Dynamic Class Methodsin Javal

Christian Heinlein

Dept. of Computer Structures, Waisity of UIm, German
heinlein@informatik.uni—ulm.de

Abstract

The concept odlynamic class methods Java, constituting a specialization of a generaivngro-
gramming language concept calldghamic outines is introduced and applied to a simple case study
Its adwantages wer standard object-oriented programming techniques including design patterns are
demonstrated. Furthermore, an implementation of dynamic class methods as a prebasguldan-
guage gtension to Jaa is described.

1. Introduction

Similar to aspectsin AOP [11, 13],dynamic outinesare a general meconcept to ma program-
ming languages more fible and to supportxtensibility of software systems alongaxious dimen-
sions bgond the capabilities of object-oriented solutions [Bnamic class methogsesented in this
paper are a specialization, adaptation, and gnégion of this general concept into the programming
language Ja [7]. To demonstrate their usefulness, a simple case study is presented in Sec. 2, whose
implementation with standard object-oriented programming techniques including design patterns
[5, 2] (Sec. 3) is contrasted with a functionally eqleint, tut signiicantly shorter and less comple
implementation based on dynamic class methods (Sec. 4).

To complement the rather informal introduction of dynamic class methods there, Secidep
more detailed description of the concept and itggmation into the Ja language, while sections 6
and 7 &plain the basic idea and the accompag details, respeatily, of transforming classes con-
taining dynamic class methods to purgalende by means of a simple precompilénally, Sec. 8
concludes the paper with a discussion of the concept itself and of related w

2. A Simple Case Study

In the following, the &olution of a simple softare package for the management of arithmedices-
sions is described. Invery stage of the delopment, none of the source code produced inipue
stages shall be modfl or recompiled, either because it might be simply watadle or to strictly
apply the principle ofmodular etensibility. Furthermore, while desloping the code of the current
stage, the requirements of subsequent stages might not wa.Khleerefore, appropriate techniques
have © be anployed from the ery bejinning to support a maximum of Ribility and extensibility of
the system.

1. Develop a class hierarghfor the representation of arithmetixpeessions consisting ofariables
(with a name and an irger \alue) andbinary opeators for the four basic arithmetic operations.
Implement methods tevaluate a gven expression, ie., determine itsalue, and toprint an &-
pression on the standard output stream.

! This is an etended ersion of [9].

2. Addmethods for thesymbolic diferentiationof expressions.
According to Fig. 1, which depicts theatution of the system through thanous stages by listing
the supported cageries of &pressions on theevtical axis and the operations applicable to them
on the horizontal axis, this kind oftension is called horizontal eitension

3. Adda rew ategory of expressions to represemdgation, i. e., application of the unary minus oper
ator.
According to Fig. 1, this kind ofxéension is called sertical extension

4. Modify the behwiour of the ®aluation method for disions in such a @y, that it catches the
ArithmeticException arising from a diision by zero and returns a speaalll valuein that
case (which might be represented, for instance, by the smakdabke integer \alue).

Also modify the behdour of the other eluation methods to return that nullue if one of their
operands is equal to it.

This kind of etension, whose proper visualizatiomwld actually require a third dimension added
to Fig. 1, is called &ehavioual extensionor modifcation.

eval print diff
Var
Add
Sub stage 1 | stage 2
Mul
Div
Neg stage 3

Figure 1: Ewlution of the system

3. Achieving Extensibility with Design Patterns

In the followving, design patterns [5, 2] will be empém to achiee the aims described in the preus
section. Aftervards (Sec. 4), a melanguage concept calletynamic class methodsll be emplyed
to achiee the same aims much more easily and directly

Stage 1: Basic ClassHierarchy and M ethods

Figures 2 and 3 shothe code written in Stage 1 to suppordleation and printing of ariables and
the four basic arithmetic operations.

To prepare the system for later horizontatemsions, thé/isitor patternis emplyed from the be-
ginning by deihing aVisitor interface declaringisit methods for all concrete subclasses of the
abstract clasExpr constituting the root of thexpression class hierarglicf. Fig. 2). Furthermore, a
simple kind ofFactory patternis emplyed by deihing aFactory class preiding factory methods
for all concrete subclasses®Bfpr as well as a singleton instance of itself. By replacing #mtofy
object with an instance of adtory subclass whose methods create instances of subclasses of the orig-
inal classes, later bebiaural modifcations of &pressions become possible.

The classes shm in Fig. 3 are abstract and concrete subclasséspofrepresenting diérent cat-
egories of epressions such asiable apressions\(ar) or additions @dd). Classes which possess
private dataields (eg., Var) provide a protected constructor to initialize them and public methods for

public abstract class Expr {

public abstract int eval (); /I Evaluate.
public abstract void print (); /I Print.
public abstract void accept (Visitor v); // Visit.

}

public interface Visitor {
/I Visit methods for all concrete subclasses of Expr.
void visit (Var x);
void visit (Add x);

public class Factory {
/I Factory methods for all concrete subclasses of Expr.
public Var createVar (String n, int v) { return new Var(n, v); }
public Add createAdd (Expr I, Expr r) { return new Add(l, r); }

Il Singleton factory instance.
public static Factory f = new Factory();
protected Factory () {}

Figure 2: Root clasBxpr and pattern typegisitor andFactory

reading them (&y., name andval). If theFactory class belongs to the same package as these class-
es, its methods are alled to call the protected constructors, while client code residing feretit
packages is forced to use thactbory methods to create instances xpressions, ., Facto-
ry.f.createVar("x",5) to create a nve variable epression.

To smplify the overall view, Fg. 4 depicts all classes and insés decloped in this and subsequent
stages (using the same grayscales as in Fig. 1) and their basic relationships to each other

Stage 2: Horizontal Extension

Since the classesdoped in Stage 1 shall not be maelif, the n& methods for symbolic diérenti-
ation of &pressions cannot be added as instance methadsviik andprint to Expr and its sub-
classes.

For a rather straightforard solutiondiff could be implemented as a single static method of a
new classDiff , as hown in Fig. 5. The olious problem with this solution is, aver, that it is not
vertically extensible, ie., if nav subclasses oExpr are added latethis method must bexeended
and recompiled.

To gain more flaibility, the Msitor pattern can bexploited to implemendiff , as shown in Fig. 6.
Here,diff creates an instaneeof the DiffVisitor class, which implements thésitor inter
face deined in Fig. 2, and passes it to #meept method of the x@ressionx. This method in turn
calls the appropriateisit method ofv which performs the actual fifrentiation and stores the re-
sult in an internal ariable ofv.

To remain open for laterertical extensions, the original i$ftor pattern as described in [5, 2] is
combined with thePrototype patterrwhich allovs later replacements of the prototypical visitor in-
stanceproto with an instance of a subclass (cf. Stage 3).

/I Atomic expression.
public abstract class Atom extends Expr {}

/I Variable expression.
public class Var extends Atom {
private String name;
private int val;
protected Var (String n, intv) { name = n; val = v; }
public String name () { return name; }
public int val () { return val; }

public int eval () { return val; }

public void print () { }

public void accept (Visitor v) { v.visit(this); }
}

// Binary expression.
public abstract class Binary extends Expr {
private Expr left, right;
protected Binary (Expr I, Exprr) { left =I; right =r; }
public Expr left () { return left; }
public Expr right () { return right; }

}

/I Addition.
public class Add extends Binary {
protected Add (Expr I, Expr r) { super(l, r); }

public int eval () { return left().eval() + right().eval(); }
public void print () { }
public void accept (Visitor v) { v.visit(this); }

}

/I Subtraction, multiplication, and division.

Figure 3: Abstract and concrete subclass&pif

[Factory]

| DiffVisitor| | Visitor3 |

| Var | |Add| |Sub| |[Mul| |Div| [Neg| |[Factory3| DiffVisitor3

-

Figure 4: Oerall view of the system

public class Diff {
/I Differentiate expression x along variable n.
public static Expr diff (Expr x, String n) {
if (x instanceof Var) { Var v = (Var)x;
/I Constant expressions are represented
Il as variable expressions with empty name.
int ¢ = v.name().equals(n) ? 1 : 0;
return Factory.f.createVar("™, c);
}
if (x instanceof Add) { Add a = (Add)x;
return Factory.f.createAdd(diff(a.left(), n),
diff(a.right(), n));

Figure 5: Direct implementation dfff

public class DiffVisitor implements Visitor, Cloneable {
/I Differentiate expression x along variable n.
public static Expr diff (Expr X, String n) {
DiffVisitor v = null;
try { v = (DiffVisitor)proto.clone(); }
catch (CloneNotSupportedException e) {}
v.name =n;
x.accept(v);
return v.result;

}

/I Prototypical visitor instance.
protected static DiffVisitor proto = new DiffVisitor();

Il Internal variables.
protected String name;
protected Expr result;

/I Visit methods for all concrete subclasses of Expr.
public void visit (Var x) {
int ¢ = x.name().equals(name) ? 1 : O;
result = Factory.f.createVar(", c);
}
public void visit (Add x) {
result = Factory.f.createAdd(diff(x.left(), name),
diff(x.right(), name));

Figure 6: \sitor implementation odiff

Stage 3: Vertical Extension

Adding a n&v subclassNeg (plus an intermediate abstract clésmry) to the «isting class hierargh
is trivial (cf. Fig. 7), &cept for implementing itaccept method. The stereotyped implementation

public void accept (Visitor v) { v.visit(this); }

used in all other concrete subclassesxgr would be erroneous, since thsitor interface —
which has been dieied before the introduction dfeg — does not contain a matchingit method
with a parameter of typeg.

/I Extended visitor interface.

public interface Visitor3 extends Visitor {
void visit (Neg x);

}

/I Extended visitor class.
public class DiffVisitor3 extends DiffVisitor implements Visitor3 {
static { DiffVisitor.proto = new DiffVisitor3(); }
public void visit(Neg x) {
result = Factory3.f.createNeg(diff(x.body(), name));
}
}

/I Extended factory class.

public class Factory3 extends Factory {
public Neg createNeg (Expr b) { return new Neg(b); }
public static Factory3 f = new Factory3();
protected Factory3 () {}

}

/l Unary expression.

public abstract class Unary extends Expr {
private Expr body;
protected Unary (Expr b) { body = b; }
public Expr body () { return body; }

}

/I Negation.
public class Neg extends Unary {
protected Neg (Expr b) { super(b); }

public int eval () { return —body().eval(); }

public void print () { }
public void accept (Visitor v) { ((Visitor3)v).visit(this); }

Figure 7: \értical extension

Thus, it is necessaryrst to extend the originaVisitor interface with a ne Visitor3 Zinterface
containing an appropriate method. (Singisting source code shall not be maelif, theVisitor in-
terface cannot bexéended in place.) Liwise, theDDiffVisitor class is gtended with a ng
DiffVisitor3 class implementing that method for symbolidatiéntiation ofNeg expressions. In
order to achiee that this subclass is actually used bydlie method ofDiffVisitor , its prototyp-
ical instanceproto is set to an instance bBiffVisitor3 during initialization of this class. (If there
were other visitor classes, theould be &tended in the sameay.)

Similarly, theFactory class ddghed in Fig. 2 has to bexeended with a ng Factory3 class pro-
viding an additionatreateNeg method to creatBleg expressions. (Other cageries of &pressions
might be created either with the old or thevrfactory so dient code using the old one need not be
changed.)

After these preparations, it is possible to implementttept method of clasdleg as shan in
Fig. 7, because all visitors will actually be instance¥isifor3

Stage 4: Behavioural Extension

To achieve the behsioural modifcations required in Stage 4, the implementationsvaf for all
unary and binary operators must be replaced lyimplementations. This can be acta@ by intro-
ducing subclasses of alffeted classes with appropriatelyerriddeneval methods (cf. Fig. 8).
To make these gtensions transparent to clients, anothev fectory classFactory4 |, is required
which overrides all fctory methods corresponding to these classes. Furthermore, it is necessary in
that case to “close dm” all old factories and redirect their clients to thevrane to mak wure that
only instances of the meclasses will be created.

Summary

The inal system (cf. Fig. 4) consists of 10 “essential” clasB&pr(and its irst two levds of sub-
classes) and 12 “helper” classes whose sole purpose is to support thessysthutar extensibility.

4. Achieving Extensibility with Dynamic Class M ethods

Simply speakingdynamic class methodse class methods €., “static’ methods in ¥a terminolo-

gy) which can be werridden in other classes (and therefore are actually not “static”). Due to these
properties, thg constitute a generalization of both class and instance methodsyemn'tVietual con-
structors” (i.e., constructors which can beeridden in other classes) can be implemented with them.
Therefore, by strict application of dynamic class methodstdfy and sitor patterns (and probably
some other design patterns, too) become obsolete, because the regxibbéidyflend extensibility

can be achied much more directly and easilfhis will be demonstrated in the folling by re-
implementing the softare system of Sec. 3 with dynamic (class) metfiods.

Stage 1: Basic Class Hierarchy and M ethods

The code ofifjures 9 and 10 implements the same functionality as the ona shdigures 2 and 3.

The instance methodwval andprint of the root clas&xpr , which possess an implicit parameter
this of type Expr , have been replaced by equally named dynamic methodsviegean eplicit
parametex of typeExpr instead, because dynamic methods, just diitic methods, do not possess
an implicit parameteBYy declaring themabstract , itis expressed, similar to abstract instance meth-
ods, that thg are expected to bearridden in other classes.

2To smplify “terminology,” the current stage numb@iis used as a siitk for some names introduced in this stagene¢hough correspond-
ing names with sfifxes 1 and2 do not «ist.
3To amplify the writing, the term “dynamic class methods” will be ablated to “dynamic methods” in the sequel.

/I Modified division.
class Div4 extends Div {
protected Div4 (Expr I, Expr r) { super(l, r); }

public static final int NULL = Integer.MIN_VALUE;

public int eval () {
if (left().eval() == NULL || right().eval() == NULL) return NULL,;
try { return super.eval(); }
catch (ArithmeticException e) { return NULL; }

}
}

/I Modified addition, subtraction, multiplication, and negation.

/I New factory class.
class Factory4 extends Factory3 {
/I New factory methods for all unary and binary ops.
public Div createDiv (Expr |, Expr r) { return new Div4(l, r); }

/Il Adjust old factories which might be used by old client code.
public static Factory4 f = new Factory4();

protected Factory4 () {}

static { Factory.f = Factory3.f =f; }

Figure 8: Behaioural extension

Examples of such redaftions appear in class&ar andAdd, where the qualiéd namegxpr.eval
and Expr.print are used to refer to the methods’ originalimigbns in classExpr . Each such re-
definition completely replaces the pieus deinition of the method, k., aftervards calls of an
client code t&Expr.eval or Expr.print are redirected to the wedefinition. In the body of such a
redefnition, the method previous deinition is available as a parameterless pseudo-method named
dynamic 4 dmilar to the vay super can be used in a subclass to call gerridden method of a su-
perclass. In contrast super calls, havever, a @ll to dynamic does not recee exlicit parameters
because the original parametatues are implicitly passed unchangedefelf the formal parameters
are modifed beforedynamic is called). By that means, a liad list of deihitions (also called
brandhesg is kuilt up for every dynamic method, with the latest ohefion at the head and the initial
definition at the tail.

Because redgfitions normally vant to alter the bek@ur of the method only for a subset of its do-
main while retaining its original behiaur otherwise, theare typically coded as a conditional state-
ment such as:

dynamic int Expr.eval (Expr x) {
if (x instanceof Var) return ((Var)x).val;
else return dynamic(); // Call previous branch.

}

To amplify this frequently occurring pattern, it is possible towmdne conditional statement acting as

% To avoid the introduction of another wekeyword, such agrevious ororiginal , the keyword dynamic is reused for that purpose.

/I General expression.

public abstract class Expr {
public dynamic abstract int eval (Expr X);
public dynamic abstract void print (Expr x);

}

Il Atomic expression.
public abstract class Atom extends Expr {}

/I Variable expression.
public class Var extends Atom {
private String name;
private int val;
protected Var (String n, intv) { name = n; val = v; }
public String name () { return name; }
public int val () { return val; }

/I Dynamic factory method.
public dynamic Var create (String n, int v) {
return new Var(n, v);

}

/I Redefine dynamic methods of class Expr.
dynamic int Expr.eval (Expr x instanceof Var) {
return x.val;

}

dynamic void Expr.print (Expr x instanceof Var) {

Figure 9: Basic class hieraschnd methods (part 1)

a guad outside the method body and omit its stereotyped else-part:

dynamic int Expr.eval (Expr x) if (x instanceof Var) {
return ((Var)x).val;

}

By that means, the guard becomes a part of the method head which can be interpreredasla
tion.

To further simplify the denition of dynamic methods, aexplicit guard as shen abwe might be
turned into anmplicit one by intgrating it into the parameter list, yieldinggaarded paameter dec-
laration:

dynamic int Expr.eval (Expr X instanceof Var) {
return x.val;

}

The same technique orks for all relational and equality operators g.(inti> 0, bool

f ==1false)), but in conjunction withinstanceof it has the additional adwtage that the static
type of the dkcted formal parameter (n the ekample) is automatically cesrted from its formal
type Expr) to its actual dynamic typé&/ér) insidethe method bodythus eliminating the need fox-e
plicit casts there.

/I Binary expression.
public abstract class Binary extends Expr {
private Expr left, right;
protected Binary (Expr |, Exprr) { left=1; right =r; }
public Expr left () { return left; }
public Expr right () { return right; }

}

/I Addition.
public class Add extends Binary {
protected Add (Expr |, Expr r) { super(l, r); }

/I Dynamic factory method.
public dynamic Add create (Expr |, Exprr) {
return new Add(l,);

}

/I Redefine dynamic methods of class Expr.
dynamic int Expr.eval (Expr x instanceof Add) {
return Expr.eval(x.left()) + Expr.eval(x.right());

}
dynamic void Expr.print (Expr x instanceof Add) {

Figure 10: Basic class hieragcnd methods (part 2)

Note that this is quite ddrent from directly using the latter type as the formal parameter type,

which would yield a diferent method signature:

dynamic int Expr.eval (Var x) {
return x.val;

}

Since there is no dynamic method with the signatuesal(Var) in classExpr , such a declara-
tion would actually be erroneous.

In addition to appropriate redeitions of the dynamic method&pr.eval andExpr.print , every
concrete subclass dixpr defines its evn dynamic methodcreate (e.g., Var.create and
Add.create) acting as an eerrideable &ctory method (ie., avirtual constructo), thus eliminating
the need fordra factory classesyen though no reddfitions will actually be required in the folle

ing.
Stage 2: Horizontal Extension

A key alvantage of dynamic methods is tlaetfthat horizontal»@ensions of a system can be imple-
mented directly and easjlwithout needing to empjothe Msitor pattern, by means of additional dy-
namic methods which arein contrast to static methodsby nature \ertically extensible, too.

10

Thus, &en though the implementation of symbolic fdifentiation as a dynamic methaiff
shavn in Fig. 11 contains basically the same code as the equally named static method of Fig. 5, it can
be easily rtended to ne categories of &pressions without being moddifl (cf. Stage 3).

public class Diff {
/I Differentiate expression x along variable n.
public dynamic Expr diff (Expr x, String n) {
if (x instanceof Var) { Var v = (Var)x;
int ¢ = v.name().equals(n) ? 1: 0;
return Var.create(™, c);
}
if (x instanceof Add) { Add a = (Add)x;
return Add.create(diff(a.left(), n), diff(a.right(), n));

Figure 11: Horizontahdension

Alternatively, diff might be implemented by separate branches of a dynamic method for all concrete
subclasses of clagxpr (cf. Fig. 12). D ensure a uniform syntax, redgfions of a dynamic method

must alvays use a qualiéd method name such BSf.diff , even if they appear in the same class

as the original défition.

public class Diff {

/I Differentiate expression x along variable n.

public dynamic Expr diff (Expr x instanceof Var, String n) {
int ¢ = x.name().equals(n) ? 1: 0;
return Var.create("", c);

}

dynamic Expr Diff.diff (Expr x instanceof Add, String n) {
return Add.create(diff(a.left(), n), diff(a.right(), n));

Figure 12: Alternatie implementation odliff

Stage 3: Vertical Extension

The code of Fig. 13, which implementsaetly the same functionality as that of Fig. 7, is another im-
pressie cemonstration of the flébility provided by dynamic methods. Instead ofidigfg an etend-
edVisitor3 interface and anxtendedDiffVisitor3 class to rtend the implementation offf

to the n&v Neg class, the dynamidiff method introduced in Stage 2 is simpktended by an addi-
tional branch which is naturally irgeated into the e class. As this xample shwis, a dynamic

11

Il Unary expression.

public abstract class Unary extends Expr {
private Expr body;
protected Unary (Expr b) { body = b; }
public Expr body () { return body; }

}

/I Negation.
public class Neg extends Unary {
protected Neg (Expr b) { super(b); }
public dynamic Neg create (Expr b) { return new Neg(b); }

dynamic int Expr.eval (Expr x instanceof Neg) {
return —Expr.eval(x.body());
}

dynamic void Expr.print (Expr x instanceof Neg) {

dynamic Expr Diff.diff (Expr x instanceof Neg, String n) {
return Neg.create(Diff.diff(x.body(), n));

}
}

Figure 13: értical extension

method might be redigfed inany class where it is accessible, not just in subclasses of the class con-
taining the original déition.

However, to actually enablesuch an additional branch of a dynamic method, the class containing its
definition must be loaded anditialized at runtime. In the presenkample, this happens naturally
and automatically when an instance of cldsg is created. (If no such instance isecreated, the
additional branch is not needed.)

Stage 4: Behavioural Extension

Finally, retroactve kehavioural modifcations of a system, which usually require consideralfbet ef

they are possible at all without modifyingsting code, can be done in a minute with dynamic meth-
ods, as shen in Fig. 14. (Agin, it is necessary that the class containing additional branches of dy-
namic methods gets initialized; in thisaenple, this might be achied, e.g., by creating a dummy in-
stance of it.)

This example demonstrates that the guards of a dynamic method are not restricted to dynamic type
tests, it might test ay property of their aguments (or wen properties of their anronment such as
values of static ariables). By that means, dynamic dispatching of method calls is not restricted to the
dynamic type ofone (implicit) argument, as with instance methods} lban be based on arbitrary
properties ofall aguments. This isven a generalization of multi-methods [14, 3, 1].

Furthermore, in contrast to Fig. 8, wheireefnew classes with almost identical redgfions of
eval had to be défied, only tvo redefnitions — one for unary and another one for binary operators —
are needed with dynamic methods.

12

public class NullExpr {
public static final int NULL = Integer.MIN_VALUE;

dynamic int Expr.eval (Expr x instanceof Unary)
if (Expr.eval(x.body()) == NULL) {
return NULL;

}

dynamic int Expr.eval (Expr x instanceof Binary) {
if (Expr.eval(x.left()) == NULL
|| Expr.eval(x.right()) == NULL) return NULL,;
try { return dynamic(); }
catch (ArithmeticException e) { return NULL; }

Figure 14: Behaoural extension

Summary

Even though thexample presented in the preus sections is rather simple and small, theaathges
of using dynamic methods are quitevius: The code becomes sigodintly shorter and less com-
plex, since no arti€ial helper classes lddactory andVisitor are needed. Furthermoretending

a g/stem by dehing additional branches of dynamic methods is straightdohand simple, whilexe
tensions based on design patterns aveys somevhat tricky and less ohbious.

5. Details of Dynamic Methods

To complement the rather informal description of dynamic methods presentagl[5g.f15 shavs in
boldface the etensions to the ¥a gammar which hae keen introduced to intgate the concept into
the language.
To gmplify the grammarthe nev keyword dynamic is included into the list of other method modi-
fiers (line 1), wen though it is incompatible witktatic , final , and native . Furthermore, a quali-
fied method name containing one or more dots (line 2) as wetplsiteand implicit guards (lines 3
and 4, respeatély) are allaved for dynamic methods onllikewise, usage of theegword dynamic
as a pseudo-method name in a primagression (line 5) is restricted to bodies of dynamic methods.
To declare thanitial branch of a dynamic method, a normal ungieifmethod name is used; to
declaresubsequenbranches of the same method, its name is dglify the name of the class con-
taining the initial branch (which might itself be a quatifname), en if such branches are deéd in
the same class. Justdikormal method declarations, declarations of initial branches must be unique
within a class; on the other hand, it is aléa to declare multiple subsequent branches of the same dy-
namic method within the same class. Subsequent branches of a dynamic method must nairthro
exceptions than its initial branch, justdilen instance methodverriding a method of a superclass
must not thrav more exceptions than the original method.
For the declaration of an initial branch, the access resdipublic , protected , none, andri-
vate determine both the accessibility of the dynamic method to clients and their abilitgritiole it.
Therefore, prate dynamic methods are nadry useful in practice, becausettvannot be eerridden
in other classes. The access miedibf a subsequent branch is ignored if present, because such a
branch cannot be called directly by a client.
The body of an initial branch of a dynamic method might be omittédafmethod is declaresb-
stract and does not possessyaxplicit or implicit guards. This is equalent to a declaration with

13

MethodDeclaration:
{ " public" | "protected" | "private"

| " static" | "dynami c" | " abstract" | "final" 11
| " native" | "synchronized" | "strictfp" }

ResultType <IDENTIFIER> { "." <IDENTIFIER> } 2
"(" [FormalParameter { "," FormalParameter() }])"

{ " [""]" }["throws" NameList]

{ "if" "(" Expression ")" } (Block|"") 13

FormalParameter:
[" final"] Type VariableDeclaratorld

[("=="] "!=") InstanceO Expression 14
| "instanceof" Type Ia
| ("<" | ">" | "<=" | ">=") ShiftExpression] 4
PrimaryPrefix: “dynamc" "(" ")" | I 5

Figure 15: Extensions to thevdagammar

the unsatiséd guardif(false) and an empty bodyThus, abstract dynamic methods are not re-
stricted to abstract classes.)

6. Transformation to Java

The basic idea of transforming sourded containing dynamic method declarations to puva dade
is rather simple (cf. Fig. 16 for an illustration):

1. a) Theinitial branch of a dynamic method, which is distinguished from subsequent branches by
the fact that its method name is not quaelif by a class name, is a@ned to aninstance
method(depicted by an ellipse) of a nested helper class (depicted as a rectangle).

b) A single instance of this class (graphically gest with the ellipse depicting the instance
method) is stored in a statrariable (depicted as a little square) of the surrounding class.

c) Finally, a static methoddepicted as a circle) with the same signature and accessanagif
the dynamic method is generated, which calls theamstance method via thissiable. This
method constitutes the client int&ck to the dynamic method.

2. a) A subsequent lanch of a dynamic method, which is distinguished from the initial branch by
the fact that its method name is quiif by the name of the class containing the declaration of
the initial branch, is also ceerted to aninstance methodf a nested helper class which is de-
clared as asubclassof the initial brancts helper class. Thus, this instance methedriides
the instance method described eo

b) A single instance of the helper classinied here is assigned to thariable mentioned in
Step 1b, while thatariables previous \alue is saed in a gatic variable of the current class,
i. e.,the class containing the declaration of the subsequent branch.

By overriding the \alue of the ariable mentioned in Step 1b, thigriable will aivays refer to an ob-
ject whose instance method representdasigbranch of the dynamic method. Thus, the static method
described in Step 1c constituting the client irstegf of the dynamic method willvedys invoke tis
last branch.

By storing the ariables previous \alue in anotherariable, the instance method corresponding to a
particular branch is able to call the yiceus branch (pseudo-methdghamic) via the latter

14

class containing
initial branch

class containing
subsequent branch

class containing
subsequent branch

helper
class

helper
class

instance
(method

Figure 16: lllustration of the transformation process

/—4

In addition to these basic transformations, the bodies of the instance methods mentivaegleabo
modified as follovs:

» Explicit and implicit guards are transformed to correspondiognditional statementahose then-
part is the original method body and whose else-part calls thepsebranch. (Since the initial
branch does not possess avjas branch, it thnes anincompleteDynamicClassMethodEx-
ception instead.)

* |f necessarybackup copies of the methedormal parameters are created at thgiréng in order
to be able to pass tleiginal parameter &lues to calls of the primus branch.

* Calls to the pseudo-methaginamic are replaced with normal method calls, as describedeabo

7. Transfor mation Details

Having explained the basic idea of the precompslexbrk in the preious section, the transformation
process is described in more detail in the present section.

7.1 Initial Branch of a Dynamic Method

The initial branch of a dynamic method is distinguished from subsequent branchesdny thatfits
method name is not quaéfl by a class name. Such a methodhitedn is transformed as foles (cf.
Fig. 17 shwing the beautiéd result of transforming clagspr shavn in Fig. 9):

1. Aprivate static helper class is generated which contains a public instance method possasising e
ly the same signature @., name, parameters, return type, axaeptions) and body as the dynam-
ic method. If the dynamic method is declasgettfp , this method will be too.

Since a class might containvesl dynamic methods, unique names suctlyaamic$l , dynam-
ic$2 , etc. are chosen for these helper classes. Furthermore, each such helpecefasheifst

15

public abstract class Expr {
I Transformation of:
/I public dynamic abstract int eval (Expr X);
private static class dynamic$1 { 11
public int eval (Expr X) {
Il Abstract initial branch always throws this exception.
throw new IncompleteDynamicClassMethodException(
Expr.class, "eval", new Class [] { Expr.class }

);

}
}
private static dynamic dynamic$1 = new dynamic(); 12
public static int eval (Expr x) { 13

return dynamic$1.eval(x);

public static dynamic eval (Expr x, dynamic $) { 14
try { return dynamic$1; }
finally { dynamic$1 = $; }

}

I Transformation of:
/I public dynamic abstract void print (Expr x);
private static class dynamic$2 extends dynamic$1 { 11
public void print (Expr x) {
throw new IncompleteDynamicClassMethodException(
Expr.class, "print", new Class [] { Expr.class }

);

...... /I Analogous to steps 2, 3, and 4 of "eval'.

Il At the end of the enclosing class.
public static class dynamic extends dynamic$2 {}

Figure 17: Tansformation of clasExpr (cf. Fig. 9)

is defned as a subclass of the yimus one and, at the end of the enclosing classitief, a pub-

lic static class calledynamic ®is defned as a subclass of the last helper class. The feet ef

these dehitions is that the nested claggnamic contains corresponding instance methodnilef

tions for all initial branches of dynamic methodsinled in the enclosing class.

This incremental construction of the clalypamic has the adantage that the precompiler has to
perform local source code transformations only and need not rearrange source code, which on the
one hand simpliés its implementation and on the other hand ensures that line numbers of its out-
put match those of its input (if the output is unbeadifi.e., does not contain additional line
breaks). The latter property is important to localize errors reported by the postaiavrdailer.

2. Aprivate static ariable of typedynamic is defned which is initialized with a meinstance of that
type. These ariables possess the same unique names as the helper classes mentiened abo

5 Note thatdynamic is a keyword in the &tended language “Ja dus dynamic class methotbut not in Jaa itself.

16

3. A static method possessing the same signature and accesemasdthe dynamic method is de-
fined which calls the corresponding instance method via the just mentenegoles and returns its
result if appropriate. This method constitutes the client exterfo the dynamic method.

As long as no other branches of the dynamic method aneedefcalling this static method is
equialent to executing the body of the dynamic methodidgion.
If the dynamic method is declarsghchronized , this method will be too.

4. Anotherstatic method possessing the same name, accessemadifi parameters as the the dy-
namic method plus an additional parameter and a result ofiiyiaenic is defned. When called,
this method returns the currerdlwe of the griable mentioned in Step 2 and replaces it with the
value of its last parametefhe other parameteaiues are ignored and are necessary only to distin-
guish possibly werloaded variants of this method resulting from correspondinglgrioaded wari-
ants of dynamic methods.

This method is called when the dynamic methodvisr@den in another (or the same) class (cf.
Sec. 7.2, Step 2).

It should be noted that it is not possible to encode the informatieidpabby the types of the ignored
parameters into the name of the methodnéelf in Step 4, a., eval$Expr with a single parameter
of typedynamic instead ofeval with an additional dummy parameter of typer , since the same
type might be used with dérent names, @., Expr andexpr.Expr if Expr is defned in a package
namedexpr . Without consulting other source or claied, the precompiler is generally not able to
detect such syngms.

For the same reason, it is not possible in Step 1 to omit the nestedyciasic and instead to de-
fine a separate public helper class foery dynamic method whose name is dedi from the
methods sgnature, gen though this wuld be simpler and more natural iastf sight.

The body of the method described in Step val®modified as follavs:

« If the dynamic method contains one or moxplieit guards, these are w@l into the method’
body as (possibly nested) conditional statements whose then-part is the original body and whose
else-part threws an IncompleteDynamicClassMethodException (which is deined as an
unchecled ception) receiing the enclosing class, the mettodame, and its parameter types as
constructor ayjuments.
Similarly, calls to the pseudo-methatynamic() are replaced by corresponditigow expres-
sions, because there is novpoais branch for the initial branch of a dynamic method.
Finally, if the dynamic method is declarabistract (and thus does not possess a body), a body
throwing the samexaeption is added.

* |f the dynamic method contains guarded parameter declarations, these are transformeadntequi
explicit guards which are in turn transformed to conditional statements as descrilded abo
As a special case, a guarded parameter declaration with a dynamic type test,Byxhims
stanceofVar , is ransformed to a conditional statement plus a redeclaration of the parameter
with its dynamic type (cf. Sec. 7.2 for axaenple).

7.2 Subsequent Branches of a Dynamic Method

Subsequent branches of a dynamic method are distinguished from the initial branchduy that f
their method name is quaéfl by the name of the claS<ontaining the initial branch. Such a method
definition is transformed as foles (cf. Fig. 18 shwing the result of transforming the clagar
shown in Fig. 9):

1. Similarto Sec. 7.1, a prate static helper class is generated which contains a public instance
method possessing the same signature and body as the dynamic methptfar the method
name which becomes unquedd. Again, if the dynamic method is declarstictfp , this
method will be too.

17

18

public class Var extends Atom {

I Transformation of:
{// dynamic int Expr.eval (Expr x instanceof Var) {
/[l return x.val;
'}
private static class dynamic$1 extends Expr.dynamic { 11
public int eval (Expr $1) {
if ($1 instanceof Var) { Var x = (Var)$1;
return x.val;
} e Ise return dynamic$1.eval($1);

}
}

private static Expr.dynamic dynamic$1 2
= Expr.eval((Expr)null, new dynamic$1());

private interface dynamic$1i { I3

int eval (Expr x) throws Exception;

}

private static class dynamic$1c extends Expr.dynamic Ia
implements dynamic$1i {}

/I Above class will be rejected by the Java compiler

Il'if class Expr does not define a matching dynamic method.

...... /I Analogous for “print'.

Figure 18: Tansformation of clasgar (cf. Fig. 9)

In contrast to Sec. 7.1, the helper classes generateddpatresindependent of each other and in-
dependent of the helper classes generated for initial branches of dynamic methods of the surround-
ing class.

Instead, each such helper class isngef as a subclass of the nested dladgnamic , whereCis

the class containing the initial branch of the dynamic method, as described Bypthat means,

the instance method mentioned aboverides the corresponding method of the clastynam-

ic .

. A private static ariable of typeC.dynamic is defned which is initialized by a call to the method

described in Step 4 of Sec. 7.1.

The (qualifed) name and the parameter types of this methodaelye those of the dynamic
method plus an additional parameter of tyhbdynamic . Since all parameteralues &cept the
last are ignored by that method, arbitrary dumrajues might be passed for them. This can be
achieved by passing, eg., false for boolean parameters for all numeric types including
char , and null for all other types. @ avoid potential ambiguities in the presence wértpaded
methods, haever, these alues are cast to theart parameter typesvgh in the dynamic method
declaration.

For the last parametean instance of the helper class mentioned in Step 1 is passed. By that means,
the \ariable described in Step 2 of Sec. 7.1 is set to this instance, whilevitsuprealue is as-
signed to the ariable described alie. Consequentlycalling the dynamic method @., the static
method of clas€ described in Step 3 of Sec. 7.1) iswequivalent to eecuting the body of the
branch dehed here.

The body of the instance method described in Step vedbondified as follavs:

 If the dynamic method contains one or moxplieit guards, these are @g moved into the
methods body as conditional statements whose then-part is the original body and whose else-part
invokes the previous branch of the dynamic method, which is accessible viaattigble mentioned
in Step 2 abee.
In the same @y, calls to the pseudo-methatynamic() are replaced by calls to the pi@us
branch.

» Since the preious branch shall be called with the original parameaéres, gen if the formal pa-
rameters hae been modied, backup copies of all ndimal parameters are declared and initial-
ized at the gry beinning of the method bodyince parameteralues might een be changed by
the evaluation of a guard, the creation of the backup copies cannot bedrmside the then-part of
the conditional statements mentioned before.

» Guarded parameter declarations, in particular those containing dynamic type tests, are transformed
in the same @y as for initial branches (cf. Sec. 7.1).

The transformation rules described so &re sufcient to transform syntactically and semantically
correct dynamic method declarations tgdeJava code. Unfortunatelyhoweve, they also transform
some semantically erroneous declarations gd légava code, as the follwing example shws. If the
dynamic methodexpr.eval in classVar would be deihed as follavs:

Il Error:

/I Class "Expr’ does not define a dynamic method “eval(Var)'.
/" (Var x)" should be “(Expr x instanceof Var)'.

dynamic int Expr.eval (Var x) { }

it would be transformed to the folling legd Java code:

private static class dynamic$l extends Expr.dynamic { 11
/I This method does not override "Expr.dynamic.eval(Expr)’,
/I but defines an overloaded variant of “eval'.
public int eval (Var x) { }

}

private static Expr.dynamic dynamic$1 2
= Expr.eval((Var)null, new dynamic$1());
/I This actually calls "Expr.eval(Expr, Expr.dynamic)'.

Since clasd/ar is a subclass dExpr , the call toExpr.eval with a first agument of typé/ar in-

stead ofExpr is semantically correct. But sinclynamic$1.eval(Var) does not werride Expr.
dynamic.eval(Expr) , but rather dehes an werloaded ariant ofeval , the former will be actually
never called.

In order to leep the precompiler as simple as possible, and in particular woialio do its source
code transformation without consultingyasther source or clasgd, it is impossible to catch such-er
rors by the precompiletnstead, it must generate some additioned dade that will cause the poste-
rior Java compiler to report an error in that case. Therefore, the numbered lis¢ @bantinued as
follows (cf. Fig. 18):

3. A private nested intedice declaring the same method as the helper class mentioned in Step 1 is
generated.
The only diference is thedkct, that the method declared here mightwheny exception.

4. Asecond priate static helper class is dedd which &tends the clas8.dynamic , implements the
interface just mentioned, and has an empty body

19

Since the body of this class is emptye method declared in the intcé must match one of the
methods defied in the clas<C.dynamic , i.e, one of the dynamic methods initially ofefd in
classC. Otherwise, the Ja compiler will reject the second helper class as notlifalj its claim to
implement the intedfice mentioned in Step 3.

Since the method in clagsdynamic (i. e., the initial branch of the dynamic method) is aiéal to
throv more eceptions than the branch tefd here, and the precompiler cannotwrits exact
throw clause, the method declared in the irsteef is alloved to throv any exception. Otherwise, if
the thrav clause of the branc’definition would be used, the Ja cmpiler would report an unde-
sired error if the branch de&d here thras faver exceptions than the initial branch.

The rule that it must not thnomore eceptions than the initial branch isvegheless enforced by
the Jaa compiler because the method described in Step teatweerides the corresponding method
of classC.dynamic and thus must olyehis rule.

8. Discussion

Dynamic methods are at the same time wastul and a dangerous\dee. When used properlthey
offer unique possibilities toxéend and retroacttly modify software systems, as has been illustrated
in Sec. 4. On the other hand, when used inappropridtely make it quite easy to cause Viac by
overiding dynamic methods in a completely nonsensica. Vo limit the chances of accidental or
deliberate abse of the concept, it might be an interesting task tgrate it with the Ja Security
Framavork [6].

At first glance, a potential weakness of the concept isatttetat the order of a dynamic method’
branches is determined by the order in which the classes containing them get initialized at run time.
For mary practical applications, heever, especially when dynamic methods are just used ik
stance methods which argeridden in subclasses, the natural “superclass before subclasses” initial-
ization order prescribed by thevaaLanguage Spedifation [7] is eactly what an application needs.
Furthermore, if dilerent additional branches are used to adthogonal etensionsto a dynamic
method, their precise order is usually irvgle. So the only remaining critical scenario is a combina-
tion of different behaioural modifcationsof a method which influence each otHarsuch a case, the
programmer composing these matifions into a single application shoulkpkcitly enforce the se-
mantically correct initialization ordgee. g., by creating dummy instances of the classes or by calling
Class.forName in the desired order

Ideas to support aims similar to those of dynamic methods can be foundyirdiffierent areas. ¢f
instance, the concepts of open classes, multi-methods, before- anmhetfieds, and methods spe-
cialized to indvidual instances, found in @i&#rent combinations, g., in MultiJava [1], CLOS [14],
and Dylan [3], dier mary of the possibilities of dynamic methods. The latteweve, provide addi-
tional flexibility by allowing dispatch stragges that are based on arbitrary properties of thgi-ar
ments, not just their dynamic types (cf. Fig. 14). Furthermmen properties of the “erironment;
such as a&lues of static ariables, user preferences read from an applicatmmfiguration fle, etc.,
can be incorporated into the dispatch process if appropriate. Ficwaitplete redenitions of meth-
ods, eg., erroneous or incomplete library methods, are possible, if the concept is applied consistently
i. e.,if methods are alays defneddynamic (cf. Fig. 14).

At first glance, dynamic methods appear to be just a syntactation of methods witlpredicate
dispatding [4], but when taking a closer look,\aeal differences become wious: First of all, while
logical implications between the predicates of a method are usedne defaerriding relationship
in predicate dispatching, no attempt is made to determine such a relationship between the guards asso-
ciated with the branches of a dynamic method. The main reason for this decisiorad thatfarbi-
trary Boolean gpressions of the host languagesrethough permitted in predicate dispatching, can in
principle not be compared with respect to logical implication, leading to an actually incomplete algo-
rithm in [4]. The second important reason for preferring a simple linear order of branches diiat is b

20

up dynamically to a statically deéd partial order of methods is the inability of the latter to support
retroactve kehavioural extensions and moddations, ie., the third dimension oixeensibility men-
tioned in Sec. 2. lcome side éécts of this decision are much simpler semantics and implementa-
tion of the concept. In particulano separate notion of predicatamessions and predicate abstrac-
tions is needed since arbitrarwdaxpressions of typboolean can be used as guards, while normal
(or even dynamic) methods can be used to encapsulate them.

In the terminology of aspect-oriented programmin@), in particular that of AspectJ [11], dynamic
methods preide the same functionality aster-type method declations (to perform horizontal»e
tensions of classes) and (before, afad around)advicewith pointcut designatarof typecall or
execution (to perform behaoural extensions of methods). Thus, AspectJ igiobsly more &pres-
sive & it offers additional pointcut designators as well as other kinds oftygerdeclarations. On the
other hand, restricting pointcuts to method calls harmonizes well with the principle of information
hiding [12] where only the signatures and (formal enbal) specitations of methods are kwa out-
side a class, while emplimg other kinds of pointcuts usually requires detailedatadge of method
implementations.

While the atensions defied by aspects areowen into the source or byte code of aflesfted class-
es by the AspectJ compiler producing augmented alass[11], dynamic methods do not change at
all the code of the system that shall b¢eaded. By dynamically loading (and initializing) classes
containing branches of dynamic methods, itvvengossible to add webranches of dynamic methods
at run time. Furthermore, in contrast to aspect-oriented languages, the concept requiresgordy mar
language ®ensions; to the contrgrwhen dynamic methods are introduced into an object-oriented
language, static and instance methods might bevthout in principle, actually yielding a simpler
language.

The nev programming languageifior, in whose deelopment the author is wlved, prwides con-

cepts calledqualifying typesand bracke routines[10] which are quite similar to dynamic methods.

An essential dference, hwever, is the fact that the xdensions or modifations implemented by

braclet routines are applied only if an object xpleitly associated with an instance of a qualifying

type, while the ®tensions or modifations implemented by additional branches of a dynamic method

are applied automatically as soon as the class containing these branches gets initialized. The latter is
especially helpful to cope with uxgected behadoural extensions or modifations.

Acknowledgement

Many thanks are due to §lfgang Doll for implementing the Ja precompiler

References

[1] C. Clifton, G. T. Leavens, C. Chambers,. Millstein: “MultiJavac Modular Open Classes and
Symmetric Multiple Dispatch for ¥a.” In: Proc. 2000 £M SIGPLAN Confon Object-Oriented
Programming Systems, Languges and Applications (OOPSLA '00jMinneapolis, MN, October
2000).ACM SGPLAN Notices35 (10) October 2000, 13045.

[2] J.W. Cooper:Java Design Btterns: A Ttorial. Addison-Wésley/, Boston, 2000.

[3] I. D. Craig:Programming in Dylan SpringerVerlag, London, 1997.

[4] M. Ernst, C. Kaplan, C. Chambers: “Predicate Dispatching: Ai&thifheory of Dispatch.” In:
E. Jul (ed.)ECOOP’98—O0bject-Oriented Psgramming(12th European Conference; Brussels, Bel-

gium, July 1998; Proceedings). Lecture Notes in Computer Science 1445, Spariggr Berlin,
1998, 186-211.

21

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissidassign Rtterns. Elements of Reusable Object-Ori-
ented Softwa: Addison-Wsle/, Reading, MA, 1995.

[6] L. Gong:Inside Ava 2 Platform SecurityAddison-Wsley, Reading, MA, 1999.

[7] J. Gosling, B. Jg, G. Steele:The &va Languge $eciication. Addison-Wsle/, Reading, MA,
1996.

[8] C.Heinlein:Vertical, Horizontal, and Behavioat Extensibility of Softwar S/stemsNr. 2003-06,
Ulmer Informatik-Berichte, &kultat fir Informatik, Uniersitat Ulm, July 2003.
http://www.informatik.uni-ulm.de/pw/berichte

[9] C. Heinlein: “Dynamic Class Methods in\@&’ In: D. Rombach (ed.)Net.ObjectDays 2003.
Tagungsband(Erfurt, Germaw, September 2003). tranSIT GmbH, lImenau, 2003, ISBN 3-9808628-
2-8.

[10] J.L. Keedy G. Menger C. Heinlein, F Henslens: “Qualifying pes Illustrated by Synchroniza-
tion Examples.” In: M. Aksit, M. Mezini, R. Unland (edsQbjects, Components, ditectures, Ser
vices, and Applications for a Netwerk Vrld (Int. Conf. NetObjectDays, NODe 2002; Erfurt, Ger
mary, October 2002; Rased Rpers). Lecture Notes in Computer Science 2591, Sprivaytag,
Berlin, 2003, 336-344.

[11] G.Kiczales, E. Hilsdale, J. Hugunin, Meksten, J. &8lm, W. G. Griswold: “An Overview of As-
pectd.” In: J. Lindstav Knudsen (ed.)ECOOP 200+-Object-Oriented Psgramming(15th European
Conference; Budapest, Huarg, June 2001; Proceedings). Lecture Notes in Computer Science 2072,
SpringerVerlag, Berlin, 2001, 327353.

[12] D.L. Parnas: “On the Criteria to Be Used in Decomposing Systems into ModGlesunica-
tions of the £M 15 (12) December 1972, 105B8658.

[13] O. Spinczyk, A. Gal, WSchroderPreikschat: “AspectC++: An Aspect-Oriented Extension to
the C++ Programming Language.” In: J. Noble, J. Potter (¢t1®g: 40th Int. Confon Technolagy of
Object-Oriented Languges and Systems QOLS Rcific) (Sydneg, Australia, February 2002),
53-60.

[14] P H. Winston, B. K. PHorn: LISP (Third Edition). Addison-Wsle/, Reading, MA, 1989.

22

