
Dynamic Class Methods in Jav a1

Christian Heinlein

Dept. of Computer Structures, University of Ulm, Germany
heinlein@informatik.uni−ulm.de

Abstract

The concept ofdynamic class methodsin Java, constituting a specialization of a general new pro-
gramming language concept calleddynamic routines, is introduced and applied to a simple case study.
Its advantages over standard object-oriented programming techniques including design patterns are
demonstrated. Furthermore, an implementation of dynamic class methods as a precompiler-based lan-
guage extension to Java is described.

1. Introduction

Similar to aspectsin AOP [11, 13],dynamic routinesare a general new concept to make program-
ming languages more flexible and to support extensibility of software systems along various dimen-
sions beyond the capabilities of object-oriented solutions [8].Dynamic class methodspresented in this
paper, are a specialization, adaptation, and integration of this general concept into the programming
language Java [7]. To demonstrate their usefulness, a simple case study is presented in Sec. 2, whose
implementation with standard object-oriented programming techniques including design patterns
[5, 2] (Sec. 3) is contrasted with a functionally equivalent, but significantly shorter and less complex
implementation based on dynamic class methods (Sec. 4).

To complement the rather informal introduction of dynamic class methods there, Sec. 5 provides a
more detailed description of the concept and its integration into the Java language, while sections 6
and 7 explain the basic idea and the accompanying details, respectively, of transforming classes con-
taining dynamic class methods to pure Java code by means of a simple precompiler. Finally, Sec. 8
concludes the paper with a discussion of the concept itself and of related work.

2. A Simple Case Study

In the following, the evolution of a simple software package for the management of arithmetic expres-
sions is described. In every stage of the development, none of the source code produced in previous
stages shall be modified or recompiled, either because it might be simply not available or to strictly
apply the principle ofmodular extensibility. Furthermore, while developing the code of the current
stage, the requirements of subsequent stages might not be known. Therefore, appropriate techniques
have to be employed from the very beginning to support a maximum of flexibility and extensibility of
the system.

1. Develop a class hierarchy for the representation of arithmetic expressions consisting ofvariables
(with a name and an integer value) andbinary operators for the four basic arithmetic operations.
Implement methods toevaluate a giv en expression, i.e., determine its value, and toprint an ex-
pression on the standard output stream.

1 This is an extended version of [9].

1

2. Addmethods for thesymbolic differentiationof expressions.
According to Fig. 1, which depicts the evolution of the system through the various stages by listing
the supported categories of expressions on the vertical axis and the operations applicable to them
on the horizontal axis, this kind of extension is called ahorizontal extension.

3. Adda new category of expressions to representnegation, i. e., application of the unary minus oper-
ator.
According to Fig. 1, this kind of extension is called avertical extension.

4. Modify the behaviour of the evaluation method for divisions in such a way, that it catches the
ArithmeticException arising from a division by zero and returns a specialnull value in that
case (which might be represented, for instance, by the smallest available integer value).
Also modify the behaviour of the other evaluation methods to return that null value if one of their
operands is equal to it.
This kind of extension, whose proper visualization would actually require a third dimension added
to Fig. 1, is called abehavioural extensionor modification.

eval print diff

stage 1stage 1 stage 2

stage 3

stage 4

Var

Add

Sub

Mul

Div

Neg

Figure 1: Evolution of the system

3. Achieving Extensibility with Design Patterns

In the following, design patterns [5, 2] will be employed to achieve the aims described in the previous
section. Afterwards (Sec. 4), a new language concept calleddynamic class methodswill be employed
to achieve the same aims much more easily and directly.

Stage 1: Basic Class Hierarchy and Methods

Figures 2 and 3 show the code written in Stage 1 to support evaluation and printing of variables and
the four basic arithmetic operations.

To prepare the system for later horizontal extensions, theVisitor patternis employed from the be-
ginning by defining aVisitor interface declaringvisit methods for all concrete subclasses of the
abstract classExpr constituting the root of the expression class hierarchy (cf. Fig. 2). Furthermore, a
simple kind ofFactory patternis employed by defining aFactory class providing factory methods
for all concrete subclasses ofExpr as well as a singleton instance of itself. By replacing this factory
object with an instance of a factory subclass whose methods create instances of subclasses of the orig-
inal classes, later behavioural modifications of expressions become possible.

The classes shown in Fig. 3 are abstract and concrete subclasses ofExpr representing different cat-
egories of expressions such as variable expressions (Var) or additions (Add). Classes which possess
private data fields (e.g., Var) provide a protected constructor to initialize them and public methods for

2

public abstract class Expr {
public abstract int eval (); // Evaluate.
public abstract void print (); // Print.
public abstract void accept (Visitor v); // Visit.

}

public interface Visitor {
// Visit methods for all concrete subclasses of Expr.
void visit (Var x);
void visit (Add x);
......

}

public class Factory {
// Factory methods for all concrete subclasses of Expr.
public Var createVar (String n, int v) { return new Var(n, v); }
public Add createAdd (Expr l, Expr r) { return new Add(l, r); }
......

// Singleton factory instance.
public static Factory f = new Factory();
protected Factory () {}

}

Figure 2: Root classExpr and pattern typesVisitor andFactory

reading them (e.g., name andval). If the Factory class belongs to the same package as these class-
es, its methods are allowed to call the protected constructors, while client code residing in different
packages is forced to use the factory methods to create instances of expressions, e.g., Facto-
ry.f.createVar("x", 5) to create a new variable expression.

To simplify the overall view, Fig. 4 depicts all classes and interfaces developed in this and subsequent
stages (using the same grayscales as in Fig. 1) and their basic relationships to each other.

Stage 2: Horizontal Extension

Since the classes developed in Stage 1 shall not be modified, the new methods for symbolic differenti-
ation of expressions cannot be added as instance methods like eval andprint to Expr and its sub-
classes.

For a rather straightforward solution,diff could be implemented as a single static method of a
new classDiff , as shown in Fig. 5. The obvious problem with this solution is, however, that it is not
vertically extensible, i.e., if new subclasses ofExpr are added later, this method must be extended
and recompiled.

To gain more flexibility , the Visitor pattern can be exploited to implementdiff , as shown in Fig. 6.
Here,diff creates an instancev of theDiffVisitor class, which implements theVisitor inter-
face defined in Fig. 2, and passes it to theaccept method of the expressionx . This method in turn
calls the appropriatevisit method ofv which performs the actual differentiation and stores the re-
sult in an internal variable ofv .

To remain open for later vertical extensions, the original Visitor pattern as described in [5, 2] is
combined with thePrototype patternwhich allows later replacements of the prototypical visitor in-
stanceproto with an instance of a subclass (cf. Stage 3).

3

// Atomic expression.
public abstract class Atom extends Expr {}

// Variable expression.
public class Var extends Atom {

private String name;
private int val;
protected Var (String n, int v) { name = n; val = v; }
public String name () { return name; }
public int val () { return val; }

public int eval () { return val; }
public void print () { }
public void accept (Visitor v) { v.visit(this); }

}

// Binary expression.
public abstract class Binary extends Expr {

private Expr left, right;
protected Binary (Expr l, Expr r) { left = l; right = r; }
public Expr left () { return left; }
public Expr right () { return right; }

}

// Addition.
public class Add extends Binary {

protected Add (Expr l, Expr r) { super(l, r); }

public int eval () { return left().eval() + right().eval(); }
public void print () { }
public void accept (Visitor v) { v.visit(this); }

}

// Subtraction, multiplication, and division.
......

Figure 3: Abstract and concrete subclasses ofExpr

Expr

Atom

Var

Binary

Sub

Sub4

Add

Add4

Mul

Mul4

Div

Div4

Unary

Neg

Neg4

Factory

Factory3

Factory4

Visitor

DiffVisitor Visitor3

DiffVisitor3

Figure 4: Overall view of the system

4

public class Diff {
// Differentiate expression x along variable n.
public static Expr diff (Expr x, String n) {

if (x instanceof Var) { Var v = (Var)x;
// Constant expressions are represented
// as variable expressions with empty name.
int c = v.name().equals(n) ? 1 : 0;
return Factory.f.createVar("", c);

}
if (x instanceof Add) { Add a = (Add)x;

return Factory.f.createAdd(diff(a.left(), n),
diff(a.right(), n));

}
......

}
}

Figure 5: Direct implementation ofdiff

public class DiffVisitor implements Visitor, Cloneable {
// Differentiate expression x along variable n.
public static Expr diff (Expr x, String n) {

DiffVisitor v = null;
try { v = (DiffVisitor)proto.clone(); }
catch (CloneNotSupportedException e) {}
v.name = n;
x.accept(v);
return v.result;

}

// Prototypical visitor instance.
protected static DiffVisitor proto = new DiffVisitor();

// Internal variables.
protected String name;
protected Expr result;

// Visit methods for all concrete subclasses of Expr.
public void visit (Var x) {

int c = x.name().equals(name) ? 1 : 0;
result = Factory.f.createVar("", c);

}
public void visit (Add x) {

result = Factory.f.createAdd(diff(x.left(), name),
diff(x.right(), name));

}
......

}

Figure 6: Visitor implementation ofdiff

5

Stage 3: Vertical Extension

Adding a new subclassNeg (plus an intermediate abstract classUnary) to the existing class hierarchy
is trivial (cf. Fig. 7), except for implementing itsaccept method. The stereotyped implementation

public void accept (Visitor v) { v.visit(this); }

used in all other concrete subclasses ofExpr would be erroneous, since theVisitor interface −−
which has been defined before the introduction ofNeg −− does not contain a matchingvisit method
with a parameter of typeNeg.

// Extended visitor interface.
public interface Visitor3 extends Visitor {

void visit (Neg x);
}

// Extended visitor class.
public class DiffVisitor3 extends DiffVisitor implements Visitor3 {

static { DiffVisitor.proto = new DiffVisitor3(); }
public void visit(Neg x) {

result = Factory3.f.createNeg(diff(x.body(), name));
}

}

// Extended factory class.
public class Factory3 extends Factory {

public Neg createNeg (Expr b) { return new Neg(b); }
public static Factory3 f = new Factory3();
protected Factory3 () {}

}

// Unary expression.
public abstract class Unary extends Expr {

private Expr body;
protected Unary (Expr b) { body = b; }
public Expr body () { return body; }

}

// Negation.
public class Neg extends Unary {

protected Neg (Expr b) { super(b); }

public int eval () { return −body().eval(); }
public void print () { }
public void accept (Visitor v) { ((Visitor3)v).visit(this); }

}

Figure 7: Vertical extension

6

Thus, it is necessary first to extend the originalVisitor interface with a new Visitor3 2 interface
containing an appropriate method. (Since existing source code shall not be modified, theVisitor in-
terface cannot be extended in place.) Likewise, theDiffVisitor class is extended with a new
DiffVisitor3 class implementing that method for symbolic differentiation ofNeg expressions. In
order to achieve that this subclass is actually used by thediff method ofDiffVisitor , its prototyp-
ical instanceproto is set to an instance ofDiffVisitor3 during initialization of this class. (If there
were other visitor classes, they could be extended in the same way.)

Similarly, theFactory class defined in Fig. 2 has to be extended with a new Factory3 class pro-
viding an additionalcreateNeg method to createNeg expressions. (Other categories of expressions
might be created either with the old or the new factory, so client code using the old one need not be
changed.)

After these preparations, it is possible to implement theaccept method of classNeg as shown in
Fig. 7, because all visitors will actually be instances ofVisitor3 .

Stage 4: Behavioural Extension

To achieve the behavioural modifications required in Stage 4, the implementations ofeval for all
unary and binary operators must be replaced by new implementations. This can be achieved by intro-
ducing subclasses of all affected classes with appropriately overriddeneval methods (cf. Fig. 8).

To make these extensions transparent to clients, another new factory class,Factory4 , is required
which overrides all factory methods corresponding to these classes. Furthermore, it is necessary in
that case to “close down” all old factories and redirect their clients to the new one to make sure that
only instances of the new classes will be created.

Summary

The final system (cf. Fig. 4) consists of 10 “essential” classes (Expr and its first two lev els of sub-
classes) and 12 “helper” classes whose sole purpose is to support the system’s modular extensibility.

4. Achieving Extensibility with Dynamic Class Methods

Simply speaking,dynamic class methodsare class methods (i.e., “static” methods in Java terminolo-
gy) which can be overridden in other classes (and therefore are actually not “static”). Due to these
properties, they constitute a generalization of both class and instance methods, and even “virtual con-
structors” (i.e., constructors which can be overridden in other classes) can be implemented with them.
Therefore, by strict application of dynamic class methods, Factory and Visitor patterns (and probably
some other design patterns, too) become obsolete, because the required flexibility and extensibility
can be achieved much more directly and easily. This will be demonstrated in the following by re-
implementing the software system of Sec. 3 with dynamic (class) methods.3

Stage 1: Basic Class Hierarchy and Methods

The code of figures 9 and 10 implements the same functionality as the one shown in figures 2 and 3.
The instance methodseval andprint of the root classExpr , which possess an implicit parameter

this of type Expr , hav e been replaced by equally named dynamic methods receiving an explicit
parameterx of typeExpr instead, because dynamic methods, just like static methods, do not possess
an implicit parameter. By declaring themabstract , it is expressed, similar to abstract instance meth-
ods, that they are expected to be overridden in other classes.

2 To simplify “terminology,” the current stage number3 is used as a suffix for some names introduced in this stage, even though correspond-
ing names with suffixes 1 and2 do not exist.
3 To simplify the writing, the term “dynamic class methods” will be abbreviated to “dynamic methods” in the sequel.

7

// Modified division.
class Div4 extends Div {

protected Div4 (Expr l, Expr r) { super(l, r); }

public static final int NULL = Integer.MIN_VALUE;

public int eval () {
if (left().eval() == NULL || right().eval() == NULL) return NULL;
try { return super.eval(); }
catch (ArithmeticException e) { return NULL; }

}
}

// Modified addition, subtraction, multiplication, and negation.
......

// New factory class.
class Factory4 extends Factory3 {

// New factory methods for all unary and binary ops.
public Div createDiv (Expr l, Expr r) { return new Div4(l, r); }
......

// Adjust old factories which might be used by old client code.
public static Factory4 f = new Factory4();
protected Factory4 () {}
static { Factory.f = Factory3.f = f; }

}

Figure 8: Behavioural extension

Examples of such redefinitions appear in classesVar andAdd, where the qualified namesExpr.eval
andExpr.print are used to refer to the methods’ original definitions in classExpr . Each such re-
definition completely replaces the previous definition of the method, i.e., afterwards calls of any
client code toExpr.eval or Expr.print are redirected to the new definition. In the body of such a
redefinition, the method’s previous definition is available as a parameterless pseudo-method named
dynamic 4, similar to the way super can be used in a subclass to call an overridden method of a su-
perclass. In contrast tosuper calls, however, a call to dynamic does not receive explicit parameters
because the original parameter values are implicitly passed unchanged (even if the formal parameters
are modified beforedynamic is called). By that means, a linked list of definitions (also called
branches) is built up for every dynamic method, with the latest definition at the head and the initial
definition at the tail.

Because redefinitions normally want to alter the behaviour of the method only for a subset of its do-
main while retaining its original behaviour otherwise, they are typically coded as a conditional state-
ment such as:

dynamic int Expr.eval (Expr x) {
if (x instanceof Var) return ((Var)x).val;
else return dynamic(); // Call previous branch.

}

To simplify this frequently occurring pattern, it is possible to move the conditional statement acting as

4 To avoid the introduction of another new keyword, such asprevious or original , the keyword dynamic is reused for that purpose.

8

// General expression.
public abstract class Expr {

public dynamic abstract int eval (Expr x);
public dynamic abstract void print (Expr x);

}

// Atomic expression.
public abstract class Atom extends Expr {}

// Variable expression.
public class Var extends Atom {

private String name;
private int val;
protected Var (String n, int v) { name = n; val = v; }
public String name () { return name; }
public int val () { return val; }

// Dynamic factory method.
public dynamic Var create (String n, int v) {

return new Var(n, v);
}

// Redefine dynamic methods of class Expr.
dynamic int Expr.eval (Expr x instanceof Var) {

return x.val;
}
dynamic void Expr.print (Expr x instanceof Var) {

......
}

}

Figure 9: Basic class hierarchy and methods (part 1)

a guard outside the method body and omit its stereotyped else-part:

dynamic int Expr.eval (Expr x) if (x instanceof Var) {
return ((Var)x).val;

}

By that means, the guard becomes a part of the method head which can be interpreted as aprecondi-
tion.

To further simplify the definition of dynamic methods, anexplicit guard as shown above might be
turned into animplicit one by integrating it into the parameter list, yielding aguarded parameter dec-
laration:

dynamic int Expr.eval (Expr x instanceof Var) {
return x.val;

}

The same technique works for all relational and equality operators (e.g., (int i > 0, bool
f = = f alse)), but in conjunction withinstanceof it has the additional advantage that the static
type of the affected formal parameter (x in the example) is automatically converted from its formal
type (Expr) to its actual dynamic type (Var) insidethe method body, thus eliminating the need for ex-
plicit casts there.

9

// Binary expression.
public abstract class Binary extends Expr {

private Expr left, right;
protected Binary (Expr l, Expr r) { left = l; right = r; }
public Expr left () { return left; }
public Expr right () { return right; }

}

// Addition.
public class Add extends Binary {

protected Add (Expr l, Expr r) { super(l, r); }

// Dynamic factory method.
public dynamic Add create (Expr l, Expr r) {

return new Add(l, r);
}

// Redefine dynamic methods of class Expr.
dynamic int Expr.eval (Expr x instanceof Add) {

return Expr.eval(x.left()) + Expr.eval(x.right());
}
dynamic void Expr.print (Expr x instanceof Add) {

......
}

}

// Subtraction, multiplication, and division.
......

Figure 10: Basic class hierarchy and methods (part 2)

Note that this is quite different from directly using the latter type as the formal parameter type,
which would yield a different method signature:

dynamic int Expr.eval (Var x) {
return x.val;

}

Since there is no dynamic method with the signatureint eval (Var) in classExpr , such a declara-
tion would actually be erroneous.

In addition to appropriate redefinitions of the dynamic methodsExpr.eval andExpr.print , every
concrete subclass ofExpr defines its own dynamic methodcreate (e. g., Var.create and
Add.create) acting as an overrideable factory method (i.e., avirtual constructor), thus eliminating
the need for extra factory classes, even though no redefinitions will actually be required in the follow-
ing.

Stage 2: Horizontal Extension

A key advantage of dynamic methods is the fact that horizontal extensions of a system can be imple-
mented directly and easily, without needing to employ the Visitor pattern, by means of additional dy-
namic methods which are −− in contrast to static methods −− by nature vertically extensible, too.

10

Thus, even though the implementation of symbolic differentiation as a dynamic methoddiff
shown in Fig. 11 contains basically the same code as the equally named static method of Fig. 5, it can
be easily extended to new categories of expressions without being modified (cf. Stage 3).

public class Diff {
// Differentiate expression x along variable n.
public dynamic Expr diff (Expr x, String n) {

if (x instanceof Var) { Var v = (Var)x;
int c = v.name().equals(n) ? 1 : 0;
return Var.create("", c);

}
if (x instanceof Add) { Add a = (Add)x;

return Add.create(diff(a.left(), n), diff(a.right(), n));
}
......

}
}

Figure 11: Horizontal extension

Alternatively, diff might be implemented by separate branches of a dynamic method for all concrete
subclasses of classExpr (cf. Fig. 12). To ensure a uniform syntax, redefinitions of a dynamic method
must always use a qualified method name such asDiff.diff , even if they appear in the same class
as the original definition.

public class Diff {
// Differentiate expression x along variable n.
public dynamic Expr diff (Expr x instanceof Var, String n) {

int c = x.name().equals(n) ? 1 : 0;
return Var.create("", c);

}
dynamic Expr Diff.diff (Expr x instanceof Add, String n) {

return Add.create(diff(a.left(), n), diff(a.right(), n));
}
......

}

Figure 12: Alternative implementation ofdiff

Stage 3: Vertical Extension

The code of Fig. 13, which implements exactly the same functionality as that of Fig. 7, is another im-
pressive demonstration of the flexibility provided by dynamic methods. Instead of defining an extend-
edVisitor3 interface and an extendedDiffVisitor3 class to extend the implementation ofdiff
to the new Neg class, the dynamicdiff method introduced in Stage 2 is simply extended by an addi-
tional branch which is naturally integrated into the new class. As this example shows, a dynamic

11

// Unary expression.
public abstract class Unary extends Expr {

private Expr body;
protected Unary (Expr b) { body = b; }
public Expr body () { return body; }

}

// Negation.
public class Neg extends Unary {

protected Neg (Expr b) { super(b); }
public dynamic Neg create (Expr b) { return new Neg(b); }

dynamic int Expr.eval (Expr x instanceof Neg) {
return −Expr.eval(x.body());

}
dynamic void Expr.print (Expr x instanceof Neg) {

......
}
dynamic Expr Diff.diff (Expr x instanceof Neg, String n) {

return Neg.create(Diff.diff(x.body(), n));
}

}

Figure 13: Vertical extension

method might be redefined inany class where it is accessible, not just in subclasses of the class con-
taining the original definition.

However, to actually enablesuch an additional branch of a dynamic method, the class containing its
definition must be loaded andinitialized at runtime. In the present example, this happens naturally
and automatically when an instance of classNeg is created. (If no such instance is ever created, the
additional branch is not needed.)

Stage 4: Behavioural Extension

Finally, retroactive behavioural modifications of a system, which usually require considerable effort if
they are possible at all without modifying existing code, can be done in a minute with dynamic meth-
ods, as shown in Fig. 14. (Again, it is necessary that the class containing additional branches of dy-
namic methods gets initialized; in this example, this might be achieved, e.g., by creating a dummy in-
stance of it.)

This example demonstrates that the guards of a dynamic method are not restricted to dynamic type
tests, but might test any property of their arguments (or even properties of their environment such as
values of static variables). By that means, dynamic dispatching of method calls is not restricted to the
dynamic type ofone (implicit) argument, as with instance methods, but can be based on arbitrary
properties ofall arguments. This is even a generalization of multi-methods [14, 3, 1].

Furthermore, in contrast to Fig. 8, where fiv e new classes with almost identical redefinitions of
eval had to be defined, only two redefinitions −− one for unary and another one for binary operators −−
are needed with dynamic methods.

12

public class NullExpr {
public static final int NULL = Integer.MIN_VALUE;

dynamic int Expr.eval (Expr x instanceof Unary)
if (Expr.eval(x.body()) == NULL) {

return NULL;
}

dynamic int Expr.eval (Expr x instanceof Binary) {
if (Expr.eval(x.left()) == NULL
|| Expr.eval(x.right()) == NULL) return NULL;
try { return dynamic(); }
catch (ArithmeticException e) { return NULL; }

}
}

Figure 14: Behavioural extension

Summary

Even though the example presented in the previous sections is rather simple and small, the advantages
of using dynamic methods are quite obvious: The code becomes significantly shorter and less com-
plex, since no artificial helper classes like Factory andVisitor are needed. Furthermore, extending
a system by defining additional branches of dynamic methods is straightforward and simple, while ex-
tensions based on design patterns are always somewhat tricky and less obvious.

5. Details of Dynamic Methods

To complement the rather informal description of dynamic methods presented so far, Fig. 15 shows in
boldface the extensions to the Java grammar which have been introduced to integrate the concept into
the language.

To simplify the grammar, the new keyword dynamic is included into the list of other method modi-
fiers (line 1), even though it is incompatible withstatic , final , and native . Furthermore, a quali-
fied method name containing one or more dots (line 2) as well as explicit and implicit guards (lines 3
and 4, respectively) are allowed for dynamic methods only. Likewise, usage of the keyword dynamic
as a pseudo-method name in a primary expression (line 5) is restricted to bodies of dynamic methods.

To declare theinitial branch of a dynamic method, a normal unqualified method name is used; to
declaresubsequentbranches of the same method, its name is qualified by the name of the class con-
taining the initial branch (which might itself be a qualified name), even if such branches are defined in
the same class. Just like normal method declarations, declarations of initial branches must be unique
within a class; on the other hand, it is allowed to declare multiple subsequent branches of the same dy-
namic method within the same class. Subsequent branches of a dynamic method must not throw more
exceptions than its initial branch, just like an instance method overriding a method of a superclass
must not throw more exceptions than the original method.

For the declaration of an initial branch, the access modifierspublic , protected , none, andpri-
vate determine both the accessibility of the dynamic method to clients and their ability to override it.
Therefore, private dynamic methods are not very useful in practice, because they cannot be overridden
in other classes. The access modifier of a subsequent branch is ignored if present, because such a
branch cannot be called directly by a client.

The body of an initial branch of a dynamic method might be omitted iff the method is declaredab-
stract and does not possess any explicit or implicit guards. This is equivalent to a declaration with

13

MethodDeclaration:
{ " public" | "protected" | "private"
| " static" | "dynamic" | " abstract" | "final" // 1
| " native" | "synchronized" | "strictfp" }
ResultType <IDENTIFIER> { "." <IDENTIFIER> } // 2
"(" [FormalParameter { "," FormalParameter() }] ")"
{ " [" "]" } ["throws" NameList]
{ "if" "(" Expression ")" } (B lock | ";") // 3

FormalParameter:
[" final"] Type VariableDeclaratorId
[("==" | "!=") InstanceOfExpression // 4
| "instanceof" Type // 4
| ("<" | ">" | "<=" | ">=") ShiftExpression] // 4

PrimaryPrefix: "dynamic" "(" ")" | // 5

Figure 15: Extensions to the Java grammar

the unsatisfied guardif (false) and an empty body. (Thus, abstract dynamic methods are not re-
stricted to abstract classes.)

6. Transformation to Jav a

The basic idea of transforming source files containing dynamic method declarations to pure Java code
is rather simple (cf. Fig. 16 for an illustration):

a)1. Theinitial branch of a dynamic method, which is distinguished from subsequent branches by
the fact that its method name is not qualified by a class name, is converted to aninstance
method(depicted by an ellipse) of a nested helper class (depicted as a rectangle).

b) A single instance of this class (graphically merged with the ellipse depicting the instance
method) is stored in a staticvariable(depicted as a little square) of the surrounding class.

c) Finally, a static method(depicted as a circle) with the same signature and access modifier as
the dynamic method is generated, which calls the above instance method via this variable. This
method constitutes the client interface to the dynamic method.

a)2. A subsequent branch of a dynamic method, which is distinguished from the initial branch by
the fact that its method name is qualified by the name of the class containing the declaration of
the initial branch, is also converted to aninstance methodof a nested helper class which is de-
clared as asubclassof the initial branch’s helper class. Thus, this instance method overrides
the instance method described above.

b) A single instance of the helper class defined here is assigned to the variable mentioned in
Step 1b, while that variable’s previous value is saved in a static variable of the current class,
i. e.,the class containing the declaration of the subsequent branch.

By overriding the value of the variable mentioned in Step 1b, this variable will always refer to an ob-
ject whose instance method represents thelast branch of the dynamic method. Thus, the static method
described in Step 1c constituting the client interface of the dynamic method will always invoke this
last branch.

By storing the variable’s previous value in another variable, the instance method corresponding to a
particular branch is able to call the previous branch (pseudo-methoddynamic) via the latter.

14

static
method

var.

helper
class

instance
(method)

class containing
initial branch

helper
class

instance
(method)

class containing
subsequent branch

helper
class

instance
(method)

class containing
subsequent branch

Figure 16: Illustration of the transformation process

In addition to these basic transformations, the bodies of the instance methods mentioned above are
modified as follows:

• Explicit and implicit guards are transformed to correspondingconditional statementswhose then-
part is the original method body and whose else-part calls the previous branch. (Since the initial
branch does not possess a previous branch, it throws anIncompleteDynamicClassMethodEx-
ception instead.)

• If necessary, backup copies of the method’s formal parameters are created at the beginning in order
to be able to pass theoriginal parameter values to calls of the previous branch.

• Calls to the pseudo-methoddynamic are replaced with normal method calls, as described above.

7. Transformation Details

Having explained the basic idea of the precompiler’s work in the previous section, the transformation
process is described in more detail in the present section.

7.1 Initial Branch of a Dynamic Method

The initial branch of a dynamic method is distinguished from subsequent branches by the fact that its
method name is not qualified by a class name. Such a method definition is transformed as follows (cf.
Fig. 17 showing the beautified result of transforming classExpr shown in Fig. 9):

1. A private static helper class is generated which contains a public instance method possessing exact-
ly the same signature (i.e., name, parameters, return type, and exceptions) and body as the dynam-
ic method. If the dynamic method is declaredstrictfp , this method will be too.
Since a class might contain several dynamic methods, unique names such asdynamic$1 , dynam-
ic$2 , etc. are chosen for these helper classes. Furthermore, each such helper class except the first

15

public abstract class Expr {
// Transformation of:
// public dynamic abstract int eval (Expr x);
private static class dynamic$1 { // 1

public int eval (Expr x) {
// Abstract initial branch always throws this exception.
throw new IncompleteDynamicClassMethodException(

Expr.class, "eval", new Class [] { Expr.class }
);

}
}
private static dynamic dynamic$1 = new dynamic(); // 2
public static int eval (Expr x) { // 3

return dynamic$1.eval(x);
}
public static dynamic eval (Expr x, dynamic $) { // 4

try { return dynamic$1; }
finally { dynamic$1 = $; }

}

// Transformation of:
// public dynamic abstract void print (Expr x);
private static class dynamic$2 extends dynamic$1 { // 1

public void print (Expr x) {
throw new IncompleteDynamicClassMethodException(

Expr.class, "print", new Class [] { Expr.class }
);

}
}
...... // Analogous to steps 2, 3, and 4 of `eval’.

// At the end of the enclosing class.
public static class dynamic extends dynamic$2 {}

}

Figure 17: Transformation of classExpr (cf. Fig. 9)

is defined as a subclass of the previous one and, at the end of the enclosing class definition, a pub-
lic static class calleddynamic 5 is defined as a subclass of the last helper class. The net effect of
these definitions is that the nested classdynamic contains corresponding instance method defini-
tions for all initial branches of dynamic methods defined in the enclosing class.
This incremental construction of the classdynamic has the advantage that the precompiler has to
perform local source code transformations only and need not rearrange source code, which on the
one hand simplifies its implementation and on the other hand ensures that line numbers of its out-
put match those of its input (if the output is unbeautified, i.e., does not contain additional line
breaks). The latter property is important to localize errors reported by the posterior Java compiler.

2. A private static variable of typedynamic is defined which is initialized with a new instance of that
type. These variables possess the same unique names as the helper classes mentioned above.

5 Note thatdynamic is a keyword in the extended language “Java plus dynamic class methods,” but not in Java itself.

16

3. A static method possessing the same signature and access modifier as the dynamic method is de-
fined which calls the corresponding instance method via the just mentioned variable and returns its
result if appropriate. This method constitutes the client interface to the dynamic method.
As long as no other branches of the dynamic method are defined, calling this static method is
equivalent to executing the body of the dynamic method definition.
If the dynamic method is declaredsynchronized , this method will be too.

4. Anotherstatic method possessing the same name, access modifier, and parameters as the the dy-
namic method plus an additional parameter and a result of typedynamic is defined. When called,
this method returns the current value of the variable mentioned in Step 2 and replaces it with the
value of its last parameter. The other parameter values are ignored and are necessary only to distin-
guish possibly overloaded variants of this method resulting from correspondingly overloaded vari-
ants of dynamic methods.
This method is called when the dynamic method is overridden in another (or the same) class (cf.
Sec. 7.2, Step 2).

It should be noted that it is not possible to encode the information provided by the types of the ignored
parameters into the name of the method defined in Step 4, e.g., eval$Expr with a single parameter
of typedynamic instead ofeval with an additional dummy parameter of typeExpr , since the same
type might be used with different names, e.g., Expr andexpr.Expr if Expr is defined in a package
namedexpr . Without consulting other source or class files, the precompiler is generally not able to
detect such synonyms.

For the same reason, it is not possible in Step 1 to omit the nested classdynamic and instead to de-
fine a separate public helper class for every dynamic method whose name is derived from the
method’s signature, even though this would be simpler and more natural at first sight.

The body of the method described in Step 1 above is modified as follows:

• If the dynamic method contains one or more explicit guards, these are moved into the method’s
body as (possibly nested) conditional statements whose then-part is the original body and whose
else-part throws an IncompleteDynamicClassMethodException (which is defined as an
unchecked exception) receiving the enclosing class, the method’s name, and its parameter types as
constructor arguments.
Similarly, calls to the pseudo-methoddynamic() are replaced by correspondingthrow expres-
sions, because there is no previous branch for the initial branch of a dynamic method.
Finally, if the dynamic method is declaredabstract (and thus does not possess a body), a body
throwing the same exception is added.

• If the dynamic method contains guarded parameter declarations, these are transformed to equivalent
explicit guards which are in turn transformed to conditional statements as described above.
As a special case, a guarded parameter declaration with a dynamic type test, such asExpr x in-
stanceof Var , is transformed to a conditional statement plus a redeclaration of the parameterx
with its dynamic type (cf. Sec. 7.2 for an example).

7.2 Subsequent Branches of a Dynamic Method

Subsequent branches of a dynamic method are distinguished from the initial branch by the fact that
their method name is qualified by the name of the classC containing the initial branch. Such a method
definition is transformed as follows (cf. Fig. 18 showing the result of transforming the classVar
shown in Fig. 9):

1. Similar to Sec. 7.1, a private static helper class is generated which contains a public instance
method possessing the same signature and body as the dynamic method, except for the method
name which becomes unqualified. Again, if the dynamic method is declaredstrictfp , this
method will be too.

17

public class Var extends Atom {
......

// Transformation of:
// dynamic int Expr.eval (Expr x instanceof Var) {
// return x.val;
// }
private static class dynamic$1 extends Expr.dynamic { // 1

public int eval (Expr $1) {
if ($1 instanceof Var) { Var x = (Var)$1;

return x.val;
} e lse return dynamic$1.eval($1);

}
}
private static Expr.dynamic dynamic$1 // 2

= Expr.eval((Expr)null, new dynamic$1());
private interface dynamic$1i { // 3

int eval (Expr x) throws Exception;
}
private static class dynamic$1c extends Expr.dynamic // 4

implements dynamic$1i {}
// Above class will be rejected by the Java compiler
// if class Expr does not define a matching dynamic method.

...... // Analogous for `print’.
}

Figure 18: Transformation of classVar (cf. Fig. 9)

In contrast to Sec. 7.1, the helper classes generated that way are independent of each other and in-
dependent of the helper classes generated for initial branches of dynamic methods of the surround-
ing class.
Instead, each such helper class is defined as a subclass of the nested classC.dynamic , whereC is
the class containing the initial branch of the dynamic method, as described above. By that means,
the instance method mentioned above overrides the corresponding method of the classC.dynam-
ic .

2. A private static variable of typeC.dynamic is defined which is initialized by a call to the method
described in Step 4 of Sec. 7.1.
The (qualified) name and the parameter types of this method are exactly those of the dynamic
method plus an additional parameter of typeC.dynamic . Since all parameter values except the
last are ignored by that method, arbitrary dummy values might be passed for them. This can be
achieved by passing, e.g., false for boolean parameters,0 for all numeric types including
char , and null for all other types. To avoid potential ambiguities in the presence of overloaded
methods, however, these values are cast to the exact parameter types given in the dynamic method
declaration.
For the last parameter, an instance of the helper class mentioned in Step 1 is passed. By that means,
the variable described in Step 2 of Sec. 7.1 is set to this instance, while its previous value is as-
signed to the variable described above. Consequently, calling the dynamic method (i.e., the static
method of classC described in Step 3 of Sec. 7.1) is now equivalent to executing the body of the
branch defined here.

18

The body of the instance method described in Step 1 above is modified as follows:

• If the dynamic method contains one or more explicit guards, these are again moved into the
method’s body as conditional statements whose then-part is the original body and whose else-part
invokes the previous branch of the dynamic method, which is accessible via the variable mentioned
in Step 2 above.
In the same way, calls to the pseudo-methoddynamic() are replaced by calls to the previous
branch.

• Since the previous branch shall be called with the original parameter values, even if the formal pa-
rameters have been modified, backup copies of all non-final parameters are declared and initial-
ized at the very beginning of the method body. Since parameter values might even be changed by
the evaluation of a guard, the creation of the backup copies cannot be moved inside the then-part of
the conditional statements mentioned before.

• Guarded parameter declarations, in particular those containing dynamic type tests, are transformed
in the same way as for initial branches (cf. Sec. 7.1).

The transformation rules described so far are sufficient to transform syntactically and semantically
correct dynamic method declarations to legal Java code. Unfortunately, howev er, they also transform
some semantically erroneous declarations to legal Java code, as the following example shows. If the
dynamic methodExpr.eval in classVar would be defined as follows:

// Error:
// Class `Expr’ does not define a dynamic method `eval(Var)’.
// `(Var x)’ should be `(Expr x instanceof Var)’.
dynamic int Expr.eval (Var x) { }

it would be transformed to the following legal Java code:

private static class dynamic$1 extends Expr.dynamic { // 1
// This method does not override `Expr.dynamic.eval(Expr)’,
// but defines an overloaded variant of `eval’.
public int eval (Var x) { }

}

private static Expr.dynamic dynamic$1 // 2
= Expr.eval((Var)null, new dynamic$1());
// This actually calls `Expr.eval(Expr, Expr.dynamic)’.

Since classVar is a subclass ofExpr , the call toExpr.eval with a first argument of typeVar in-
stead ofExpr is semantically correct. But sincedynamic$1.eval(Var) does not override Expr.
dynamic.eval(Expr) , but rather defines an overloaded variant ofeval , the former will be actually
never called.

In order to keep the precompiler as simple as possible, and in particular to allow it to do its source
code transformation without consulting any other source or class file, it is impossible to catch such er-
rors by the precompiler. Instead, it must generate some additional Java code that will cause the poste-
rior Java compiler to report an error in that case. Therefore, the numbered list above is continued as
follows (cf. Fig. 18):

3. A private nested interface declaring the same method as the helper class mentioned in Step 1 is
generated.
The only difference is the fact, that the method declared here might throw any exception.

4. A second private static helper class is defined which extends the classC.dynamic , implements the
interface just mentioned, and has an empty body.

19

Since the body of this class is empty, the method declared in the interface must match one of the
methods defined in the classC.dynamic , i. e., one of the dynamic methods initially defined in
classC. Otherwise, the Java compiler will reject the second helper class as not fulfilling its claim to
implement the interface mentioned in Step 3.

Since the method in classC.dynamic (i. e., the initial branch of the dynamic method) is allowed to
throw more exceptions than the branch defined here, and the precompiler cannot know its exact
throw clause, the method declared in the interface is allowed to throw any exception. Otherwise, if
the throw clause of the branch’s definition would be used, the Java compiler would report an unde-
sired error if the branch defined here throws fewer exceptions than the initial branch.

The rule that it must not throw more exceptions than the initial branch is nevertheless enforced by
the Java compiler because the method described in Step 1 above overrides the corresponding method
of classC.dynamic and thus must obey this rule.

8. Discussion

Dynamic methods are at the same time a powerful and a dangerous device. When used properly, they
offer unique possibilities to extend and retroactively modify software systems, as has been illustrated
in Sec. 4. On the other hand, when used inappropriately, they make it quite easy to cause havoc by
overriding dynamic methods in a completely nonsensical way. To limit the chances of accidental or
deliberate abuse of the concept, it might be an interesting task to integrate it with the Java Security
Framework [6].

At first glance, a potential weakness of the concept is the fact that the order of a dynamic method’s
branches is determined by the order in which the classes containing them get initialized at run time.
For many practical applications, however, especially when dynamic methods are just used like in-
stance methods which are overridden in subclasses, the natural “superclass before subclasses” initial-
ization order prescribed by the Java Language Specification [7] is exactly what an application needs.
Furthermore, if different additional branches are used to addorthogonal extensionsto a dynamic
method, their precise order is usually irrelevant. So the only remaining critical scenario is a combina-
tion of different behavioural modificationsof a method which influence each other. In such a case, the
programmer composing these modifications into a single application should explicitly enforce the se-
mantically correct initialization order, e. g., by creating dummy instances of the classes or by calling
Class.forName in the desired order.

Ideas to support aims similar to those of dynamic methods can be found in many different areas. For
instance, the concepts of open classes, multi-methods, before- and after-methods, and methods spe-
cialized to individual instances, found in different combinations, e.g., in MultiJava [1], CLOS [14],
and Dylan [3], offer many of the possibilities of dynamic methods. The latter, howev er, provide addi-
tional flexibility by allowing dispatch strategies that are based on arbitrary properties of their argu-
ments, not just their dynamic types (cf. Fig. 14). Furthermore, even properties of the “environment,”
such as values of static variables, user preferences read from an application’s configuration file, etc.,
can be incorporated into the dispatch process if appropriate. Finally, complete redefinitions of meth-
ods, e.g., erroneous or incomplete library methods, are possible, if the concept is applied consistently,
i. e., if methods are always defineddynamic (cf. Fig. 14).

At first glance, dynamic methods appear to be just a syntactic variation of methods withpredicate
dispatching [4], but when taking a closer look, several differences become obvious: First of all, while
logical implications between the predicates of a method are used to define an overriding relationship
in predicate dispatching, no attempt is made to determine such a relationship between the guards asso-
ciated with the branches of a dynamic method. The main reason for this decision is the fact that arbi-
trary Boolean expressions of the host language, even though permitted in predicate dispatching, can in
principle not be compared with respect to logical implication, leading to an actually incomplete algo-
rithm in [4]. The second important reason for preferring a simple linear order of branches that is built

20

up dynamically to a statically defined partial order of methods is the inability of the latter to support
retroactive behavioural extensions and modifications, i.e., the third dimension of extensibility men-
tioned in Sec. 2. Welcome side effects of this decision are much simpler semantics and implementa-
tion of the concept. In particular, no separate notion of predicate expressions and predicate abstrac-
tions is needed since arbitrary Java expressions of typeboolean can be used as guards, while normal
(or even dynamic) methods can be used to encapsulate them.

In the terminology of aspect-oriented programming (AOP), in particular that of AspectJ [11], dynamic
methods provide the same functionality asinter-type method declarations (to perform horizontal ex-
tensions of classes) and (before, after, and around)advicewith pointcut designators of typecall or
execution (to perform behavioural extensions of methods). Thus, AspectJ is obviously more expres-
sive as it offers additional pointcut designators as well as other kinds of inter-type declarations. On the
other hand, restricting pointcuts to method calls harmonizes well with the principle of information
hiding [12] where only the signatures and (formal or verbal) specifications of methods are known out-
side a class, while employing other kinds of pointcuts usually requires detailed knowledge of method
implementations.

While the extensions defined by aspects are woven into the source or byte code of all affected class-
es by the AspectJ compiler producing augmented class files [11], dynamic methods do not change at
all the code of the system that shall be extended. By dynamically loading (and initializing) classes
containing branches of dynamic methods, it is even possible to add new branches of dynamic methods
at run time. Furthermore, in contrast to aspect-oriented languages, the concept requires only marginal
language extensions; to the contrary, when dynamic methods are introduced into an object-oriented
language, static and instance methods might be thrown out in principle, actually yielding a simpler
language.

The new programming language Timor, in whose development the author is involved, provides con-
cepts calledqualifying typesand bracket routines[10] which are quite similar to dynamic methods.
An essential difference, however, is the fact that the extensions or modifications implemented by
bracket routines are applied only if an object is explicitly associated with an instance of a qualifying
type, while the extensions or modifications implemented by additional branches of a dynamic method
are applied automatically as soon as the class containing these branches gets initialized. The latter is
especially helpful to cope with unexpected behavioural extensions or modifications.

Acknowledgement

Many thanks are due to Wolfgang Doll for implementing the Java precompiler.

References

[1] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein: “MultiJava: Modular Open Classes and
Symmetric Multiple Dispatch for Java.” In: Proc. 2000 ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA ’00)(Minneapolis, MN, October
2000).ACM SIGPLAN Notices35 (10) October 2000, 130−−145.

[2] J.W. Cooper:Java Design Patterns: A Tutorial. Addison-Wesley, Boston, 2000.

[3] I. D. Craig:Programming in Dylan. Springer-Verlag, London, 1997.

[4] M. Ernst, C. Kaplan, C. Chambers: “Predicate Dispatching: A Unified Theory of Dispatch.” In:
E. Jul (ed.):ECOOP’98 −− Object-Oriented Programming(12th European Conference; Brussels, Bel-
gium, July 1998; Proceedings). Lecture Notes in Computer Science 1445, Springer-Verlag, Berlin,
1998, 186−−211.

21

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides:Design Patterns. Elements of Reusable Object-Ori-
ented Software. Addison-Wesley, Reading, MA, 1995.

[6] L. Gong:Inside Java 2 Platform Security. Addison-Wesley, Reading, MA, 1999.

[7] J. Gosling, B. Joy, G. Steele:The Java Language Specification. Addison-Wesley, Reading, MA,
1996.

[8] C. Heinlein:Vertical, Horizontal, and Behavioural Extensibility of Software Systems. Nr. 2003-06,
Ulmer Informatik-Berichte, Fakultät für Informatik, Universität Ulm, July 2003.
http://www.informatik.uni-ulm.de/pw/berichte

[9] C. Heinlein: “Dynamic Class Methods in Java.” In: D. Rombach (ed.):Net.ObjectDays 2003.
Ta gungsband(Erfurt, Germany, September 2003). tranSIT GmbH, Ilmenau, 2003, ISBN 3-9808628-
2-8.

[10] J.L. Keedy, G. Menger, C. Heinlein, F. Henskens: “Qualifying Types Illustrated by Synchroniza-
tion Examples.” In: M. Aksit, M. Mezini, R. Unland (eds.):Objects, Components, Architectures, Ser-
vices, and Applications for a Networked World (Int. Conf. NetObjectDays, NODe 2002; Erfurt, Ger-
many, October 2002; Revised Papers). Lecture Notes in Computer Science 2591, Springer-Verlag,
Berlin, 2003, 330−−344.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold: “An Overview of As-
pectJ.” In: J. Lindskov Knudsen (ed.):ECOOP 2001 −− Object-Oriented Programming(15th European
Conference; Budapest, Hungary, June 2001; Proceedings). Lecture Notes in Computer Science 2072,
Springer-Verlag, Berlin, 2001, 327−−353.

[12] D. L. Parnas: “On the Criteria to Be Used in Decomposing Systems into Modules.”Communica-
tions of the ACM 15 (12) December 1972, 1053−−1058.

[13] O. Spinczyk, A. Gal, W. Schröder-Preikschat: “AspectC++: An Aspect-Oriented Extension to
the C++ Programming Language.” In: J. Noble, J. Potter (eds.):Proc. 40th Int. Conf. on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific) (Sydney, Australia, February 2002),
53−−60.

[14] P. H. Winston, B. K. P. Horn:LISP (Third Edition). Addison-Wesley, Reading, MA, 1989.

22

