
Safely Extending Procedure Types
to Allow Nested Procedures as Values1

Christian Heinlein

Dept. of Computer Structures, University of Ulm, Germany
heinlein@informatik.uni−ulm.de

Abstract

The concept of nested procedure values, i.e., the possibility of using nested procedures as values of
procedure types, is a useful and powerful concept. Nevertheless, it is not allowed in languages such as
Modula-2 and Oberon(-2), because it creates a serious security hole when used inappropriately. To
prevent such misuse while at the same time retaining the benefits of the concept, alternative language
rules as well as a small language extension for Oberon-2 are suggested, which allow nested proce-
dures to be safely used as values of procedure types and especially to pass them as parameters to other
procedures.

1. Introduction

Nested procedures, i. e., procedures declared local to another procedure, are a useful concept for
structuring and decomposing large procedures into smaller and more comprehensible pieces in a natu-
ral way, without needing to introduce artificial global procedures to achieve that aim. Furthermore, the
fact that nested procedures can directly access the local variables and parameters of their enclosing
procedures helps to keep their parameter lists short, without needing to introduce artificial global va-
riables for that purpose.

Procedure types, i. e., types possessing procedures as values, are another useful concept for pro-
gram development that allows algorithms (e.g., for sorting) to be decoupled from their basic opera-
tions (e.g., comparing objects) and by that means increasing their generality and applicability.

To giv e a simple example for both of these concepts, Fig. 1 shows a global Oberon-2 procedure
QuickSort containing nested proceduresSwap and SortRange which directly access the
parametera of their enclosing procedure. Furthermore, to keep the sorting algorithm independent of
any particular ordering criterion, a procedurecmp comparing two objects of typeT (and returning an
integer value smaller than resp. equal to resp. greater than zero if the first object is smaller than resp.
equal to resp. greater than the second) is passed as a parameter of the procedure typeCmpProc.

Thecombinationof nested procedures and procedure types, i.e., the possibility of using not only glo-
bal, but also nested procedures as actual parameters of other procedures, would be an even more use-
ful and powerful concept, as the examples given in Sec. 2 will demonstrate. Unfortunately, howev er,
languages such as Modula-2 [12] and Oberon(-2) [13, 7] donot allow this combination, i.e., they re-
quire procedure values (i.e., values of procedure types) to be global procedures. After explaining in
Sec. 3 the reasons for this apparently strange restriction, in particular the problem ofdangling proce-
dure values, Sec. 4 suggests alternative language rules whichdo allow nested procedure values (i.e.,
nested procedures as procedure values) without running into this problem. Since there remains at least
one important application of procedure values that is permitted by the original rule, but not by the new
ones, a simple language extension is suggested in Sec. 5 to overcome this limitation, too. The paper
closes with a brief sketch of implementation ideas in Sec. 6 and a concluding discussion in Sec. 7.

1 This is an extended version of [4].

1

TYPE T = ...; (* An arbitrary type. *)

TYPE CmpProc = PROCEDURE (x, y: T) : INTEGER;

PROCEDURE QuickSort (VAR a: ARRAY OF T; cmp: CmpProc);
PROCEDURE Swap (i, j: LONGINT);

VAR x: T;
BEGIN x := a[i]; a[i] := a[j]; a[j] := x
END Swap;

PROCEDURE SortRange (i, j: LONGINT);
BEGIN

(* Recursively sort a[i..j]. *)
(* Repeatedly calls Swap and cmp. *)

END SortRange;
BEGIN

SortRange(0, LEN(a) − 1)
END QuickSort;

Figure 1: Simple example of nested procedures and procedure types in Oberon-2

2. Examples of Nested Procedure Values

If the procedureQuickSort of Fig. 1 would be a nested procedure −− for instance, because the ele-
ment typeT is a local type −−, and its enclosing procedure wants to call it with two or more different
comparison procedures, the latter obviously must be nested procedures, too.

As another example, Fig. 2 shows a procedureTrav that recursively traverses in infix order a binary
tree t containing integer values, executing a callback procedurecb for every node’s value. In many
applications of this procedure, it would be natural to use a nested procedure as callback procedure be-

TYPE
Tree = POINTER TO Node;
Node = RECORD

val: INTEGER;
left, right: Tree;

END;
CallbackProc = PROCEDURE (x: INTEGER);

PROCEDURE Trav (t: Tree; cb: CallbackProc);
BEGIN

IF t # NIL THEN
Trav(t.left, cb);
cb(t.val);
Trav(t.right, cb);

END
END Trav;

Figure 2: Traversing a binary tree

2

cause of its ability to access local variables of its enclosing procedure. For example, Fig. 3 shows a
procedure calculating the sum of all values stored in the treet by calling procedureTrav with the
nested procedureAdd as callback procedure.

PROCEDURE Sum (t: Tree) : INTEGER;
VAR sum: INTEGER;

PROCEDURE Add (x: INTEGER);
BEGIN sum := sum + x
END Add;

BEGIN
sum := 0;
Trav(t, Add);
RETURN sum;

END Sum;

Figure 3: Application of procedureTrav

3. Reasons for Disallowing Nested Procedure Values

Unfortunately, nested procedures arenot allowed as values of procedure types in languages such as
Modula-2 and Oberon(-2) causing the above examples to be actuallyillegal. When considering the
usefulness of the concept, this appears to be a completely unreasonable restriction at first glance. In
the tree traversing example, for instance, it would be extremely unnatural to declareAdd as a global
procedure because this would require to declare the variablesum globally, too. However, there are two
reasons justifying this restriction, although they are rarely explained in language reports or textbooks.

First, due to the fact that nested procedures can directly access variables of their enclosing proce-
dures, it is more difficult and possibly less efficient to implement procedure types whose values might
be nested procedures. While global procedures can be simply identified by the starting address of their
code block, nested procedures usually need additional context information, e.g., adisplayor a static
link chain [1, 14]. It has been shown, however, that this problem can of course be solved in principle,
and that the resulting code is sufficiently efficient in practice [3].

The second reason for disallowing nested procedure values is the danger of creatingdangling pro-
cedure valuesby assigning a procedure to a variable whose lifetime extends that of the procedure (cf.
Sec. 4 for precise definitions of terminology). While the well-known problem ofdangling pointers
has been removed from Oberon(-2) by restricting pointers to refer to dynamically allocated storage
which cannot be explicitly deallocated by the program, allowing nested procedure values would intro-
duce similar and comparably serious security holes, as the example of Fig. 4 shows. Here, the nested
procedureB, which accesses the local variablea of its enclosing procedureA, can be called via the
global procedure variableg after its enclosing procedure has exited. Because the local variablea will
no longer exist at that time, i.e., the location on the procedure stack whereB expects that variable will
contain some other data (e.g., a variable of another procedure or, even more seriously, crucial runtime
information such as the return address of a procedure), the execution of B would erroneously over-
write that data, resulting in completely undefined program behaviour afterwards.

3

MODULE DanglingProcedureValue;
VAR g: PROCEDURE;

PROCEDURE A;
VAR a: INTEGER;

PROCEDURE B;
BEGIN a := 1
END B;

BEGIN
g : = B

END A;
BEGIN

A;
g;

END DanglingProcedureValue.

Figure 4: Example of a dangling procedure value

4. Alternative Language Rules for Oberon-2

In order to retain the benefits of nested procedure values without creating the danger of dangling pro-
cedure values, assignments of procedure values to “more global” variables must be forbidden. This
can be achieved by replacing the original rule:

R0: Procedure values must be global procedures.

with the following set of definitions (L1 to L3) and rules (R1 to R3):

L1: As usual, thelifetime of a variableis defined as the execution time of its directly enclosing proce-
dure. To simplify terminology, a module is treated as a top-level procedure for that purpose.
Of course, the lifetime of an array element or record field is identical to the lifetime of the enclosing
array or record.
The lifetime of an explicitly or implicitly dereferenced pointer is defined as the execution time of the
program, because a pointer always refers to dynamically allocated storage whose lifetime extends to
the end of the program as long as it is referenced by at least one pointer.

L2: Likewise, thelifetime of a procedure nameis defined as the execution time of its directly enclos-
ing procedure.
That means in particular, that the lifetime of a procedure name is quite different from the execution
time of a particular activation of this procedure. The former actually represents the time where the
procedure can be correctly and safely invoked.

L3: A procedure value is either (i) a procedure name or (ii) the value of a procedure variable or (iii)
the result of calling a procedure whose result type is a procedure type, either directly by its name or
indirectly via a procedure variable.
In all these cases, thelifetime of a procedure value is defined as the lifetime of the procedure name or
variable used to obtain the value.

R1: The assignment of a procedure value to a procedure variable (i.e., a variable of a procedure type)
is forbidden, if the variable’s lifetime exceeds the value’s lifetime.
Passing a procedure value as an actual parameter is treated like an assignment of the value to the cor-
responding formal parameter, i. e., formal parameters are treated like variables.

4

R2: Returning a procedure value from a procedure is forbidden, if the lifetime of the returning proce-
dure’s name (not the execution time of the current procedure activation!) exceeds the value’s lifetime.
In particular, a procedure must not return a local procedure name or the value of a local procedure va-
riable.
This rule is in accordance with the above definition of the lifetime of a procedure value that is ob-
tained from a procedure call (L3).

R3: The assignment of a procedure value to aVARparameter is treated like returning that value, i.e.,
the lifetime of the enclosing procedure’s name must not exceed the value’s lifetime.
Conversely, passing a procedure variable as an actual parameter for aVARparameter is treated like an
assignment of the called procedure’s result value (if it would be of the correct type) to that variable,
i. e.,the variable’s lifetime must not exceed the lifetime of the called procedure.

Since procedure variables and values might be embedded in records or arrays, the above rules must be
applied to these accordingly. Furthermore, it should be noted, that the above rules do not replace, but
rather augment the other rules of the language. For example, in addition to rule R2, the general rule
that the value returned by a procedure must be assignment compatible with the procedure’s result
type, has to be obeyed.

Normally, the relative lifetimes of two “objects” (procedure names or variables) are determined by
lexical scoping: Objects declared in the same procedure obviously have equal lifetimes, while the life-
time of an object declared in a more global procedure exceeds the lifetime of an object declared in a
more local procedure. (The lifetimes of objects declared in unrelated procedures never hav e to be
compared.) As a special additional case, however, the lifetime of an actual parameter value always ex-
ceeds the lifetime of the corresponding formal parameter (which is identical to the execution time of
the called procedure). Together with rule R1, this observation implies the important corollary that pro-
cedure values can be passed as parameterswithout any restriction.

5. An Additional Language Extension

Under these rules, the examples given in Sec. 2 are correct, because procedure values are only passed
as parameters there and never stored in any other variables. On the other hand, the example shown in
Sec. 3 will be rejected since the assignment of the nested procedureB to the global variableg violates
rule R1.

Unfortunately, rule R1 also forbids the assignment of the parameterhandler to the global array el-
ementhandlers[sig] in Fig. 5, even if clients would call the procedureRegister with global pro-
cedure values only. On the other hand, if moduleSignals would violate the strict information hiding
principle by directly exporting the array variablehandlers (which is used to associate with each sig-
nal numbersig a signal handling procedurehandlers[sig] that is executed whenSignal(sig)
is called), then clients would be allowed to assign global procedures to its elements. So the problem
actually results from the fact that thereal lifetime of the actual parameter value passed toRegister
is lost when it is assigned to the formal parameterhandler , which is treated like a local variable of
procedureRegister .

To remedy this particular problem, the programmer needs a language construct to express the fact that
the actual parameter values passed toRegister shall always be global procedures. More generally, it
must be possible to enhance a procedure variable with alifetime guaranteeexpressing the minimum
lifetime of its values.

Because the lifetime of an object is defined as the execution time of its directly enclosing procedure
(definitions L1 and L2), the names of directly or indirectly enclosing procedures are well suited to ex-
press such lifetime guarantees. Therefore, the definition of a procedure type is extended with an optio-
nal lifetime guarantee clauseOFname after the keyword PROCEDUREto express that variables of that
type must not contain procedure values whose lifetime is shorter than the execution time of procedure

5

MODULE Signals;
CONST Max = ...;
TYPE Handler = PROCEDURE (sig: INTEGER);
VAR handlers: ARRAY Max OF Handler;

PROCEDURE Register* (sig: INTEGER; handler: Handler);
BEGIN handlers[sig] := handler (* Forbidden by rule R1! *)
END Register;

PROCEDURE Signal* (sig: INTEGER);
BEGIN handlerssig
END Signal;

END Signals.

Figure 5: A simple signal handling module

name. In other words, only procedures declared in procedurename or in more global procedures are
allowed as values of such variables. As a special case, it is also possible to use the keyword MODULE
instead of the module’s name to express that the value of a variable must be a global procedure.

In particular, replacing the declaration of typeHandler in Fig. 5 with:

TYPE Handler = PROCEDURE OF MODULE (sig: INTEGER);

would cause the example to become correct, while at the same time forcing clients of moduleSig-
nals to actually pass global procedures −− or variables of typeHandler −− to procedureRegister .

To generalize the rules stated in Sec. 4 to variables with lifetime guarantees, the term “lifetime” has to
be replaced with “lifetime guarantee,” which is generally defined as follows:

G1: The lifetime guarantee of a procedure variable is defined as the maximum of the lifetime guaran-
tee of its type, if applicable (i.e., if the type possesses a lifetime guarantee), and the variable’s life-
time.
Normally, the lifetime of a variable cannot exceed the lifetime guarantee of its type, because the latter
is defined as the execution time of anenclosingprocedure. Dynamically allocated variables, however,
i. e., explicitly or implicitly dereferenced pointers, possess maximum lifetime (the execution time of
the program) which might indeed exceed the lifetime guarantee of their type.

G2: The lifetime guarantee of a procedure value is defined as the lifetime guarantee of its type, if ap-
plicable, or otherwise as the lifetime guarantee of the procedure name or variable used to obtain the
value (cf. definition L3 of Sec. 4). For that purpose, the lifetime guarantee of a procedure name is de-
fined identical to its lifetime.

Given that, the examples of Sec. 2 as well as the example of Fig. 5 with the procedure typeHandler
modified as above are correct.

To giv e an artificial example which is useful to study borderline cases, Fig. 6 illustrates among oth-
er things the effect of definition G2. Since the procedure typeQ possesses a lifetime guarantee, the
procedure value obtained by executing the procedure that is currently assigned to the procedure varia-
ble b3 (which is actually the nested procedureD) can be assigned to the global procedure variableq,
which would be forbidden by the original version of rule R1 and definitions L1 and L3. On the other
hand, the analogous assignment of the expressionb1() to the global variablep of typeP is still illegal
with the new definitions and rules, since the typeP does not possess a lifetime guarantee and thus the
lifetime guarantee of the expression’s value is identical to the lifetime guarantee of the local varia-
ble b1 which is in turn identical to its lifetime. To make such an assignment correct, it is necessary to
supply the local variable itself with a lifetime guarantee, which is demonstrated for the variableb2.

6

MODULE Artificial;
TYPE P = PROCEDURE; Q = PROCEDURE OF MODULE;
VAR p: P; q: Q;

PROCEDURE A () : P; END A;

PROCEDURE B;
VAR b1: PROCEDURE () : P;
VAR b2: PROCEDURE OF MODULE () : P;
VAR b3: PROCEDURE () : Q;

PROCEDURE C () : P; END C;

PROCEDURE D () : Q; END D;
BEGIN

b1 := C; (* Correct. *)
b2 := C; (* Illegal. *)
b2 := A; (* Correct. *)
b3 := D; (* Correct. *)

p : = b1(); (* Illegal. *)
p : = b2(); (* Correct. *)
q : = b3(); (* Correct. *)

END B;
END Artificial.

Figure 6: An artificial example

6. Implementation Ideas

To enforce the alternative language rules suggested in Sec. 4 and to support the language extension in-
troduced in Sec. 5, thefront endof an Oberon-2 compiler has to be changed accordingly. Further-
more, it might be necessary to modify the compiler’s back end to generate code that is able to handle
nested procedure values.

If nested procedures cannot be used as procedure values, a compiler need not maintain a static link
chain [1, 14] which is used at runtime to find local variables of enclosing procedures, but simply
transform nested procedures to global procedures which receive the addresses of all non-local, non-
global variables as additional parameters. For example, the freely available oo2c compiler [10] trans-
forms Oberon-2 programs to ANSI C using this technique.

If nested procedure values are permitted, however, either a static link chain has to be set up −− which
is a frequently used technique, even in the absence of nested procedure values, but would require ma-
jor modifications to such a kind of compiler −− or the addresses of the non-local, non-global variables
of a procedure have to be stored in an appropriate record (resembling a functionalclosure) when the
procedure’s name is used as a procedure value. This record can be statically allocated on the proce-
dure stack, just as if it has been declared in the same procedure as the procedure name that is used as a
value. Instead of just containing the address of the procedure’s code block, a nested procedure value
then must contain an additional pointer to this record.

A completely different strategy for adapting theoo2c compiler would be to use GNU C instead of
ANSI C as its target resp. intermediate language, because this already allows nested functions as well
as unrestricted “pointers” to them (cf. Sec. 7).

7

7. Related Work and Conclusion

After describing the dilemma that nested procedure values are on the one hand very useful, but on the
other hand forbidden in Oberon-2 and related languages for a serious reason (dangling procedure val-
ues), alternative language rules as well as a small language extension have been proposed to retain
their benefits without the danger of running into trouble.

It is interesting to see in this context, that the problem solved in this paper does not even appear in
many other programming languages. For example, standard C [5] and C++ [9] do not allow nested
procedures at all, so the notion of nested procedurevaluesis simply not applicable. (C++function ob-
jectsare a completely different matter; they can be used to some extent to simulate nested procedure
values.) Breuel [3], however, describes a corresponding extension for C++ that is implemented in the
GNU C (but interestingly not in the GNU C++) compiler. Following the typical style of C and C++,
however, the problem of dangling procedure values (just as the problem of dangling pointers) is not
addressed at the language level, but left to the programmer, i. e., he is responsible for using the con-
cept correctly. Here, the approach presented in this paper could be applied in the same way as for
Oberon-2 to make the language safer.

Likewise, Eiffel [6] does not provide nested procedures, while other object-oriented languages such
as Java [2] do not provide procedure (resp. method) values at all, sonestedprocedure values are not
appropriate either. (Eiffel agents are again a completely different matter, comparable to C++ function
objects.)

Functional languages such as Lisp [15], Haskell [11], or ML [8] fully support nested functions in-
cluding closures, which are just another name for nested procedure values. But since pure functional
languages lack the notion of variables to which closures might be assigned, the problem of dangling
closures can only appear when a function returns a locally defined function, which is forbidden in the
present paper by rule R2, but typically allowed in functional languages. In such a case, the runtime
system takes care to retain the environment of a function (i.e., the non-local values it accesses) as
long as necessary, even after the enclosing function has exited.

When comparing the alternative language rules suggested in this paper with the original rule R0:

• Procedure values must be global procedures.

the former appear to be much more complicated than the latter. For most practical applications, how-
ev er, the simple rule of thumb:

• Procedure values must not be assigned to more global variables.

is sufficient, while the rules given in Sec. 4 are just a more precise and complete specification of that.
Furthermore, the corollary mentioned at the end of Sec. 4:

• Procedure values can be passed as parameters without any restriction.

covers a majority of practically relevant cases not involving lifetime guarantees. Finally, the concept
of lifetime guarantees, which has been introduced in full generality in Sec. 5 to avoid any unnecessary
conceptual restrictions, is usually only needed for the special and simple caseOF MODULE(restricting
the values of a procedure variable to global procedures), which is equivalent to the original rule R0.

References

[1] A. V. Aho, R. Sethi, J. D. Ullman:Compilers. Principles, Techniques, and Tools. Addison-Wes-
ley, Reading, MA, 1986.

[2] K. Arnold, J. Gosling, D. Holmes:The Java Programming Language (Third Edition). Addison-
Wesley, Boston, 2000.

8

[3] T. M. Breuel: “Lexical Closures for C++.” In:Proc. USENIX C++ Technical Conferenc(Denver,
CO, October 1988).

[4] C. Heinlein: “Safely Extending Procedure Types to Allow Nested Procedures as Values.” In:
L. Böszörmenyi, P. Schojer (eds.):Modular Programming Languages (5th Joint Modular Languages
Conference; Klagenfurt, Austria, August 2003; Proceedings). Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2003.

[5] B. W. Kernighan, D. M. Ritchie:The C Programming Language. Prentice-Hall, Englewood Cliffs,
NJ, 1988.

[6] B. Meyer:Eiffel: The Language. Prentice-Hall, New York, 1994.

[7] H. Mössenböck, N. Wirth: “The Programming Language Oberon-2.”Structured Programming
12 (4) 1991, 179−−195.

[8] L. C. Paulson:ML for the Working Programmer. Cambridge University Press, Cambridge, 1991.

[9] B. Stroustrup:The C++ Programming Language (Special Edition). Addison-Wesley, Reading,
MA, 2000.

[10] The OOC Project. http://ooc.sourceforge.net/.

[11] S. Thompson:Haskell. The Craft of Functional Programming. Addison-Wesley, Harlow, Eng-
land, 1996.

[12] N. Wirth: Programming in Modula-2(Fourth Edition). Springer-Verlag, Berlin, 1988.

[13] N. Wirth: “The Programming Language Oberon.”Software—Practice and Experience18 (7) Ju-
ly 1988, 671−−690.

[14] R.Wilhelm, D. Maurer:Compiler Design. Addison-Wesley, Wokingham, England, 1995.

[15] P. H. Winston, B. K. P. Horn:LISP (Third Edition). Addison-Wesley, Reading, MA, 1989.

9

