Vertical, Horizontal, and Behavioural Extensibility
of Software Systems

Christian Heinlein

Dept. of Computer Structures, Waisity of Ulm, German
heinlein@informatik.uni-ulm.de

Abst t procedures in Oberon-2 [18], and static and instance methods in
rac Java [9], their introduction actually leads to a conceptually simpler

))) .) language, because these other kinds of routines are no longer re-
Object-orientation often claims to suppoxtensible and modular quired.

programming. By distinguishing three féifent dimensions ofxe

tensibility, howeve — vertical (tensions of the type hierargh The paper is structured as folls. Section 2 commences by dis-
horizontal (&tensions of the spectrum of operationsilable on tinguishing three dférent dimensions ofxéensibility of softvare
types), and behéoural (etensions or wen modifications of the gystems: (ivertical extensions, ie., etensions of the type hierar
original behgiour of operations)-rit is shevn that typical object- ¢y (i) horizontal extensions, ie., tensions of the spectrum of
oriented programming languages support only one of them in a di-gperations wilable on types, and (iipehavioual extensions,
rect and modular ay: \ertical extensibility. Horizontal etensibil- i. ., extensions oreen retroactve nodifications of the behaour

ity in a modular &shion can only be achiel indirectly by disci- of operations. Using rather simpleagnples, it is shen that typi-
plined application of design patterns such as tfs#dr pattern, ¢ gbject-oriented programming languages support onlyirte f
while behaioural etensibility is not supported at all. On the oth- gimension in a direct and modulaaywhile design patterns such
er hand, a ne and surprisingly simple concept callelynamic as the \sitor pattern [7] are not really satistory to support the
routines that is introduced in this papeimultaneously supports second dimension. Furthermore, the third dimension is not sup-
all three dimensions oieensibility in a natural and figole way, orted at all. Bllowing that, Sec. 3 introduces the general concept

thus eliminating the need for some clumsy design patterns and ah¢ gynamic routines as well as spéci@daptations and irgea-
the same time @ring the programmer additional freedomo T tions into the programming languages C++, Oberon-2, aval Ja
make the concept immediately applicable in practice, it has been Using the gamples of Sec. 2, it is swa that dynamic routines

implemented as precompitbased languagexensions for C++, indeed support all three dimensions ateasibility in a simple

Oberon-2, and Ja and flible mannerSection 4 then describes the basic approach
of implementing dynamic routines as precomgilased eten-

1. Introduction sions of the abe languages. FinallyBec. 5 presents a critical dis-

cussion of the concept itself and its relationship to other program-

It has been pointed out frequently [17, 21, 6], that inheritance MNG language concepts as well as some concluding remarks.

medanismsof typical object-oriented programming languages
are fraught with a number of tBfent and partially conflicting in- 2 Dimensions of Extensibil ity
heritanceconcepts such as subtype polymorphism, code reuse,
genericity and importation, to name only aeConsequentlynu-
merous proposalsxist to conceptually separate these matters and
support them with diérent andorthogonal mechanisms. @ use

the most prominentxample, there are geral approaches sup-
porting a (more or less limited) separatiortygfesandimplemen-
tations and consequently a decoupling safbtype polymorphism
andcode euse e. g., interfaces in Jea [9], signatures inx¢ended

2.1 Example

Figure 1 depicts a typical object-oriented type hienarfar the
representation of arithmeticxgressions. Expressions in general,
represented by the abstract root typer, ae subdiided into
three major catgories represented by the abstract subtypes
C++ [2], and types and implementations im@r [14] (where the (atomic e(p_ressmn),U_naw (appllt_:athn of a unary operator to a
subepression), andinary (application of a binary operator to

latter constitutes the most uncompromising approach, because im ' X . . .
plementations are not treated as types at all). Experience withtwo ubexpressions). These are in turn specialized into appropriate

these and other approaches clearly indicates that separate- and groncrete subtypes, SPCh Ganst (CO”S“’?‘F“ Iepressm_n)Neg (ne-
thogonal mechanisms which can be freely combiagcheeded ~ 90N, I.€., unary minus), oAdd (addition, ie., binary plus).
are much more peerful and useful than a prearrangeiked Types containing pvete data elements, @., Const containing
combination of them.

The present paper goes another step further by decoutjing
namic bindingfrom inheritance and subtype relationships and of-
fering it instead as a separate, orthogonal concept aiieaimic
routines Once agin it turns out that this separation leads to pro-
gramming languages which are not only considerably moxe fle
ble and &pressie, but in addition support e dimensions of -
tensibility when compared to traditional object-oriented lan-
guages. Furthermore, since dynamic routines subsume other kindsT Const] [Add | [Sub | [Mul | [Div | [Neg |
of routines normally found in programming languages,,eglo-
bal and member functions in C++ [20], normal and type-bound

|

Binary

Figure 1: Object-oriented type hieraych

the numeric alue of the constanipression oBinary contain-

ing pointers to the ta subexpressions of the binaryxpression,
provide an appropriate constructor to initialize them and public
member functions (methods) to query theitue. Furthermore, it

is assumed that twhasic operations are deéd for expressions,
determining their &lue and printing them (g., on the standard
output stream), which are implemented as virtual member func-
tionseval andprint , respectrely. This leads to the C++ class
definitions partially shan in Fig. 2.

/I General expression (abstract).
class Expr { public:

virtual int eval () = 0;

virtual void print () = 0;

h

/I Atomic expression (abstract).
class Atom : public Expr {};

/I Constant expression (concrete).
class Const : public Atom {
intval_;
public:
Const (intv) : val_(v) {}
intval () { return val_; }
virtual int eval () { return val_; }
virtual void print () { }
%

/I Binary expression (abstract).
class Binary : public Expr {
Expr* left_;
Expr* right_;
public:
Binary (Expr* |, Expr* r)
| oeft_(I), right_(r) {
Expr* left () { return left_; }
Expr* right () { return right_; }

1

/I Addition (concrete).
class Add : public Binary { public:
Add (Expr* |, Expr*r) : Binary(l, r) {}
virtual int eval () {
return left()->eval() + right()->eval();

virtual void print () {

Figure 2: C++ class deeitions

The adwantages of using virtual member function®.,i.meth-
ods which aredynamicallybound, instead of normal global func-
tions to implement such operations areiobs and well-knan:
When n&v subtypes are added to the type hiergridter e g., to

plemented as member functions of the correspondingctesses
(cf. Fig. 3). If these ne classes are digfed in a diferent transla-
tion unit, the original classes need negrebe recompiled.

/I Remainder (concrete).
class Mod : public Binary { public:
Mod (Expr* I, Expr* r) : Binary(l, r) {}
virtual int eval () {
return left()->eval() % right()->eval();

virtual void print () {

h

/I Variable (concrete).

class Var : public Atom {
string name_;
intval_;

public:
Var (string n, int v) : name_(n), val_(v) {}
string name () { return name_; }
intval () { return val_; }
void assign (intv) {val_=v;}
virtual int eval () { return val_; }
virtual void print () { }

Figure 3: Extending the type hieraych

2.2 Vertical and Horizontal Extensions

If the “space” of operations implemented by virtual member func-
tions is oganized in two dimensions, type and operation, accord-
ing to Fig. 4,vertical extensions, ie., etensions along the type
axis, are abays possible without &cting isting code. Havev-

er, horizontal extensions, ie., later additions of completely we
operations such as symbolicfdifentiation of gpressions, require
modifications and recompilations okisting classes, because all
member functions of a class must at least be declared in the class
itself. Besides theaft that this is incarenient and undesirable
from a methodological point of vie because it violates a basic
principle of modularity it might be simply impossible if the
classs urce code is urnailable.

Operation
eval print
Expr Expr::eval() Exgr::print()
Type Const |Const::eval() Const::print.()
Add Add::eval() Add::print()

Figure 4: Tvo-dimensional space of operations

Of course, this problem is not only present in C+dt,ib mary
other object-oriented languages, too. Its reason is mainly techni-

incorporate additional operators such as remainder or other kinds.g|: |n a typical implementation of virtual member functions (or

of atomic &pressions such aswables, none of the already im-

plemented classes and functions needs to be touched, because t

operations for these wetypes of &pressions can be simply im-

g1ethods in other languages), the addresses of all virtual functions
¢ a particular class are stored in the cksstual function table
from which thg are accessed via a unique irdealue. Because a

derived dass inherits all virtual functions of its base class(es), its
virtual function table is constructed as attemsion of the base
classs table. This is only feasible, haver, if the number of virtu-

al functions of the base class is tmoto the compiler when a de-
rived dass is declared. Adding wevirtual functions to a class lat-
er is therefore impossible.

Of course, it is possible to de¢ a nev operationdiff for sym-
bolic differentiation as a global function according to Fig. &, b
this solution is obiously not \ertically extensible, ie., if nev
subtypes oExpr are introduced latethe functionss body must
be etended and recompiled.

/I Differentiate expression x along variable n.
Expr* diff (Expr* x, string n) {
if (Const* ¢ = dynamic_cast<Const*>(x)) {
return new Const(0);

if (Var* v = dynamic_cast<Var*>(x)) {
if (v—=>name() == n) return new Const(1);
else return new Const(0);

}

if (Add* a = dynamic_cast<Add*>(x)) {

return new Add(diff(a—>left(), n),
diff(a—>right(), n));

Figure 5: Implementation afiff as a global function

e Bin
A
It is sometimes claimed, that the set of operations applicable to a

type can aliays be etended by défiing the nev operations for a
derived type. In the presenample, it is of course possible to de-
fine a n& class such aBiffExpr with a virtual member func-
tion diff (cf. Fig. 6). SinceDiffExpr is derived from Expr , the
member functions declared iExpr are also applicable to in-
stances oDiffExpr , but not vice vesa So, to be actually useful,
it would be necessary to change alsdng code using clagsxpr
to nov use clasDiffExpr instead. This might beven worse
than changinq just clagxpr to directly contain the me member
functiondiff

Furthermore, xtending only the root of a whole type hierarch
with a derved type praviding a nev operation is not sfifcient to
male the nev operation aailable to the other types of the hierar
chy. In fact, in a language supporting single inheritance, anly
would be necessary either tetend all other types analogousty -
losing, havever, their essential subtype relationshiper to tuild
a completely nev parallel hierarcii rooted aDiffExpr requiring
all virtual member functions of the original hieraycto be re-
implemented for the mehierarcty. In languages with multiple in-
heritance, such as C++, the latter can v@dad in principle by
meming these alternatés (cf. Fig. 7), lut obviously none of these
solutions is really satiattory In particular the last alternate
suffers from unintended repeated inheritance of the root Ebass
pr and its direct subclasses which could beided only by using
virtual inheritance en in the original type hierargh

! By disciplined application of another design pattern, namely some kirzdtofy pattern,
this problem can be circurented in principle.

/I Differentiable expression.

class DiffExpr : public Expr { public:
/I Differentiate expression x along variable n.
virtual DiffExpr* diff (string n) = 0;

g

/I Differentiable binary expression.
class DiffBinary
. p ublic DiffExpr, public Binary {

/I Differentiable addition.
class DiffAdd
. p ublic DiffBinary, public Add { public:
virtual DiffExpr* diff (string n) {
return new DiffAdd(left()->diff(n),
right()—>diff(n));

Figure 6: Implementation afiff as a virtual member function
of a derved dass

Figure 7: Original and deséd type hierarch

Because the author is not thest who discoered this fundamen-

tal limitation of object-oriented languages [4, 3], design patterns
such as th#/isitor pattern[7] have keen deeloped to @ercome it

in principle. Despite theaft, that such a pattern can be used to
solwve the problem of horizontalxéensions in a pragmaticalay if

it is strictly emplged from the ery baginning, the resulting solu-
tion is rather unnatural and complicated and thus not really satis-
factory from a methodological and aesthetical point ofvwi&ith-

out going into details--and without wanting to discredit the ovk

on design patterns, which often are the only practical means to
overcome such limitations of programming languagedutliding

an «tensible softwre system by empjing the \sitor pattern
would be similar to bilding an &tensible car by alays providing

it with, say a roof rack where all laterxéensions—such as a hook

for a trailer or fog lamps--haveto be mounted on because it is
impossible to mount them ywhere else (cf. Fig. 8).

Common Lisp Object System (CLOS) or some scripting lan-

Retroactvely augment the implementation of the C library rou-
tine malloc (or that of the C++ operatorew) with code that

guages, are able to meet at least some of these goals (cf. Sec. 5.2).
Other situations, not related to theample of arithmetic »pres-
sions, where bel@ural extensibility would be ery helpful in
practice, include:

performs book&eping and athers statistical information about

Figure 8: Possible illustration of thasitor pattern

2.3 Behavioural Extensions and M odifications

But even if a dass such aBxpr and its subclassesveleen de-
signed ery carefully to woid arny necessity of later horizontake
tensions, it might happen thattensions (or een modifications) .
along a third dimension become necessaaynely etensions (or

later modifcations) of the implemented befiaur. The folloving

is an arbitrary list of possible requirements that might arise in spe-,
cific application contets of this class hierargh

1. If the class hierarghtogether with other code using it, shall be
emplo/ed in a multi-threaded program, calls to the member
function print must be synchronized to pent intermixing
of multiple outputs. Because maddétions and recompilations
of this code are undesirable or impossible (if source code is not,
awailable), a mechanism for retroagly augmenting or
“bracketing” the function bodies gfrint with synchroniza-
tion code would be necessary .

2. Becausdnteger dvision with one or tw negdive gerands
might behae dfferently on diferent hardware architectures
(always rounding dwn versus alays rounding twards zero),
it would be desirable to retroaay replacethe implementa-
tion of the member functiobiv::eval ~ with an architecture-
independent implementation whiclwals divides the absolute
values of the operands and determines the sign of the result it
self. Alternatvely, the actual rounding bebiaur might depend
on a global or erironment \ariable.

the applicatiors usage of this routine.

Suffix the same routine with a test whether the resaiild/be a
null pointer causing controlled program termination in that case
instead of actually returning the null pointer

This could be gry useful to retroaatély fix program code us-
ing malloc which has been written by slopprogrammers
who have forgotten to alvays check thatx@eptional case.

Redefne the implementation of the C library routirealloc

to male the caseealloc(p,0) equialent tofree(p) , if the
available implementation does not already do that.
Augment the Unix system callsad andwrite (or whateer

functions are ultimately called by all standard I/O routines to ac-

tually read and write data) with code that copies all data read
from the standard input stream and written to the standard out-
put stream to another output stream, thus creating a log of the
applications interactve /O behaiour.

Quickly augment some critical routines of a program with diag-
nostic outputs to trace theixeeution paths.

Patch erroneous library routines by retroaasi replacing their
implementation.

3. Supporting Extensibility with Dynamic

Routines

Having explained these fundamental limitations of object-oriented
languages, which continuously turn out to hinder trudeesible
and modular programming in practicdynamic outineswill be
introduced in the follwing as a simple yet peerful general con-

3. If division by zero is not handled by the original implementa- cept to @ercome them. Aftenards, specializations of the general

tion ofeval or its replacement mentioned &kpor the imple-
mented behaour (e.g., immediate program termination) is not
appropriate for an application, itowld be necessary to retroac-
tively prefix the implementation oDiv::eval with a test
whether the second operand is zero and an appropriate be-
haviour for that case.

. If the naev behaviour of eval in that case is to return a special

concept will be described which\ebeen designed and imple-
mented for particular programming languages.

3.1 General Concept

The basic idea of dynamic routines, which is rather simple, has
been inspired by the concept pfrtially defned functionsin

null value (which might be represented for instance as the Mathematics. &r example, the functiorsign determining the sign

smallest aailable integer \alue), all other instances efal
would hare © be retroactvely prefixed with a test, too,

of a numberx is typically defned by three complementary
branchesdefining its behgiour on diferent subsets of theverall

whether one or both of the operands is equal to that aluiey ~ domain:

returning agin the null alue in that case instead ofeeuting sign(x) = 1, if x>0;

the normal ealuation code. signx) =0, if x=0;
Obviously, none of these requirements can beilfatl with a nor sign(x) = -1, if x<O.

mal object-oriented (or impera#)) programming language with-
out modifying and recompilingxésting codé® On the other hand,
it is interesting to note that other kinds of languages, such as the

Similarly, a partially defned function such as

f(x) = xsin(1/x), ifx#0

might be complemented by another partialrdgén

2Again it is possible in principle, by strictly applying some kindaiftory pattern, to per
form behaioural extensions by introducing subclasses tharade methods of the original
classes. See [12, 13] for a critical discussion of this possibility

f(x)=0, ifx=0

to extend its domain to all real numbersOIR. If necessary

mathematicians do noven hesitate to red@fe a preiously de-
fined function such as

sul(x, y) = x -y (without restrictions orx, y 0 IR)
on a subset of its domain,ge,
sul(x,y) =0, ifx<y,

to adapt it to a particular comte(here, to ma& aure thatsubdoes
not return ngdive \alues). Vithout being &plicitly expressed in
normal mathematical x¢s, the rule for ihding the appropriate
definition of a particular function is to searbladkwards from the
“point of invocation” (i.e., the place where the function is used) to
the latest definition of the function encountered sarfwhose ac-
comparying condition is satigd by the actual parametealues.
By searching backards from the point of irocation instead of
forward from the bginning of the tgt, the case of rediition il-
lustrated in the lastxample is handled as desired. In the other e
amples, where the conditions of thefeliént branches of a func-
tion are logically disjoint (ie., at most one of them is satsf by
ary actual parameteralues), the search order is irnest.

In a programming language dgnamic outineis a function, pro-
cedure, or method (whater terminology is used in the particular
language) with an associategiad, i.e, a Boolean-alued &-
pression acting as precondition In contrast to normal routine
definitions, it is allaved to deifhe multiple instances diranches
of the same dynamic routine €i, haing the same signature) in
the same scope, typicallyubnot necessarily) with ddrent (and
in most casesven logically disjoint) guards.

Dynamic routines are called in the sameyvas normal routines
of the language, €., there is no di¢érence from a clierg’perspec-
tive. To find the branch that will be actuallxezuted, the branch-
es’ guards will beeluated in reerse order of défition until the
first satisied condition is found; then the corresponding routine
body is &ecuted. (If no “matching” branch is found, a runtime er
ror occurs.) Similar to the ay a member function or method can
call the method of its base type that it igmiding, a dynamic
routine can call theext applicable bandh, i.e., the net branch
in reverse deihition order whose condition is sated. In contrast
to normal routine calls, keever, such a call neer takes eplicit
parameters because the original parametkreg of the dynamic
routine are implicitly passed unchangeekreif the formal param-
eters hae been modiked.

3.2 Dynamic Functionsin C++

To remain compatible with established terminology [20], dynamic
routines are calledynamic functiongn C++. In analogy to virtual
member functions, which can beerridden in dened types, thg

are also calledylobal virtual functions because theare global
functions that can beverridden. Thg are declared and deg&d
like mormal functions préked by a ne keyword dynamic . Alter-
natively, the isting function speciér virtual can be used
which is not applicable to global functions in standard C++ Fur

dynamic int sign (double x) if (x > 0) {

return 1;

}

dynamic int sign (double x) if (x == 0) {
return 0;

}

dynamic int sign (double x) if (x < 0) {
return -1;

}

dynamic double f (double x !=0) {
return x * sin(1/x);

}

dynamic double sub (double x, double y) {
return x - y;

}

dynamic double f (double x == 0) {
return 0;

dynamic double sub (double a, double b)
if (a <b) {
return O;

}

Figure 9: Mathematicakamples of dynamic functions

trate a more compact and eenient way of integrating guards in-
to the parameter declaration list. In generajuarded paameter
declamtion such asntx!=0 is equvalent to the normal param-
eter declaratiomtx plus the guardf(x!=0)

Finally, the frst defnition of sub demonstrates the ay of
transforming a normal function withoutyarestrictions on its pa-
rameter alues into a dynamic function that can be redef later
by simply preixing it with the leyword dynamic . (Formally, such
a definition is accompanied by the tautological guitcle))
Furthermore, the second @éfion of sub illustrates that parame-
ter namesmight vary from branch to branch, becauseythee not
part of a functiors sgnature.

Of course, in these simplexamples, implementing an operation
such asign as a dynamic function with multiple branches is un-
necessarily cumbersome and more elaborate than implementing it
as a single normal function with a corresponding selection state-
ment in its bodyBut as the subsequenkxanples will clearly
demonstrate, empying dynamic functions is the onlyay to

keep an implementation open faxpected and ungected gten-

sions along all three dimensions described in Sec. 2.

Figure 10 shas a re-implementation of the operatiaval and
print (cf. Fig. 2) as sequences of dynamic functiorini@ns,
together with a correspondingly madi class hierarghthat does
not contain ay virtual member functionsxeept for a dummy

thermore, the head of a dynamic function usually contains one orfunction that is necessary to neathe classes polymorphic é.,

more guards of the forrifi(cond) with a Boolean-alued &-
pressioncond . Figure 9 demonstrates the basic principles by im-
plementing the mathematicatamples of the préous subsection
as dynamic functions.

The three déditions of sign shav the most basic form of dy-
namic functions, where the guard ispkcitly coded as arif
clause in the function head. In contrast to that, tleedefinitions

allow dynamic type tests on their instances usipgamic_cast)
and to distinguish abstract from concrete classes.

The frst branches oéval andprint contain an eplicit guard
using adynamic_cast to test whether the dynamic type of
Expr*x is aConst*c ; if this is true, the aluec->val() of the
constant gpressiorc is returned or printed, respedly. The sec-
ond defnitions of these functions demonstrate a moreveaient

of f — which are deliberately scattered to demonstrate that theform of dynamic type tests in dynamic function heads using a

branches of a dynamic function need not appear togetliars-

colon as a pseudo comparison operator resemblings Ja-

Il General expression (abstract).

class Expr {
/I Pure virtual dummy function to make
/I the class both abstract and polymorphic.
virtual void dummy () = 0;

b

/I Atomic expression (abstract).
class Atom : public Expr {};

/I Constant expression (concrete).
class Const : public Atom {
/I Formally implement the dummy function
/I to make the class concrete.
void dummy () {}
intval_;
public:
Const (intv) : val_(v) {}
intval () {returnval_; }

dynamic int eval (Expr* x)
if (Const* ¢ = dynamic_cast<Const*>(x)) {
return c—>val();

dynamic void print (Expr* x)
if (Const* ¢ = dynamic_cast<Const*>(x)) {

/I Binary expression (abstract).
class Binary : public Expr {
Expr* left_;
Expr* right_;
public:
Binary (Expr* I, Expr* r)
21 oeft_(1), right_(r) {
Expr* left () { return left_; }
Expr* right () { return right_; }

1

/I Addition (concrete).
class Add : public Binary {

void dummy () {}
public:

Add (Expr* |, Expr* r) : Binary(l, r) {}
3
dynamic int eval (Expr* x : Add*) {

return eval(x—>left()) + eval(x—>right());
}
dynamic void print (Expr* x : Add*) {

Figure 10: Re-implementation e¥al andprint
with dynamic functions

stanceof operator In general, a guarded parameter declaration
such asExpr*x:Add* is equvalent to the normal parameter
declaratiorExpr*xx (with some unique name) plus the guard

if (Add* x = dynamic_cast<Add*>(xx)) . Thus, the static

type of the formal parametaris Expr* in the functions sgna-
ture, ut Add* in its body

Figure 11 shes additional defitions (possibly in a diérent
translation unit) gtending both the type hierarchvith a nev type

Var including accompaying branches of the dynamic functions
eval andprint (vertical extension) and the spectrum of opera-
tions with a nes dynamic functiondiff (horizontal &tension).

As this kample shws, it is of course possible to implemelit

in a single branch of a dynamic function for all concrete subtypes
of Expr known so fr using a selection statement with multiple
branches, while at the same time remaining open for latécal
extensions.

Il Variable (concrete).

class Var : public Atom {
string name_;
intval_;

public:
Var (string n, int v) : name_(n), val_(v) {}
string name () { return name_; }
intval () { return val_; }
void assign (intv) {val_=v;}

%

dynamic int eval (Expr* x : Var*) {
return x—>val();

}

dynamic void print (Expr* x : Var*) {

/I Differentiate expression x along variable n.
dynamic Expr* diff (Expr* x, string n) {
if (Const* ¢ = dynamic_cast<Const*>(x)) {
return new Const(0);

if (Var* v = dynamic_cast<Var*>(x)) {
if (v—=>name() == n) return new Const(1);
else return new Const(0);

}
if (Add* a = dynamic_cast<Add*>(x)) {
return new Add(diff(a—>left(), n),
diff(a—>right(), n));

Figure 11: ¥rtical and horizontabgensions

Finally, Fig. 12 shavs some behéoural extensions and moddfa-
tions of the functiongrint andeval implementing the require-
ments mentioned in Sec. 2.3.

Extension 1 shws the typical pattern for braeting an gisting
implementation of a function with a prelude and a postlude. T
avad the introduction of another wekeyword into the language,
the next applicable branch of a dynamic function can be called by
using the kyword dynamic as the name of a parameterless pseu-
do function.

Extension 2 is one of the rargaenples where the original im-
plementation of a function is completelyeoridden, i.e., the ngt
applicable branch of the dynamic function is not called at all. T

I Extension 1:
/I Augment print with synchronization code.
dynamic void print (Expr* x) {
/I Mutex allowing multiple recursive locks
/I by the same thread.
static pthread_mutex_t m
= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

pthread_mutex_lock(&m); // Prelude.
dynamic(); I Orig. function.
pthread_mutex_unlock(&m); // Postlude.

}

I Extension 2:
/I Redefine division with negative operands.
dynamic int eval (Expr* x : Div¥) {
int | = eval(x—>left());
int r = eval(x—>right());
intsign=(1>=0)==(r>=0)?1:-1,
return abs(l) / abs(r) * sign;

/I Null value.
const int null = INT_MIN;

Il Extension 3:

/I Handle division by zero.

dynamic int eval (Expr* x : Div¥) {
if (eval(x—>right()) == 0) return null;
else return dynamic();

}

/I Extension 4:

/I Handle null valued operands.

dynamic int eval (Expr* x : Unary*)

if (eval(x—>body()) == null) {
return null;

dynamic int eval (Expr* x : Binary*)
if (eval(x—>left()) == null
|| eval(x—>right()) == null) {
return null;
}

Figure 12: Behdoural extensions and moddations

the contrary extensions 3 and 4 are typicataenples where the
next applicable branch is called conditionaléither eplicitly us-
ing dynamic() in the body or implicitly if the guard’condition
is not satised.

Given these déhitions, the call teeval in the folloving code will
be executed as described belo

Const* y = new Const(10);
Const* z = new Const(-4);
Div* x = new Div(y, z);

int v = eval(x);

» The last branch odval defined in Fig. 12 isxecuted with the
actual parametex.

Its implicit guardExpr*x:Binary* , Which is e/aluated frst,

is satisfed since the dynamic type of (the object pointed to

by) x, i.e, Div, is a sibtype ofBinary . Thus, its &plicit guard
is evaluated net, causing recurge alls toeval with actual pa-
rametersx—>left() and x->right() , i.e,y andz, respec-
tively.

Because the dynamic type of these objec@oisst , these calls
finally end up with calling therkt branch defed in Fig. 10, re-
turning the aluesl0 and-4, respectiely.

* Since both thesealues are diérent fromnull , the eplicit
guard of the last branch is not sa&df causing an implicit call
to the prgious branch.

The implicit guardExpr*x:Unary* of this branch is not sat-
isfied, too, causing in turn an implicit call to its predecessor

 Since the implicit guardexpr*x:Div* of this branch is satis-
fied, its body is actuallyxecuted.

Because the conditiogval(x—>right())==0 of its if-then-
else statement is not saitsf, the ngt applicable branch isxe

plicitly called in the else part.

This reaches the branch “Extensiohwghose body will bee
ecuted since its implicit guatekpr*x:Div* is satisfed. Af-
ter evaluating the operands—>left() and x->right() , the
final result alue-2 will be computed and returned.

Remark:If extensions 2, 3, and 4 are actually implemented in the
same translation unit, itould be more difcient to combine them
into a single branch of the dynamic functeral to avoid repeat-

ed recursie alls to ealuate the subgressions—>left() and
x=>right() . On the other hand, Fig. 12 demonstrates that it is
indeed possible to implement thesaeasions and moddations

in a very modular and orthogonalay

3.3 Dynamic Proceduresin Oberon-2 and Related
Languages

Similar to C++, dynamic routines can be gr@ed asdynamic
procedues into Oberon and Oberon-2 [18], where jthean be
used instead dfype-bound pycedues (Oberon-28 equivalent of
dynamically bound methods) or hand-coded implementations of
dynamic binding in Oberon (by meansmbcedue recods, i. e,
records gplicitly containing the procedures associated with an
object). It is @en possible to intgrate the concept into purely pro-
cedural languages such assPal, Modula-2, or C, yielding a lan-
guage that supports horizontal and hétaral extensions, bt —
due to the lack of an appropriate type systemo-vertical exten-
sions.

To demonstrate the basic principleggures 13 and 14 sho
some typical xamples of dynamic procedures in Oberon-2. In
analogy to C++, a me keyword DYNAMIChas been introduced
which is used both to distinguish dynamic from normal procedure
declarations and towoke the net applicable branch in the body
of a dynamic procedure. In contrast to C++, guards arayalin-
tegrated into the formal parameter list, eithergasmmded formal
parameter sectionsuch a : E xpriSUnary , or as alditional
Boolean-alued &pressions such &E.eval(x.body)=null ,
since a separaté clause wuld not ft well into a procedure
head. © add branches to a dynamic procedure that is imported
from another module, the procedure name must be igablifith
the name of thexporting module (or an alias name suclBBsle-
clared in anMPORTCclause). Since such branches cannot be called
directly as procedures of their enclosing module, duld not
make ense to xport them.

For readers which are noamiliar with the syntactic details of
Oberon-2, it should be noted thfand- denoteexport marksin-

MODULE BasicExpr;
TYPE
(* General expression. *)
Expr* = POINTER TO ExprRec;
ExprRec* = RECORD END;

(* Atomic expression. *)
Atom* = POINTER TO AtomRec;
AtomRec* = RECORD (ExprRec) END;

(* Constant expression. *)

Const* = POINTER TO ConstRec;

ConstRec* = RECORD (AtomRec)
val-: INTEGER,;

END;

(* Binary expression. *)

Binary* = POINTER TO BinaryRec;

BinaryRec* = RECORD (ExprRec)
left-, right-: Expr;

END;

(* Addition. *)
Add* = POINTER TO AddRec;

AddRec* = RECORD (BinaryRec) END;

DYNAMIC PROCEDURE eval*
(x : Expr IS Const) : INTEGER,;

BEGIN RETURN x.val

END eval;

DYNAMIC PROCEDURE eval*
(x: Expr IS Add) : INTEGER;

BEGIN RETURN eval(x.left) + eval(x.right)

END eval,

END BasicExpr.

Figure 13: Dynamic procedures in Oberon-2

dicating full and read-only xport, respectiely, of an identifier
from a module. Furthermore, the base type ofx@nded ecod
typeis included in parentheses after ttesikord RECORPand the

keyword IS denotes a dynamic type test.

MODULE ExtExpr;
IMPORT BE := BasicExpr;

CONST null = MIN(INTEGER);

(* Extension 3: Handle division by zero. *)
DYNAMIC PROCEDURE BE.eval
(x : BE.Expr IS BE.Div) : INTEGER,;

BEGIN
IF BE.eval(x.right) = 0 THEN RETURN null
ELSE RETURN DYNAMIC()
END

END BE.eval;

(* Extension 4: Handle null valued operands. *)
DYNAMIC PROCEDURE BE.eval
(x : BE.Expr IS BE.Unary;
BE.eval(x.body) = null) : INTEGER,;
BEGIN RETURN null
END BE.eval;

DYNAMIC PROCEDURE BE.eval
(x : BE.Expr IS BE.Binary;
(BE.eval(x.left) = null) OR
(BE.eval(x.right) = null)) : INTEGER,;
BEGIN RETURN null
END BE.eval;
END ExtExpr.

Figure 14: Behdoural extensions to modulBasicExpr

wards zero, soension 2 is unnecessgnAs in C++, a ne
keyword dynamic is used to distinguish dynamic class methods
from both static class methods and instance methods as well as to
invoke the next applicable branch of a dynamic class method.
Guards also follw the same syntax as in C++¢i, thg might be
specifed eplicitly by anif clause or implicitly by guarded pa-
rameter declarations (using theyd&eyword instanceof for dy-
namic type tests instead of thentgintroduced colon operator in
C++). From a cliens perspectie, dynamic class methods are
called just lile datic class methods, ., the method’ nrame is
qualified by the class name. Justelikther methods, dynamic
class methods can be declapetilic , protected , or private
to specify their accessibility as well abstract , synchro-
nized , andstrictfp , but notstatic , final , or native

Similar to abstract instance methods, an abstract dynamic
method declares the methsdignature, it does not pnide a re-
al implementation. It is actually egalent to a branch with the

3.4 Dynamic Class Methodsin Java (cf. [12, 13]) unsatisied guardif(false) and an empty bodyrherefore, in
’ contrast to abstra_ct instance methods, an abstract dynamic method
In contrast to C++ and Oberon-2ydd9] (like mary other object- may well appear in a concrete class.

oriented languages) does not directly support global functions or !f the method modiérs synchronized andstrictfp are ap-

procedures which could be used as the basis for dynamic routinesPliéd to a dynamic class method, their meaning is the same as for

Nevertheless class methodgalso called static methods, in con- & Satic class method. In particula ynchronized dynamic class

trast to instance methods) pide essentially the same functional- method locks resp. unlocks the object corresponding &nittos-

ity and, when compared to imported procedures in Oberove@, e Ing class (which might diér from the class where the method has

follow the same calling syntax: a quiil identifer followed by been dehed originally) before resp. aftexeeuting its bodyin-

an agument list. Therefore, it seemsvidus and reasonable to cluding the galuation of its guards. ,

map the general concept of dynamic routines to some sort of class, Similar to the vay an imported dynamic procedure can be-o

methods in Jaa which are calledlynamic class methods ridden or etended in another Oberon-2 module, an accessible dy-
To be mncrete, ijures 15 and 16 shothe same functionality ~ namic class method of another class canxteneed by using its

as fgures 10 and 12,ub implemented with dynamic class meth- qualified name in a method declaration. In particupaiblic dy-
ods in Jea (Note that intger diision in Jaa dways rounds to- ~ Namic class methods of a class may keereled by an other

Il General expression.
abstract class Expr {
/I Evaluate expression X.
public dynamic abstract int eval (Expr x);

/I Print expression x.
public dynamic abstract void print (Expr X);

/I Atomic expression.
abstract class Atom extends Expr {}

/I Constant expression.

class Const extends Atom {
private int val;
public Const (intv) {val =v; }
public int val () { return val; }

/I Redefine dynamic class methods of Expr.
dynamic
int Expr.eval (Expr x instanceof Const) {

}

return x.val;

dynamic
void Expr.print (Expr x instanceof Const) {

/I Binary expression.

abstract class Binary extends Expr {
private Expr left, right;
public Binary (Expr |, Exprr) {

left =I; right = ;

}
public Expr left () { return left; }
public Expr right () { return right; }

}

/I Addition.
class Add extends Binary {
public Add (Expr I, Expr r) { super(l, r); }

/I Redefine dynamic class methods of Expr.
dynamic
int Expr.eval (Expr x instanceof Add) {

return Expr.eval(x.left())
+ Expr.eval(x.right());

dynamic
void Expr.print (Expr x instanceof Add) {

Figure 15: Implementation efal andprint
with dynamic class methods invda

Il Extension 1:
/I Augment print with synchronization code.
class SyncExpr {
dynamic
synchronized void Expr.print (Expr X) {
dynamic();

}

Il Extensions 3 and 4:
/I Handle division by zero
/I 'and null valued operands.
class NullExpr {
public static final int NULL
= | nteger.MIN_VALUE;

dynamic

int Expr.eval (Expr x instanceof Unary)

if (Expr.eval(x.body()) == NULL) {
return NULL;

}

dynamic
int Expr.eval (Expr x instanceof Binary) {
if (Expr.eval(x.left()) == NULL
|| Expr.eval(x.right()) == NULL) {
return NULL;
}

try {
return dynamic();

catch (ArithmeticException e) {
return NULL,;
}
}
}

Figure 16: Behdoural modifcations and x@ensions

class, while protected dynamic class methods mayteaded by
subclasses and classes belonging to the same packag®&enly
cause such an additional branch of a “foreign” dynamic class
method cannot be called directly as a method of its enclosing
class, its access moidif is actually ignored if present.

3.5 Extensibility of Legacy Code

If the C library functionsmalloc andrealloc as well as the
Unix system callsead andwrite (which are actually library
functions, too) were dynamic functions, thektemsions men-
tioned at the end of Sec. 2.3 could actually be implemented as
shavn in Fig. 17. Unfortunatejyhoweve, this is normally not the
case, thus limiting the applicability of dynamic routines talge
developed code.

However, using some nastysystem-dependent tricks, @,
specifying appropriate options at link time, it is usually possible to
renamethe routines contained in a library and theplace them
with new implementations that call the original routines with their
nev names. If these meimplementations are dynamic functions
(which can be generated mechanically), it is indeed possible to
create a ng version of an xsting library whose functions are dy-
namic and thus fully>@ensible, without needing to edit or recom-
pile the librarys ource code.

dynamic void* malloc (size_t n) {
/I Gather statistical information.

I Check result of original function

/I 'and abort when receiving a null pointer.

if (void* p = dynamic()) return p;
else abort();

}

dynamic void* realloc (void* p, size_t n)
if (n==0){

free(p);
}

int log = ...; // File descriptor of log file.

dynamic ssize_t read
(int fd, void *buf, size_t count)
if (fd == 0) {// File descriptor 0 is stdin.
ssize_t n = dynamic();
if (n > 0) write(log, buf, n);
return n;

}

dynamic ssize_t write
(int fd, const void *buf, size_t count)
if (fd == 1) { // File descriptor 1 is stdout.
write(log, buf, count);
return dynamic();

Figure 17: Retroacte exensions of C library functions

In addition to these normal “branch routifigsyo additional
routines are generated when thstforanch is encountered. First,
an additional branch routine called “branch zero” is generated
which constitutes the prmus branch of theirkt normal branch.

If this branch gets called at runtime, it signals an error condition
by thronving an (uncheadd) eception (in C++ and Ja) or di-
rectly terminating the program (in Oberon-2, which does not sup-
port exception handling). Second, a single “dispatch routine” is
generated hang the same parameter list and name as the dynam-
ic routine and a body which simply calls ligst branch. Hovever,
since the last branch of a dynamic routine is notwknat this
place—even if the precompiler wuld read ahead the whole trans-
lation unit — because it might be de&d in a diferent translation
unit or even in a library, module, or class that is dynamically load-
ed at run time, the dispatch routine actually calls it indirectly via a
routine (pointer) ariable.

4.2 Oberon-2 and Java Details

In Oberon-2 and Ja, this variable is declared in the module resp.
class containing theevy first branch and initialized to the last
branch defed in that unit. (Note that in these languages this unit
is distinguished by theatt that the routine’mame is used unqual-
ified there.) If additional branches areidefl in other modules re-
sp. classes (where the routmeame is used quaiéd), the cur
rent \alue of this ariable plays the role of the pieus branch for
the frst branch defied there. Therefore, during initialization of
that unit, the ariables value is copied to a locakviable of the
unit before it is updated to the last branchraef in that unit, and

so on. Because in Oberon-2 andalahe initialization order of
the modules resp. classes of a program is weileléf Oberon-2
modules are initialized in an order determined by their import re-
lationships, while Ja dasses are (recuvdy, if necessary) ini-
tialized when thg are used for theirfst time —, the werall order

of the branches of a dynamic routine in a program is weileief
too.

4. Implementation of Dynamic Routines

4.1 Basic Principle 4.3 C++ Details
To the contraryal translation units of a C++ program containing
branches of a dynamic function are peers: There is no distinguish-
ing property of the unit containing theew first” branch, nor is
the initialization order of the translation units of a program speci-
fied by the language. As st consequence, this raises the ques-
tion in which of the translation units the function pointariable
nd the branch zero and dispatch functions associated with a dy-
amic function shall bealeined, i.e., actually allocated. dftu-
nately C++ provides a lgd way to eade this question by def
ing the \ariable as a static data member and the functions as in-
lined friend functions of an appropriate template classvery
translation unit containing branches of the dynamic function. Sec-
ondly, the overall order of the branches of a dynamic function ac-
tually depends on the order in which the translation units of a pro-
%ram are linkd togetherbecause this order (or theveese of it,
depending on the compiler) determines the initialization order of
the units. © smulate the Oberon-2 rule that imported modules are
initialized in order before the importing module, a simple auxil-
. iary program can be used that interprételude directives in
SC++ translation units as import relationships and constructs an ap-
ropriate ordering of the objedtels for a particular compileAl-
ernatvely, if this pragmatical solution is deemed inappropriate,
the precompiler could generate atplecit C++ function contain-
ing initialization code foreery translation unit instead of generat-
ing global \ariable dehitions with initializer expressions. By in-

In order to gin immediate practicalxperience with the concept
of dynamic routines in dérent programming languages, it has
been implemented as precompitersed languagextensions for
C++, Oberon-2, and va

Despite their syntactic dérences, the basic principle of trans-
forming dynamic routines to normal routines of the corresponding
language plus some auxiliary data structures, is the same for al
languages: Eary branch of a dynamic routine is transformed to a
normal routine héng the same parameter list and some unique
name. Its body remains essentially unchangeck that imoca-
tions of the net applicable branch, &., irnvocations of the
pseudo-routinedynamic resp.DYNAMIG are transformed to in-
vocations of (the unique routine corresponding to) theipus
branch of the same dynamic routine. In order to be able to pass th
original parameteralues gen if the formal parameters V& keen
modified, backup copies of theialues are created at thery be-
ginning of the routina body. Furthermore, the branchiuard (if
present) is meed into the body as a gelar if-then-else statement

an invocation of the préous branch. If a guarded parameter dec-
laration contains a dynamic type test (using one of the operator
colon, instanceof , or IS, respectiely), an appropriate declara-
tion or statement that statically a@nts the parameter to its dy-
namic type is added after (or instead of) the test.

10

troducing a ne keyword such asmport as another small lan-
guage etension, the programmerowld then be able taxplicitly
specify the desired wocation order of these initialization func-
tions in analogy tdMPORTdeclarations in Oberon-2.

4.4 Additional Problems

The possibility of werloading function resp. method names in
C++ and Jea ad the consequent possibility ofenloading dy-
namic functions resp. methods, introduces some additional dif-
ficulties for the precompileFor example, the name of theawa-

ble associated with a dynamic routine cannot be simplyetderi
from the routines rame. Furthermore, Ja des not directly sup-
port the analogue of C++ function pointers, while in C++ iteig/v
hard in general to identify branches belonging to the same dynam-
ic function, because the type names appearing in the signatures
might be “disguised” bytypedef and using declarations,
namespace aliases, template instantiations, etertkeless, these
problems can be sad using some tricks whose description is be-
yond the scope of this paper and actually notealkefor a user of

the concept. (But see [12, 13] for a detailed description of tkee Ja
solution.)

To gve the reader an impression of the precompilergrky
figures 18 and 19 shathe (retroactiely beautifed and comment-
ed) result of applying the Oberon-2 precompiler to the modules
BasicExpr andExtExpr shawn in figures 13 and 14.

4.5 Possible Optimizations

The precompilebased implementation described so & rather
easy to implement especially if a grammar of the base language
is available which can be directly fed into a parser generator such
as Yacc or JaaCC -, and the generated code asrliy efficient in
practice. Hovever, by carefully improving the precompilers or by
integrating their vork into a real compiler of the base language,
several optimizations are possible which shall be brieflgtsked:

* Instead of mapping each branch of a dynamic routine to a sepa-
rate normal routine of the base language, all branchesdeh
the same translation unit might be combined into a single rou-
tine to aoid unnecessary routine calVehead for calls of the
next applicable branch and to aMostandard optimizations,
such as common suk@ession elimination, for thevauation
of their guards.

» The creation of parameter backup copies canvbeled if the
formal parameters of a routine are not miedif which is fre-
quently true.

« If the formal parameters are not maetif and the nd applica-
ble branch is called at the end of a routine, which is in particular
true for implicit calls due to unsatiséi guards, the parameters
need not be duplicated on the runtime stack if the applica-
ble branch is xecuted in the same stack frame as the current
branch. This is similar to optimizing tail-recwsiclls in func-
tional programming languages.

 Since guards often contain dynamic type tests on a single rou-
tine agument, actually resembling the standard dynamic dis-

MODULE BasicExpr;

(* Procedure type and variable *)
(* containing last branch. *)
TYPE evalXXXtype*
= PROCEDURE (x : Expr) : INTEGER,;
VAR evalXXXvar* : evalXXXtype;

(* Dispatch procedure. *)

PROCEDURE eval* (x : Expr) : INTEGER,;
BEGIN RETURN evalXXXvar(x)

END eval;

(* Branch zero. *)

PROCEDURE evalXXXO0 (x : Expr) : INTEGER;
BEGIN HALT(1)

END evalXXXO0;

(* First branch. *)

PROCEDURE evalXXX1 (x : Expr) : INTEGER;
(* Parameter backup copy. *)
VAR xXXX : Expr;

(* Local procedure implementing *)
(* keyword DYNAMIC. *)
PROCEDURE DYNAMIC () : INTEGER,;
BEGIN
(* Call previous branch. *)
RETURN evalXXX0(xXXX)
END DYNAMIC;
BEGIN
(* Init. parameter backup copy. *)
XXXX = X;

(* Type guard generated from *)
(* guarded parameter declaration. *)
WITH x : Const DO
(* Original procedure body. *)
RETURN x.val
ELSE RETURN DYNAMIC() END
END evalXXX1;

(* Second branch. *)
PROCEDURE evalXXX2 (x : Expr) : INTEGER;

BEGIN

(* Initialize procedure variable. *)
evalXXXvar := evalXXX2;

END BasicExpr.

Figure 18: Tansformation of Oberon-2 moduBasicExpr

patch stratgy of object-oriented languages, similar techniques because most of them can only be done in a real comien

based on virtual function tables might be ergpbtbto reach an
applicable branch more directly than by fellng the normal
chain of branches.

None of these optimizations has been actually implementeat, so f

the frst one, combination of multiple branches into a single rou-
tine, i.e., actually rearrangement of source code, is rathiecudtf

for a precompiler because thgaet meaning of some piece of
code (including thedct whether it is syntactically and semantical-
ly correct) might depend on itsact position in a translation unit.

11

MODULE ExtExpr;
IMPORT BE := BasicExpr;

(* Local procedure variable. *)
VAR evalXXX0 : BE.evalXXXtype;

(* Extension 3: Handle division by zero. *)
PROCEDURE evalXXX1 (x : BE.Expr) : INTEGER;
VAR xXXX : BE.Expr;
PROCEDURE DYNAMIC () : INTEGER,;
BEGIN RETURN evalXXXO0(x)

END DYNAMIC;
BEGIN
XXXX = X;

WITH x : BE.Div DO
(* Original procedure body. *)
IF BE.eval(x.right) = 0 THEN RETURN null
ELSE RETURN DYNAMIC()
END
ELSE RETURN DYNAMIC() END
END evalXXX1;

(* Extension 4: Handle null valued operands. *)
PROCEDURE evalXXX2 (x : BE.Expr) : INTEGER;
VAR xXXX : BE.Expr;
PROCEDURE DYNAMIC () : INTEGER;
BEGIN RETURN evalXXX1(x)
END DYNAMIC;
BEGIN
(* Type guard and conditional statement *)
(* generated from guarded parameter list. *)
WITH x : BE.Unary DO
IF BE.eval(x.body) = null THEN
(* Original procedure body. *)
RETURN null
ELSE RETURN DYNAMIC() END
ELSE RETURN DYNAMIC() END
END evalXXX2;

PROCEDURE evalXXX3 (x : BE.Expr) : INTEGER,;
END evalXXX3;

BEGIN
(* Store current value in local variable *)
(* and update imported procedure variable. *)
evalXXX0 := BE.evalXXXvar;
BE.evalXXXvar := evalXXX3;

END EXxtExpr.

Figure 19: Tansformation of Oberon-2 modustExpr

For example, the tw calls to the functiorf in the folloving C++
program hge cuite different meaning:

void f (double x) { }
void g1 () { f(1); }
void f (intx) { }
void g2 () { f(1); }
While the call contained igl calls the irst defnition of f after

corverting the agument of typent to double , because this is
the only matching défition known at this place, the call con-

tained ing2 calls the second deftion, because it matchesazt-

ly. Thus, it would be impossible for a precompiler (that does not
perform a complete semantigakiation of its input) to combine
gl andg2 into a single function that simply cafld) twice.

5. Discussion

5.1 Critical Review

Dynamic routines are at the same time weréul and a dangerous
device. When used properlthey offer unique possibilities toxe
tend and retroastély modify software systems, as has been illus-
trated in this pape©On the other hand, when used inappropriately
they make it quite easy to cause Y by overriding routines in a
completely nonsensicalay. Howeve, this dichotomy is typical
for every effective tol, not only in programming languages
(think, e.g., of pointers, globalariables, inheritance, function and
operator gerloading, etc.), bt also in real life (for tools such as
knives, axs, or razor blades), and ibuld not mak much sense
to completely abandon a useful tool just becausmight be
alused. Havever, as with real-world tools, a certain amount of
practical &perience as well as some basic rules and guidelines
such as the follwing might be helpful toaid unintended mis-
use:

» To extend a routine to a medomain without altering its be-
haviour on the original domain, use a guard that is logically dis-
joint from the guards of all pvéous branches.

A type test for a nely introduced subtype is a typicatample
of such a guard.

« To add orthogonal or “cross-cutting” behaur, again without
altering the original beléur, define an unguarded branch that
follows the prelude/postlude pattern with an embedded uncondi-
tional call of the preious branch.

* Make & few assumptions as possible about the b&ha of
previous branches, &., treat them as a black box whesrepos-
sible. Justdd the code you need for your purpose.

« Think twice before défing a “dead end” branch,&., a branch
that does not call the prieus branch. Consider calling the pre-
vious branch and ignoring its result to malre that orthogonal
extensions defed by other branches will bexeeuted, instead
of not calling it at all.

 Clearly document branches that violate ahthe abwe wles if
you really need them.

If well-meant guidelines and rules are notfi@iént to preent
aluse, one might think about enacting stristdawhich are en-
forced by some appropriate “authoritiFor instance, it might be
reasonable in some circumstances to restrict the rightenfiar

ing or extending a dynamic class method to subclasses or classes
belonging to the same package as the class where the method has
been dehed originally Such lavs could be enforced by the pre-
compiler and/or the underlying compilef additional language
constructs werevailable for specifying such restrictions. Current-
ly, the same aim can be acked indirectly by assigning the dy-
namic class methogrotected or defwult access and deing an
additional public static method which simply calls the dynamic
method. © achieve nore flexible and ine-grained access control,
which, havever, cannot be enforced at compile timeayttonly at
run time, it would be an interesting task to igtate the concept of
dynamic class methods with thevdeSecurity Framevork [8].

12

5.2 Redated Work and protection. When using dynamic routines for such purposes, it
is necessary to augment eacteeted routine separately
Ideas to support aims similar to those of dynamic routines can be
found in mawy different areas. df instance, the concepts of open 5.3 Conclusion
classes, multimethods, and before- and aftethods, found in
different combinations, g., in Multidava [3], CLOS [24], and Dynamic routines ha keen suggested as a simple yetvedul
Dylan [5], ofer mary of the possibilities of dynamic routines. The concept to achie torizontal and behéoural extensibility of
latter, howeve, provide additional fl&ibility by allowing dispatch software systems in aevy general and fiéble way. Concrete spe-
stratgies that are based on arbitrary properties of thgirmaents, cializations of the general conceptvbaeen designed and imple-
not just their dynamic types. Furthermoreereproperties of the mented as precompidsased languagexeensions for C++, Obe-
“environment; such as walues of global or classavables, user ron-2, and Ja in order to gin immediate practicalxperience
preferences read from an applicatomnfiguration fle, etc., can with the concept in diérent programming languagesogether
be incorporated into the dispatch process if appropriate. Finally with a complementary concept callegen typeswhich provides
complete redéfitions of, eg., erroneous or incomplete library horizontally extensible data structures, the concept of dynamic
routines are possible, if the concept is applied consistéralyif routines has been successfully ergpl so &r to implement an
routines are atays defned dynamically (This idea is currently interaction manager synchronizing concurrentkfiows [11] and
investigated in a ne programming language where dynamic rou- a gaphical editor for interaction graphs [10]. Additional projects
tines are the sole kind of routinegaiable, thus eliminating the are planned, especially to compare source code implementing the
need for diferent kinds of routines such as global and member same functionality with and without dynamic routines, respec-
functions in C++, normal and type-bound procedures in Oberon-2,tively, regading its length, readabilifyextensibility, and run time
and class and instance methods wraja efficiengy.

Several scripting languages, including the Unix shell [1] and
mary others, allev complete redefitions of routines at runtime.
Furthermore, the archaic Unix typesetting systeoff provides
facilities to append additional code to axiséing routine and to
rename a routine before rethirfig it, thus alleving the nev defi-
nition to call the original one in the samayvdynamic routines
can call their préous branch. By using thesacilities carefullyit

Acknowledgement

Marny thanks are due to Arneogel for doing anxellent job in
implementing the precompiler for C++.

is possible with these rather “prinvél’ | anguages to achie a ab- References
gree of etensibility and fleibility that is not preided by most
“advanced” programming languages. [1] L. J. Arthur: UNIX Shell Pogramming (Second Edition).

Database triggers [22] are a completelyfedént realization of John Wley & Sons, Nev York, 1990.
basically the same idea by allimg the retroactie gecification of
one or more pieces of code that shall keceted instead of or in [2] G.Baumartner V. F. Russo: “Signatures: A Language Exten-

addition to data manipulation statements suchinsest , up- sion for Impraing Type Abstraction and Subtype Polymorphism
date , and delete when a particular condition (corresponding to in C++.” Softwae—Prctice and Experienca5 (8) August 1995,
a guard) is satiséd. 863—-889.

Aspect-oriented programming, in particular the languages As-
pect) [16] and AspectC++ [19], pide paverful concepts to [3] C. Clifton, G. T. Leavens, C. Chambers,. Millstein: “Multi-
achieve extensibility of softvare systems along all three dimen- Jja/a: Modular Open Classes and Symmetric Multiple Dispatch for
sions by weaing the atensions defied by aspects into the source Jasa” In: Proc. 2000 £M SIGPLAN Confon Object-Oriented
or byte code of the original system when compiling it as a whole. programming Systems, Languges and Applications (OOPSLA
Dynamic routines, on the other hand, do not change at all the codegQ) (Minneapolis, MN, October 2000ACM SIGPLAN Notices
of the system that shall betended, while déring comparable 35 (10) October 2000, 13045,
flexibility. Furthermore, in contrast to aspect-oriented languages,
the concept requires only ngimal language gensions; to the [4] W. Cook: “Object-Oriented Programmingssus Abstract Da-
contrary as dready mentioned alve, when dynamic routines are ta Types.” In: J. Wde Bakker (ed.):Foundations of Object-Ori-
introduced into a language, all other kinds of routines might be ented Languge (REX School/Mérkshop; Noordwijlerhout, The
thrown out, actually yielding a simpler language. Netherlands, May/June 1990; Proceedings). Lecture Notes in
Finally, the nev programming languageiffior, in whose deel- Computer Science 489, Springégrlag, Berlin, 1991, 151%78.
opment the author is\nlved, pravides concepts callegualifying
typesandbracket routines[15] which are quite similar to dynamic [5] I|. D. Craig:Programming in Dylan SpringerVerlag, London,
routines. An essential ddrence, havever, is the fact that the e 1997.
tensions or modi¢ations implemented by bragkroutines are ap-
plied only if an object is»licitly associated with an instance of a [6] M. Evered, J. L. Kedy A. Schmolitzky, G. Menger: “Hav
qualifying type, while thexdensions or modi€ations implement- el Do Inheritance Mechanisms Support Inheritance Concepts?”
ed by additional branches of a dynamic routine are applied auto-|n; H. Méssenbdck (ed.)Modular Pogramming Languges
matically The latter is especially helpful to cope with ypected (Joint Modular Languages Conference, JMLC'97; Linz, Austria,
behaioural extensions or modifations. On the other handinior March 1997; Proceedings). Lecture Notes in Computer Sci-
provides so-calledyeneralized badket routineswhich can be ap- ence 1204, Spring&ferlag, Berlin, 1997, 252266.
plied to all methods —separated intoenquiries which cannot
modify the state of their tget object an@pemtionswhich can do [7] E. Gamma, R. Helm, R. Johnson, J. VlissidBgsign Rt-

so —of anytype. This is ery useful for deeloping general-pur terns. Elements of Reusable Object-Oriented Saoétwddison-
pose softare components, @., for synchronization, monitoring, Wesley, Reading, MA, 1995.

13

[8] L. Gong:Inside &ava 2 Platform SecurityAddison-V\ésley,
Reading, MA, 1999.

[9] J. Gosling, B. Jg, G. Seele: The &va Languge $eciica-
tion. Addison-Wsle/, Reading, MA, 1996.

[10] C. Heinlein: “Workflow and Process Synchronization with
Interaction Expressions and Graphs.” froc. 17th Int. Confon
Data Engineering (ICDE)(Heidelbeg, Germay, April 2001).
IEEE Computer Societp001, 243-252.

[11] C.Heinlein: “Synchronization of Concurrentdfkflows Us-

ing Interaction Expressions and Coordination Protocols.” In:
R. Meersman, Z. & (eds.):On the Mee to Meaningful Internet
Systems 2002: CooplS, BOand ODR\SE (Confederated Inter
national Conferences; CooplS, BQand ODBASE 2002; Pro-
ceedings). Lecture Notes in Computer Science 2519, Springer
Verlag, Berlin, 2002, 5471.

[12] C.Heinlein: “Dynamic Class Methods inwd’ In: D. Rom-
bach (ed.)Net.ObjectDays 2003 agungsband(Erfurt, Germap,
September 2003). tranSIT GmbH, limenau, 2003, ISBN 3-
9808628-2-8.

[13] C. Heinlein: Dynamic Class Methods irada. Nr. 2003-05,
Ulmer Informatik-Berichte, &kultét fur Informatik, Uniersitéat
Ulm, July 2003. http://wwwinformatik.uni-ulm.de/pw/berichte

[14] J.L. Keedy G. Menger C. Heinlein: “Support for Subtyping
and Code Re-use iniffior.” In: J. Noble, J. Potter (edsRroc.
40th Int. Confon Technolagy of Object-Oriented Langgaes and
Systems (@OLS Rcific) (Sydne, Australia, February 2002),
35-43.

[15] J.L. Keedy G. Menger C. Heinlein, F Henslens: “Qualify-

ing Types lllustrated by Synchronization Examples.” In: M. Aksit,
M. Mezini, R. Unland (eds.Objects, Components, &itectures,
Services, and Applications for a NetwedkWorld (Int. Conf. Net-
ObjectDays, NODe 2002; Erfurt, GernyarOctober 2002; Re-
vised Rapers). Lecture Notes in Computer Science 2591, Springer
Verlag, Berlin, 2003, 336344.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M.eisten, J. &m,
W. G. Griswold: “An Overviev of Aspectd.” In:
J. Lindslov Knudsen (ed.)JECOOP 2001-Object-Oriented Po-
gramming(15th European Conference; Budapest, Hupglune

[21] C. Szyperski: “Import is Not Inheritance. WhNe Need
Both: Modules and Classes.” In: O. Lehrmann Madsen (ed.):
ECOOP’92 (European Conference on Object-Oriented Program-
ming; Utrecht, The Netherlands, June/July 1992; Proceedings).
Lecture Notes in Computer Science 615, Sprigtag, Berlin,
1992.

[22] J.Widom, S. Ceri (eds.Active Database Systemsidigers
and Rules for Advanced Database&rssingMorgan Kaufmann
Publishers, 1996.

[23] R.Wilhelm, D. MaurerCompiler Design Addison-V\ésley,
Wokingham, England, 1995.

[24] P H. Winston, B. K. PHorn: LISP (Third Edition). Addi-
son-Weéslg/, Reading, MA, 1989.

2001; Proceedings). Lecture Notes in Computer Science 2072,

SpringefVerlag, Berlin, 2001, 327353.

[17] W. LaLonde, J. Pugh: “Subclassing Subtyping# Is-a.”
Journal of Object-Oriented Pgramming3/91, 1991, 5762.

[18] H. Mdssenbdck, N. \wth: “The Programming Language
Oberon-2."Structued Pogrammingl12 (4) 1991, 179195.

[19] O. Spinczyk, A. Gal, WSchroderPreikschat: “AspectC++:
An Aspect-Oriented Extension to the C++ Programming Lan-
guage.” In: J. Noble, J. Potter (edsPxoc. 40th Int. Confon
Technology of Object-Oriented Langgas and Systems QOLS
Pacific) (Sydney, Australia, February 2002), 586.

[20] B. Stroustrup:The C++ Programming Languge (Special
Edition). Addison-Vésle/, Reading, MA, 2000.

14

