expression is
compiled by first compiling the left operand and then compiling the right operand. Then for example,
the expression ((((a + b) + c) + d) + e) is compilable, but (a + (b + (c + d))) is not compilable. For
specifying and verifying the correctness of expression compilation, a predicate compilable? has to be
explicitly specified. compilable?(e, n) yields true if the expression e can be compiled to a stack machine
of maximum size n. For binary operations op(e1, e2) this means, that e1 must be compilable with at
most 3 registers, and e2 must be compilable with at most 2 registers. However, for the verification we
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will need also the property that in case there are only 2 registers available for e1 then e2 must be an
atomic expression.

Definition 5.1 (Compilable Expressions).
compilable?(e, n) ::=

• if n = 0 then false

• if e is atomic then true

• if e is an unary operation op(e′) then compilable?(e′, n)

• if e is a binary operation op(e1, e2) then compilable?(e1, n) and compilable?(e2, n− 1) and if n = 2
then e2 must be atomic

Based on compilable? for expressions, a relation compilable?(s) for statements is defined. It’s definition is
straightforward and omitted. For statements such as set stack(e1, e2) it is required that e1 is compilable
with at most 3 registers and e2 is compilable with at most 2, since the value of e1 must be preserved.

The compiling relations for expressions and statements make use of a global environment

ϕ =< ψ, ssize, hsize >

consisting of a procedure environment ψ mapping procedure names to jump table indices, and the size
of the initial stack and heap segment. Expression compilation is defined using an inductive relation

CCexpr(e, ϕ, σ,m)

where e is the expression to be compiled, ϕ the global environment, σ the stack frame size found in Cint

procedure definition headings, and m is the TASM code which implements e. The relation is defined
following the technical report [GH98b]. However, it differs for the expression stack(e). Here we have
found an error in the original compiling specification [GH98b] and have corrected the code. This issue
will be discussed later. The complete compiling relation for expressions is listed in the appendix H.1. In
a similar way, an inductive relation

CCstmt(cmd , ϕ, σ,m)

is defined for statement compilation. As for expression compilation similar errors have been found in the
original specification for allocate and set stack . The specification listed in the appendix H.2 contains
the corrected code. In the next step, procedures have to be compiled. A procedure environment Γ (a
list of Cint procedure definitions) is compiled into a list of TASM code modules using a relation

CCdefs(Γ, ϕ, l)

where ϕ is the global environment, and l is the list of code modules. It is defined inductively on Γ by
means of the following two rules:

CCstmt(body , ϕ, size,m), Word?(size), CCdefs(Γ, ϕ, l)
CCdefs([h(size)← body ] · Γ, ϕ, (entrycode(size) ·m · exitcode) · l) CCdefs([], ϕ, [])

Each compiled procedure has an entry code and an exit code which are used for the following purposes:
the entry code saves the return address (found in register Areg when the entry code is executed) and
the current frame pointer (found in Breg) on the return stack at positions pointed to by Wsp(rp) and
Wsp(rp) + 1 respectively. Note that the code for a procedure call will leave the return address in Areg
and the frame offset in Breg. Then the frame pointer is increased by the number stored in register
Breg (the offset i from a call instruction call(h, i)), and the return stack top pointer rp is increased by
2. In case of an overflow into the memory area above MemTop, the program is terminated irregularly
(by executing a seterr instruction). A stack overflow check is performed using the frame size which is
specified in the procedure’s heading. The exit code performs the complementary task: it restores the
frame pointer from the return stack, pops the return address and jumps to it. The entry and exit codes
are listed in the appendix H.3. A procedure call is implemented by an indexed jump gcall via a jump
table of procedure start addresses. The start address of the table is located in system variable start.
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The procedure environment ψ provides the index for a given procedure identifier. First the offset i is
pushed onto the Transputer’s mini-stack, then the procedure’s start address is pushed and finally a jump
to this address is performed:

CCstmt(call (h, i), ϕ, σ, ldc i; ldl start ; ldnl ψ(h); gcall) if 0 ≤ i < σ

It remains to specify the compilation of Cint programs. A Cint program specifies initial stack and heap
segments which are compiled into two corresponding TASM data modules using the relation

CCdata(il, wl) ::= |il| = |wl| ∧ ∀i < |il|. (Word?(il.i) ∧ il.i = wl.i)

where il is a list of integers and wl is the corresponding list of words. A Cint procedure list Γ is related
with a global procedure environment ψ as follows:

CCenv(Γ, ψ) ::= ∀f.f ∈ Γ⇒ 1 ≤ ψ(f) ≤ |Γ| ∧ (Γ.ψ(f)− 1)‘1 = f

The property states that for each procedure with identifier f its jump table index given by ψ(f) is a
number between 1 and |Γ| and the index (minus 1) specifies the position of f within the procedure list
Γ.

The compilation of a Cint program p ::= Fl; st0;h0; f1, . . . , fn;main is specified by relation CCprg

with the following rule:

CCdata(st0, d1), CCdata(h0, d2),
ϕ =< ψ, |st0|, |h0| >,Γ = [f1, . . . , fn]

CCenv(Γ, ψ),
CCdefs(Γ, ϕ, l),

CCstmt(main , ϕ,maxindex(main),m)
CCprg(p, (d1; d2; l; initcode(maxindex(main)) ·m))

Here, initcode(size) specifies the Cint initialization code sequence which at runtime initializes the pro-
cessor to a valid (initial) Cint state. It partitions the available memory into the segments stack, heap,
and return address stack, sets up the pointers base, rp, rstack , quotetop, heaptop, initializes the char-
acter buffer lastchar with −1, and copies the initial stack and heap segments into the stack and heap
regions. Furthermore, the input and output channels are initialized. Then the entry code for the main
procedure is called which performs also a stack overflow check using the maximum index of the code
(maxindex (main)). The initialization code can be found in the technical report [GH98b], it is omitted
for the compiling verification presented in this paper. Instead, its effect is specified axiomatically (see
next section). This completes the compiling specification from Cint to TASM.

5.3 Correctness of the Compilation Process

For this compilation step, the correctness is stated as follows (see also Fig. 17): for any well-formed Cint

program p, whenever the semantics of the compiled program q is defined for some input character resp.
byte stream is and output list ol, this is also the case for p for the same is and ol:

Theorem 5.1 (Correctness of Program Compilation).

∀p, q, is, ol. (wf (p) ∧ CCprg(p, q))⇒ p
TASM

(q)(char2byte(is))(char2byte(ol))⇒ p
Cint (p)(is)(ol)

char∗

byte∗

seq[char]

seq[byte]

char2byte

p
TASM

char2byte

p
Cint

Figure 17. Correctness of Cint program compilation

Unfolding the definitions of p
Cint and p

TASM
, the semantics of Cint statements and expressions and

TASM instruction sequences have to be compared. In order to have an inductive argument, a stronger
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property for arbitrary statements, expressions and arbitrary start and final states is required. In par-
ticular, this requires relating Cint states with TASM machine configurations by means of a data rep-
resentation relation ρ. Cint state components such as stacks and heaps have to be related with the
corresponding memory areas on the Transputer according to the memory map depicted in Fig. 16. The
data representation relation is parameterized with the size of the current stack frame fs . The principal
ideas of this data represenation relation is as follows:

• the pointers base, start , rstack , rp, memtop, and heap which are stored in the corresponding system
variables at workspace locations 0, 1, . . . , 12 must point to valid word addresses.

• the contents of the registers heaptop and quotetop correspond to the value of the Cint heaptop and
quotetop pointers.

• the segments used for the stack, heap, and return address stack are modeled by inequalities speci-
fying their start and end addresses.

• the input stream of Cint corresponds to the input stream of TASM, in case the character buffer
lastchar contains the value −1. Otherwise the buffer contains the last character read from the
input stream and which has to be added to the TASM input stream in order to correspond to
Cint ’s input stream. The buffer is required for the implementation of the peek char statement
which reads a character but does not remove it from the input stream. The output lists of Cint

and TASM have to correspond directly.

• the heap area of TASM up to the beginning of the return address stack must be equal to the Cint

heap area. In particular, this requires that all heap entries of Cint are words.

• the base pointer of TASM (Wsp(base)) corresponds to the Cint base pointer relative to the start
of the TASM stack area

• the stack area of TASM which starts at Wsp(stack) = Wsp(13) must be equal to the Cint stack
area up to the beginning of the heap area.

• the input and output TASM channels are fixed.

This leads to the following formal definition of ρ:

Definition 5.2 (Relating Cint states with TASM configurations).
ρ(fs)(σ, s) ::=

LET Wsp = λw. sMem(Index (sWptr, w)) IN
WordAddr?(Wsp(base)) ∧ WordAddr?(Wsp(start)) ∧ WordAddr?(Wsp(rstack ) ∧
WordAddr?(Wsp(rp)) ∧ WordAddr?(Wsp(memtop)) ∧ WordAddr?(Wsp(heap)) ∧ Word?(fs) ∧
σheaptop = Wsp(heaptop) ∧ σquotetop = Wsp(quotetop) ∧
minword < sWptr ∧ sWptr + 4 ∗ stack ≤Wsp(base) ∧ Wsp(base) + 4 ∗ fs ≤Wsp(heap) ∧
Wsp(heap)+4∗Wsp(heaptop) ≤Wsp(rstack) ∧Wsp(rstack) ≤Wsp(rp) ∧Wsp(rp) ≤Wsp(memtop) ∧
Wsp(memtop) + 8 < maxword ∧ Word?(Wsp(memtop) + 8− sWptr) ∧
(IF Wsp(lastchar ) = −1 THEN char2byte(σinput) = sIn
ELSE byte?(Wsp(lastchar )) ∧ char2byte(σinput) = add(Wsp(lastchar), sIn)
ENDIF) ∧ char2byte(σoutput) = sOut ∧
(∀ha. Wsp(heap)+4∗ha < Wsp(rstack)⇒Word?(ha) ∧ σheap(ha) = sMem(Index (Wsp(heap), ha))) ∧
Wsp(base) = sWptr + 4 ∗ (stack + σbase) ∧
(∀sa. sWptr +4 ∗ (stack + sa) < Wsp(heap)⇒Word?(stack + sa) ∧ σstack(sa) = Wsp(stack + sa)) ∧
Wsp(inchan) = Index(minword , 4) ∧ Wsp(outchan) = minword

Having defined the data representation relation we now can focus on the correctness of the compila-
tion. Since statement compilation makes use of expression compilation, the correctness of the latter has
to be considered first.

In order to have an inductive argument for the correctness proof of statement compilation, we have
introduced a counter into TASM configurations (denoted by ccount). For TASM instructions which do
change the flow of control (jumps, conditional jumps, absolute jumps) the counter is increased by 1, for
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the other instructions it remains the same. This proof technique is used here, since a pure structural
induction on the statements does not work. For procedure calls, for example, the structure of the
procedure body is not necessarily smaller than the call statement. In the compiled code, however, at
least one jump instruction will be used. Hence, the counter will be decreased. A lexicographic ordering
consisting of the counter and the structural size of the statement will then be used to formulate an
induction principle.

Correctness of Expression Compilation

Cint expressions evaluated in some state may yield a value but do not effect the state, that is, there are no
side effects. However, the TASM code for expressions may also change the memory and has other effects
on the TASM configurations (for example, the symbolic instruction pointer). The code for expression
compilation, however, only uses the two system variables temp and temp2 in order to save intermediate
values. No other memory locations will be changed. The correctness property for expression compilation
is illustrated in Fig. 18.
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e

code(e)

ρ(fs) ρ(fs)

stateCint � σ σ ∈ stateCint

Conf TASM � c1 c3 ∈ Conf TASMc2 ∈ Conf TASM

Figure 18. Correctness property for Cint ex-
pression compilation

The correctness property makes use of code contexts u, v around the code of interest (the result of
compilation). This more stronger property is necessary in order to apply the induction hypothesis for
composed programs in the correctness proof. The property states that some TASM code m is a correct
implementation of an expression e, if the program p = u · (m ◦ v) for some u and v is executed in a start
state c1 which is related with Cint state σ by ρ and terminates in some final state c3, then there exists
an intermediate state c2 such that p = (u ◦ m) · v (that is, m is completely executed) and there is a
transition from c2 to final state c3 and c2 is related with σ by ρ and expression e evaluates in state σ to
some value which is available in stack register Areg (the top of the mini-stack). In case e is compilable
with at most two registers the old value of Areg in state c1 is preserved in Breg in state c2 and in case
e is atomic, even the value of Breg is preserved and available in register Creg. The last properties are
necessary in order to prove the correctness of binary expression compilation since the value of the left
operand must be preserved when evaluating the right operand. In addition, the code m may have an
effect on the system variables temp and temp2 (expressed in predicate expression memory effect?). As
stated above, a counter has been introduced into TASM configurations for proof technical reasons. The
counter in state c2 will be at least as large as in the start state c1 since some of the expression code
contains relative jumps. For the source level an additional invariant (base respects env?) is required
which relates Cint ’s frame pointer with the global environment ϕ =< ψ, ssize, hsize >: the size of the
initial Cint stack segment ssize must be smaller or equal the frame pointer base. This property holds
in the initial Cint state (since the frame pointer is initialized with the size of the initial stack) and is
preserved throughout the execution of Cint statements (the frame pointer will never point below its
initial position). Formally, the definition is as follows:

Definition 5.3 (Correctness property for Cint expressions).
CE(e,m, ϕ, fs) ::= ∀u, v, c1, c3, σ, Z.

base respects env?(σ, ϕ) ∧ ρ(fs)(σ, c1) ∧ ¬c1Eflg ∧
c1PrA = u ∧ c1PrB = m ◦ v ∧ c1count = Z ∧ Rc(c1, c3)
⇒ ∃c2, Y. ¬c2Eflg ∧ c2PrA = u ◦m ∧ c2PrB = v ∧ Y ≤ Z ∧ c2count = Y ∧ Rc(c2, c3) ∧
ρ(fs)(σ, c2) ∧ σ : e → c2Areg ∧ (compilable?(e, 2) ⇒ c2Breg = c1Areg ) ∧
(atom?(e) ⇒ c2Creg = c1Breg ) ∧ expression memory effect?(c1, c2)

The obligation to prove is that property CE holds for any expression e and compiled code m:
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Lemma 5.1 (Correctness of Expression Compilation).

∀e, ϕ, fs ,m. CCexpr(e, ϕ, fs ,m) ⇒ CE(e,m, ϕ, fs)
The proof is by (a pure) structural induction on the structure of e. To suitably manage the complexity

of this proof, for each kind of expression a separate compilation lemma is introduced. For example, the
compilation lemma for the binary expression e1 + e2 is as follows:

compile plus : LEMMA
CE(e1,m1, ϕ, fs) ∧ CE(e2,m2, ϕ, fs) ∧ compilable?(e2, 2) ⇒ CE(e1 + e2,m1 ·m2 · add, ϕ, fs)

The proof of lemma 5.1 is then carried out by application of the compilation lemmas. Most of the proofs
of the compilation lemmas follow a similar scheme according to the structure of the correctness property
CE:

1. First, definitions must be unfolded, and the compiled code for the expression must be executed
symbolically. In the inductive case (for unary and binary expressions) the induction hypothesis
must be suitably instantiated. A PVS strategy has been defined to symbolically execute one TASM
instruction. Basically this strategy uses the property R definition (see Section 5.1). However,
some of the TASM instructions have applicability conditions. It has to be proved that these
conditions are satisfied. Most of these conditions are simply proved by expanding the definition of
ρ.

2. After the TASM code has been executed, the final TASM state and counter value have to be
instantiated for the existentially quantified variables c2 and Y .

3. the consequent part of the formula must be proved: to show that the flag is not set and that the
symbolic instruction pointer consisting of the left part PrA and the right part PrB has the correct
value and that the counter value is equal or less the starting value is trivial in most of the cases.
In addition it must be shown, that expression e evaluates to the value stored in register Areg. This
is done by symbolically evaluating e. More interesting is the proof that ρ(fs)(σ, c2) holds and that
the old mini-stack values are preserved. For proving ρ(fs)(σ, c2) the definitions of the ‘old’ ρ and
the new one are expanded. Then for proving the correspondence of the stack and heap areas PVS
strategies have been defined: rho-stack and rho-heap try to automatically prove the properties.
Finally one has to show expression memory effect?, that is, the memory has not changed (only the
system variables temp and temp2 may have changed). A strategy expression-memory has been
defined to prove this property.

Correctness of Statement Compilation

The correctness notion for statement compilation follows the notion for expressions. Cint statements
denote ordinary state transformers, hence, different to the notion used for expression compilation the
source state might possibly change. The notion is illustrated in Fig. 19.

v

cmd

(u, code(cmd) ◦ v) (u ◦ code(cmd), v) (u ◦ code(cmd) ◦ v, [])code(cmd)

ρ(fs) ρ(fs)

stateCint � σ

Conf TASM � c1 c3 ∈ Conf TASMc2 ∈ Conf TASM

τ ∈ stateCint

Figure 19. Correctness property for Cint statement compilation

The main difference however, is the fact, that additional invariants are necessary ensuring that specific
TASM memory areas such as the jump table, for example, are not modified. In addition, Cint procedure
defintions have to be related with the TASM program and the global compile time environment ϕ by
means of a ‘fit’ predicate. The addtional invariants are as follows:

• jump table?(p, c):
the start addresses of the modules of p can be found in the jump table the start address of which
is Mem(Wptr). This is also stated in the initial TASM state and the compiled Cint code preserves



5 TRANSPUTER BACKEND: GENERATING ASSEMBLER CODE 37

this property. This target level invariant is proved by showing that the jump table memory area
is not changed.

• register invariant?:
this invariant states that the workspace pointer and the contents of the system variables heap,
start , rstack , and memtop do not change.

• stack invariant?:
this invariant is required to prove the correctness of the compilation of call . It states that the
return address stack pointers rstack (the start address of the stack) and rp (the stack top pointer)
do not change, and that the contents of the return address stack starting from address Wsp(rstack)
up to Wsp(rp) do not change. This invariant ensures that the return address of the call and the
frame pointer which are stored on the stack are preserved.

• fit?(Γ, ϕ, u, p):
This property relates the Cint procedure list Γ with the global environment ϕ and the TASM code
sequence u and TASM program p. It is also only needed for the proof of the compilation of call :

fit?(Γ, ϕ, u, p) ::= LET ψ = ϕ‘1 IN
(flatten(pmodules) ◦ pmain) = u ∧ |Γ| = |pmodules| ∧
∀f. f ∈ Γ ⇒ 1 ≤ ψ(f) ≤ |Γ| ∧ LET (g, stksize, body) = nth(Γ, ψ(f)− 1) IN
g = f ∧ Word?(stksize) ∧ ∃x, y,m. x · entrycode(stksize) ·m · exitcode · y = u ∧
PgrLength(x) = startPos(pmodules, ψ(f)) ∧ CCstmt(body , ϕ, stksize,m)

This first conjunct expresses that the TASM code sequence u corresponds to TASM program p
consisting of the module sequence and the main program. The second conjunct states that the
length of the Cint procedure list Γ is equal to the length of the module list. The third conjunct
states that for each procedure f in Γ, the jump table index ψ(f)− 1 denotes the position of f in
Γ, and for each procedure f there exists a TASM code sequence in u consisting of the entry code,
the code for the procedure’s body, and the exit code. The start position of the code for f is given
by its position within the module sequence.

Putting these invariants together, the correctness property CS looks as follows:

Definition 5.4 (Correctness Property for Statements).

CS(cmd ,m, ϕ, fs ,Γ, p, Z) ::= ∀u, v, c1, c3, σ.
wf(cmd ,Γ) ∧ wf(Γ) ∧ CCstmt(cmd , ϕ, fs ,m) ∧ fit?(Γ, ϕ, u ◦m ◦ v, p) ∧ base respects env?(σ, ϕ) ∧
¬c1Eflg ∧ c1PrA = u ∧ c1PrB = m ◦ v ∧ c1count = Z ∧ jump table?(p, c1) ∧ ρ(fs)(σ, c1) ∧ Rc(c1, c3)
=⇒
∃c2, τ , Y. ¬c2Eflg ∧ c2PrA = u ◦m ∧ c2PrB = v ∧ Y ≤ Z ∧ c2count = Y ∧
Rc(c2, c3) ∧ Γ  σ : cmd → τ ∧ ρ(fs)(τ , c2) ∧
register invariant?(c1, c2) ∧ base respects env?(τ , ϕ) ∧ stack invariant?(c1, c2) ∧ jump table?(p, c2)

Note that in the definition of CS the counter Z is a argument of CS in order to formulate an induction
principle for the main proof obligation:

Theorem 5.2 (Correctness of Statement Compilation).

∀cmd ,m, ϕ, fs ,Γ, p, Z. CS(cmd ,m, ϕ, fs ,Γ, p, Z)

The proof of the theorem is again by measure induction using the lexicographic combination of the
counter Z and the structural size of the statement cmd . As for expression compilation, for each kind
of Cint statement a separate compilation theorem is introduced and the proof of theorem 5.2 is then
by application of the different compilation theorems. The proofs of the different compilation theorems
again follow a similar scheme according to the definition of CS which is quite similar to CE . Since
more invariants are involved in CS, the proofs are more tedious comparable to the proofs carried out for
expression compilation. In addition to the PVS strategies used for the proofs of expression compilation,
strategies for the new invariants have been defined. The most tedious proof is for the call statement:

compile call : LEMMA
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PVS theories LOC proof obligations proof steps
spec. of transputer 4 915 117 757
compiling specification 3 521 58 98
compiling verification 7 833 79 4480

14 2269 254 5335
Table 6. Formalization and verification statistics for the third phase

f ∈ Γ ∧ (∀m1,W : W < X ⇒ CS(get(f,Γ)‘3,m1, ϕ, get(f,Γ)‘2,Γ, p,W ))
⇒ CS(call(f, offset),m, ϕ, fs ,Γ, p,X)

Since procedure’s are compiled into a sequence entrycode(size) · body code · exitcode the effects of the
entry and exit code must be taken into account. It therefore makes sense to introduce separate auxiliary
lemmas stating the effects of both the entry and exit code. The proof for lemma compile call then makes
use of these lemmas.

Initialization Code

According to the compiling specification for programs, an initialization TASM code is executed before
the code for the main statement is started. As sketched in Sect. 5.2, the purpose of the initialization
code is as follows: it defines the partition of the TASM memory into the segments stack, heap, and
return address stack, initializes the system variables and copies the initial stack and heap segments (the
two data modules of the TASM program) into the lower stack and heap regions. Thus, the overall
effect of the code is to initialize the processor to a valid initial Cint state (see Fig. 20). This effect
is specified axiomatically (see appendix H.4) as we are mainly interested in verifying the compilation
process. However, the axiom can be turned into a lemma by “executing” the initialization code and
by proving the properties. One problem will arise: copying the data modules into the stack and heap
regions is implemented by means of loops. Hence, assembler code with loops must be verified - symbolic
execution will not be sufficient. The problem can be solved by applying classical program verification
techniques for object code verification (see for example [Yu93]).

initcode(size)

(pmodules, initcode(size) ◦ v) (pmodules ◦ initcode(size), v)

ρ(size)

σ ∈ init state?Cint

c2 ∈ Conf TASM
init state?TASM � c1

Figure 20. Effect of Initialization code

The proof of the main correctness theorem of this phase (5.1) is then accomplished using the axiom
for the initialization code and theorem 5.2 applied to the main Cint statement.

5.3.1 Statistics.

We present some statistics concerning the formalization and verification effort in PVS for the compilation
from Cint to TASM. Table 6 summarizes the results. The specification of the TASM Transputer model
involves 4 PVS theories with 915 lines of specification code (LOC). There are 117 proof obligations
to prove for this specification including all type correctness conditions (TCCs). These obligations are
proved interactively using the PVS proof checker by manually invoking 757 proof steps. Most of the
effort has been put into the proof of the compilation of the call statement (1826 proof steps).

More interesting is the fact that during the verification process we have found an error in the given
compiling specification. This error is hard to find when doing only paper-and-pencil proofs. The nature
of this error is as follows: a necessary overflow check has been omitted in the following way: the code
for expression stack(e) and for the statement set stack and the procedure entry code uses the TASM
instruction wsub to efficiently calculate the word address Index (Areg,Breg) = Areg +4 ∗Breg. However,
no address overflow checks in the address calculation are applied. The error flag is not set in case
Areg + 4 ∗ Breg is not a word. For (very) large expressions e, for example, the code will calculate a
wrong address. The code is easy to correct: instead of using the efficient operation wsub the address
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can be calculated explicitly using the standard arithmetic operators mult and plus. These operators set
the error flag in case there is an overflow and the machine will halt. One could argue that such large
expressions or values will never occur. However, here we explicitly have to express the conditions to
ensure correctness of the compiling specification. It is not possible to formally express that the value of
an arbitrary expression is of acceptable size.

6 Transputer Backend: Implementing Large Word Constants

The purpose of this compilation step is to implement large and negative word constants occurring in
TASM assembler instructions by means of pfix/nfix chains and to transform the assembly code mnemonics
to 4-bit opcode in order to generate a sequence of instruction bytes for every assembler instruction.
The TC1 machine corresponds to TASM but has additional pfix and nfix instructions and works on
instruction byte sequences rather than on assembler instructions. A TC1 instruction now is simply a
byte. The machine has an additional operand register Oreg used to load large operands which are loaded
by means of pfix and nfix instructions.

Instruction decoding takes place before an instruction is executed. Note that an instruction byte i
consists of the operand (least significant 4 bits) and the operation code (most significant nibble). The
operand of i is loaded to the least significant nibble of the operand register,

Oreg′ ::= Oreg ∨ (i ∧ 15)

while the operation code is determined by

Code′ ::= (i ∧ 240).

The least significant 4 bits of Oreg are guaranteed to be 0 before the decoding takes place. The instruc-
tions of TC1 are executed in the same manner, i.e. they have the same semantics. The only difference is
that the instruction byte now includes the operand whereas in the TASM assembler the (word) operand
is explicit (like in ldc w, for example). The prefix instructions pfix and nfix are used to fill the
operand register Oreg nibble by nibble. After loading the operand nibble of the current instruction to
the operand register, the pfix instruction then shifts the operand register one nibble to the left, while
nfix first complements the content of Oreg and then shifts to the left. Both instructions leave 0′s in the
least significant nibble of the operand register. All other instructions clear the entire operand register
(Oreg′ = 0).

A TC1 program consists of two data modules (word sequences), a list of code modules, and a main
code sequence (the main program):

TC1 prg ::= Word∗ ×Word∗ × (byte∗)∗ × byte∗

The configuration (state) of the TC1 machine corresponds to the TASM state. The differences are as
follows: In the same way like for TASM the instruction pointer is represented symbolically such that the
program m is partitioned into two parts u and i ·v such that m = u◦ (i ·v), where the instruction i is the
next one to be executed. In contrast to TASM where u and v are sequences of assembler instructions,
in TC1 u and v are sequences of bytes (see Figure 21). The configuration type is given by:

conf TC1
::=

(Word×Word×Word)×WordAddr ×Word ×bool× (Word →Word)× seq [byte]×byte∗×byte∗×byte∗

In the following, cAreg, cBreg, cCreg, cWptr, cOreg, cEflg, cMem, cIn, cOut, cPrA, cPrB denote the respective
(state) components of a configuration c.

Similarly as for TASM, the effects of the instructions are specified using a relation Effects . For
example, if the instruction code of the current instruction i to be executed is 32 ((i∧ 240) = 32) (a pfix
instruction) then its effect in state c is given by

c : pfix→ c[Oreg := shiftL(cOreg, 4)]

The nfix instruction has the following meaning:

c : nfix→ c[Oreg := shiftL(bitNOT (cOreg), 4)]
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Areg
Breg
Creg Wptr

Eflg

MemMem

OutputInput

Oreg

(byte,...,byte) (byte,...,byte) Program Figure 21. Machine configuration of TC1

Note that the current instruction is determined by decoding the first instruction of the second instruction
byte sequence cPrB (the symbolic instruction pointer).

The n-step relation Rc(c1, c2) from some starting configuration c1 to some final configuration c2 is
defined as for TASM. As for TASM, the semantics of a TC1 program is its input/output behavior:
starting in an initial state which corresponds to the initial TASM state with input byte sequence bs, the
relation holds, if the machine regularly terminates in a final state which has bl as its output list:

p
TC1

(bs)(bl) ::= ∃c, c′. init state?(p)(c) ∧ cIn = bs ∧ Rc(c, c′) ∧ c′Out = bl

6.1 Compiling TASM to TC1

Prefix chains are to be generated in order to transform an abstract TASM assembler instruction opr(e)
on large or negative operands e ∈Word to an equivalent sequence

pfix(e0) · pfix(e1) · · · [pfix | nfix](en−1) · opr (en)

of length(e) + 1 TC1 instructions; ei ∈ [0, . . . , 15] and n = length(e). Note that length(e) + 1 equals to
the number of bytes of the concrete instruction sequence.

Following the definition given in the Transputer manual [Inm88], the following recursive function
computes the prefix chain (a byte list) where i is a byte and w is a word. Note that pfix = 32 and
nfix = 96 denote the instruction codes of the prefix instructions.

prefix(i, w) ::=

⎧⎨
⎩

[bitOR(i ,w)] if 0 ≤ w < 16
prefix (pfix, shiftR(w, 4)) · bitOR(i, bitAND(w, 15)) if w ≥ 16
prefix (nfix, shiftR(bitNOT (w), 4)) · bitOR(i, bitAND(w, 15)) if w < 0

Oreg

Oreg

pfix 1

0

Areg

Creg
Breg

ldc 4

ldc 20?

Oreg

Figure 22. Construction of the pfix/nfix chain for
ldc 20

Figure 22 shows the implementation of the TASM instruction ldc 20. Since the operand of this
instruction is large (≥ 16) it has to be loaded to the operand register by means of a pfix(1) instruction.
Shifting the operand (1) one nibble to the left results in the number 16. Then adding 4 to 16 yields the
operand 20. Thus, the byte list generated for prefix(64, 20) is given by [33, 68], where 64 is the instruction
code of ldc.

For specifying the compiling relation for this step, one principal problem arises: there are TC1

configurations which do not have a corresponding TASM configuration. For example, according to
the effects of the instructions, TC1 may non-deterministically step in any possible successor state, if
preconditions of instructions are not met. There are bytes which do not denote the instruction code of
an abstract TASM instruction. For this purpose, we introduce a pseudo TASM instruction err which
has a completely non-deterministic effect and compiles to any byte sequence. It is never generated and
only introduced as a means to relate TC1 states with TASM states in case of erroneous state transitions.
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As a specific example, notice that a TC1 jump instruction can jump within a pfix/nfix chain. However,
for TASM we have defined a non-deterministic behavior in this case, allowing the machine to step in any
successor state. For the last compilation phase from Cint to TASM we (implicitly) proved that such a
situation will never occur and hence all the jumps are well defined. Otherwise, we would not have been
able to establish the correctness of that phase.

Using function prefix , we now can define the compiling relations for this step.

CCCmd(i, bl)

relates TASM instructions i with corresponding byte sequences bl in the following way:

• instr w
CCCmd(instr w, prefix (InstrCode(instr), w))

• one and two-byte operations op

CCCmd(op, prefix(InstrCode(opr),OprCode(op)))

• pseudo instruction err

CCCmd(err, bl), for any byte list bl.

The instruction and operation codes are listed in Figure 13 and Tables 4 and 5, respectively.
Note that the length (in bytes) of a TASM assembler instruction i (written as |i|) is defined by the

length of the associated pfix/nfix chain. Function |.| is used in the compiling specification from Cint to
TASM in order to calculate relative jump distances (see Appendix H). A simple proof then shows that
the length of the byte list generated for instruction i equals the length of i:

CCCmd(i, bl)⇒ |bl| = |i|

A list of TASM instructions is compiled by compiling each instruction in the list and appending the
resulting byte sequences.

CCCmd(i1, b1), . . . , CCCmd(in, bn)
CCCmds([i1, . . . , in], b1 · · · bn)

Analogously, a list of TASM code modules is compiled:

CCCmds(m1, b1), . . . , CCCmds(mn, bn)
CCdef([m1, . . . ,mn], [b1, . . . bn])

Finally, TASM programs p are compiled into TC1 programs q:

CCprog(p, q) ::= [qdata1 = pdata1 ∧ qdata2 = pdata1 ∧ CCdef(pmodules, qmodules) ∧ CCCmds(pmain, qmain)]

6.2 Correctness of the Assembler

For this compilation step, the correctness is stated as follows: for any TASM program p, whenever the
semantics of the compiled program q is defined for some input byte stream bs and output byte list bl,
this is also the case for p for the same bs and bl:

Theorem 6.1 (Correctness of TASM Program Compilation).

∀p, q, bs, bl. CCprog(p, q) ⇒ p
TC1

(q)(bs)(bl)⇒ p
TASM

(p)(bs)(bl)

Similar as for the other compilation phases, in order to prove this theorem, TASM and TC1 instructions
have to be compared. In particular, this requires relating TASM configurations with TC1 configurations.
The configurations directly correspond in most of their state components. They only differ in the
following components:
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• symbolic instruction pointer (cPrA,cPrB).
In TASM, cPrA and cPrB are assembler instruction sequences, while in TC1 these are sequences
of bytes. TC1 and TASM sequences are related by CCCmds. Note that any TC1 sequence can be
related with a corresponding TASM sequence due to the TASM pseudo instruction err. For any
byte, it either corresponds to an abstract TASM instruction or it corresponds to err.

• TC1 configurations contain the additional operand register.
The correct execution of the pfix/nfix chain calculated by function prefix depends heavily on the
a-priori content of the operand register. An essential requirement here is that the operand register
is always 0 when an abstract TASM instruction is to be executed.

This leads to the following definition of the data representation relation ρ between TASM states s and
TC1 states q

ρ(s, q) ::=
qAreg = sAreg ∧ qBreg = sBreg ∧ qCreg = sCreg ∧ qWptr = sWptr ∧ qOreg = 0 ∧ qEflg = sEflg ∧
qMem = sMem ∧ qIn = sIn ∧ qOut = sOut ∧ CCCmds(sPrA, qPrA) ∧ CCCmds(sPrB, qPrB)

We have to prove in particular that the TC1 machine simulates the TASM machine. Since one abstract
TASM instruction is compiled into a sequence of TC1 instructions, the proof will be a classical 1 : n
simulation proof for state machines. More specifically, according to the compiling specification, one
TASM instruction i is compiled into a pfix/nfix chain (of length ≥ 0) followed by another instruction
which corresponds to i. Instead of using the general n-step relation Rc(c1, c2) which holds for a starting
configuration c1 and a termating configuration c2, we define a special n-step relation which follows the
idea of the compilation: Rstop(s, q) holds, if Effects∗(s, q) holds, where Effects∗ denotes the reflexive
and transitive closure of Effects, and if there is a configuration sequence s = c1, c2, . . . , cn = q such
that in each configuration c2, c3, . . . , cn−1 the operand register is not cleared and in state cn = q the
register finally is cleared. This corresponds to a pfix/nfix chain followed by some other instruction since
all but the prefix instructions will clear the operand register after they have been executed. The 1 : n
L-simulation theorem (preservation of partial correctness) is as follows (see also Fig. 23). Note that the
compiling relation CCCmds is part of the definition of ρ.

Theorem 6.2 (TC1 L-simulates TASM).

∀s, t, σ. Rstop(s, t) ∧ ρ(σ, s) ⇒ ∃τ. ρ(τ, t) ∧ Effects(σ, τ)

i

bl

where CCCmd(i, bl)

ρ

t ∈ Conf TC1

Conf TASM � σ τ ∈ Conf TASM

ρ

Conf TC1
� s

Figure 23. TC1 1 : n simulates TASM

In order to accomplish the simulation proof, the main effort lies in the proof of the following prefix
property: the property expresses that when executing the pfix/nfix chain

pfix(e0) · pfix(e1) · · · [pfix | nfix](en−1) · opr (en)

without the last instruction opr (en) then the operand register Oreg will be loaded with the value

((e� 4)� 4) which equals to (e ∧ 240),

where� and� denote the right and left shift operations, respectively. Formally stated (lead(l) returns
list l without the last element):

Lemma 6.1 (Prefix Lemma).

∀s, u, i, w. sOreg = 0 ∧ ¬sEflg ∧ sPrB = lead(prefix (i, w)) · u
⇒ Effects∗(s, s[Oreg ::= shiftL(shiftR(w, 4), 4), P rA ::= sPrA · lead(prefix (i, w)), P rB ::= u])

The main proof of this compilation phase (6.1) is then straightforward and by induction using the
transitive closure of the n-step relation Rstop and Effects∗ for TASM. The complete proof effort for this
compilation step comprises approximately 600 manual proof interactions.
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7 Transputer Backend: Program in Memory

The TC1 machine presented in the last section is very close to the Transputer base model as introduced
in Sect. 5.1 and illustrated in Figure 13. Instructions are bytes consisting of the 4-bit operation code
and the 4-bit operand. What remains to be implemented is the abstract symbolic instruction pointer
represented by two byte sequences PrA · PrB where the current instruction to be executed is the first
one of PrB . Instead of using an instruction register the contents of which points to a valid program
address, the complete program m is made explicit in machine TC1 by the concatenation of the two
byte sequences m = PrA · PrB . Hence, the task of this final step is to integrate this program into
the Transputer memory which then contains both the binary code as well as word datas. In Section
5.1 we already had to specify that the start addresses of the program modules are available through a
subroutine jump table. A global constant PgrStart denotes the start address of the program in memory.
This concept has to be specified on the level of TASM since the compilation of Cint procedures makes
use of an absolute jump (gcall).

A program of the Transputer base model TC0 corresponds exactly to a TC1 program: it consists
of two data modules (word sequences), a list of code modules, and a main code sequence (the main
program):

TC0 prg ::= Word∗ ×Word∗ × (byte∗)∗ × byte∗

Areg
Breg
Creg Wptr

Eflg

MemMem

OutputInput

Oreg

Iptr Figure 24. Machine configuration of TC0

The configurations of both machines differ only in the representation of the instruction pointer: TC0

configurations include an instruction register of type Word while TC1 configurations use the symbolic
instruction pointer given by the two components cPrA and cPrB. Figure 24 illustrates the machine
configuration of TC0. Its type is given by

conf TC0
::=

(Word ×Word ×Word)×WordAddr ×Word × bool × (Word →Word)× seq [byte]× byte∗ ×Word

In the following, cAreg, cBreg, cCreg, cWptr, cOreg, cEflg, cMem, cIn, cOut, and cIptr denote the respective
(state) components of a configuration c.

The effect of each instruction is specified using a relation Effects0 . For the more abstract machine
TC1 a terminating configuration is one where cPrB is empty. In order to compare the two machines, we
thus need a corresponding termination notion for machine TC0. For this purpose, the machine has a
global constant PgrLength denoting the length of the machine program. This constant is later identified
with the sum of the lengths of the TC1 code sequences cPrA and cPrB. The machine then “terminates”
in state c, if cIptr = plus(PgrStart ,PgrLength), that is, the instruction pointer points to the end of the
program, where PgrStart denotes the global constant inherited from the definition of TASM and plus is
defined as the addition on integers, in case there is no overflow (see Sect. 5.1). An instruction is now
retrieved from memory at the address where the instruction pointer points to:

ByteMem(cMem)(cIptr)

Here, ByteMem denotes another (equivalent) view of the machine memory where byte values are stored
at (byte) addresses. The (normal) update of the instruction pointer is simply defined by

cIptr
′ = plus(cIptr, 1).

The effects of TC0 and TC1 instructions are equal. The n-step relation Rc(c1, c2) from some starting
configuration c1 to some final configuration c2 is defined as for TC1. In this case, a final configuration
is a terminating configuration where the error flag is not set. Program semantics for machine TC0 is
defined by a predicate p

TC0
in the same way as for TC1.
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Since only the machine configurations are different and both machines are defined on identical code,
no compilation step is necessary for this phase. Correctness is stated as for the last step: for any program
p, whenever the semantics of the program is defined on machine TC0 for some input byte stream bs and
output byte list bl, this is also the case for p on machine TC1 for the same bs and bl:

Theorem 7.1 (Correctness of the final Step).

∀p, bs, bl. p
TC0

(p)(bs)(bl)⇒ p
TC1

(p)(bs)(bl)

As for the other compilation phases, first of all, the configurations of both machines are to be related by
means of a data representation relation ρ. Here, this reduces to relate the symbolic instruction pointer
(cPrA, cPrB) of TC1 with the instruction register cIptr of TC0. In particular, it is required

• that either the instruction pointer points to a valid program address or a terminating configuration
has been reached and that

• the program m = cPrA · cPrB is available in memory with start address PgrStart .

The first property is formalized using a predicate

PgrAddr?(a) ::= (PgrStart ≤ a < plus(PgrStart ,PgrLength))

The second property is parameterized with the memory m and two byte sequences p1 and p2:

PgrInMem?(m)(p1, p2) ::=
(|p1|+ |p2| = PgrLength) ∧ [∀i < PgrLength. ByteMem(m)(PgrStart + i) = (p1 · p2).i]

This leads to the following definition of the data representation relation ρ between TC1 states s and
TC0 states q:

ρ(s, q) ::=
(PgrAddr?(qIptr) ∨ terminated?(qIptr)) ∧
qAreg = sAreg ∧ qBreg = sBreg ∧ qCreg = sCreg ∧ qWptr = sWptr ∧ qOreg = sOreg ∧
qEflg = sEflg ∧ qMem = sMem ∧ qIn = sIn ∧ qOut = sOut ∧
PgrInMem?(qMem)(sPrA, sPrB) ∧ qIptr = plus(PgrStart , |sPrA|)

As for the last phase, we must prove that the lower level machine simulates the more abstract one. In this
case, it is an easy 1 : 1 simulation proof: one step of TC0 corresponds to one step of TC1. However, one
additional important requirement is necessary to accomplish the simulation proof: it must be assured
that the TC0 program does not modify itself while being executed. In fact, a memory write access into
the program area is possible on the TC0 level. However, as this memory area starts above MemTop
(PgrStart > MemTop), the semantics of TASM and TC1 are defined non-deterministically in this case
(see the semantics of the TASM store instructions in Appendix G). The simulation theorem (depicted
in Fig. 25) is then as follows:

i

i

ρρ

τ ∈ Conf TC1

t ∈ Conf TC0
Conf TC0

� s

Conf TC1
� σ

Figure 25. TC0 1 : 1 simulates TC1

Theorem 7.2 (TC0 simulates TC1).

∀s, t, σ. ρ(σ, s) ∧ Effects0(s, t) ⇒ ∃τ. Effects(σ, τ) ∧ ρ(τ, t)

The proof of the simulation theorem is by a large case-analysis on the different kind of instructions.
Since most of the cases are proved in the same way, PVS proof strategies are defined which enable a
tremendous reduction of the manual proof effort. Altogether, the verification effort for this last phase
comprises approximately 350 proof steps.
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8 Combining the Compilation Phases

In the last sections, the correctness of each of the five compilation steps has been outlined. However,
what is needed in order to accomplish the correctness of the complete compilation process from ComLisp
down to binary Transputer code as stated in the main theorem 1.1 is a combination of the single proofs.
The commuting diagrams of the different compilation phases have to be stacked as depicted in Fig. 26.
The different correctness theorems for program compilation must be combined logically in order to prove

char∗
pComLisp

seq[char]

byte∗seq[byte]
p
TC0

byte∗seq[byte]
p
TC1

byte∗seq[byte]
p
TASM

char2byte

char∗seq[char]
p
Cint

char∗seq[char]
p
SIL

id

id id

id

char2byte

id

id

id

id

Figure 26. Combining the commuting diagrams

the main correctness conjecture. First, the combined compiling relation from ComLisp down to TC0

has to be defined: Let p be a ComLisp program, q be a TC0 program, p′ be a Cint program, p′′ be a
TASM program and p′′′ be a TC1 program.

Definition 8.1 (Global compiling relation).

C(p, q) ::= ∃p′, p′′, p′′′. CCprog(Cprog(p), p′) ∧ CCprog(p′, p′′) ∧ CCprog(p′′, p′′′) ∧ q = p′′′

The proof of the main theorem 1.1 is then as follows:
Proof: In order to be able to apply the compilation correctness theorems of the different phases,

namely the theorems 3.1, 4.1, 5.1, 6.1, 7.1, it must be proved that the programs resulting from the first
two compilation phases are well-formed:

• for any ComLisp program p:
wf (p)⇒ wf (Cprog(p)

• for any SIL program p and Cint program q:

wf (p) ∧ CCprog(p, q)⇒ wf (q)

Consider the proof of the first lemma. In order to show that a well-formed ComLisp program is compiled
into a well-formed SIL program it suffices to show that well-formed ComLisp forms are compiled into
well-formed SIL statements:

(wf (e, ζ, γ,Γ, cl, sl) ∧ dom(ρ) = ζ) ⇒ wf (Cform(e, γ, ρ, k), Cdefs(Γ)(γ), sl, cl, |γ|)
The proof of this property is by measure-induction using the size of the expression e as measure.

Analogously, in order to show that well-formed SIL programs are compiled into well-formed Cint

programs, we have to show, that

• well-formed SIL statements are compiled into well-formed Cint statements (by measure-induction)

• the core runtime system (the set of Cint procedures implementing the ComLisp operators) is well-
formed. For each procedure it must be showed that its body is well-formed and the specified stack
index is greater or equal the maximum index of the body. (The proof is by unfolding the definition
of maxindex for each procedure).

�
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9 Discussion, Results

In this paper we have reported on the construction of a correct realistic bootstrap compiler compiling a
subset of Common Lisp into binary Transputer code. We have focused on the formal, mechanically sup-
ported verification of the compiling specification. The formal verification has been carried out completely
using the PVS specification and verification system.

It is hard to give an estimation of the amount of work invested in the final verification, since we
started the verification first on a smaller subset of ComLisp in order to experiment with different styles
of semantics and find the necessary invariants, and then incrementally extended this subset and tried
to rerun and adapt the already accomplished proofs. A coarse estimation of the total formalization and
verification effort required for the compiling verification for all phases is about three person-years. This
case study in formal verification is, so far, one of the largest one found in the literature. Comparable
formalizations are Clinc’s stack of system components (using the Boyer-Moore prover) [Moo89] and the
Prolog to WAM case study done with the KIV system [Sch99].

What did we learn from this verification project?
First of all, using a mechanical proof system, we have found several errors in the original specification

[GH98b] which have not been recognized so far. A serious error occurred in the compiler’s back-end where
necessary overflow checks have been omitted which will lead to erroneous code for large values. It was an
easy task to correct the errors. However, as we are constructing an initial correct compiler this has the
consequence that the compiler implementation must be corrected too and its verification both on the high
and lower level must be repeated. However, this effort is small comparable to the total verification effort
due to the sophisticated modular verification technique [Hof98] for low-level implementation verification.

Second, as stated above, we have started this verification project on easier sublanguages and abstract
machine architectures in order to experiment with this kind of verification problems and to learn about
the representation of the languages, specifications, the appropriate choice of semantics, induction princi-
ples, invariants, and proof techniques. For instance, in order to accomplish compiling correctness proofs,
a counter has been introduced into the semantics of statements to formulate a suitable induction prin-
ciple for the chosen notion of correctness. Then we stepwise increased the complexity of the verification
problems by extending the languages and machine architectures trying to reuse specifications and proofs
as much as possible. This engineering methodology has turned out to be a suitable technique in order
to carry out such a large new verification project. Of course, for a new similar compiling verification
project the effort would be much smaller since one can profit from the gained experience.

Third, the choice of the intermediate languages and compilation phases originally has been made in
order to accomplish the compiler implementation verification especially on the lower level. However, in
order to carry out the compiling verification, one would had defined some of the intermediate languages
slightly different. Hence there is a trade-off between compiling verification and compiler verification. The
compiling verification of some of the phases requires knowledge about the compilation of the previous
phase, that is, the phases are not completely independent of each other. The general situation is as
follows: suppose we consider two compilation phases ( Li−1 → Li and Li → Li+1 ) as part of a
compilation process from some source language L1 to some target language Ln:

L1 → · · ·Li−1 → Li → Li+1 → · · ·Ln

In general, the set of target programs q which are a possible compilation of a source program p ∈ Li−1 is
a real subset of the target language: {q ∈ Li | CC(p, q)} ⊂ Li. This subset often has specific properties
which are necessary and must be explicitly expressed in order to establish the correctness of the next
subsequent phase. Suppose P is such a property and suppose that P is a precondition for the correctness
of the second compilation phase from Li to Li+1. In order to combine the correctness proofs of the two
phases to a correctness proof of Li−1 → Li+1 there are different possibilities:

1. Show that the property holds for each possible compilation of a Li−1 program: for all p ∈ Li−1

and q ∈ Li, if CC(p, q) then the property P holds for q. Often P is a statically decidable property
such as special well-formed conditions. However, sometimes P expresses dynamic properties of the
code such as the fact that some memory region is not changed when evaluating the code. In this
case, P could be introduced as an additional (target) invariant into the correctness proof of the
first phase or an additional theorem can be established showing that the target code fulfills the
dynamic property P .
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2. an alternative method is to introduce non-determinism into the semantics of Li, that is, to weaken
the semantics of Li in such a way, that in case P does not hold some arbitrary successor state will
be allowed. Since P is a property which holds for the first phase, it should be easy to accomplish
the correctness proof with the weaker semantics. The proof becomes harder, however, since it
must be explicitly proved that the non-deterministic cases (the chaotic cases) will never occur
when symbolically executing the compiled code. Otherwise, it would not be possible to prove the
correctness of the compilation from Li−1 to Li since some arbitrary Li state can not be related
with some specific Li−1 state. This non-determinism is then utilized in order to accomplish the
proof of the subsequent compilation phase from Li to Li+1. For the correctness of this phase, we
do not need the precondition P any more. At the level of Li+1 there is a defined state transition
in the case P does not hold. However, for each such target Li+1 state we are then trivially able to
find a Li state transition (since every transition is allowed). In particular, we may choose a Li state
τ such that it corresponds to the target state t with respect to the data representation relation
(ρ(τ, t)) which relates Li states with Li+1 states. In some cases it might be possible however,
that there are Li+1 states which do not have a corresponding Li state. For these cases we then
have to make ρ more total in a way such that we are always able to find a corresponding source
state τ . This second method has the advantage that no additional invariant is required and no
additional precondition must be established for the compiled code. We just have introduced some
knowledge (the property P ) into the semantics of Li. This reflects the fact that only the subset
of Li is actually considered which results from compiling Li−1 programs. Certainly, the semantics
of the source language L1 and the final target language Ln are fixed. However, introducing non-
determinism into the semantics of the intermediate languages L2, L3, . . . , Ln−1 when necessary, is
an allowed and useful technique.

For our initial bootstrap compiler we have exclusively utilized the second proof technique both in the
front-end and back-end since it has been turned out that it is much more suitable to enable a modular
verification and easy combination of the different phases. The only preconditions which are necessary
to combine the phases are easy statically decidable well-formedness conditions. In the front-end, for
example, an arbitrary SIL program does not have a stack machine behavior, although the language has
been defined in order to be used as a stack machine. However, a compiled ComLisp program has in
fact a stack machine behavior. We solved this problem by slightly introducing non-determinism into the
semantics of SIL. For SIL, an additional top-of-stack pointer has been introduced to model normal and
abnormal stack machine behavior. In the back-end, the correctness of the compilation from TASM to
TC1 depends on correct jump distances. Whenever a relative TASM jump (such as cj w or j w) has
a jump distance w which does not start at the beginning of an abstract TASM instruction (that is, a
jump within a pfix/nfix chain), then the machine is defined to behave non-deterministically such that
any successor state will be allowed. For TC1 a jump within a pfix/nfix chain is certainly allowed but in
this case, we can easily find a TASM state which corresponds to the TC1 state. Changing the semantics
of SIL and TASM for example in order to establish the correctness of one compilation phase required to
repeat the verification of the previous phase. In our case, nearly all of the proofs could be reused, a few
of them required minor modifications.

Fourth, for all phases, we have utilized a relational semantics. For the languages in the front-
end, natural semantics (big-step semantics) has been used, and for the Transputer base model and its
abstractions, a transition semantics has been employed. The main advantage of this style of semantics is
its readability and it is easy to validate against informal language descriptions. In addition, the semantics
is straightforward to formalize in a system like PVS and has proved to be a suitable vehicle for compiling
verification.

Fifth, in order to decrease the manual verification effort of the compilation theorems, proof strategies
have heavily been employed. This technique could successfully been applied here since the proofs of
some of the compiling theorems (for a specific compilation phase) follow a similar scheme. Nevertheless,
the total manual interaction effort to accomplish the proofs is very high (approx. 18,000 proof steps).

We have demonstrated that the formal, mechanized verification of a non-trivial compiler for a (nearly)
realistic programming language into a real existing target architecture is feasible with state-of-the-art
prover technology.
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A Semantics of ComLisp

A.1 A Natural Semantics

For a state s, we denote the input stream of s by sinput, the output list of s by soutput, and the variable
state of s by svar : Ident → SExpr . In the following to increase readability, we often write simply s
instead of svar; s[x← v] denotes the modification of svar at x by v.

ComLisp operators denote partial functions on s-expressions which is expressed by two relations:
relation v1 : uop → v2 for unary operators uop, and v1, v2 : bop → v for binary operators. For example,
the first relation states that the application of unary operator uop to s-expression v1 is defined, terminates,
and yields s-expression v2 as result. Note that there is no rule for the abort expression, since for any
state s there is no state q and value v with Γ  s : abort → (v, q).

• constants, variables
Γ  s : c→ (c, s) Γ  s : x→ (s(x), s)

• assignment:
Γ  s : e→ (v, q)

Γ  s : x := e→ (v, q[x← v])

• sequential composition:

Γ  s : progn([])→ (NIL, s)
Γ  s : e→ (v, q)

Γ  s : progn(e)→ (v, q)

n ≥ 2
Γ  s : e1 → (v1, q1)

Γ  q1 : progn(e2, . . . , en)→ (v, q)
Γ  s : progn(e1, . . . , en)→ (v, q)

• conditional:

Γ  s : e1 → (NIL, q1) ; Γ  q1 : e3 → (v, q)
Γ  s : if (e1, e2, e3)→ (v, q)

Γ  s : e1 → (v1, q1); Γ  q1 : e2 → (v, q)
Γ  s : if (e1, e2, e3)→ (v, q)

if v1 �= NIL

• do-loop:
Γ  s : c→ (NIL, q1)

Γ  q1 : body → (v2, q2)
Γ  q2 : do(c, body)→ (v, q)
Γ  s : do(c, body)→ (v, q)

Γ  s : c→ (v, q) (v �= NIL)
Γ  s : do(c, body)→ (v, q)

• call of user-defined functions:

[f(x1 · · ·xn)← body ] ∈ Γ (n ≥ 1)
Γ  qi : ei → (vi, qi+1) (1 ≤ i ≤ n)

Γ  qn+1[x1 ← v1, . . . , xn ← vn] : body → (v, r)
Γ  q1 : call (f, e1, . . . , en)→ (v, r[x1 ← qn+1(x1), . . . , xn ← qn+1(xn)])

[f()← body ] ∈ Γ
Γ  s : body → (v, q)

Γ  s : call (f, ())→ (v, q)

• built-in unary and binary operators:

Γ  s : e→ (v1, q)
v1 : uop → v

Γ  s : uop(e)→ (v, q)

Γ  s : e1 → (v1, q1)
Γ  q1 : e2 → (v2, q)
v1, v2 : bop → v

Γ  s : bop(e1, e2)→ (v, q)

• let block:

Γ  qi : ei → (vi, qi+1) (1 ≤ i ≤ n)
Γ  qn+1[x1 ← v1, . . . , xn ← vn] : e→ (v, r)

Γ  q1 : let(x1 = e1, . . . , xn = en; e)→ (v, r[x1 ← qn+1(x1), . . . , xn ← qn+1(xn)])

Γ  s : e→ (v, q)
Γ  s : let([], e)→ (v, q)
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• list∗ operator:

Γ  s : e→ (v, q)
Γ  s : list∗(e)→ (v, q)

Γ  s : e1 → (v1, q1)
Γ  q1 : list∗(e2, . . . , en)→ (v2, q) (n ≥ 2)
Γ  s : list∗(e1, . . . , en)→ (cons(v1, v2), q)

• cond form:

Γ  s : cond()→ (NIL, s)

Γ  s : p1 → (v1, q1) (v1 �= NIL)
Γ  q1 : e1 → (v, q)

Γ  s : cond(p1 → e1, . . . , pn → en)→ (v, q)

Γ  s : p1 → (NIL, q1)
Γ  q1 : cond(p2 → e2, . . . , pn → en)→ (v, q)
Γ  s : cond(p1 → e1, . . . , pn → en)→ (v, q)

• input/output:
Γ  s : read char → (first(sinput), s[sinput := rest(sinput)])

Γ  s : peek char → (first(sinput), s)

Γ  s : e→ (v, q) (v ∈ char )
Γ  s : print char (e)→ (v, q[qoutput := qoutput++v])

A.2 A Structural Operational Semantics

We provide a (dynamic) small-step semantics, also called structural operational semantics (SOS) for the
language ComLisp. Note that this semantics is not used for the compiling verification outlined in this
report.

The basic idea is to define a set of axioms and inference rules in a bottom-up style: execution of
smaller program parts is integrated into the execution of larger program parts. In contrast to a big-step
semantics, SOS does not describe state transitions for entire expressions or programs. An SOS semantics
explicitly defines a term-rewriting system that rewrites the program during execution until the empty
program is reached.

A ComLisp state consists of the input stream of s denoted by sinput, the output list of s denoted by
soutput, and the variable state of s denoted by svar : [Ident → SExpr ]∗. The variable state is given by
a stack (list) of mappings, associating s-expressions with identifiers. In order to execute a function call
the stack of mappings is extended with the new local environment, which is popped from the stack after
the function body has been evaluated.

ComLisp expressions may have side-effects, hence they denote state transitions transforming states
to pairs of result values (s-expressions) and result state. The semantics of Comlisp forms makes use of
two kinds of transitions:

• < e, s > → (v, q) denotes a termination step of the rewriting system: (completely) evaluating
expression e in state s yields the value v and result state q.

• < e, s > → < e′, s′ > denotes an intermediate evaluation step: execution of e in s yields a new
expression e′ to be evaluated and a succeeding state s′.

For the definition of the semantics, we make the following assumptions:

• in the following to increase readability, we often write simply s instead of svar; s[x ← v] denotes
the modification of svar at the first occurrence of x by v.

• the user-defined functions are available in a global constant environment Γ which is omitted in
the rules for readability purposes. That is, instead of Γ < e, s > → < e′, s′ > we simply write
< e, s > → < e′, s′ >.

• ComLisp operators denote partial functions on s-expressions which is expressed by two relations:
relation < uop, v1 > → v2 for unary ComLisp operators uop, and < bop, v1, v2 > → v for binary
operators bop.
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• push(E, s) extends the variable state of s by E: s[svar := E · svar]; pop(s) removes the first element
of the variable state of s.

The formalization of the small-step semantics is heavily influenced by the formalization of our big-step
(natural) semantics for ComLisp. In particular, the axioms (atomic rules) of the big-step semantics
used for the atomic ComLisp expressions become axioms in the small-step semantics (e.g. the rules for
constants and variables). The structural big-step inference rules for the non-atomic ComLisp expressions
are transformed into rules which explicitly specify the left-to-right evaluation of expressions. There are
at least two rules for each composed expression: one rule for an intermediate evaluation step stating that
if a sub-expression e is rewritten to some other sub-expression e′ while changing the state from s to s′

then the expression context(e) is rewritten to context(e′) with the same state change:

< e, s > → < e′, s′ >
< context(e), s > → < context(e′), s′ >

The other rule then specifies the terminating case:

< e, s > → (v, q)
< context(e), s > → (result value, result state)

The SOS inference rules which specify the semantics of ComLisp expressions are defined as follows:

• constants, variables
< c, s > → (c, s) < x, s > → (s(x), s)

• assignment: (two rules)

< e, s > → < e′, q >
< x := e, s > → < x := e′, q >

< e, s > → (v, q)
< x := e, s > → (v, q[x← v])

• sequential composition:

< progn([]), s > → (NIL, s) < progn(e), s > → < e, s >

for n ≥ 2:
< e1, s > → < e′1, q >

< progn(e1, . . . , en), s > → < progn(e′1, . . . , en), q >

< e1, s > → (v1, q1)
< progn(e1, . . . , en), s > → < progn(e2, . . . , en), q1 >

• conditional:
< e1, s > → < e′1, q >

< if (e1, e2, e3), s > → < if (e′1, e2, e3), q >

< e1, s > → (NIL, q)
< if (e1, e2, e3), s > → < e3, q >

< e1, s > → (v, q) (v �= NIL)
< if (e1, e2, e3), s > → < e2, q >

• do-loop:
< c, s > → < c′, q >

< do(c, body), s > → < do(c′, body), q >

< c, s > → (v, q) (v �= NIL)
< do(c, body), s > → (v, q)

< c, s > → (NIL, q)
< do(c, body), s > → < progn(body , do(c, body)), q >

• unary operators (uop denotes some ComLisp unary operator):

< e, s > → < e′, q >
< uop(e), s > → < uop(e′), q >

< e, s > → (v, q)
< uop, v > → v′

< uop(e), s > → (v′, q)
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• binary operators (bop denotes some ComLisp binary operator):

< e1, s > → < e′1, s′ >
< bop(e1, e2), s > → < bop(e′1, e2), s′ >

< e1, s > → (v1, q1)
< bop(e1, e2), s > → < bop(v1, e2), q1 >

< e2, s > → < e′2, s
′ >

< bop(v, e2), s > → < bop(v, e′2), s′ >

< e2, s > → (v2, s2)
< bop, v1, v2 > → v

< bop(v1, e2), s > → (v, s2)

• call of user-defined functions:
we make use of an additional auxiliary parameter E denoting the local variable environment (a list
of associations) which is constructed during the left-to-right evaluation of the function parameters.
Note that the extension of the environment E does not change the state q; E is an additional
parameter. In particular this means that each parameter ei is evaluated in the same environment.
After the function parameters have been evaluated completely, the variable state (the stack of
mappings) is extended with the constructed environment and then the body of the function is
evaluated. We further suppose that f(x1, . . . , xn)← body ∈ Γ.

– parameterless functions:
< f(), s > → < body , s >

– evaluation of parameters

< e1, s > → < e′1, s
′ >

< f(e1, . . . , en), s > → < f(e′1, . . . , en), s′ >

< e1, s > → (v1, q1)
< f(e1, . . . , en), s > → < f([], e2, . . . , en), q1, [x1 ← v1] >

< e2, s > → < e′2, q >
< f([], e2, . . . , en), s, E > → < f([], e′2, . . . , en), q, E >

< e2, s > → (v2, q2)
< f([], e2, . . . , en), s, E > → < f([], [], e3, . . . , en), q2, [x2 ← v2] · E >

...

– evaluation of function body:
Note that in the following rules the function body is used as an additional parameter in order
to recognize the end of the evaluation of the body.

< f([], [], . . . , []), q, E > → < f([], [], . . . , []), push(E, q), body >

< body , s > → < body ′, s′ >
< f([], [], . . . , []), s, body > → < f([], [], . . . , []), s′, body ′ >

< body , s > → (v, q)
< f([], [], . . . , []), s, body > → (v, pop(q))

• let block:

– empty parameter list
< let((); e), s > → < e, s >

– evaluation of parameters: similar as for function calls
– evaluation of the let-body

< let([], [], . . . , []; e), s, E > → < let([], [], . . . , []; e), push(E, s) >

< e, s > → < e′, s′ >
< let([], [], . . . , []; e), s > → < let([], [], . . . , []; e′), s′ >

< e, s > → (v, q)
< let([], [], . . . , []; e), s > → (v, pop(q))
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• list∗ operator:
Here, an additional environment parameter E is used in order to save the values of the evaluated
expressions.

< list∗(e), s > → < e, s >

< e1, s > → < e′1, s
′ >

< list∗(e1, . . . , en), s > → < list∗(e′1, . . . , en), s′ >

< e1, s > → (v1, q1)
< list∗(e1, . . . , en), s > → < list∗([], e2, . . . , en), q1, [v1] >

< e2, s > → < e′2, q >
< list∗([], e2, . . . , en), s, E > → < list∗([], e′2, . . . , en), q, E >

< e2, s > → (v2, q2)
< list∗([], e2, . . . , en), s, E > → < list∗([], [], e3, . . . , en), q2, E · v2 >

...

< list∗([], [], . . . , []), q, E > → (mkcons(E), q) where

mkcons(v1, . . . , vn) ::= cons(v1, cons(v2, . . . , cons(vn−1, vn) . . .))

• cond form:
< cond(), s > → (NIL, s)

< p1, s > → < p′1, s
′ >

< cond(p1 → e1, . . . , pn → en), s > → < cond(p′1 → e1, . . . , pn → en), s′ >

< p1, s > → (v, q) (v �= NIL)
< cond(p1 → e1, . . . , pn → en), s > → < e1, q >

< p1, s > → (NIL, q)
< cond(p1 → e1, . . . , pn → en), s > → < cond(p2 → e2, . . . , pn → en), q >

• input/output:
< read char , s > → (first(sinput), s[sinput := rest(sinput)])

< peek char , s > → (first(sinput), s)

< e, s > → < e′, s′ >
< print char (e), s > → < print char (e′), s′ >

< e, s > → (v, q)
< print char (e), s > → (v, q[qoutput := qoutput++v])

Finally, the semantics of a ComLisp program p ::= d;x1, . . . , xk; f1, . . . , fn; e with declaration part d,
global variables x1, . . . , xk, function definitions Γ := f1, . . . , fn and main program (expression) e is given
by a relation between an input stream is and output list ol as follows:

PsemCL(p)(is, ol) ::= ∃v, q. (Γ < e, init > → (v, q)) ∧ (qoutput = ol)

where the initial state init is given by

init ::= (sinput := is, soutput := [], svar := [λx.NIL])



B SEMANTICS OF SIL 55

B Semantics of SIL

In the following, |l| denotes the length of list l, and l(i) denotes the ith element of l for (0 ≤ i < |s|).
slocal, sglobal, sbase denote the respective state components in state s. To increase readability, we simply
write s(i) for the relative local access slocal(sbase + i), and write s[i← v] for s[slocal(sbase + i)← v].

• copy constant, copy local

Γ  s : copyc(c, i)→ s[i← c] Γ  s : copy(i, j)→ s[j ← s(i)]

• copy from global to local memory:

Γ  s : gcopy(g, i)→ s[i← sglobal(g)] if g < |sglobal|

• copy from local to global memory:

Γ  s : copyg(i, g)→ s[sglobal(g)← s(i)] if g < |sglobal|

• conditional:
s(i) = NIL

Γ  s : f → q

Γ  s : itef (i, t, f)→ q

s(i) �= NIL
Γ  s : t→ q

Γ  s : itef (i, t, f)→ q

• sequential composition:

Γ  s : c→ q

Γ  s : sq(c)→ q

Γ  s : c1 → q1
Γ  q1 : sq(c2, . . . , cn)→ q

Γ  s : sq(c1, . . . , cn)→ q
if n ≥ 2

• function call:
Γ  s[sbase ← sbase + i] : body → q

Γ  s : fcall (h, i)→ q[qbase ← sbase]
if [h← body ] ∈ Γ

• unary/binary operators:

s(i) : uop → v

Γ  s : uop(i)→ s[i← v]
s(i), s(i+ 1) : bop → v

Γ  s : bop(i)→ s[i← v]

• do-loop:

Γ  s : c→ q (q(i) �= NIL)
Γ  s : do(i, c, b)→ q

Γ  s : c→ r (r(i) = NIL)
Γ  r : b→ t

Γ  t : do(i, c, b)→ q

Γ  s : do(i, c, b)→ q

• input/output:

Γ  s : read char (i)→ s[i← first(sinput), sinput ← rest(sinput)]

Γ  s : peek char (i)→ s[i← first(sinput)]

Γ  s : print char (i)→ s[soutput ← soutput++s(i)] if s(i) ∈ char

• list∗

Γ  s : list∗(n, i)→ s[i← cons(s(i), . . . cons(s(i+ n− 2), s(i+ n− 1)) . . .)] if (n ≥ 2)

Γ  s : list∗(1, i)→ s
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C Compiling ComLisp to SIL

Cform(e, γ, ρ, k) is defined inductively on e:

• Cform(abort , γ, ρ, k) = abort

• Cform(c, γ, ρ, k) = copyc(c, k)

• Cform(x, γ, ρ, k) =
{
copy(ρ(x), k) if ρ(x) is defined
gcopy(γ(x), k) otherwise

• Cform(x := e, γ, ρ, k) =
{

sq(Cform(e, γ, ρ, k), copy(k, ρ(x))) if ρ(x) is defined
sq(Cform(e, γ, ρ, k), copyg(k, γ(x))) otherwise

• Cform(progn([]), γ, ρ, k) = copyc(NIL, k)

• Cform(progn(e1, . . . , en), γ, ρ, k) = sq

⎛
⎜⎝
Cform(e1, γ, ρ, k)
...
Cform(en, γ, ρ, k)

⎞
⎟⎠

• Cform(if (e1, e2, e3), γ, ρ, k) = sq
( Cform(e1, γ, ρ, k)

itef (k, Cform(e2, γ, ρ, k), Cform(e3, γ, ρ, k))

)

• Cform(do(e1, e2), γ, ρ, k) = do(k, Cform(e1, γ, ρ, k), Cform(e2, γ, ρ, k))

• Cform(call (f, ()), γ, ρ, k) = fcall (f, k)

• Cform(call (f, e1, . . . , en), γ, ρ, k) = sq

⎛
⎜⎜⎜⎝
Cform(e1, γ, ρ, k)
...
Cform(en, γ, ρ, k + n− 1)
fcall (f, k)

⎞
⎟⎟⎟⎠

• Cform(uop(e), γ, ρ, k) = sq(Cform(e, γ, ρ, k), uop(k))

• Cform(bop(e1, e2), γ, ρ, k) = sq

⎛
⎝ Cform(e1, γ, ρ, k)
Cform(e2, γ, ρ, k + 1)
bop(k)

⎞
⎠

• Cform(let((), e), γ, ρ, k) = Cform(e, γ, ρ, k)

• Cform(let(x1 = e1, . . . , xn = en; e), γ, ρ, k) =

sq

⎛
⎜⎜⎜⎜⎜⎝

Cform(e1, γ, ρ, k)
...
Cform(en, γ, ρ, (k + n− 1))
Cform(e, γ, ρ[x1 ← k, . . . xn ← (k + n− 1)], k + n)
copy(k + n, k)

⎞
⎟⎟⎟⎟⎟⎠

• Cform(list∗(e1, . . . , en), γ, ρ, k) = sq

⎛
⎜⎜⎜⎝
Cform(e1, γ, ρ, k)
...
Cform(en, γ, ρ, k + n− 1)
list∗(n, k)

⎞
⎟⎟⎟⎠

• Cform(cond(), γ, ρ, k) = copyc(NIL, k)

• Cform(cond(p1 → e1, . . . , pn → en), γ, ρ, k) =
sq(Cform(p1, γ, ρ, k),
itef (k, Cform(e1, γ, ρ, k), Cform(cond(p2 → e2, . . . , pn → en), γ, ρ, k)))

• Cform(read char , γ, ρ, k) = read char (k)
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• Cform(peek char , γ, ρ, k) = peek char (k)

• Cform(print char (e), γ, ρ, k) = sq(Cform(e, γ, ρ, k), print char (k))

Some remarks to this definition:

• for sequences progn(e1, . . . , en) all values are stored at the same relative position in the current
stack frame since the value of a sequence is the value of its rightmost subexpression en. The
intermediate values do not have to be preserved.

• for the compilation of a let-form, new variable bindings are allocated in the current stack frame
beginning at relative position k. The body is evaluated to return its value at k + n where n is
the number of new local bindings. A final copy instruction moves the result value to the desired
location k.

• a cond -form is compiled into a nested conditional.

D A Modified Semantics for SIL

In the following, |l| denotes the length of list l, and l(i) denotes the ith element of l for (0 ≤ i < |s|).
slocal, sglobal, sbase, stop denote the respective state components in state s. To increase readability, we
simply write s(i) for the relative local access slocal(sbase+i), and write s[i← v] for s[slocal(sbase+i)← v].
In the rules for the erroneous cases (the machine does not behave like a stack machine) the semantics is
defined non-deterministically and q denotes some arbitrary state.

• copy constant:
Γ  s : copyc(c, i)→ s[i← c, top← sbase + i] if sbase + i ≤ stop + 1
Γ  s : copyc(c, i)→ q otherwise

• copy local:

(sbase + i ≤ stop) ∧ (sbase + j ≤ stop + 1)
Γ  s : copy(i, j)→ s[j ← s(i), top← sbase + max(i, j)]

(sbase + i > stop) ∨ (sbase + j > stop + 1)
Γ  s : copy(i, j)→ q

• copy-pop local:

(sbase + i ≤ stop) ∧ (i ≥ j)
Γ  s : copy pop(i, j)→ s[j ← s(i), top← sbase + j]

(sbase + i > stop) ∨ (i < j)
Γ  s : copy pop(i, j)→ q

• copy from global to local memory:

g < |sglobal| ∧ sbase + i ≤ stop + 1
Γ  s : gcopy(g, i)→ s[i← sglobal(g), top← sbase + i]

g < |sglobal| ∧ sbase + i > stop + 1
Γ  s : gcopy(g, i)→ q

• copy from local to global memory:

g < |sglobal| ∧ sbase + i ≤ stop
Γ  s : copyg(i, g)→ s[sglobal(g)← s(i), top← sbase + i]

g < |sglobal| ∧ sbase + i > stop
Γ  s : copyg(i, g)→ q

• conditional:

sbase + i ≤ stop
s(i) = NIL

Γ  s : f → q

Γ  s : itef (i, t, f)→ q

sbase + i ≤ stop
s(i) �= NIL

Γ  s : t→ q

Γ  s : itef (i, t, f)→ q

sbase + i > stop
Γ  s : itef (i, t, f)→ q

• sequential composition:

Γ  s : c→ q

Γ  s : sq(c)→ q

Γ  s : c1 → q1
Γ  q1 : sq(c2, . . . , cn)→ q

Γ  s : sq(c1, . . . , cn)→ q
if n ≥ 2
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• function call:

sbase + i ≤ stop + 1
Γ  s[base ← sbase + i] : body → q ∧ qtop ≥ qbase

Γ  s : fcall (h, i)→ q[base← sbase, top← sbase + i]
if [h← body ] ∈ Γ

sbase + i > stop + 1
Γ  s : fcall (h, i)→ q

sbase + i ≤ stop + 1
Γ  s[base ← sbase + i] : body → q ∧ qtop < qbase

Γ  s : fcall (h, i)→ r
if [h← body ] ∈ Γ

• unary operators:

sbase + i ≤ stop
s(i) : uop → v

Γ  s : uop(i)→ s[i← v, top← sbase + i]
sbase + i > stop

Γ  s : uop(i)→ q

• binary operators

sbase + i+ 1 ≤ stop
s(i), s(i+ 1) : bop → v

Γ  s : bop(i)→ s[i← v, top← sbase + i]
sbase + i+ 1 > stop
Γ  s : bop(i)→ q

• do-loop:

Γ  s : c→ q
qbase + i ≤ qtop
(q(i) �= NIL)

Γ  s : do(i, c, b)→ q

Γ  s : c→ r
rbase + i ≤ rtop
(r(i) = NIL)
Γ  r : b→ t

Γ  t : do(i, c, b)→ q

Γ  s : do(i, c, b)→ q

Γ  s : c→ q
qbase + i > qtop

Γ  s : do(i, c, b)→ r

• read
sbase + i ≤ stop + 1

Γ  s : read char (i)→ s[i← first(sinput), input← rest(sinput), top← sbase + i]

sbase + i > stop + 1
Γ  s : read char (i)→ q

• peek

sbase + i ≤ stop + 1
Γ  s : peek char (i)→ s[i← first(sinput), top← sbase + i]

sbase + i > stop + 1
Γ  s : peek char (i)→ q

• print

sbase + i ≤ stop
Γ  s : print char (i)→ s[output← soutput++s(i), top← sbase + i]

if s(i) ∈ char

sbase + i > stop
Γ  s : print char (i)→ q

• list∗
n ≥ 2 ∧ sbase + i+ n− 1 ≤ stop

Γ  s : list∗(n, i)→ s[i← cons(s(i), . . . cons(s(i+ n− 2), s(i+ n− 1)) . . .), top← sbase + i]

sbase + i ≤ stop
Γ  s : list∗(1, i)→ s[top← sbase + i]

sbase + i+ n− 1 > stop (n ≥ 1)
Γ  s : list∗(n, i)→ q
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E Semantics of Cint

In the following, sstack, sheap, sbase, squotetop, sheaptop denote the respective state components in state s.

E.1 Expressions

Note that we have defined a non-deterministic semantics for binary operator �=. In case e1 �= e2 some
arbitrary non-zero value is returned.

• atomic expressions

s : heaptop→ sheaptop s : stacktop→ sbase s : quotetop→ squotetop

s : i→ i s : local(i)→ sstack(sbase + i)

• unary expressions

s : e1 → v (v ≥ 0)
s : stack(e1)→ sstack(v)

s : e1 → v (v ≥ 0)
s : heap(e1)→ sheap(v)

s : e1 → v

s : unavailable(e1)→ w

s : e1 → v

s : 2 ∗ (e1)→ 2 ∗ v

• binary expressions
s : e1 → v1 s : e2 → v2
s : (e1 op e2)→ (v1 op v2)

op ∈ {+,−, ∗}

s : e1 → v1 s : e2 → v2 (v2 �= 0)
s : (e1 op e2)→ (v1 op v2)

op ∈ {div, rem}
s : e1 → v1 s : e2 → v2

s : e1 < e2 → i
(If v1 < v2 Then i = 1 Else i = 0) (analogous for ≥,=)

s : e1 → v1 s : e2 → v2
s : e1 �= e2 → i

(If v1 = v2 Then i = 0 Else i = z for some z �= 0)

E.2 Statements

The semantics of print char is defined non-deterministically, in case the value at stack relative position
i is not a character. In this case, some arbitrary character is appended to the output list.

• skip Γ  s : skip → s

• frame-pointer relative access on stack

s : e→ v

Γ  s : set local (e, i)→ s[sstack(sbase + i)← v]

• random write access on stack

s : e1 → v1 s : e2 → v2 (v2 ≥ 0)
Γ  s : set stack (e1, e2)→ s[sstack(v2)← v1]

• random write access on heap

s : e1 → v1 s : e2 → v2 (v2 ≥ 0)
Γ  s : set heap(e1, e2)→ s[sheap(v2)← v1]

• sequential composition
Γ  s : c1 → r Γ  r : c2 → q

Γ  s : c1; c2 → q

• conditional
s : e→ 0 Γ  s : c2 → q

Γ  s : if (e, c1, c2)→ q

s : e→ v (v �= 0) Γ  s : c1 → q

Γ  s : if (e, c1, c2)→ q
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• simple conditional

s : e→ 0
Γ  s : if (e, c1)→ s

s : e→ v (v �= 0) Γ  s : c1 → q

Γ  s : if (e, c1)→ q

• do loop

Γ  s : c→ q q : e→ v (v �= 0)
Γ  s : do(c, e, b)→ q

Γ  s : c→ r
r : e→ 0

Γ  r : b→ t
Γ  t : do(c, e, b)→ q

Γ  s : do(c, e, b)→ q

• read character

Γ  s : read char (i)→ s[sstack(sbase + i)← first(sinput), input← rest(sinput)]

• peek character
Γ  s : peek char (i)→ s[sstack(sbase + i)← first(sinput)]

• print character

0 ≤ sstack(sbase + i) ≤ 255
Γ  s : print char (i)→ s[output← soutput++sstack(sbase + i)]

sstack(sbase + i) < 0 ∨ sstack(sbase + i) > 255
Γ  s : print char (i)→ s[output← soutput++c]

(c ∈ char )

• procedure call

Γ  s[base← sbase + i] : body → q

Γ  s : call(h, i)→ q[base← sbase]
if [h(size)← body ] ∈ Γ

• modification of heaptop pointer

s : e→ v ∧ (sheaptop + v ≥ 0)
Γ  s : allocate(e)→ s[heaptop← sheaptop + v]

F Compiling SIL to Cint

The complete definition of the compiling function CCstmt compiling SIL statements to Cint statements
using a heap environment ζ is as follows:

• CCstmt(abort , ζ) = abort

• constants

– CCstmt(copyc(n, i), ζ) = set local (3, 2i); set local (n, 2i+ 1)

– CCstmt(copyc(c, i), ζ) = set local (4, 2i); set local (code(c), 2i+ 1)

– CCstmt(copyc(NIL, i), ζ) = set local (0, 2i); set local (0, 2i+ 1)

– CCstmt(copyc(T , i), ζ) = set local(1, 2i); set local(1, 2i+ 1)

– CCstmt(copyc(s, i), ζ) = set local (tag , 2i); set local (val , 2i+ 1)
where (tag, val) = ζ(s) (for non-atomic s-expressions and symbols)

• CCstmt(copy(i, j), ζ) = set local (local(2i), 2j); set local (local (2i+ 1), 2j + 1)

• CCstmt(copy pop(i, j), ζ) = set local (local (2i), 2j); set local (local (2i+ 1), 2j + 1)

• CCstmt(gcopy(i, j), ζ) = set local (stack(2i+ 2), 2j); set local (stack(2i+ 3), 2j + 1)
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• CCstmt(copyg(i, j), ζ) = set stack(local (2i), 2j + 2); set stack(local (2i+ 1), 2j + 3)

• CCstmt(fcall (f, i), ζ) = call (f, 2i)

• CCstmt(uop(i), ζ) = call(“uop′′, 2i)

• CCstmt(bop(i), ζ) = call (“bop′′, 2i)

• CCstmt(itef (i, s1, s2), ζ) = if (local (2i) �= 0, CCstmt(s1, ζ), CCstmt(s2, ζ))

• CCstmt(sq(s1, . . . , sn), ζ) = CCstmt(s1, ζ); . . . ; CCstmt(sn, ζ)

• CCstmt(while(i, s1, s2), ζ) = while(CCstmt(s1, ζ), local (2i) �= 0, CCstmt(s2, ζ))

• CCstmt(read char (i), ζ) = call (“read char ′′, 2i)

• CCstmt(peek char (i), ζ) = call(“peek char ′′, 2i)

• CCstmt(print char (i), ζ) = call (“print char ′′, 2i)

• CCstmt(list∗(n, i), ζ) = call (“cons ′′, 2n+ 2i− 2); . . . ; call(“cons ′′, 2i)

G Effects of TASM instructions

In the following, cPrB is supposed to be non-empty, i.e, there is at least one instruction to be executed,
¬cEflg (i.e. the error flag is not set in configuration c). To increase readability, we omit the symbolic
instruction pointer for all linear instructions where the pointer is updated regularly such that it points to
the next instruction in the sequence. For these instructions, we have PrA := cPrA ·car(cPrB) and PrB :=
cdr(cPrB). To non-deterministically choose some word value, we write ? which denotes choose?(Word?).

• swap Areg and Breg
c : rev→ c[Areg := cBreg,Breg := cAreg]

• addition (similar for sub, mul)

c : add→ c[Areg := plus(cBreg, cAreg),Breg := cCreg,Creg :=?,Eflg := plusovfl(cBreg, cAreg)]

• integer division (similar for remainder rem)

cAreg = 0 ∨ (cAreg = −1 ∧ cBreg = minword)
c : div→ c[Areg :=?,Breg := cCreg,Creg :=?,Eflg := T ]

cAreg �= 0 ∧ (cAreg �= −1 ∨ cBreg �= minword)
c : div→ c[Areg := div(cBreg, cAreg),Breg := cCreg,Creg :=?]

• difference
c : diff→ c[Areg := minus(cBreg, cAreg),Breg := cCreg,Creg :=?]

• bitwise and (similar for or, xor)

c : and→ c[Areg := bitAND(cBreg, cAreg),Breg := cCreg,Creg :=?]

• 1 complement
c : not→ c[Areg := bitNOT (cAreg)]

• shift left (similar for shr)

0 ≤ cAreg < wordlength
c : shl→ c[Areg := shiftL(cBreg, cAreg),Breg := cCreg,Creg :=?]

cAreg < 0 ∨ cAreg ≥ wordlength
c : shl→ q
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• arithmetic greater than test

c : gt→ c[Areg := (cBreg > cAreg),Breg := cCreg,Creg :=?]

• byte/word calculation

c : wcnt→ c[Areg := shiftR(cAreg, 2),Breg := bitAND(cAreg, 3),Creg := cBreg]

• load minword
c : mint→ c[Areg := minword ,Breg := cAreg,Creg := cBreg]

• word memory subscript

WordAddr?(cAreg)
c : wsub→ c[Areg := Index (cAreg, cBreg),Breg := cCreg,Creg :=?]

¬WordAddr?(cAreg)
c : wsub→ q

• input via a link. Note that only the case is specified where only one byte is read at the specific
channel minword + (bytesperword = 4) ∗ 4. The value read from the input stream is stored at
the address specified by cCreg which must be cleared. The address must be smaller or equal than
MemTop.

cAreg = 1, cBreg = Index (minword , 4),WordAddr?(cCreg), cMem(cCreg) = 0, cCreg ≤ MemTop

c : in→ c

⎡
⎣ Areg,Breg,Creg :=?

Mem := cMem[cCreg := first(cIn)]
In := rest(cIn)

⎤
⎦

In case the preconditions are not satisfied, any successor configuration is allowed: c : in→ q.

• output via a link. Note that only the case is specified where one single byte is written to the output
stream. Furthermore, the output channel is fixed.

cAreg = 1, cBreg = minword ,WordAddr?(cCreg)

c : out→ c

[
Areg,Breg ,Creg :=?,

In := IF byte?(cMem(cCreg)) THEN cOut · cMem(cCreg) ELSE cOut · b (b ∈ byte)

]

If the preconditions are not met out is defined as follows: c : out→ q.

• computed absolute jump

ccount > 0, cPrA · cPrB = a · b
cAreg = PgrStart + |a|

Word?(PgrStart + |cPrA|+ 1)
c : gcall→ c[Areg := PgrStart + |cPrA|+ 1,PrA := a,PrB := b, count := ccount − 1]

• set the error flag
c : seterr→ c[Eflg := T ]

• check subscript

c : csub0→ c[Areg := cBreg,Breg := cCreg,Creg :=?,Eflg := (cBreg ≥unsigned cAreg)]

• convert single to double

c : xdbl→ c[Breg := IF cAreg < 0 THEN − 1 ELSE 0,Creg := cBreg]
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• load constant
c : ldc w → c[Areg := w,Breg := cAreg,Creg := cBreg]

• load local

WordAddr?(Index (cWptr, w))
c : ldl w → c[Areg := cMem(Index (cWptr, w)),Breg := cAreg,Creg := cBreg]

¬WordAddr?(Index (cWptr, w))
c : ldl w → q

• store local
WordAddr?(Index (cWptr, w)) ∧ (Index (cWptr, w) ≤ MemTop)

c : stl w → c

[
Areg := cBreg,Breg := cCreg,Creg :=?

Mem := cMem[Index (cWptr, w) := cAreg]

]

In case the preconditions are not met, any successor configuration is allowed: c : stl w→ q.

• load local pointer

c : ldlp w → c[Areg := Index (cWptr, w),Breg := cAreg,Creg := cBreg]

• add constant

c : adc w→ c[Areg := plus(cAreg, w),Eflg := cEflg ∨ plusovfl(cAreg, w)]

• equal to constant
c : eqc w → c[Areg := (cAreg = w)]

• jump
ccount > 0, cPrA · cPrB = a · b
|a| = |cPrA|+ |j w|+ w

c : j w→ c[Areg,Breg ,Creg :=?,PrA := a,PrB := b, count := ccount − 1]

For a jump within a TASM instruction (that is, the corresponding pfix/nfix chain), the effect is
specified non-deterministically:

ccount > 0, (∀ a, b. (cPrA · cPrB = a · b) ⇒ (|a| �= |cPrA|+ |j w| + w))
c : j w → q

• conditional jump
ccount > 0, (cAreg = 0), cPrA · cPrB = a · b

|a| = |cPrA|+ |cj w| + w

c : cj w → c[PrA := a,PrB := b, count := ccount − 1]

ccount > 0, (cAreg �= 0)
c : cj w → c[Areg := cBreg,Breg := cCreg,Creg :=?, count := ccount − 1]

ccount > 0, (cAreg = 0), (∀a, b. (cPrA · cPrB = a · b) ⇒ (|a| �= |cPrA|+ |cj w| + w))
c : cj w → q

• load non local
WordAddr?(cAreg),WordAddr?(Index (cAreg, w))
c : ldnl w→ c[Areg := cMem(Index (cAreg, w))]

¬WordAddr?(cAreg) ∨ ¬WordAddr?(Index (cAreg, w))
c : ldnl w → q
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• store non local

WordAddr?(cAreg),WordAddr?(Index (cAreg, w)), (Index (cAreg, w) ≤ MemTop)

c : stnl w → c

[
Areg := cCreg,Breg ,Creg :=?

Mem := cMem[Index (cAreg, w) := cBreg]

]

If the preconditions are not met, the effect is non-deterministic: c : stnl w → q.

• load non local pointer
WordAddr?(cAreg)

c : ldnlp w→ c[Areg := Index (cAreg, w)]

¬WordAddr?(cAreg)
c : ldnlp w → q

H Compiling Cint to TASM

Note that base, temp, heap, . . . are the names for the system variables which denote numbers from 0
to 13 (see Fig. 16). The code contains several overflow checks which ensure that, for example, heap
addresses are within the bounds, that is, they are positive numbers below heaptop. In the following
ϕ =< ψ, ssize, hsize > denotes the global environment, where ψ maps procedure identifiers to jump table
indices. For more explanations concerning this specification we refer to the technical report [GH98c].

H.1 Expressions

• CCexpr(heaptop , ϕ, σ, ldl heaptop)

• CCexpr(quotetop, ϕ, σ, ldl quotetop)

• CCexpr(stacktop, ϕ, σ, stl temp; ldl base; ldlp stack ; diff; wcnt; rev; stl temp2 ; ldl temp; rev)

• CCexpr(i, ϕ, σ, ldc i) (if i is a word)

• CCexpr(local(i), ϕ, σ, ldl base; ldnl i) (if i ∈Word and 0 ≤ i < σ)

• absolute stack access (simpler code for literals i)
CCexpr(stack(i), ϕ, σ, ldl stack + i) (if i ∈Word and 0 ≤ i ≤ ssize)
• absolute stack access

Let stack code ::= xdbl; rev; cj 2; seterr; add; ldc 4; mul; ldlp stack ; add; stl temp;
ldl base; ldl temp; gt; cj − 14; ldl temp; ldnl 0

CCexpr(e, ϕ, σ,m) ∧ compilable?(e, 3)
CCexpr(stack(e), ϕ, σ,m · stack code)

• heap access

CCexpr(e, ϕ, σ,m) ∧ compilable?(e, 3)
CCexpr(heap(e), ϕ, σ,m · ldl heaptop; csub0; ldl heap; wsub; ldnl 0)

• unavailable

CCexpr(e, ϕ, σ,m) ∧ compilable?(e, 3)
CCexpr(unavailable(e), ϕ, σ,m · ldl heaptop; add; ldl heap; wsub; ldl rstack ; gt)

• operators
CCexpr(e, ϕ, σ,m) ∧ compilable?(e, 3)
CCexpr(2 ∗ (e), ϕ, σ,m · ldc 2; mul)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(e1 ∗ e2, ϕ, σ,m1 ·m2 · mul)
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CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(e1 + e2, ϕ, σ,m1 ·m2 · add)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(e1 − e2, ϕ, σ,m1 ·m2 · sub)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(div (e1, e2), ϕ, σ,m1 ·m2 · div)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(rem(e1, e2), ϕ, σ,m1 ·m2 · rem)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(e1 < e2, ϕ, σ,m1 ·m2 · rev; gt)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(e1 ≥ e2, ϕ, σ,m1 ·m2 · rev; gt; eqc 0)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(e1 = e2, ϕ, σ,m1 ·m2 · diff; eqc 0)

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2) ∧ compilable?(e1, 3) ∧ compilable?(e2, 2)
CCexpr(e1 �= e2, ϕ, σ,m1 ·m2 · diff)

H.2 Statements

In the following |c| denotes the length of TASM code sequence c in bytes which is determined by the
number of instructions and the length of the associated pfix/nfix chain for each instruction.

• CCstmt(skip, ϕ, σ, [])

• CCstmt(abort , ϕ, σ, seterr)

• heap pointer adjustment
allocate code ::= ldl heaptop; add; stl heaptop; ldl heaptop; ldc 4; mul; ldl heap;
add; ldl rstack ; gt; cj 2; seterr; ldl quotetop; ldl heaptop; gt; cj 2; seterr

CCexpr(e, ϕ, σ,m), compilable?(e, 3)
CCstmt(allocate(e), ϕ, σ,m · allocate code)

• relative stack access

CCexpr(e, ϕ, σ,m), compilable?(e, 3),Word?(i), 0 ≤ i < σ

CCstmt(set local(e, i), ϕ, σ,m · ldl base; stnl i)

• absolute stack access (special code for literals)

CCexpr(e, ϕ, σ,m), compilable?(e, 3),Word?(i), 0 ≤ i < ssize
CCstmt(set stack(e, i), ϕ, σ,m · stl stack + i)

• absolute stack access
access code ::= xdbl; rev; cj 2; seterr; add; ldc 4; mul; ldlp stack ; add; stl temp;
ldl base; ldl temp; gt; cj − 14; ldl temp; stnl 0

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2), compilable?(e1, 3), compilable?(e2, 2)
CCstmt(set stack(e1, e2), ϕ, σ,m1 ·m2 · access code)

• heap access

CCexpr(e1, ϕ, σ,m1), CCexpr(e2, ϕ, σ,m2), compilable?(e1, 3), compilable?(e2, 2)
CCstmt(set heap(e1, e2), ϕ, σ,m1 ·m2 · ldl heaptop; csub0; ldl heap; wsub; stnl 0)
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• sequential composition
CCstmt(s1, ϕ, σ,m1), CCstmt(s2, ϕ, σ,m2)

CCstmt(s1; s2, ϕ, σ,m1 ·m2)

• two way branch

CCexpr(e, ϕ, σ,me), CCstmt(s1, ϕ, σ,m1), CCstmt(s2, ϕ, σ,m2), compilable?(e, 3)
CCstmt(if(e, s1, s2), ϕ, σ,me · cj |m1|+ |j|m2|| ·m1 · j |m2| ·m2)

• one way branch
CCexpr(e, ϕ, σ,me), CCstmt(s, ϕ, σ,m), compilable?(e, 3)

CCstmt(if(e, s), ϕ, σ,me · cj |m| ·m)

• do loop

CCexpr(e, ϕ, σ,me), CCstmt(s1, ϕ, σ,m1), CCstmt(s2, ϕ, σ,m2), compilable?(e, 3)
do code = m1 ·me · eqc 0; cj l1 ·m2 · j − l2

l1 = |m2 · j− l2|, l2 = |do code|
CCstmt(do(s1, e, s2), ϕ, σ, do code)

• procedure call
CCstmt(call (h, i), ϕ, σ, ldc i; ldl start ; ldnl ψ(h); gcall), if 0 ≤ i < σ

• read character
read code ::= ldl lastchar ; eqc − 1; cj 6; ldc 0; stl lastchar ; ldlp lastchar ;
ldl inchan ; ldc 1; in; ldl lastchar ; ldl base; stnl i; ldc − 1; stl lastchar

CCstmt(read char (i), ϕ, σ, read code) if 0 ≤ i < σ ∧Word?(i)

• peek character
peek code ::= ldl lastchar ; eqc − 1; cj 6; ldc 0; stl lastchar ; ldlp lastchar ;
ldl inchan ; ldc 1; in; ldl lastchar ; ldl base; stnl i

CCstmt(peek char (i), ϕ, σ, peek code) if 0 ≤ i < σ ∧Word?(i)

• print character

CCstmt(print char (i), ϕ, σ, ldl base; ldnlp i; ldl outchan ; ldc 1; out) (if 0 ≤ i < σ ∧Word?(i))

H.3 Entry/Exit code for Procedures

Notice that in the last line of the entry code starting with instruction ldc 4, that is, the stack overflow
check, we present a slightly different code compared to the original specification [GH98c]. The original
code using a ldnlp σ instruction is erroneous, since no overflow check is carried out for this instruction.

entrycode(σ) ::=
ldl rp; stnl 0; (save return address)
ldl base; ldl rp; stnl 1; (save frame pointer)
ldl base; wsub; stl base; (adjust frame pointer)
ldl rp; ldnlp 2; stl rp; (adjust return stack pointer)
ldl rp; ldl memtop; gt; cj 2; seterr; (check return stack overflow)
ldc 4; ldc σ; mul; ldl base; add; ldl heap; gt; cj 2; seterr (check stack overflow)

exitcode ::=
ldl rp; ldnlp − 2; stl rp; (adjust return stack pointer (pop))
ldl rp; ldnl 1; stl base; (restore frame pointer)
ldl rp; ldnl 0; gcall (jump to return address)



H COMPILING CINT TO TASM 67

H.4 Effect of Initialization Code

Let ϕ =< ψ, ssize, hsize > denote the global environment and p be a TASM program. Then the effect of
the initialization code is specified by means of the following axiom:

semantics of initcode : AXIOM
∀v, c1, c3, ϕ, p, stksize : Word?(stksize) ∧ init state?(p)(c1) ∧ pmain = initcode(stksize) · v ∧
c1PrA = flatten(pmodules) ∧ c1PrB = initcode(stksize) · v ∧ Rc(c1, c3) ∧ ssize = |pdata1| ∧ hsize = |pdata2|
⇒ ∃c2, Y. LET Wsp = λw. c2Mem(Index (c2Wptr , w)) IN
¬c2Eflg ∧ c2PrA = c1PrA · initcode(stksize) ∧ c2PrB = v ∧ Y ≤ c1count ∧
c1count = Y ∧ Rc(c2, c3) ∧ c2Wptr = c1Wptr ∧WordAddr?(Wsp(start)) ∧WordAddr?(Wsp(rstack )) ∧
WordAddr?(Wsp(memtop)) ∧ WordAddr?(Wsp(heap)) ∧ Word?(ssize) ∧ Word?(hsize) ∧
minword < c2Wptr ∧ c2Wptr + 4 ∗ stack ≤Wsp(base) ∧ Wsp(base) = c2Wptr + 4 ∗ stack + 4 ∗ ssize ∧
Wsp(base) + 4 ∗ stksize ≤Wsp(heap) ∧ Wsp(lastchar ) = −1 ∧ Wsp(heaptop) = hsize ∧
Wsp(quotetop) = Wsp(heaptop) ∧ Wsp(heap) + 4 ∗ hsize ≤Wsp(rstack ) ∧
Wsp(rp) = Wsp(rstack) ∧ Wsp(rp) ≤Wsp(memtop) ∧ Wsp(memtop) + 8 < maxword ∧
Wsp(outchan) = minword ∧ Wsp(inchan) = Index(minword , 4) ∧ Wsp(memtop) = MemTop ∧
c2In = c1In ∧ c2Out = c1Out ∧ Word?(stack + ssize) ∧ Word?(Wsp(memtop) + 8− c2Wptr) ∧
(∀sa. sa < ssize ⇒ Word?(stack + sa) ∧ Wsp(stack + sa) = nth(pdata1, sa)) ∧
(∀ha. ha < hsize ⇒ Word?(Wsp(heap) + 4 ∗ ha) ∧ c2Mem(Wsp(heap) + 4 ∗ ha) = nth(pdata2, ha)) ∧
(∀a. a ≤ c2Wptr ⇒ c2Mem(a) = c1Mem(a))


