
A Formal Framework For Workflow Type And Instance Changes

Under Correctness Constraints

Manfred Reichert, Stefanie Rinderle, Peter Dadam
University of Ulm

Faculty of Computer Science
Dept. Databases and Informationsystems D-89069 Ulm
E-Mail:{reichert,rinderle,dadam}@informatik.uni-ulm.de

Abstract

The capability to rapidly adapt in-progress workflows (WF) is an essential requirement
for any workflow system. Adaptations may concern single WF instances or a WF type as
a whole. While changes of single instances often have to be applied in an ad-hoc manner,
type changes become necessary to adapt to evolving business processes. Especially for long-
running processes it is indispensable to propagate type changes to running instances as well.
Very challenging in this context is to correctly adapt a (potentially large) collection of WF
instances, which may be in different states and to which various ad-hoc changes may have
been previously applied. This paper presents a comprehensive framework for the support
of both, WF type and WF instance changes. We establish general correctness principles
and show how WF instances can be automatically and efficiently migrated to a modified
WF schema. We point out that our approach exceeds existing adaptation models in formal
foundation, completeness, and usability.

1 Introduction

Workflow management systems (WfMS) deliver a state-aware control service for process-centered
applications by routing, activating, and tracking activities of workflow (WF) instances according
to their pre-defined WF schema [6, 11]. Examples include the processing of customer orders,
patient treatment, and trip planning. For each WF type to be supported, a corresponding
WF schema has to be specified. It defines the WF activities, associates them with application
components, sets out the order and conditions for their execution, and defines the data flow
between them.

In real-world environments people are expected to flexibly deal with exceptions. Though they
are trained to do so, this role is purely integrated with process-centered information systems.
Either deviations from the modeled WF schema are completely prohibited, thus requiring to
bypass the WfMS in exceptional situations, or they may cause severe inconsistencies or errors.

1



To be really applicable, users must be able to apply ad-hoc changes to WF instances whenever
required, e.g., by dynamically inserting or deleting activities [12, 14]. Such changes must not
affect robustness and stability and have to be properly integrated with respect to authorization
and documentation.

The ad-hoc adaptation of single instances [9, 12, 18, 14] is only one special kind of dynamic
WF change. In order to be able to react rapidly to changed business needs and to adequately
support evolutionary changes, it is important that adaptations can be quickly performed at the
WF type level as well [1, 10, 14, 8]. In principle, a WF type change can be accomplished by
modifying the corresponding WF schema accordingly. In doing so, however, in-progress WF
instances must not get into trouble due to the change. This can be achieved, for example, by
finishing them according to the old WF schema whereas future WF instances are created from
the new one. This simple approach, however, is only sufficient for processes with short duration,
but raises problems in conjunction with long-running workflows. In this case, WF instances with
same WF type but different WF schema versions may co-exist for a long time, which may lead
to confusion in the processing of business cases or be even contradictory to legal regulations or
business rules.

In many cases it is highly desirable to propagate a WF type change ∆, which transforms
the actual schema S into a new one, to in-progress WF instances as well. Very challenging in
this context is to correctly adapt a (potentially large) collection of WF instances, which may be
in different states and to which various ad-hoc changes may have been previously applied. In
the latter case, we have to deal with the problem that ∆ shall be propagated to WF instances
whose current execution schema does not completely correspond to the original schema S. Such
”biased” instances must not be needlessly excluded from change propagation as it is the case in
current approaches [1, 10, 14, 18]. To make this point clear, take a patient treatment process
as an example. Even though physicians may deviate from the pre-modeled WF schema at the
instance level, this must not prohibit the propagation of future type changes to these instances,
on condition that they are not conflicting with current instance state and previously applied
ad-hoc changes.

The objective of this paper is to develop a framework for both, WF type changes and their
propagation to related WF instances (evolutionary changes) and ad-hoc changes of single WF
instances. Current adaptive WF models are either too restrictive or incomplete (for a detailed
discussion see Section 5), focussing only on a special kind of change [2, 16, 1, 10, 12]. In addition,
many approaches ignore usability and realization issues at all [13]. We present different change
scenarios and have a look at fundamental principles concerning adaptive WF models. For this,
we establish general criteria for arguing about the correctness of dynamic changes. Taking a
simple, but powerful WF meta model, we exemplarily show for this meta model how correctness
can be efficiently checked and which information is needed for this. In addition, we introduce
well-defined rules and procedures for migrating single instances or collections of instances to
a modified schema. Note that this does not only require schema transformations, but also
adaptations of instance states and worklist structures.

2



 

 

      NS = ACTIVATED       NS = RUNNING      ES = TRUE_SIGNALED 

      NS = SKIPPED      NS = COMPLETED  ES = FALSE_SIGNALED 

admit 

lab test 

prepare calc. dose give drug another cycle? 

age dose weight 

age > 40 

continue = true 

b) Execution History of  I 
 
START(admit),  
END(admit)^write(age,25), 
START(prepare,1),  
END(prepare)^write(weight,75), 
START(calc.dose)^read(weight,75), 
END(calc.dose)^write(dose,100), 
START(give drug)^read(dose,100), 
END(give drug), START(another cycle?), 
END(another cycle?, true),  
 
START(prepare,2), 
END(prepare)^write(weight,72), 
START(calc.dose)^read(weight,72), 
END(calc.dose)^write(dose,90)  
 
 

 
 

a) Instance I with Schema Graph S(T,V) and Marking MS(T,V)
 

data  
element  

transition condition  
 

read data 
link  

loop egde  

continue 

activity  node  
  

control edge 
  

write data 
link  

Figure 1: WF Instance Example

Section 2 sketches the WF meta model, which we use in this paper to illustrate fundamental
principles of our approach. Since there is no generally accepted WF meta model, we orientate
ourselves on commonly used modeling concepts. However, it is important to mention that the
presented approach is applicable to several other WF description formalisms as well. Section 3
develops our framework for dynamic WF changes, focussing on general correctness principles as
well as on implementable rules for ensuring correctess when a change is applied. Section 4 deals
with conflicting changes at the type and instance level, and it shows under which conditions
type changes may be propagated to biased WF instances as well. We discuss related work in
Section 5 and conclude with a short summary in Section 6.

2 Workflow Modeling Basics

For each business process to be supported a corresponding WF type T has to be defined. It is
represented by a WF schema graph S of which different versions V1, ..., Vn may exist (reflecting
the evolution of T). To simplify matters, we assume that there is only one version Vn from
which new WF instances can be created.1 However, in-progress WF instances based on older
WF schema versions may exist as well.

2.1 Modeling and Execution of Workflows

Informally, a WF schema comprises a set of activities and defines the control and data flow
between them. The control flow is modeled by linking activities with control edges, which may
optionally be associated with transition conditions. The use of control edges must not lead to
cyclic order relationships since this may cause deadlocks at runtime (see below). Depending on
the defined control edges and the chosen transition conditions, sequences, parallel branchings,

1This is not really required. However, in the present paper we put the focus on correctness issues and do not
deal with versioning issues in more detail.

3



and conditional branchings can be described.2 For the modeling of loop backs, an additional
edge type (loop backward edge) is provided, which allows us to distinguish between ”undesired”
and ”desired” cycles. To simplify matters, we assume that an activity must not have more
than one outgoing loop edge and that the activity nodes which constitute the loop body are
well-defined (cf. Def. 1). Finally, the data flow between activities is realized by connecting
them with global data elements. For this, read and write data edges are provided. An example
is depicted in Fig. 1. Formally:

Definition 1 (WF Schema Graph) A tuple S with S = (N, D, CtrlEdges, LoopEdges, DataEdges,
EC) is called a WF schema graph, if the following holds:

• N is a set of activities and D a set of data elements

• CtrlEdges ⊂ N × N is a precedence relation
(notation: nsrc → ndst ≡ (nsrc, ndst) ∈ CtrlEdges)

• LoopEdges ⊂ N × N is a set of loop backward edges

• DataEdges ⊆ N × D × {read, write} is a set of read/write data links between activities
and data elements

• EC: CtrlEdges ∪ LoopEdges 7→ Conds(D) where Conds(D) denotes the set of all valid
transition conditions on data elements from D.

such that

1. Sfwd = (N, CtrlEdges) is an acyclic graph

2. ∀ (n1, n2) ∈ LoopEdges: n2 ∈ pred(S, n1)

3. ∀ (n1, n2) ∈ LoopEdges: succ(S, n2) ⊆ Lbody(n1, n2) ∪ succ(S, n1) ∧
pred(S, n1) ⊆ Lbody(n1, n2) ∪ pred(S, n2)

4. ∀ (n1, n2),(m1, m2) ∈ LoopEdges: n1 6= m1

Remark: The sets pred(S, n)/succ(S, n) comprise all direct and indirect predecessors / successors
of activity n via control edges (transitive closure), and Lbody comprises the nodes of a loop body
with Lbody(n1, n2):= succ(S, n2) ∩ pred(S, n1) ∪ {n1, n2}.

Concerning the execution of a single activity, its status is initially set to NOT ACTIVATED.
When all pre-conditions are met (see below), activity status changes to ACTIVATED. Depending
on the kind of activity, it is then automatically started or corresponding work items are inserted
into worklists. When starting execution, activity status changes to RUNNING and the associated

2Up to this point the described meta model is similar to the one used in MQSeries Workflow [11].

4



application component is invoked. Finally, at successful termination, activity status passes to
COMPLETED.

The execution of a newly created WF instance always starts with those activities which have
no incoming control edge.3 When an actvity is completed, its outgoing control edges are either
evaluated to TRUE SIGNALED or FALSE SIGNALED, depending on their transition conditions. This,
in turn, leads to the re-evaluation of target activities. We assume that an activity may be acti-
vated as soon as all incoming control edges have been signaled and at least one of them is marked
with TRUE SIGNALED. Consequently, if all incoming control edges are marked as FALSE SIGNALED,
the activity cannot be executed anymore and its status is set to SKIPPED. This, in turn, may lead
to the cascaded skipping of subsequent activities. A loop edge is evaluated whenever its source
activity terminates. If the associated loop condition evaluates to true, outgoing control edges
will not be evaluated, the loop edge be signalled, and all nodes contained within the loop body
be reset in their state. Finally, the execution of a WF instance will terminate if all activities are
in one of the states COMPLETED or SKIPPED.

Each WF instance I is associated with a schema S = S(T,V), where T denotes the WF
type of I and V the version of the WF schema graph to be taken for execution. (Note that
other WF instances may be based on S as well). The control flow state of I is captured by a
marking function MS = (NS, ES). It assigns to each activity n its current status NS(n) (see
above) and to each control or loop edge its marking ES(e) (cf. Fig. 1). These markings are
determined according to the rules described above, whereas markings of already passed regions
and skipped branches are preserved (except loop backs). Thus MS reflects a consolidated view
of the previous execution of I. Concerning data elements, different versions of a data object
may be stored, which is important for the context-dependent reading of data elements and the
handling of (partial) rollback operations.

Definition 2 (WF Instance) A WF instance I is defined by a tuple (T, V, MS(T,V ), ValS(T,V ),
A) where

• T denotes the type of I and V the version of the schema graph version S := S(T,V) =
= (N, D, CtrlEdges, LoopEdges, ...) according to which I is executed.

• MS=(NSS, ESS) reflects the current marking of nodes NSS: N 7→ NodeStates and edges
ESS: CtrlEdges ∪ LoopEdges 7→ EdgeStates

• ValS is a function on D. V alS(d) reflects for each data element d ∈ D either its current
value or the value UNDEFINED (if d has not been written yet).

• A = < e0, . . . , ek > is the execution history of I. It logs information about start / completion
of activities. For each started activity X the values of the data elements read by X and for
each completed activity Y the values of the data elements written by Y are logged.

3Due to the absence of cycles (except via loop backward edges), at least one such activity exists.

5



As described, WF instances preserve their markings when proceeding in the flow of control.
Thus, a WF instance marking provides a consolidated view on the previous execution of the
respective workflow. As we will see later, this property is very useful in connection with dynamic
WF changes. Formally:

Lemma 1 (Preserving Instance Markings) Let I be a WF instance with WF schema graph
S = (N, D, ...) and marking MS = (NS, ES). Let further x ∈ N be an arbitrary activity with
NS(x) ∈ {COMPLETED, SKIPPED}. Then: ∀ n ∈ pred(S, x): NS(n) ∈ {COMPLETED, SKIPPED}.

2.2 Defining and Changing Schema Graphs

Table 1 contains some change primitives that can be used to define and modify WF schema
graphs. Each primitive has a well-defined semantics and is associated with formal pre- and
post-conditions, necessary to preserve the (structural) correctness of the respective WF schema
(cf. Def. 1). In this paper, we restrict our considerations to the avoidance of deadlocks that may
be caused due to ”undesired” cyclic order relationships (via control edges). Generally, additional
constraints exist, which must be considered as well. Concerning data flow, for example, it is
required that no lost updates occur during runtime or that all data elements read by an activity
will always be written by preceding activities, independently of the chosen execution branches.
There are other changes primitives (e.g., to update edge conditions), which we do not further
consider in this paper. Change primitives also serve as basis for defining high-level operations
(e.g. to shift an activity from its current to another position) and for deriving formal conditions
for them. This, however, is outside the scope of this paper.

3 Dynamic Change Basics

In this section, we develop our framework for dynamic WF changes. For illustration purposes
we restrict our considerations to schema changes definable by the primitives from Table 1. First
of all, we do not make a difference between changes of single instances and adaptations of a
collection of instances (e.g., due to propagation of a WF type change). Instead we focus on
fundamental issues related to dynamic instance changes.

In the following, let I be a WF instance with WF schema graph S and marking MS . Assume
that S is transformed into a correct WF schema graph S’ by applying the change ∆. Then two
challenging issues arise:

1. Can ∆ be correctly propagated to I, i.e., without causing errors or inconsistencies? – For
this case, I is said to be compliant with S’.

2. Assuming instance I is compliant with S’, how can we smootly migrate I to S’ such that its
further execution can be based on S’? Which state/marking adaptations become necessary
in this context?

6



Table 1: Examples of Basic Change Primitives

addCtrlEdge(S, nsrc, ndst) Pre: (nsrc 6∈ succ(S, ndst) ∪ {ndst}) ∧ (∀ (n1,n2) ∈ LoopEdges:
[nsrc ∈ Lbody(n1,n2) ⇔ nsrc ∈ Lbody(n1,n2)])

Post: CtrlEdges’ = CtrlEdges ∪ {nsrc → ndst}

addActivity(S, nins, Preds, Succs) Pre: (∀ p ∈ Preds, ∀ s ∈ Succs: s 6∈ pred(S, p)) ∧
(∀ (n1,n2) ∈ LoopEdges:

(Preds ∪ Succs) ⊆ Lbody(n1,n2) ∨
(Preds ∪ Succs) ∩ Lbody(n1,n2) = ∅

Post: N’ = N ∪ {nins}
CtrlEdges’ = CtrlEdges ∪ {p → nins | p ∈ Preds}

∪ {nins → s | s ∈ Succs}

deleteCtrlEdge(S, nsrc, ndst) Post: CtrlEdges’ = CtrlEdges ¬ {nsrc → ndst}

deleteActivity(S, ndel) Post: N’ = N ¬ {ndel}
CtrlEdges’ = CtrlEdges ¬ {a → b | ndel ∈ {a, b}} ∪
{ p → s with EC(p → s) = ec |
p → ndel, ndel → s ∈ CtrlEdges ∧ EC(ndel → s) = ec}

We will show that these two issues are fundamental for the design of any adaptive WF model.
While the first one concerns pre-conditions on the state of I, the second issue is related to post-
conditions that must be satisfied after the change has been applied. In any case, we have to
find an efficient solution, which enables automatic and correct compliance checks as well as WF
instance migrations.

In Section 3.1 we introduce general correctness principles for dynamic instance changes which
address the above issues. Based on them, for the presented WF meta model (cf. Section 2)
we develop formal pre-conditions for ensuring compliance of WF instances with a modified
WF schema (cf. Section 3.2). Section 3.3 shows how correct follow-up markings of compliant
instances can be automatically determined when migrating them to the new schema. Section 3.4
concludes with a discussion of different change scenarios (evolutionary changes, ad-hoc changes)
and their realization within the developed framework.

3.1 Dynamic Change Correctness

To illustrate potential problems that may result from the uncontrolled migration of WF in-
stances, consider the WF schema graph S from Fig. 2a). Let us assume that S is correctly
transformed into S’ by inserting two activities and a data dependency between them (cf. Fig.
2c). Assume that this change is to be applied to the WF instances shown in Fig. 2 b) (currently

7



based on WF schema S), but without performing additional compliance checks. Concerning I1
no problem would occur, since its execution has not yet entered the change region. As opposed
to this, uncontrolled migration of I2 to the modified schema graph would cause severe prob-
lems. Firstly, an inconsistent marking would result (cf. Lemma 1), thus leading to an undefined
execution behavior. Secondly, activity give drug may be invoked though the data element
allergyData read by this activity may not have been written. Concerning I3, migration would
be possible. However, when migrating I3 to S’, first of all, activation of activity prepare has to
be undone and corresponding work items have to be removed from user worklists. In addition,
the newly inserted activity test must be activated. This simple example demonstrates that
the applicability of a dynamic WF change depends on the current instance state as well as on
the change primitives applied. In addition, when migrating a WF instance to the modified WF
schema, markings as well as related worklist structures have to be correctly adapted.

To migrate WF instances in a correct and reliable manner, appropriate rules are required.
Comparable with serializability in DBMS, we need general principles which allow us to argue
about correctness of dynamic WF changes. In more detail, we require a formal criterion for
deciding whether a given WF instance can be smoothly migrated to the modified WF schema or
not. In addition, we must be able to determine correct new markings resulting from such ”on-
the-fly” migrations. One of our design goals is to define these correctness criteria independently
of the operational semantics of the underlying WF meta model and the semantics of the offered
change operations. This allows us to apply them in different scope and to different WF meta
models, thus providing a good basis for reasoning about the correctness of rules and methods
for compliance checking and for migrating compliant WF instances.

Intuitively, an instance I is compliant with the modified WF schema graph S’, if I could
have been executed according to S’ as well and would have produced the same effects on data
elements [1, 14]. Trivially, this will be always the case, if I has not yet entered the graph region
affected by the change. Generally, we need information about previous execution to decide this
property and to determine correct follow-up markings in case of compliance. For deriving such
a general compliance principle, at the logical level we make use of the execution history which
is usually kept for each WF instance (cf. Fig. 1 and Fig. 2). We assume that this history logs
events related to the start and termination of activity executions (cf. Def. 2).

Obviously, an instance I with execution history A will always be compliant with S’ (and can
therefore be migrated to S’), if A could have been produced on S’ as well. We then obtain a
correct follow-up marking by ”replaying” all events from A on S’ in sequential order. Taking our
example from Fig. 2, this property holds for I1 and I3, but it does not apply to I2. Furthermore,
when replaying A3 on S’ we obtain the node markings as sketched above.

The described criterion is still too restrictive to serve as a general correctness principle.
Concerning changes of loop structures, it may needlessly exclude instances from migrations
though this would not lead to problems. As an example take instance I from Fig. 1, where
the depicted loop execution is in its 2nd iteration. Assume that WF schema S is modified by
applying operation addActivity(S, perform test, {prepare}, {give drug}). Taking the

8



 

schema graph S: 

inform prepare examine 

a) WF type level 

b) WF instance level 

c) Change  
 

addActivity(S, test, {inform}, prepare}), 
addActivity(S, give drug, {prepare}, {examine}), 
addDataElement(S, allergyData),  
addDataLink(S, test, allergyData, write), 
addDataLink(S, give drug, allergyData, read) 

inform prepare examine 

I1: 

inform prepare examine 

I2: 

inform prepare examine 

I3: 

A(I1): START(inform) 
A(I2): START(inform), END(inform), START(prepare) 
A(I3): START(inform), END(inform) 

Figure 2: WF Schema Graph and Related WF Instances

above criterion this change would not be allowed since the previous loop iteration of I is not
compliant with the new WF schema; i.e., history A cannot be produced based on the modified
WF schema graph. Unfortunately, excluding such WF instances from migrations very often will
be not in accordance with practice and will therefore be not accepted by users. To overcome this
restrictiveness, we relax the above criterion by (logically) discarding those history entries, which
were produced within another loop iteration than the last (completed loops) or the current one
(running loops).4 We denote this reduced view on the execution history A as redA. Based on
this, we now define a general correctness principle for dynamic WF changes:

Axiom 1 (Dynamic Change Correctness) Let I = (T, V, MS, ValS, A) be a WF instance
with correct schema graph S = S(T,V) and marking MS. Assume that S is transformed into a
correct schema graph S’ by applying change ∆. Then:

1. ∆ can be correctly propagated to I iff redA can be produced on S’ as well (For this case, I
is said to be compliant with S’).

2. Assume I is compliant with S’. When propagating ∆ to I, the correct marking MS′ of I on
S’ can be obtained by replaying redA on S’.

These two basic properties satisfy our main design goals, since they are independent of the
operational semantics of the used WF meta model and the change operations applied. Axiom 1
can therefore serve as fundamental correctness principle for adaptive WfMS. Furthermore, it will
not needlessly exclude WF instances from migrations, on condition that their further execution
does not get into trouble due to the change.

4i.e., for each loop construct we omit unnecessary history entries. In doing so, we also consider nested loops.

9



Altogether, Axiom 1 provides a good basis for arguing about the correctness of dynamic WF
changes and related change procedures. However, it would be certainly no good idea to guarantee
compliance and to determine correct follow-up markings of WF instances by accessing the whole
(reduced) execution history and by trying to ”replay” its entries on the modified schema graph.
Note that histories may comprise voluminous data such that they are usually not kept in primary
storage. In particular, if a large number of instances is to be migrated to the new schema, this
approach causes heavy performance losses. In the following, we present optimized rules and
procedures which ensure correctness according to Axiom 1.

3.2 Rules for Checking Compliance

For the WF meta model from Section 2 and the related change primitives, we exemplarily
show under which conditions compliance (cf. Axiom 1,1) can be guaranteed.5 Our basic design
principles have been as follows:

1. We consider change semantics and context in order to derive precise compliance rules and
to state which information is needed for checking them.

2. We make use of the dynamic properties of the described WF model. In particular, deriva-
tion of compliance rules benefits from the used marking approach since activity markings
already provide a consolidated view on the (reduced) execution history of a WF instance
(cf. Lemma 1).

We omit unnecessary details and focus on compliance rules for selected primitives from Table
1. Based on them, one can easily develop high-level change operations and related compliance
rules. Since the latter can be derived by merging compliance conditions of the applied change
primitives and by discarding unnecessary expressions (e.g., conditions on nodes not present in
the original schema graph), we do not further consider high-level operations in this paper.

Let I be a WF instance with WF schema S, consistent marking MS , and execution history
A. Assume that S is transformed into a correct WF schema S’ by applying one of the change
primitives from Table 1. The challenging question is, under which conditions we can ensure
compliance of I with S’ (cf. Axiom 1,1) and which information is needed for this. Table 2
summarizes well-founded compliance conditions for selected change primitives. Based on them
we can state the following theorem:

Theorem 1 (Compliance Rules) Let I be a WF instance with schema graph S, marking MS

= (NS, ES), data values ValS, and execution history A. Assume that S is transformed into a
correct schema graph S’ by applying change operation ∆ to it. Then: I is compliant with S’
(according to Axiom 1,1) ⇔

Compliant(S, ∆, NS, ES, ValS, A) = TRUE (cf. Table 2).

5As mentioned, similar considerations can be applied to comparable WF meta models as well.

10



Table 2: Examples of Compliance Rules
Change Operation ∆ . . . . . . and Related Compliance Condition Compliant(S, ∆, NS, ES, ValS , A)
addActivity( (∀ n ∈ Preds: NS(n) = SKIPPED) ∨

S,nins,Preds,Succs) (∀ n ∈ Succs: NS(n) ∈ {NOT ACTIVATED, ACTIVATED} ∨ (NS(n) = SKIPPED ∧
∀ m ∈ succ(S,n): NS(m) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED})

addCtrlEdge( NS(ndst) ∈ {NOT ACTIVATED, ACTIVATED}
S, nsrc, ndst) ∨

(NS(ndst) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) ∈ {COMPLETED} ∧
(with EC(nsrc → ndst) = (ei = END(nsrc), ej = START(ndst) ∈ A, ⇒ i < j)) ∨
=True) (NS(ndst) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) = SKIPPED ∧

(∀ n ∈ N1 with NS(n) = COMPLETED, ej = END(n), ei = START(ndst) ∈ A, ⇒ j < i))
∨
(NS(ndst) = SKIPPED ∧ NS(nsrc) ∈ {NOT ACTIVATED, ACTIVATED, RUNNING, COMPLETED} ∧
(∀ n ∈ N2: NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}))
∨
(NS(ndst) = SKIPPED ∧ NS(nsrc) = COMPLETED ∧ (∀ n ∈ N2 with NS(n) ∈ {RUNNING, COMPLETED}:
(ej = START(n), ei = END(nsrc) ∈ A, ⇒ j > i) }))
∨
(NS(ndst) = NS(nsrc) = SKIPPED ∧
(∀ s ∈ N2 with NS(s) ∈ {RUNNING, COMPLETED}, ∀ p ∈ N1 with NS(p) = COMPLETED:
ei = END(p), ej = START(s) ∈ A, ⇒ j > i))

where N1:= pred(S, nsrc)¬ pred(S, ndst) ∪ {nsrc} , N2:= succ(S, ndst)¬ succ(S, nsrc) ∪ {ndst}
deleteActivity(S,ndel) NS(ndel)) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}
deleteCtrlEdge( (NS(ndst) ∈ NOT ACTIVATED, ACTIVATED) ∨

S,nsrc,ndst) (ES(nsrc → ndst) = FALSE SIGNALED ∧ ((∃ n → ndst ∈ CtrlEdges, n 6= nsrc) ∨
(∀ n ∈ succ(S, ndst): NS(n) 6∈ {RUNNING, COMPLETED})) ∨

(ES(nsrc → ndst) = TRUE SIGNALED ∧ ( (6 ∃ n → ndst ∈ CtrlEdges, n 6= nsrc) ∨
(∃ e = n → ndst ∈ CtrlEdges, n 6= nsrc with ES(e) 6= FALSE SIGNALED ))

addDataElement(S,d) no condition
deleteDataElement(S,d) val(d) = UNDEFINED

addDataLink(S,n,d,read) NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}
addDataLink(S,n,d,write) NS(n) 6= COMPLETED

 

(S, MS): 
 

A 
 

B 
 

C 

 
E 

 
D 

p(x)= 
false 

 
A 

 
B 

 
C 

 
E 

 
D 

p(x) 
(S’, MS’): 

 
X 

addActivity(S, X, {A}, {C}) 

CalculateMarking 

 

      NS = ACTIVATED                 NS = RUNNING       

      NS = SKIPPED                 NS = COMPLETED   

      ES = TRUE_SIGNALED       ES = FALSE_SIGNALED 

    

Re-evaluated 
Markings 

Figure 3: Insertion before a Skipped Node

In this paper, we omit formal proofs. Instead we exemplarily describe compliance conditions
related to the primitives addActivity and addCtrlEdge.

Regarding the insertion of an activity nins between two node sets Preds and Succs, com-
pliance can be always guaranteed if all nodes from Succs actually possess one of the markings
ACTIVATED or NOT ACTIVATED. In this case, none of the successors of nins has yet written a
history entry into A. Furthermore, compliance can be ensured, if all nodes from Preds are
marked as SKIPPED. Then nins will be skipped as well, i.e., its insertion will have no effect on
compliance. Finally, nins may be inserted as predecessor of a skipped node provided that none
of the successors of this node has a marking other than ACTIVATED, NOT ACTIVATED, or SKIPPED
(see Fig. 3 for an example).

11



    

admit   

prepare   X - ray   report   

take blood   

lab test A   

lab test B   

validate   

aftercare   

age >=  50   

age < 50   

Figure 4: Patient Treatment Workflow

The addition of a control edge nsrc → ndst will always be possible if NS(ndst) ∈ {ACTIVATED,
NOT ACTIVATED} applies. In case ndst is marked as SKIPPED compliance can be guaranteed
if all successors of ndst (less the successors of nsrc) possess one of the markings ACTIVATED,
NOT ACTIVATED, or SKIPPED. Under certain conditions the dynamic insertion of a control edge
nsrc → ndst will even be allowed, if ndst has been already started or completed. As an example
take the WF schema graph S from Fig. 4. Assume that an additional control edge is to be
inserted between the activities test B and X-ray. Concerning WF instances, for which both
activities are completed, this insertion would be (only) allowed if test B had written its end
entry into A before the start entry of X-ray was logged. As a second example, consider an
instance I where test B is marked as SKIPPED and X-ray as COMPLETED. Taking this marking,
I would be only compliant with S’ if activity take blood had been completed before activity
X-ray started (N1 = {take blood}). Note that transitive order relationships have to be taken
into consideration as well when checking compliance.

Compliance conditions related to the deletion of activity nodes and control edges as well
as to changes of the data flow schema are summarized in Table 2. In a similar way we can
derive compliance rules for other changes primitives, e.g., the insertion or deletion of loop edges
or the update of edge transition conditions. Altogether, we can state that compliance of WF
instances with a WF schema graph – as postulated by Axiom 1,1 – can be checked on basis
of current activity markings; i.e., we usually do not have to check the producibility of whole
execution histories on the modified schema. Nevertheless, Axiom 1,1 serves as the formal basis
for deriving and veryfying compliance rules.

3.3 How To Adapt WF Instance States?

We have described how the compliance property set out by Axiom 1,1 can be ensured and which
information is needed. Our main goal was to prevent access to the whole execution history. By
holding this maxim, we now want to show how compliant WF instances can be migrated to the
changed WF schema.

As pointed out, one problem to be solved is the efficient and correct adaptation of activity
and edge markings. According to Axiom 1,2 the state of a migrated WF instance must be the

12



Table 3: Node and Edge Sets to be Evaluated

op = addActivity(S, nins, Preds, Succs) Ncheck(op):= Succs (∪ {nins} if Preds = ∅)
Echeck(op) := {p → nins ∈ CtrlEdges’ | p ∈ Preds}

op = deleteActivity(S, ndel) Ncheck(op) := {n ∈ N | ndel → n ∈ CtrlEdges }
Echeck(op) := ∅

op = addCtrlEdge(S, nsrc, ndst) Ncheck(op) := {ndst}, Echeck(op) := {nsrc → ndst}

op = deleteCtrlEdge(S, nsrc, ndst) Ncheck(op) = {ndst}

same as it can be obtained when replaying the (reduced) execution history on the new schema.
How extensive marking adaptations turn out for a WF instance I depends on the kind and the
scope of the change. Except initialization of newly inserted nodes and edges, no adaptations
will become necessary if the execution of I has not yet entered the change region. In other
cases extensive state adaptations may be required. An activity X, for example, may have to
be deactivated if new control edges are inserted with X as target activity. Conversely, a newly
added activity will have to be immediately activated or skipped if all predecessors are already
in a final state. As shown in Fig. 3 it may even become necessary to undo the skipping of nodes
when inserting an activity.

We now describe how such state markings can be automatically and efficiently adapted
when migrating compliant WF instances. Our approach makes use of the semantics of the
applied change operations as well as of the execution properties of the WF meta model presented
in Section 2. Initially, we can restrict marking evaluations to those nodes and edges, which
constitute the context of a change region. We sketch how these sets can be determined for
selected change primitives as well as for complex changes. Based on this, we present an algorithm
which calculates consistent follow-up markings for compliant instances.

Table 3 shows the initial sets of nodes and edges whose markings must be evaluated when the
respective change operation is applied – for operation op we denote these sets as Ncheck(op) and
Echeck(op) respectively. Depending on the result of the evaluation, the inspection of additional
nodes and edges may become necessary. As a first example, take the dynamic insertion of an
activity nins. Firstly, all incoming control edges of nins must be evaluated. Depending on this,
nins either has to be activated, skipped, or left in its initial state NOT ACTIVATED. (Note that an
initial evaluation of nins only becomes necessary if Preds = ∅ holds.) Secondly, all successors
of nins must be reevaluated as well. Due to the insertion of nins activation or skipping of these
activities may have to be undone. Regarding the insertion of a control edge, the marking of
both, the newly added edge and its target node ndst have to be

evaluated, i.e., we obtain Ncheck(op) = {ndst} and Echeck(op) := {nsrc → ndst}. The latter
will be also required if the evaluation of the edge marking results in NOT SIGNALED since for this
case ndst may have to be deactivated.

13



Algorithm 1: CalcEvalSet(S, S’, ∆ = op1, . . . , opn) −→ Ncheck(∆), Echeck(∆)

Echeck(∆) := ∅; Ncheck(∆) := ∅;
for i:=1 to n do

Echeck(∆):= Echeck (∆) ∪ Echeck(opi); Ncheck(∆):= Ncheck (∆) ∪ Ncheck(opi);

done
Echeck(∆):= Echeck(∆) ∩ E’; Ncheck(∆):= Ncheck(∆) ∩ N’;

Concerning a complex change ∆ = op1, . . . , opn the total sets Ncheck(∆) and Echeck(∆) of
nodes and edges to be (initially) evaluated can be determined by the use of Algorithm 1. In
principle, we obtain these sets by unifying the corresponding sets of the applied change opera-
tions. However, since these operations can be based on each other, there may be temporarily
generated nodes or edges which are not present in the resulting WF schema graph anymore.
This is considered by Algorithm 1.

Let I be a WF instance with WF schema S and marking MS . Assume that S is transformed
into a correct WF schema S’ by applying change ∆ = op1, . . . , opn. Assume further that I is
compliant with S’. Algorithm 2 then determines the correct follow-up marking MS′ of instance
I when migrating it to S’. Basic to this are the marking and execution rules of our WF meta
model. Algorithm 2 starts with the sets Ncheck(∆) and Echeck(∆) as input. If the markings of
respective nodes or edges are adapted during the execution of Algorithm 2, context nodes and
edges will be re-evaluated as well, etc. By means of Algorithm 1 and 2, the total expenditure for
state adaptations can be significantly reduced when compared to the complete re-evaluation of
all node and edge markings or the complete replay of all history events on the new WF schema.
Nevertheless, our marking procedure guarantees correctness according to Axiom 1,2. Formally:

Theorem 2 (Optimized Marking Adaptations) Let I = (T, V, MS, ValS, A) be an in-
stance with schema S = S(T,V) and marking MS. Assume that change ∆ transforms S into
a correct schema S’ and that I is compliant with S’. Then: With CalculateMarking(S, S’, MS,
Ncheck(∆), Echeck(∆)) (cf. Alg. 2) we obtain the correct marking MS′ of I (cf. Axiom 1,2) when
migrating it to S’; i.e., we obtain the same marking as it would result when replaying A on S’.

While Algorithm 1 has to be carried out only once at change definition time, Algorithm 2
must be applied for each WF instance to be migrated. The complexity of Algorithm 2 can be
estimated by O(n) (where n corresponds to the number of activities of schema S’). Additionally,
for each WF instance complexity O(n) arises from the described compliance checks.

As a first example, take the activity insertion from Fig. 3. As already shown, the depicted
WF instance is compliant with the modified WF schema. With Algorithm 1 we obtain Ncheck

= {C} and Echeck = {A → X}. Furthermore, when running Algorithm 2 with these sets as
input, the newly inserted activity X will be activated whereas the skipping of C as well as the
activation of E will be undone. A second example, which shows a change at the type level
(parallel ordering of activities that have been executed sequentially so far) and its propagation
to compliant WF instances is depicted in Fig. 5. Note that both, necessary compliance checks

14



Algorithm 2: (CalcMarking(S, S’, (NS, ES),Ncheck(∆), Echeck(∆)) −→ (NS’, ES’)

Ncheck:= Ncheck(∆); Echeck:= Echeck(∆);
forall e ∈ E’ ∩ E do ES’(e) = ES(e) done;
forall e ∈ E’ ¬ E do ES’(e) = NOT SIGNALED done
forall n ∈ N’ ∩ N do NS’(n) = NS(n) done;
forall n ∈ N’ ¬ N do NS’(n) = NOT ACTIVATED done

repeat
while Echeck 6= ∅ do

fetch an edge e = nsrc → ndst from Echeck;

determine marking newES of e according to marking of nsrc and transition condition EC’(e).

if ES’(e) 6= newES then
ES’(e) := newES , Ncheck := Ncheck ∪ {ndst}

endif
done
while Ncheck 6= ∅ do

fetch a node n from Ncheck;

determine marking newNS of n according to markings of incoming control edges of n.

if NS’(n) 6= newNS then
if newNS = SKIPPED or NS’(n) = SKIPPED then

Echeck:= Echeck ∪ {e = nsrc → ndst ∈ E’ | nsrc = n }
endif
NS’(n) := newNS

endif
done

until Echeck = ∅ and Ncheck = ∅;

and marking adaptations are automatically performed in our approach. Moreover, access to
the (complete) execution history is avoided as far as possible. – The ”dynamic change bug” as
discussed in the WF literature (e.g. [2, 15]) is therefore not present in our framework.

3.4 Realizing Workflow Schema Evolution and Ad-hoc Changes

The presented correctness principles, compliance rules, and migration procedures are indepen-
dent from whether a single WF instance or a collection of WF instances has to be adapted.
Ad-hoc changes of single WF instance may become necessary, for example, to evolve the struc-
ture of a particular business case during runtime or to deal with an exceptional situation. As
opposed to this, a large number of WF instances may have to be adapted, if a WF type change
shall be propagated to related WF instances.

WF Schema Evolution and Change Propagation: First of all, our framework allows
the designer to restrict the set of migratable WF instances by specifying appropriate selection
predicates (based on WF attributes). Then for each selected WF instance I, the WfMS checks
whether it is compliant with the modified schema version or not. If the former is the case, I is
re-linked to the new schema S’ and its further execution is based on S’ (cf. Fig. 6 b). Among
other things this includes the adaptation of markings and related data structures (e.g., worklists)
as described above. As opposed to this, non-compliant WF instances may be finished according
to the old WF schema version or be rolled back to a compliant state to enable their migration.

15



 

A B C D A 

B 

C 

D 

A B C D 

A 

B 

C 

D 

A 

B 

C 

D 

Type Level 

S: 

Instance Level 

I1: 

S’ 

deleteCtrlEdge(S,B,C) 
addCtrlEdge(S,A,C) 
addCtrlEdge(S.B.D) 
 

Ncheck = {C,D} 
Echeck = {A �  C, B �  D} 

 (Alg. 1) 
 

    CalculateMarking 
(Alg. 2) 

 

A B C D 

I2: 

 

       NS = ACTIVATED  NS = RUNNING   

NS = COMPLETED  ES = TRUE_SIGNALED 

X 

Figure 5: Instance Migrations Due To Type Change

In connection with loops, such a compliant state may be also reached when a loop enters its next
iteration. A discussion of this special case and the support of delayed WF instance migrations,
however, is outside the scope of this paper.

(Ad-hoc Changes of Single WF Instances: An ad-hoc change of a WF instance I may
become necessary, for example, to deal with exceptional situations. For change definition, high-
level operations are offered to users (e.g., to jump forward in the flow or to shift activities)
which are based on the described primitives. All runtime deviations are properly integrated
with respect to authorization and are logged in the change history of I. Obviously, this results in
an instance-specific execution schema SI = S + ∆I which differs from the original WF schema
graph S (cf. Def. 3) – ∆I is called the bias of I (with respect to S) and describes the set of
instance-specific changes op1

I , . . ., opn
I that have been applied to I so far. Execution of I as

well as future change definitions are logically based on SI (cf. Fig. 6 a). How biased WF
instances are ”physically” represented, whether SI is materialized or only ∆I is stored in the
WfMS database, and other implementation issues are outside the scope of this paper. In any
case, a biased WF instance always keeps the reference to its original WF schema. As we will
see in the next section, under certain conditions this allows us to propagate WF type changes
to biased WF instances as well.

Definition 3 (Biased Instance) A biased instance I is described by a tuple (T, V, ∆I , MS+∆I ,
ValS+∆I , A), where S = S(T,V) corresponds to the schema version from which I was created and
∆I comprises instance-specific changes op1

I , . . ., opn
I that have been applied to I so far. Schema

SI := S + ∆I , which results from the application of ∆I to S, is called the execution schema of I.

16



 

S(T, V1) 

M1
S(T,V) M2

S(T,V)+ 

instance level 

worklist structures 

 adapt  

 I1        I2     
execution schema  
graph S(T,V) +      I 
I

a) 

applying 
ad-hoc change 

   to I2 I 

Scenario 1 

T  type level 
 

T  type level 

S(T, V1) 

I1      I2      I3  … 

M1
S(T,V1) M2

S(T,V1) M3
S(T,V1) 

instance level 

worklist structures 

 
work items  

T  type level 

S(T, V1) 

 I2 …     

M2
S(T,V1) M1

S(T,V2) M3
S(T,V2) 

instance level 

worklist structures 

insert/delete 
work items  

S(T, V2) 
+  

 I1    I3 …     

b) 

T 

migrating compliant 
instances I1 + I3 

schema change   T 

Scenario 2 

Figure 6: Managing Type and Instance Changes

Trivially, the execution schema SI of an unbiased instance I (with ∆I = ∅) corresponds to
its original schema S.

4 Conflicting Type and Instance Changes

As motivated in Section 1, biased WF instances must not be needlessly excluded from adapting
to a WF type change. Generally, for each WF type T it must be possible to propagate a related
schema change ∆T to biased WF instances (with type T) as well. Otherwise, the WfMS will
not have the required flexibility to adequately support long-running processes. In this section,
we sketch what is needed and which issues arise in this context.

Let I = (T, Vn, ∆I , ...) be a biased WF instance (with WF type T) which was created from
WF schema version S = S(T, Vn) and to which instance-specific changes op1

I , . . ., opn
I – described

by bias ∆I – have been applied so far. Assume further that a new WF schema version S’ = S(T,
Vn+1) is derived from S by applying type change ∆T (= op1

T , . . ., opm
T ) to it (S’ = S + ∆T ).

Then the following issues arise:

1. May ∆T be propagated to I as well though the current execution schema SI= S + ∆I of
I differs from S?

2. If change propagation is possible how can it be efficiently and correctly accomplished?
Which execution schema SI ’ (and marking MS′I ) must result?

4.1 Correctness Issues

Comparable to the migration of ”unbiased” WF instances (cf. Section 3) we introduce a general
criterion that allows us to argue about these two issues. Obviously, when propagating a WF
type change ∆T to a biased WF instance I, we must not only consider its current state (i.e., its

17



marking MSI ) but we also have to cope with structural and semantic conflicts that may exist
between the concurrent changes ∆I and ∆T (Note that both, ∆I and ∆T have been based on
S). In the following, we put the emphasis on structural conflicts.

Axiom 2 (Propagating Type Changes To Biased Instances) Let T be a WF type with
actual schema version S = S(T,Vn). Assume that a new WF schema version S’= S(T,Vn+1) is
derived by applying type change ∆T to S. Then:
∆T may be propagated to WF instance I = (T, Vn, ∆I , ...) :⇔

1. S* = (S + ∆I) + ∆T is a correct WF schema graph, i.e., ∆T can be correctly applied to
the WF execution schema SI = (S + ∆I).

2. I is compliant with S*; i.e., the reduced execution history redA (cf. Section 3.1) can be
produced on S* as well. The marking MS∗ resulting from this is considered as a correct
marking / state.

According to Axiom 2, a WF type change ∆T may be propagated to a biased instance I if
∆T is applicable to the execution schema of I as well and if the change does not conflict with the
the previous execution of I. That means, the resulting WF schema S* = SI + ∆T must satisfy
the correctness properties set out by the WF meta model from Section 2. In addition, I must
be compliant with S* according to Axiom 1.

As an example take the WF schema S = S(T,V) from Fig. 7. Assume that WF type change
∆1

T = addCtrlEdge(S, E, D) is applied to S. Then condition 1 of Axiom 2 is not satisfied with
respect to I since the resulting WF schema graph SI + ∆1

T would contain a cycle leading to
a deadlock. Due to this unresolvable conflict between WF instance and WF type change, ∆1

T

cannot be propagated to I. As opposed to this, WF type change ∆2
T = [addActivity(S, Y, {D},

{E})], for example, may be propagated to I since the conditions defined by Axiom 2 are met. As
a last example, take change ∆3

T = [deleteDataLink(S,C,d,write), deleteActivity(S,C)]. It is quite
evident that propagation of ∆3

T to I would result in an incorrect data flow schema for instance
I, since X (which was inserted by a previous instance change) would then read data element d
with undefined value.

4.2 Checking Correctness

The challenging question is how to efficiently verify the conditions set out by Axiom 2. A naive
solution would be to first generate the WF schema graph SI + ∆T and then to check whether it
satisfies the required structural and dynamic properties. Generally this would be too expensive,
in particular if different WF aspects (control flow, data flow, work assignements, etc.) are
concerned or ∆T is to be propagated to a large collection of WF instances. Instead we must
define appropriate and efficient rules for excluding potential conflicts between WF instance and
WF type changes for as many WF instances as possible. Concerning the absence of cycles and
deadlocks, for example, the following conflict rule can be used:

18



 

S: I: 

 
�

I  =  [ addCtrlEdge(SI, D, B),   
addActivity(SI, X, {E}, � ),  
addDataLink(SI, X, d, read) ] 

 
A 

 
B 

 
C 

 
E 

 
D 

 
A 

 
B 

 
C 

 
E 

 
D 

d d 

 
X 

Figure 7: Original Schema and Biased Instance

Lemma 2 (Deadlock Prevention) Let T be a WF type with actual schema version S = S(T,
Vn) and I = (T, Vn, ∆I , ...) be a biased instance with execution schema SI = S + ∆I . Assume
that type change ∆T transforms S into a correct schema S’ = S(T,Vn+1). Then: S* = (S + ∆I)
+ ∆T does not contain cycles (except loop backs) and is therefore deadlock-free if the following
condition holds:
∀ s1 → d1 ∈ AddedCtrlEdges∆T

, ∀ s2 → d2 ∈ AddedCtrlEdges∆I
:

d1 6∈ pred(S, s2) ∨ d2 6∈ pred(S, s1)
(AddedCtrlEdges∆ denotes the set of control edges inserted by change primitives addActivity and
addCtrlEdge from ∆.)

Taking change ∆1
T from Section 4.1, for example, the condition defined by this lemma will

not be satisfied. Concerning ∆2
T , however, deadlocks can be excluded. Though the condition

set out by Lemma 2 will not always be necessary, it is sufficient to exclude potential deadlocks.
In particular, the related checks can be based on the original WF schema graph S and can be
accomplished by simple graph algorithms (with complexity O(n)). Generally, for each change
operation we have to define corresponding conflict rules. Concerning data flow changes, for
example, we can exclude potential conflicts by ensuring that the data element sets for which ∆I

and ∆T have inserted or deleted data edges are disjoint. In our example from Section 4.1, ∆I

has inserted a read data link with source d and ∆3
T removed a write data link with target d.

Thus a (potential) conflict exists, which requires additional (more expensive) checks.

4.3 Propagating WF Type Changes to Biased Instances

Assume that WF schema S is correctly transformed into a new WF schema S’ by applying type
change ∆T to it. Assume further that I = (T, Vn, ∆I , ...) is a WF instance to which ∆T can
be correctly propagated according to Axiom 2. Then the question arises how we can migrate
this biased WF instance to the new WF schema version of type T. To simplify matters we only
consider changes based on the primitives from Table 1. For them the following theorem applies:

Theorem 3 (Commutativity of WF Type and WF Instance Changes) Let T be a WF
type with actual schema graph version S = S(T, Vn) and I = (T, Vn, ∆I , ...) be a biased

19



instance (with type T). Assume that type change ∆T transforms S into S’ = S(T,Vn+1) and ∆T

can be correctly propagated to I (according to Axiom 2). Then: ∆T and ∆I are commutative,
i.e., ∆I can be correctly applied to S’ as well and (S + ∆I) + ∆T ≡ (S + ∆T ) + ∆I ( = S’ +
∆I).

According to this theorem, WF type and WF instance changes are commutative provided
that the specified conditions are met. In particular, this property allows us to treat WF type
changes and the related change propagation similar to the unbiased case (cf. Section 3.4). More
precisely, a WF type change can be propagated to a biased WF instance I by re-linking this
instance to the new WF schema graph S’ (cf. Fig. 8) and by re-calculating marking MS′I for the
resulting WF execution schema SI ’. Note that SI ’ can be simply derived by applying bias ∆I

to S’. Though – at first glance – it seems to make no significant difference whether we apply ∆T

to SI or ∆I to S’, the latter variant offers several adavantages with respect to the management
of WF schema graph versions and the propagation of future type changes. – In summary, the
presented concepts offer an important contribution for the design of adaptive WfMS.

 
 

Type level 

S = S(T, Vn) 

I1      I2      I3   

M1
S M2

S M3
S + 

�
I
 

instance level 

Type level 

S = S(T, Vn)

 I1    

M1
S M2

S’ M3
S’+ 

�
I 

instance level 

S’ = S(T, Vn+1) 
+  

 I2    I3     

T 

migrating compliant 
instances I2 and I3 

type change unbiased  
biased  

X X X bias  
�

I 
 

S’ + � I 
 

Figure 8: WF Type Change and Propagation To Biased and Unbiased WF Instances

5 Related Work

One of the first frameworks for WF type changes has been presented in [2, 3]. For WF modeling
and WF execution high-level Petri Nets are used. The execution of WF instances with the
same WF type is based on the same net and on coloured markings. A WF schema modification
is carried out by substituting sub nets. Another Petri Net-based approach is presented in
[15, 16]. Dynamic change correctness is ensured by prohibiting WF instances from migrating
to the modified net if they have already reached modification hit regions. Both approaches
consider the adaptation of markings as a very complex problem (the so called dynamic change
bug). To solve it, [3] suggests that the WF designer herself or himself has to adapt the marking
for every instance. As opposed to this, [16] proposes the definition of a function, which maps
markings of the old to markings of the new net. However, only special change operations are

20



considered by this approach. Apart from this, many of the issues discussed in this paper (e.g.,
efficient compliance checks, efficient adaptation of WF instance markings, etc.) have not been
addressed.

Several approaches use graph-based meta models to cope with WF schema evolution [1,
10, 14]. WIDE [1] offers a history-based compliance criterion to guarantee correctness when
migrating WF instances to the new WF schema. TRAM [10] focuses on WF schema versioning
concepts. To efficiently manage WF instance migrations the definition of so-called migration
conditions is proposed for every change operation. Based on them, it can be decided whether
a WF instance can migrate to the new WF schema version or not. BREEZE [14] also uses a
compliance criterion but focuses on the handling of non-compliant WF instances. In summary,
all these approaches are too restrictive in conjunction with loops. Neither a special treatment of
data flows nor suggestions about how to adapt markings when propagating WF schema changes
are offered. Finally, all approaches focus on WF schema evolution and do not consider ad-hoc
changes.

Object oriented approaches are offered by [7, 17]. In MOKASSIN [7, 8] change primitives
are encapsulated within WF instances. The compliance criterion is considered as being too
restrictive. Instead, a more granular version concept is proposed, but without discussing issues
related to compliance checks. Apart from this, correctness issues are completely ignored. An-
other versioning concept is offered by WASA2 [17, 18], which proposes a mapping between the
modified WF schema and the subworkflows resulting from the corresponding WF instances to
allow efficient compliance checks. However, data flow changes or type changes in conjunction
with loops have not been addressed in detail.

ULTRAFlow [4] presents a rule-based approach. Changes are mainly realised by modifying
the implementation and meta data of activities. Special synchronisation methods guaranteeing
consistent access of WF instances on modified specifications are provided. However, on ULTRA-
Flow, important change operations like the deletion of activities or the modification of data flows
are not treated at all.

Finally, in [5] a statechart-based approach focusing on WF schema modifications, is pre-
sented, which enables semantic preserving schema changes.

6 Summary and Outlook

Long regarded as technology for the automation of well-structured, repetitive processes, showing
only little variations in their possible excecution sequences, WF management is in the throes
of transformation as more and more non-traditional applications require comprehensive process
support. In many domains, like hospitals, engineering environments, bioinformatics, or offices,
however, process-centered applications will not be accepted whenever rigidity comes with them.
Creating WF-based applications without a vision for adaptive workflow is therefore shortsighted
and expensive. Indeed, insufficient flexibility and adaptability have been primary reasons why

21



workflow technology failed in many process automation projects in the past. Both, the capability
to quickly and correctly propagate WF type changes to in-progress WF instances as well as the
flexible support of ad-hoc adaptations will be key ingredients in the next generation of WfMS,
ultimatively resulting in highly adaptive process-oriented applications.

We have implemented the fundamentals concerning dynamic WF changes in a proof-of-
concept prototype, which is even based on a more powerful WF meta model than the one
assumed in this paper. Currently, the incorporation of change propagation facilities is on its way.
There are many other challenging issues related to adaptive workflow, which have to be better
understood, before we come to a complete solution. Dynamic adaptations, for example, may
also concern other components of process-centered information systems, like the organizational
database [6], security constraints, actor and resource assignments, activity programs, or temporal
constraints [14]. Apart from this, we consider it as very important to incorporate more semantics
when checking compliance of WF instances with a modified schema.

References

[1] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data and Knowledge
Engineering, 24(3):211–238, 1998.

[2] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems. In
Proc. Int’l Conf. on Org. Comp. Sys., pages 10–21, Milpitas, CA, August 1995.

[3] C.A. Ellis and C. Maltzahn. The Chautauqua workflow system. In Proc. 30th Int’l Conf.
on System Science, Maui, 1997.

[4] A. Fent, H. Reiter, and B. Freitag. Design for change: Evolving workflow specifications in
ULTRAflow. In Proc. Int’l Conf. on Advanced Information Systems Engineering (CAISE
’02), pages 516–534, May 2002.

[5] H. Frank and J. Eder. Equivalence transformations on statecharts. In Proc. 12th Int’l Conf.
on Software and Knowledge Eng., pages 150–158, Chicago, July 2000.

[6] S. Jablonski and C. Bussler. Workflow Management: Concepts, Architecture and Imple-
mentation. Int. Thompson Publ., 1995.

[7] G. Joeris. Defining flexible workflow execution behaviors. In Proc. GI-Workshop,
Enterprise-wide and Cross-enterprise Workflow-Management (Informatik ’99), pages 49–
55, October 1999.

[8] G. Joeris and O. Herzog. Managing evolving workflow specifications. In Proc. Int’l Conf.
on Coop. Inf. Syst. (CoopIS ’98), pages 310–321, New York, August 1998.

[9] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer, B. Arpinar, and J. Cardoso. In-
telliGEN: A distributed workflow system for discovering protein-protein interactions. Dis-
tributed and Parallel Databases, 13:43–72, 2003.

22



[10] M. Kradolfer and A. Geppert. Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In Proc. CoopIS ’99, pages 104–114, Edinburgh,
September 1999.

[11] F. Leymann and D. Roller. Production Workflow. Prentice Hall, 2000.

[12] M. Reichert and P. Dadam. ADEPTflex - supporting dynamic changes of workflows without
losing control. Journal of Intelligent Inf. Syst., 10(2):93–129, 1998.

[13] S. Rinderle, M. Reichert, and P. Dadam. Evaluation of correctness criteria for dynamic
workflow changes. In Proc. Int’l Conf. on Business Process Management (BPM ’03), Eind-
hoven, The Netherlands, June 2003.

[14] S. Sadiq, O. Marjanovic, and M. Orlowska. Managing change and time in dynamic workflow
processes. The Int’l Journal of Coop. Inf. Syst., 9(1&2), 2000.

[15] W.M.P. van der Aalst. Exterminating the dynamic change bug: A concrete approach to
support worfklow change. Information Systems Frontiers, 3(3):297–317, 2001.

[16] W.M.P van der Aalst and T. Basten. Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science, 270(1-2):125–203, 2002.

[17] M. Weske. Flexible modeling and execution of workflow activities. In Proc. 31st Int’l Conf.
on System Sciences, pages 713–722, Hawaii, 1998.

[18] M. Weske. Adaptive workflows based on flexible assignment of workflow schemes and
workflow instances. In Proc. GI-Workshop Enterprise-wide and Cross-enterprise Workflow-
Management (Informatik ’99), pages 42–48, Paderborn, October 1999.

23


