
Vertical, Horizontal, and Behavioural Extensibility
of Software Systems

Christian Heinlein

Dept. of Computer Structures, University of Ulm, Germany
heinlein@informatik.uni−ulm.de

Abstract

Object-orientation often claims to support extensible and modular
programming. By distinguishing three different dimensions of ex-
tensibility, howev er −− vertical (extensions of the type hierarchy),
horizontal (extensions of the spectrum of operations available on
types), and behavioural (extensions or even modifications of the
original behaviour of operations) −−, it is shown that typical object-
oriented programming languages support only one of them in a di-
rect and modular way: vertical extensibility. Horizontal extensibil-
ity in a modular fashion can only be achieved indirectly by disci-
plined application of design patterns such as the Visitor pattern,
while behavioural extensibility is not supported at all. On the oth-
er hand, a new and surprisingly simple concept calleddynamic
routines, that is introduced in this paper, simultaneously supports
all three dimensions of extensibility in a natural and flexible way,
thus eliminating the need for some clumsy design patterns and at
the same time offering the programmer additional freedom. To
make the concept immediately applicable in practice, it has been
implemented as precompiler-based language extensions for C++,
Oberon-2, and Java.

1. Introduction

It has been pointed out frequently [17, 21, 6], that inheritance
mechanismsof typical object-oriented programming languages
are fraught with a number of different and partially conflicting in-
heritanceconcepts, such as subtype polymorphism, code reuse,
genericity, and importation, to name only a few. Consequently, nu-
merous proposals exist to conceptually separate these matters and
support them with different andorthogonal mechanisms. To use
the most prominent example, there are several approaches sup-
porting a (more or less limited) separation oftypesandimplemen-
tations and consequently a decoupling ofsubtype polymorphism
andcode reuse, e. g., interfaces in Java [9], signatures in extended
C++ [2], and types and implementations in Timor [14] (where the
latter constitutes the most uncompromising approach, because im-
plementations are not treated as types at all). Experience with
these and other approaches clearly indicates that separate and or-
thogonal mechanisms which can be freely combinedas needed
are much more powerful and useful than a prearranged, fixed
combination of them.

The present paper goes another step further by decouplingdy-
namic bindingfrom inheritance and subtype relationships and of-
fering it instead as a separate, orthogonal concept calleddynamic
routines. Once again it turns out that this separation leads to pro-
gramming languages which are not only considerably more flexi-
ble and expressive, but in addition support new dimensions of ex-
tensibility when compared to traditional object-oriented lan-
guages. Furthermore, since dynamic routines subsume other kinds
of routines normally found in programming languages, e.g., glo-
bal and member functions in C++ [20], normal and type-bound

procedures in Oberon-2 [18], and static and instance methods in
Java [9], their introduction actually leads to a conceptually simpler
language, because these other kinds of routines are no longer re-
quired.

The paper is structured as follows. Section 2 commences by dis-
tinguishing three different dimensions of extensibility of software
systems: (i)vertical extensions, i.e., extensions of the type hierar-
chy, (ii) horizontalextensions, i.e., extensions of the spectrum of
operations available on types, and (iii)behavioural extensions,
i. e., extensions or even retroactive modifications of the behaviour
of operations. Using rather simple examples, it is shown that typi-
cal object-oriented programming languages support only the first
dimension in a direct and modular way, while design patterns such
as the Visitor pattern [7] are not really satisfactory to support the
second dimension. Furthermore, the third dimension is not sup-
ported at all. Following that, Sec. 3 introduces the general concept
of dynamic routines as well as specific adaptations and integra-
tions into the programming languages C++, Oberon-2, and Java.
Using the examples of Sec. 2, it is shown that dynamic routines
indeed support all three dimensions of extensibility in a simple
and flexible manner. Section 4 then describes the basic approach
of implementing dynamic routines as precompiler-based exten-
sions of the above languages. Finally, Sec. 5 presents a critical dis-
cussion of the concept itself and its relationship to other program-
ming language concepts as well as some concluding remarks.

2. Dimensions of Extensibility

2.1 Example

Figure 1 depicts a typical object-oriented type hierarchy for the
representation of arithmetic expressions. Expressions in general,
represented by the abstract root typeExpr , are subdivided into
three major categories represented by the abstract subtypesAtom
(atomic expression),Unary (application of a unary operator to a
subexpression), andBinary (application of a binary operator to
two subexpressions). These are in turn specialized into appropriate
concrete subtypes, such asConst (constant expression),Neg (ne-
gation, i.e., unary minus), orAdd (addition, i.e., binary plus).
Types containing private data elements, e.g., Const containing

Expr

Atom

Const

Binary

SubAdd Mul Div

Unary

Neg

Figure 1: Object-oriented type hierarchy

1

the numeric value of the constant expression orBinary contain-
ing pointers to the two subexpressions of the binary expression,
provide an appropriate constructor to initialize them and public
member functions (methods) to query their value. Furthermore, it
is assumed that two basic operations are defined for expressions,
determining their value and printing them (e.g., on the standard
output stream), which are implemented as virtual member func-
tions eval and print , respectively. This leads to the C++ class
definitions partially shown in Fig. 2.

// General expression (abstract).
class Expr { public:

virtual int eval () = 0;
virtual void print () = 0;

};

// Atomic expression (abstract).
class Atom : public Expr {};

// Constant expression (concrete).
class Const : public Atom {

int val_;
public:

Const (int v) : val_(v) {}
int val () { return val_; }
virtual int eval () { return val_; }
virtual void print () { }

};

// Binary expression (abstract).
class Binary : public Expr {

Expr* left_;
Expr* right_;

public:
Binary (Expr* l, Expr* r)

: l eft_(l), right_(r) {}
Expr* left () { return left_; }
Expr* right () { return right_; }

};

// Addition (concrete).
class Add : public Binary { public:

Add (Expr* l, Expr* r) : Binary(l, r) {}
virtual int eval () {

return left()−>eval() + right()−>eval();
}
virtual void print () { }

};

......

Figure 2: C++ class definitions

The advantages of using virtual member functions, i.e., meth-
ods which aredynamicallybound, instead of normal global func-
tions to implement such operations are obvious and well-known:
When new subtypes are added to the type hierarchy later, e. g., to
incorporate additional operators such as remainder or other kinds
of atomic expressions such as variables, none of the already im-
plemented classes and functions needs to be touched, because the
operations for these new types of expressions can be simply im-

plemented as member functions of the corresponding new classes
(cf. Fig. 3). If these new classes are defined in a different transla-
tion unit, the original classes need not even be recompiled.

// Remainder (concrete).
class Mod : public Binary { public:

Mod (Expr* l, Expr* r) : Binary(l, r) {}
virtual int eval () {

return left()−>eval() % right()−>eval();
}
virtual void print () { }

};

// Variable (concrete).
class Var : public Atom {

string name_;
int val_;

public:
Var (string n, int v) : name_(n), val_(v) {}
string name () { return name_; }
int val () { return val_; }
void assign (int v) { val_ = v; }
virtual int eval () { return val_; }
virtual void print () { }

};

Figure 3: Extending the type hierarchy

2.2 Vertical and Horizontal Extensions

If the “space” of operations implemented by virtual member func-
tions is organized in two dimensions, type and operation, accord-
ing to Fig. 4,vertical extensions, i.e., extensions along the type
axis, are always possible without affecting existing code. Howev-
er, horizontal extensions, i.e., later additions of completely new
operations such as symbolic differentiation of expressions, require
modifications and recompilations of existing classes, because all
member functions of a class must at least be declared in the class
itself. Besides the fact that this is inconvenient and undesirable
from a methodological point of view, because it violates a basic
principle of modularity, it might be simply impossible if the
class’s source code is unavailable.

Operation
eval print

Expr Expr::eval() Expr::print()

Const Const::eval() Const::print()

Add Add::eval() Add::print()
...

Type

Figure 4: Two-dimensional space of operations

Of course, this problem is not only present in C++, but in many
other object-oriented languages, too. Its reason is mainly techni-
cal: In a typical implementation of virtual member functions (or
methods in other languages), the addresses of all virtual functions
of a particular class are stored in the class’s virtual function table
from which they are accessed via a unique index value. Because a

2

derived class inherits all virtual functions of its base class(es), its
virtual function table is constructed as an extension of the base
class’s table. This is only feasible, however, if the number of virtu-
al functions of the base class is known to the compiler when a de-
rived class is declared. Adding new virtual functions to a class lat-
er is therefore impossible.

Of course, it is possible to define a new operationdiff for sym-
bolic differentiation as a global function according to Fig. 5, but
this solution is obviously not vertically extensible, i.e., if new
subtypes ofExpr are introduced later, the functions’s body must
be extended and recompiled.

// Differentiate expression x along variable n.
Expr* diff (Expr* x, string n) {

if (Const* c = dynamic_cast<Const*>(x)) {
return new Const(0);

}
if (Var* v = dynamic_cast<Var*>(x)) {

if (v−>name() == n) return new Const(1);
else return new Const(0);

}
if (Add* a = dynamic_cast<Add*>(x)) {

return new Add(diff(a−>left(), n),
diff(a−>right(), n));

}
......

}

Figure 5: Implementation ofdiff as a global function

It is sometimes claimed, that the set of operations applicable to a
type can always be extended by defining the new operations for a
derived type. In the present example, it is of course possible to de-
fine a new class such asDiffExpr with a virtual member func-
tion diff (cf. Fig. 6). SinceDiffExpr is derived from Expr , the
member functions declared inExpr are also applicable to in-
stances ofDiffExpr , but not vice versa. So, to be actually useful,
it would be necessary to change all existing code using classExpr
to now use classDiffExpr instead. This might be even worse
than changing just classExpr to directly contain the new member
functiondiff .1

Furthermore, extending only the root of a whole type hierarchy
with a derived type providing a new operation is not sufficient to
make the new operation available to the other types of the hierar-
chy. In fact, in a language supporting single inheritance only, it
would be necessary either to extend all other types analogously −−
losing, however, their essential subtype relationship −−, or to build
a completely new parallel hierarchy rooted atDiffExpr requiring
all virtual member functions of the original hierarchy to be re-
implemented for the new hierarchy. In languages with multiple in-
heritance, such as C++, the latter can be avoided in principle by
merging these alternatives (cf. Fig. 7), but obviously none of these
solutions is really satisfactory. In particular, the last alternative
suffers from unintended repeated inheritance of the root classEx-
pr and its direct subclasses which could be avoided only by using
virtual inheritance even in the original type hierarchy.

1 By disciplined application of another design pattern, namely some kind of factory pattern,
this problem can be circumvented in principle.

// Differentiable expression.
class DiffExpr : public Expr { public:

// Differentiate expression x along variable n.
virtual DiffExpr* diff (string n) = 0;

};

// Differentiable binary expression.
class DiffBinary
: p ublic DiffExpr, public Binary {

......
};

// Differentiable addition.
class DiffAdd
: p ublic DiffBinary, public Add { public:

......
virtual DiffExpr* diff (string n) {

return new DiffAdd(left()−>diff(n),
right()−>diff(n));

}
};

......

Figure 6: Implementation ofdiff as a virtual member function
of a derived class

Expr

DiffExpr. . .

. . .

. . .

. . .

Binary

DiffBinary. . .

. . .

. . .

. . .

Add

DiffAdd

Figure 7: Original and derived type hierarchy

Because the author is not the first who discovered this fundamen-
tal limitation of object-oriented languages [4, 3], design patterns
such as theVisitor pattern[7] have been developed to overcome it
in principle. Despite the fact, that such a pattern can be used to
solve the problem of horizontal extensions in a pragmatical way if
it is strictly employed from the very beginning, the resulting solu-
tion is rather unnatural and complicated and thus not really satis-
factory from a methodological and aesthetical point of view. With-
out going into details −− and without wanting to discredit the work
on design patterns, which often are the only practical means to
overcome such limitations of programming languages −−, building
an extensible software system by employing the Visitor pattern
would be similar to building an extensible car by always providing
it with, say, a roof rack where all later extensions −− such as a hook
for a trailer or fog lamps −− hav eto be mounted on because it is
impossible to mount them anywhere else (cf. Fig. 8).

3

Figure 8: Possible illustration of the Visitor pattern

2.3 Behavioural Extensions and Modifications

But even if a class such asExpr and its subclasses have been de-
signed very carefully to avoid any necessity of later horizontal ex-
tensions, it might happen that extensions (or even modifications)
along a third dimension become necessary, namely extensions (or
later modifications) of the implemented behaviour. The following
is an arbitrary list of possible requirements that might arise in spe-
cific application contexts of this class hierarchy:

1. If the class hierarchy, together with other code using it, shall be
employed in a multi-threaded program, calls to the member
function print must be synchronized to prevent intermixing
of multiple outputs. Because modifications and recompilations
of this code are undesirable or impossible (if source code is not
available), a mechanism for retroactively augmenting or
“bracketing” the function bodies ofprint with synchroniza-
tion code would be necessary.

2. Becauseinteger division with one or two neg ative operands
might behave differently on different hardware architectures
(always rounding down versus always rounding towards zero),
it would be desirable to retroactively replace the implementa-
tion of the member functionDiv::eval with an architecture-
independent implementation which always divides the absolute
values of the operands and determines the sign of the result it-
self. Alternatively, the actual rounding behaviour might depend
on a global or environment variable.

3. If division by zero is not handled by the original implementa-
tion of eval or its replacement mentioned above, or the imple-
mented behaviour (e.g., immediate program termination) is not
appropriate for an application, it would be necessary to retroac-
tively prefix the implementation ofDiv::eval with a test
whether the second operand is zero and an appropriate be-
haviour for that case.

4. If the new behaviour of eval in that case is to return a special
null value (which might be represented for instance as the
smallest available integer value), all other instances ofeval
would have to be retroactively prefixed with a test, too,
whether one or both of the operands is equal to that null value,
returning again the null value in that case instead of executing
the normal evaluation code.

Obviously, none of these requirements can be fulfilled with a nor-
mal object-oriented (or imperative) programming language with-
out modifying and recompiling existing code.2 On the other hand,
it is interesting to note that other kinds of languages, such as the

2 Again it is possible in principle, by strictly applying some kind of factory pattern, to per-
form behavioural extensions by introducing subclasses that override methods of the original
classes. See [12, 13] for a critical discussion of this possibility.

Common Lisp Object System (CLOS) or some scripting lan-
guages, are able to meet at least some of these goals (cf. Sec. 5.2).

Other situations, not related to the example of arithmetic expres-
sions, where behavioural extensibility would be very helpful in
practice, include:

• Retroactively augment the implementation of the C library rou-
tine malloc (or that of the C++ operatornew) with code that
performs bookkeeping and gathers statistical information about
the application’s usage of this routine.

• Suffix the same routine with a test whether the result would be a
null pointer, causing controlled program termination in that case
instead of actually returning the null pointer.
This could be very useful to retroactively fix program code us-
ing malloc which has been written by sloppy programmers
who have forgotten to always check that exceptional case.

• Redefine the implementation of the C library routinerealloc
to make the caserealloc(p, 0) equivalent to free(p) , if the
available implementation does not already do that.

• Augment the Unix system callsread and write (or whatever
functions are ultimately called by all standard I/O routines to ac-
tually read and write data) with code that copies all data read
from the standard input stream and written to the standard out-
put stream to another output stream, thus creating a log of the
application’s interactive I/O behaviour.

• Quickly augment some critical routines of a program with diag-
nostic outputs to trace their execution paths.

• Patch erroneous library routines by retroactively replacing their
implementation.

3. Supporting Extensibility with Dynamic
Routines

Having explained these fundamental limitations of object-oriented
languages, which continuously turn out to hinder truly extensible
and modular programming in practice,dynamic routineswill be
introduced in the following as a simple yet powerful general con-
cept to overcome them. Afterwards, specializations of the general
concept will be described which have been designed and imple-
mented for particular programming languages.

3.1 General Concept

The basic idea of dynamic routines, which is rather simple, has
been inspired by the concept ofpartially defined functionsin
mathematics. For example, the functionsign determining the sign
of a number x is typically defined by three complementary
branchesdefining its behaviour on different subsets of the overall
domain:

sign(x) = 1,

sign(x) = 0,

sign(x) = −1,

if x > 0;

if x = 0;

if x < 0.

Similarly, a partially defined function such as

f (x) = x sin(1/x), if x ≠ 0

might be complemented by another partial definition

f (x) = 0, if x = 0

to extend its domain to all real numbersx ∈ IR. If necessary,

4

mathematicians do not even hesitate to redefine a previously de-
fined function such as

sub(x, y) = x − y (without restrictions onx, y ∈ IR)

on a subset of its domain, e.g.,

sub(x, y) = 0, if x < y,

to adapt it to a particular context (here, to make sure thatsubdoes
not return negative values). Without being explicitly expressed in
normal mathematical texts, the rule for finding the appropriate
definition of a particular function is to searchbackwards from the
“point of invocation” (i.e., the place where the function is used) to
the latest definition of the function encountered so far whose ac-
companying condition is satisfied by the actual parameter values.
By searching backwards from the point of invocation instead of
forward from the beginning of the text, the case of redefinition il-
lustrated in the last example is handled as desired. In the other ex-
amples, where the conditions of the different branches of a func-
tion are logically disjoint (i.e., at most one of them is satisfied by
any actual parameter values), the search order is irrelevant.

In a programming language, adynamic routine is a function, pro-
cedure, or method (whatever terminology is used in the particular
language) with an associatedguard, i. e., a Boolean-valued ex-
pression acting as aprecondition. In contrast to normal routine
definitions, it is allowed to define multiple instances orbranches
of the same dynamic routine (i.e., having the same signature) in
the same scope, typically (but not necessarily) with different (and
in most cases even logically disjoint) guards.

Dynamic routines are called in the same way as normal routines
of the language, i.e., there is no difference from a client’s perspec-
tive. To find the branch that will be actually executed, the branch-
es’ guards will be evaluated in reverse order of definition until the
fi rst satisfied condition is found; then the corresponding routine
body is executed. (If no “matching” branch is found, a runtime er-
ror occurs.) Similar to the way a member function or method can
call the method of its base type that it is overriding, a dynamic
routine can call thenext applicable branch, i. e., the next branch
in reverse definition order whose condition is satisfied. In contrast
to normal routine calls, however, such a call never takes explicit
parameters because the original parameter values of the dynamic
routine are implicitly passed unchanged, even if the formal param-
eters have been modified.

3.2 Dynamic Functions in C++

To remain compatible with established terminology [20], dynamic
routines are calleddynamic functionsin C++. In analogy to virtual
member functions, which can be overridden in derived types, they
are also calledglobal virtual functions, because they are global
functions that can be overridden. They are declared and defined
like normal functions prefixed by a new keyword dynamic . Alter-
natively, the existing function specifier virtual can be used
which is not applicable to global functions in standard C++. Fur-
thermore, the head of a dynamic function usually contains one or
more guards of the formif (cond) with a Boolean-valued ex-
pressioncond . Figure 9 demonstrates the basic principles by im-
plementing the mathematical examples of the previous subsection
as dynamic functions.

The three definitions of sign show the most basic form of dy-
namic functions, where the guard is explicitly coded as anif
clause in the function head. In contrast to that, the two definitions
of f −− which are deliberately scattered to demonstrate that the
branches of a dynamic function need not appear together −− illus-

dynamic int sign (double x) if (x > 0) {
return 1;

}
dynamic int sign (double x) if (x == 0) {

return 0;
}
dynamic int sign (double x) if (x < 0) {

return −1;
}

dynamic double f (double x != 0) {
return x * sin(1/x);

}
dynamic double sub (double x, double y) {

return x − y;
}

dynamic double f (double x == 0) {
return 0;

}
dynamic double sub (double a, double b)
if (a < b) {

return 0;
}

Figure 9: Mathematical examples of dynamic functions

trate a more compact and convenient way of integrating guards in-
to the parameter declaration list. In general, aguarded parameter
declaration such asint x != 0 is equivalent to the normal param-
eter declarationint x plus the guardif (x != 0) .

Finally, the first definition of sub demonstrates the way of
transforming a normal function without any restrictions on its pa-
rameter values into a dynamic function that can be redefined later,
by simply prefixing it with the keyword dynamic . (Formally, such
a definition is accompanied by the tautological guardif (true) .)
Furthermore, the second definition of sub illustrates that parame-
ter namesmight vary from branch to branch, because they are not
part of a function’s signature.

Of course, in these simple examples, implementing an operation
such assign as a dynamic function with multiple branches is un-
necessarily cumbersome and more elaborate than implementing it
as a single normal function with a corresponding selection state-
ment in its body. But as the subsequent examples will clearly
demonstrate, employing dynamic functions is the only way to
keep an implementation open for expected and unexpected exten-
sions along all three dimensions described in Sec. 2.

Figure 10 shows a re-implementation of the operationseval and
print (cf. Fig. 2) as sequences of dynamic function definitions,
together with a correspondingly modified class hierarchy that does
not contain any virtual member functions except for a dummy
function that is necessary to make the classes polymorphic (i.e.,
allow dynamic type tests on their instances usingdynamic_cast)
and to distinguish abstract from concrete classes.

The first branches ofeval andprint contain an explicit guard
using a dynamic_cast to test whether the dynamic type of
Expr* x is aConst* c ; if this is true, the valuec−>val() of the
constant expressionc is returned or printed, respectively. The sec-
ond definitions of these functions demonstrate a more convenient
form of dynamic type tests in dynamic function heads using a
colon as a pseudo comparison operator resembling Java’s in-

5

// General expression (abstract).
class Expr {

// Pure virtual dummy function to make
// the class both abstract and polymorphic.
virtual void dummy () = 0;

};

// Atomic expression (abstract).
class Atom : public Expr {};

// Constant expression (concrete).
class Const : public Atom {

// Formally implement the dummy function
// to make the class concrete.
void dummy () {}
int val_;

public:
Const (int v) : val_(v) {}
int val () { return val_; }

};
dynamic int eval (Expr* x)
if (Const* c = dynamic_cast<Const*>(x)) {

return c−>val();
}
dynamic void print (Expr* x)
if (Const* c = dynamic_cast<Const*>(x)) {

......
}

// Binary expression (abstract).
class Binary : public Expr {

Expr* left_;
Expr* right_;

public:
Binary (Expr* l, Expr* r)

: l eft_(l), right_(r) {}
Expr* left () { return left_; }
Expr* right () { return right_; }

};

// Addition (concrete).
class Add : public Binary {

void dummy () {}
public:

Add (Expr* l, Expr* r) : Binary(l, r) {}
};
dynamic int eval (Expr* x : Add*) {

return eval(x−>left()) + eval(x−>right());
}
dynamic void print (Expr* x : Add*) {

......
}

......

Figure 10: Re-implementation ofeval andprint
with dynamic functions

stanceof operator. In general, a guarded parameter declaration
such asExpr* x : Add* is equivalent to the normal parameter
declarationExpr* xx (with some unique namexx) plus the guard
if (Add* x = dynamic_cast<Add*>(xx)) . Thus, the static

type of the formal parameterx is Expr* in the function’s signa-
ture, but Add* in its body.

Figure 11 shows additional definitions (possibly in a different
translation unit) extending both the type hierarchy with a new type
Var including accompanying branches of the dynamic functions
eval and print (vertical extension) and the spectrum of opera-
tions with a new dynamic functiondiff (horizontal extension).
As this example shows, it is of course possible to implementdiff
in a single branch of a dynamic function for all concrete subtypes
of Expr known so far using a selection statement with multiple
branches, while at the same time remaining open for later vertical
extensions.

// Variable (concrete).
class Var : public Atom {

string name_;
int val_;

public:
Var (string n, int v) : name_(n), val_(v) {}
string name () { return name_; }
int val () { return val_; }
void assign (int v) { val_ = v; }

};
dynamic int eval (Expr* x : Var*) {

return x−>val();
}
dynamic void print (Expr* x : Var*) {

......
}

// Differentiate expression x along variable n.
dynamic Expr* diff (Expr* x, string n) {

if (Const* c = dynamic_cast<Const*>(x)) {
return new Const(0);

}
if (Var* v = dynamic_cast<Var*>(x)) {

if (v−>name() == n) return new Const(1);
else return new Const(0);

}
if (Add* a = dynamic_cast<Add*>(x)) {

return new Add(diff(a−>left(), n),
diff(a−>right(), n));

}
......

}

Figure 11: Vertical and horizontal extensions

Finally, Fig. 12 shows some behavioural extensions and modifica-
tions of the functionsprint andeval implementing the require-
ments mentioned in Sec. 2.3.

Extension 1 shows the typical pattern for bracketing an existing
implementation of a function with a prelude and a postlude. To
avoid the introduction of another new keyword into the language,
the next applicable branch of a dynamic function can be called by
using the keyword dynamic as the name of a parameterless pseu-
do function.

Extension 2 is one of the rare examples where the original im-
plementation of a function is completely overridden, i.e., the next
applicable branch of the dynamic function is not called at all. To

6

// Extension 1:
// Augment print with synchronization code.
dynamic void print (Expr* x) {

// Mutex allowing multiple recursive locks
// by the same thread.
static pthread_mutex_t m

= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

pthread_mutex_lock(&m); // Prelude.
dynamic(); // Orig. function.
pthread_mutex_unlock(&m); // Postlude.

}

// Extension 2:
// Redefine division with negative operands.
dynamic int eval (Expr* x : Div*) {

int l = eval(x−>left());
int r = eval(x−>right());
int sign = (l >= 0) == (r >= 0) ? 1 : −1;
return abs(l) / abs(r) * sign;

}

// Null value.
const int null = INT_MIN;

// Extension 3:
// Handle division by zero.
dynamic int eval (Expr* x : Div*) {

if (eval(x−>right()) == 0) return null;
else return dynamic();

}

// Extension 4:
// Handle null valued operands.
dynamic int eval (Expr* x : Unary*)
if (eval(x−>body()) == null) {

return null;
}
dynamic int eval (Expr* x : Binary*)
if (eval(x−>left()) == null
|| eval(x−>right()) == null) {

return null;
}

Figure 12: Behavioural extensions and modifications

the contrary, extensions 3 and 4 are typical examples where the
next applicable branch is called conditionally, either explicitly us-
ing dynamic() in the body or implicitly if the guard’s condition
is not satisfied.

Given these definitions, the call toeval in the following code will
be executed as described below:

Const* y = new Const(10);
Const* z = new Const(−4);
Div* x = new Div(y, z);
int v = eval(x);

• The last branch ofeval defined in Fig. 12 is executed with the
actual parameterx .
Its implicit guardExpr* x : Binary* , which is evaluated first,
is satisfied since the dynamic type of (the object pointed to

by) x , i. e., Div , is a subtype ofBinary . Thus, its explicit guard
is evaluated next, causing recursive calls toeval with actual pa-
rametersx−>left() and x−>right() , i. e., y and z , respec-
tively.

• Because the dynamic type of these objects isConst , these calls
finally end up with calling the first branch defined in Fig. 10, re-
turning the values10 and−4, respectively.

• Since both these values are different from null , the explicit
guard of the last branch is not satisfied, causing an implicit call
to the previous branch.
The implicit guardExpr* x : Unary* of this branch is not sat-
isfied, too, causing in turn an implicit call to its predecessor.

• Since the implicit guardExpr* x : Div* of this branch is satis-
fied, its body is actually executed.
Because the conditioneval(x−>right()) == 0 of its if-then-
else statement is not satisfied, the next applicable branch is ex-
plicitly called in the else part.

• This reaches the branch “Extension 2,” whose body will be ex-
ecuted since its implicit guardExpr* x : Div* is satisfied. Af-
ter evaluating the operandsx−>left() and x−>right() , the
final result value−2 will be computed and returned.

Remark:If extensions 2, 3, and 4 are actually implemented in the
same translation unit, it would be more efficient to combine them
into a single branch of the dynamic functioneval to avoid repeat-
ed recursive calls to evaluate the subexpressionsx−>left() and
x−>right() . On the other hand, Fig. 12 demonstrates that it is
indeed possible to implement these extensions and modifications
in a very modular and orthogonal way.

3.3 Dynamic Procedures in Oberon-2 and Related
Languages

Similar to C++, dynamic routines can be integrated asdynamic
procedures into Oberon and Oberon-2 [18], where they can be
used instead oftype-bound procedures (Oberon-2’s equivalent of
dynamically bound methods) or hand-coded implementations of
dynamic binding in Oberon (by means ofprocedure records, i. e.,
records explicitly containing the procedures associated with an
object). It is even possible to integrate the concept into purely pro-
cedural languages such as Pascal, Modula-2, or C, yielding a lan-
guage that supports horizontal and behavioural extensions, but −−
due to the lack of an appropriate type system −− no vertical exten-
sions.

To demonstrate the basic principles, figures 13 and 14 show
some typical examples of dynamic procedures in Oberon-2. In
analogy to C++, a new keyword DYNAMIChas been introduced
which is used both to distinguish dynamic from normal procedure
declarations and to invoke the next applicable branch in the body
of a dynamic procedure. In contrast to C++, guards are always in-
tegrated into the formal parameter list, either asguarded formal
parameter sectionssuch asx : E xpr IS Unary , or as additional
Boolean-valued expressions such asBE.eval(x.body) = null ,
since a separateIF clause would not fit well into a procedure
head. To add branches to a dynamic procedure that is imported
from another module, the procedure name must be qualified with
the name of the exporting module (or an alias name such asBE de-
clared in anIMPORTclause). Since such branches cannot be called
directly as procedures of their enclosing module, it would not
make sense to export them.

For readers which are not familiar with the syntactic details of
Oberon-2, it should be noted that* and− denoteexport marksin-

7

MODULE BasicExpr;
TYPE

(* General expression. *)
Expr* = POINTER TO ExprRec;
ExprRec* = RECORD END;

(* Atomic expression. *)
Atom* = POINTER TO AtomRec;
AtomRec* = RECORD (ExprRec) END;

(* Constant expression. *)
Const* = POINTER TO ConstRec;
ConstRec* = RECORD (AtomRec)

val−: INTEGER;
END;

(* Binary expression. *)
Binary* = POINTER TO BinaryRec;
BinaryRec* = RECORD (ExprRec)

left−, right−: Expr;
END;

(* Addition. *)
Add* = POINTER TO AddRec;
AddRec* = RECORD (BinaryRec) END;

......

DYNAMIC PROCEDURE eval*
(x : Expr IS Const) : INTEGER;

BEGIN RETURN x.val
END eval;

DYNAMIC PROCEDURE eval*
(x : Expr IS Add) : INTEGER;

BEGIN RETURN eval(x.left) + eval(x.right)
END eval;

......
END BasicExpr.

Figure 13: Dynamic procedures in Oberon-2

dicating full and read-only export, respectively, of an identifier
from a module. Furthermore, the base type of anextended record
type is included in parentheses after the keyword RECORD, and the
keyword IS denotes a dynamic type test.

3.4 Dynamic Class Methods in Jav a (cf. [12, 13])

In contrast to C++ and Oberon-2, Java [9] (like many other object-
oriented languages) does not directly support global functions or
procedures which could be used as the basis for dynamic routines.
Nevertheless,class methods(also called static methods, in con-
trast to instance methods) provide essentially the same functional-
ity and, when compared to imported procedures in Oberon-2, even
follow the same calling syntax: a qualified identifier followed by
an argument list. Therefore, it seems obvious and reasonable to
map the general concept of dynamic routines to some sort of class
methods in Java which are calleddynamic class methods.

To be concrete, figures 15 and 16 show the same functionality
as figures 10 and 12, but implemented with dynamic class meth-
ods in Java. (Note that integer division in Java always rounds to-

MODULE ExtExpr;
IMPORT BE := BasicExpr;

CONST null = MIN(INTEGER);

(* Extension 3: Handle division by zero. *)
DYNAMIC PROCEDURE BE.eval

(x : BE.Expr IS BE.Div) : INTEGER;
BEGIN

IF BE.eval(x.right) = 0 THEN RETURN null
ELSE RETURN DYNAMIC()
END

END BE.eval;

(* Extension 4: Handle null valued operands. *)
DYNAMIC PROCEDURE BE.eval

(x : BE.Expr IS BE.Unary;
BE.eval(x.body) = null) : INTEGER;

BEGIN RETURN null
END BE.eval;

DYNAMIC PROCEDURE BE.eval
(x : BE.Expr IS BE.Binary;

(BE.eval(x.left) = null) OR
(BE.eval(x.right) = null)) : INTEGER;

BEGIN RETURN null
END BE.eval;

END ExtExpr.

Figure 14: Behavioural extensions to moduleBasicExpr

wards zero, so extension 2 is unnecessary.) As in C++, a new
keyword dynamic is used to distinguish dynamic class methods
from both static class methods and instance methods as well as to
invoke the next applicable branch of a dynamic class method.
Guards also follow the same syntax as in C++, i.e., they might be
specified explicitly by an if clause or implicitly by guarded pa-
rameter declarations (using the Java keyword instanceof for dy-
namic type tests instead of the newly introduced colon operator in
C++). From a client’s perspective, dynamic class methods are
called just like static class methods, i.e., the method’s name is
qualified by the class name. Just like other methods, dynamic
class methods can be declaredpublic , protected , or private
to specify their accessibility as well asabstract , synchro-
nized , and strictfp , but notstatic , final , or native .

Similar to abstract instance methods, an abstract dynamic
method declares the method’s signature, but does not provide a re-
al implementation. It is actually equivalent to a branch with the
unsatisfied guardif (false) and an empty body. Therefore, in
contrast to abstract instance methods, an abstract dynamic method
may well appear in a concrete class.

If the method modifierssynchronized andstrictfp are ap-
plied to a dynamic class method, their meaning is the same as for
a static class method. In particular, a synchronized dynamic class
method locks resp. unlocks the object corresponding to itsenclos-
ing class (which might differ from the class where the method has
been defined originally) before resp. after executing its body, in-
cluding the evaluation of its guards.

Similar to the way an imported dynamic procedure can be over-
ridden or extended in another Oberon-2 module, an accessible dy-
namic class method of another class can be extended by using its
qualified name in a method declaration. In particular, public dy-
namic class methods of a class may be extended by any other

8

// General expression.
abstract class Expr {

// Evaluate expression x.
public dynamic abstract int eval (Expr x);

// Print expression x.
public dynamic abstract void print (Expr x);

}

// Atomic expression.
abstract class Atom extends Expr {}

// Constant expression.
class Const extends Atom {

private int val;
public Const (int v) { val = v; }
public int val () { return val; }

// Redefine dynamic class methods of Expr.
dynamic
int Expr.eval (Expr x instanceof Const) {

return x.val;
}
dynamic
void Expr.print (Expr x instanceof Const) {

......
}

}

// Binary expression.
abstract class Binary extends Expr {

private Expr left, right;
public Binary (Expr l, Expr r) {

left = l; right = r;
}
public Expr left () { return left; }
public Expr right () { return right; }

}

// Addition.
class Add extends Binary {

public Add (Expr l, Expr r) { super(l, r); }

// Redefine dynamic class methods of Expr.
dynamic
int Expr.eval (Expr x instanceof Add) {

return Expr.eval(x.left())
+ Expr.eval(x.right());

}
dynamic
void Expr.print (Expr x instanceof Add) {

......
}

}

......

Figure 15: Implementation ofeval andprint
with dynamic class methods in Java

// Extension 1:
// Augment print with synchronization code.
class SyncExpr {

dynamic
synchronized void Expr.print (Expr x) {

dynamic();
}

}

// Extensions 3 and 4:
// Handle division by zero
// and null valued operands.
class NullExpr {

public static final int NULL
= I nteger.MIN_VALUE;

dynamic
int Expr.eval (Expr x instanceof Unary)
if (Expr.eval(x.body()) == NULL) {

return NULL;
}

dynamic
int Expr.eval (Expr x instanceof Binary) {

if (Expr.eval(x.left()) == NULL
|| Expr.eval(x.right()) == NULL) {

return NULL;
}
try {

return dynamic();
}
catch (ArithmeticException e) {

return NULL;
}

}
}

Figure 16: Behavioural modifications and extensions

class, while protected dynamic class methods may be extended by
subclasses and classes belonging to the same package only. Be-
cause such an additional branch of a “foreign” dynamic class
method cannot be called directly as a method of its enclosing
class, its access modifier is actually ignored if present.

3.5 Extensibility of Legacy Code

If the C library functionsmalloc and realloc as well as the
Unix system callsread and write (which are actually library
functions, too) were dynamic functions, their extensions men-
tioned at the end of Sec. 2.3 could actually be implemented as
shown in Fig. 17. Unfortunately, howev er, this is normally not the
case, thus limiting the applicability of dynamic routines to newly
developed code.

However, using some nasty, system-dependent tricks, e.g.,
specifying appropriate options at link time, it is usually possible to
renamethe routines contained in a library and thenreplace them
with new implementations that call the original routines with their
new names. If these new implementations are dynamic functions
(which can be generated mechanically), it is indeed possible to
create a new version of an existing library whose functions are dy-
namic and thus fully extensible, without needing to edit or recom-
pile the library’s source code.

9

dynamic void* malloc (size_t n) {
// Gather statistical information.
......

// Check result of original function
// and abort when receiving a null pointer.
if (void* p = dynamic()) return p;
else abort();

}

dynamic void* realloc (void* p, size_t n)
if (n == 0) {

free(p);
}

int log = ...; // File descriptor of log file.

dynamic ssize_t read
(int fd, void *buf, size_t count)
if (fd == 0) { // File descriptor 0 is stdin.

ssize_t n = dynamic();
if (n > 0) write(log, buf, n);
return n;

}

dynamic ssize_t write
(int fd, const void *buf, size_t count)
if (fd == 1) { // File descriptor 1 is stdout.

write(log, buf, count);
return dynamic();

}

Figure 17: Retroactive extensions of C library functions

4. Implementation of Dynamic Routines

4.1 Basic Principle

In order to gain immediate practical experience with the concept
of dynamic routines in different programming languages, it has
been implemented as precompiler-based language extensions for
C++, Oberon-2, and Java.

Despite their syntactic differences, the basic principle of trans-
forming dynamic routines to normal routines of the corresponding
language plus some auxiliary data structures, is the same for all
languages: Every branch of a dynamic routine is transformed to a
normal routine having the same parameter list and some unique
name. Its body remains essentially unchanged, except that invoca-
tions of the next applicable branch, i.e., invocations of the
pseudo-routinedynamic resp. DYNAMIC, are transformed to in-
vocations of (the unique routine corresponding to) the previous
branch of the same dynamic routine. In order to be able to pass the
original parameter values even if the formal parameters have been
modified, backup copies of their values are created at the very be-
ginning of the routine’s body. Furthermore, the branch’s guard (if
present) is moved into the body as a regular if-then-else statement
whose then part is the original routine body and whose else part is
an invocation of the previous branch. If a guarded parameter dec-
laration contains a dynamic type test (using one of the operators
colon, instanceof , or IS , respectively), an appropriate declara-
tion or statement that statically converts the parameter to its dy-
namic type is added after (or instead of) the test.

In addition to these normal “branch routines,” two additional
routines are generated when the first branch is encountered. First,
an additional branch routine called “branch zero” is generated
which constitutes the previous branch of the first normal branch.
If this branch gets called at runtime, it signals an error condition
by throwing an (unchecked) exception (in C++ and Java) or di-
rectly terminating the program (in Oberon-2, which does not sup-
port exception handling). Second, a single “dispatch routine” is
generated having the same parameter list and name as the dynam-
ic routine and a body which simply calls itslast branch. However,
since the last branch of a dynamic routine is not known at this
place −− even if the precompiler would read ahead the whole trans-
lation unit −− because it might be defined in a different translation
unit or even in a library, module, or class that is dynamically load-
ed at run time, the dispatch routine actually calls it indirectly via a
routine (pointer) variable.

4.2 Oberon-2 and Jav a Details

In Oberon-2 and Java, this variable is declared in the module resp.
class containing the very first branch and initialized to the last
branch defined in that unit. (Note that in these languages this unit
is distinguished by the fact that the routine’s name is used unqual-
if ied there.) If additional branches are defined in other modules re-
sp. classes (where the routine’s name is used qualified), the cur-
rent value of this variable plays the role of the previous branch for
the first branch defined there. Therefore, during initialization of
that unit, the variable’s value is copied to a local variable of the
unit before it is updated to the last branch defined in that unit, and
so on. Because in Oberon-2 and Java, the initialization order of
the modules resp. classes of a program is well-defined −− Oberon-2
modules are initialized in an order determined by their import re-
lationships, while Java classes are (recursively, if necessary) ini-
tialized when they are used for the first time −−, the overall order
of the branches of a dynamic routine in a program is well-defined,
too.

4.3 C++ Details

To the contrary, all translation units of a C++ program containing
branches of a dynamic function are peers: There is no distinguish-
ing property of the unit containing the “very first” branch, nor is
the initialization order of the translation units of a program speci-
fied by the language. As a first consequence, this raises the ques-
tion in which of the translation units the function pointer variable
and the branch zero and dispatch functions associated with a dy-
namic function shall bedefined, i. e., actually allocated. Fortu-
nately, C++ provides a legal way to evade this question by defin-
ing the variable as a static data member and the functions as in-
lined friend functions of an appropriate template class inevery
translation unit containing branches of the dynamic function. Sec-
ondly, the overall order of the branches of a dynamic function ac-
tually depends on the order in which the translation units of a pro-
gram are linked together, because this order (or the reverse of it,
depending on the compiler) determines the initialization order of
the units. To simulate the Oberon-2 rule that imported modules are
initialized in order before the importing module, a simple auxil-
iary program can be used that interprets#include directives in
C++ translation units as import relationships and constructs an ap-
propriate ordering of the object files for a particular compiler. Al-
ternatively, if this pragmatical solution is deemed inappropriate,
the precompiler could generate an explicit C++ function contain-
ing initialization code for every translation unit instead of generat-
ing global variable definitions with initializer expressions. By in-

10

troducing a new keyword such asimport as another small lan-
guage extension, the programmer would then be able to explicitly
specify the desired invocation order of these initialization func-
tions in analogy toIMPORTdeclarations in Oberon-2.

4.4 Additional Problems

The possibility of overloading function resp. method names in
C++ and Java and the consequent possibility of overloading dy-
namic functions resp. methods, introduces some additional dif-
ficulties for the precompiler. For example, the name of the varia-
ble associated with a dynamic routine cannot be simply derived
from the routine’s name. Furthermore, Java does not directly sup-
port the analogue of C++ function pointers, while in C++ it is very
hard in general to identify branches belonging to the same dynam-
ic function, because the type names appearing in the signatures
might be “disguised” bytypedef and using declarations,
namespace aliases, template instantiations, etc. Nevertheless, these
problems can be solved using some tricks whose description is be-
yond the scope of this paper and actually not relevant for a user of
the concept. (But see [12, 13] for a detailed description of the Java
solution.)

To giv e the reader an impression of the precompilers’ work,
figures 18 and 19 show the (retroactively beautified and comment-
ed) result of applying the Oberon-2 precompiler to the modules
BasicExpr andExtExpr shown in figures 13 and 14.

4.5 Possible Optimizations

The precompiler-based implementation described so far is rather
easy to implement −− especially if a grammar of the base language
is available which can be directly fed into a parser generator such
as Yacc or JavaCC −−, and the generated code is fairly efficient in
practice. However, by carefully improving the precompilers or by
integrating their work into a real compiler of the base language,
several optimizations are possible which shall be briefly sketched:

• Instead of mapping each branch of a dynamic routine to a sepa-
rate normal routine of the base language, all branches defined in
the same translation unit might be combined into a single rou-
tine to avoid unnecessary routine call overhead for calls of the
next applicable branch and to allow standard optimizations,
such as common subexpression elimination, for the evaluation
of their guards.

• The creation of parameter backup copies can be avoided if the
formal parameters of a routine are not modified, which is fre-
quently true.

• If the formal parameters are not modified and the next applica-
ble branch is called at the end of a routine, which is in particular
true for implicit calls due to unsatisfied guards, the parameters
need not be duplicated on the runtime stack if the next applica-
ble branch is executed in the same stack frame as the current
branch. This is similar to optimizing tail-recursive calls in func-
tional programming languages.

• Since guards often contain dynamic type tests on a single rou-
tine argument, actually resembling the standard dynamic dis-
patch strategy of object-oriented languages, similar techniques
based on virtual function tables might be employed to reach an
applicable branch more directly than by following the normal
chain of branches.

None of these optimizations has been actually implemented so far,

MODULE BasicExpr;
......

(* Procedure type and variable *)
(* containing last branch. *)
TYPE evalXXXtype*

= PROCEDURE (x : Expr) : INTEGER;
VAR evalXXXvar* : evalXXXtype;

(* Dispatch procedure. *)
PROCEDURE eval* (x : Expr) : INTEGER;
BEGIN RETURN evalXXXvar(x)
END eval;

(* Branch zero. *)
PROCEDURE evalXXX0 (x : Expr) : INTEGER;
BEGIN HALT(1)
END evalXXX0;

(* First branch. *)
PROCEDURE evalXXX1 (x : Expr) : INTEGER;

(* Parameter backup copy. *)
VAR xXXX : Expr;

(* Local procedure implementing *)
(* keyword DYNAMIC. *)
PROCEDURE DYNAMIC () : INTEGER;
BEGIN

(* Call previous branch. *)
RETURN evalXXX0(xXXX)

END DYNAMIC;
BEGIN

(* Init. parameter backup copy. *)
xXXX := x;

(* Type guard generated from *)
(* guarded parameter declaration. *)
WITH x : Const DO

(* Original procedure body. *)
RETURN x.val

ELSE RETURN DYNAMIC() END
END evalXXX1;

(* Second branch. *)
PROCEDURE evalXXX2 (x : Expr) : INTEGER;

......
END evalXXX2;

......
BEGIN

(* Initialize procedure variable. *)
evalXXXvar := evalXXX2;

END BasicExpr.

Figure 18: Transformation of Oberon-2 moduleBasicExpr

because most of them can only be done in a real compiler. Even
the first one, combination of multiple branches into a single rou-
tine, i.e., actually rearrangement of source code, is rather difficult
for a precompiler because the exact meaning of some piece of
code (including the fact whether it is syntactically and semantical-
ly correct) might depend on itsexact position in a translation unit.

11

MODULE ExtExpr;
IMPORT BE := BasicExpr;

......

(* Local procedure variable. *)
VAR evalXXX0 : BE.evalXXXtype;

(* Extension 3: Handle division by zero. *)
PROCEDURE evalXXX1 (x : BE.Expr) : INTEGER;

VAR xXXX : BE.Expr;
PROCEDURE DYNAMIC () : INTEGER;
BEGIN RETURN evalXXX0(x)
END DYNAMIC;

BEGIN
xXXX := x;
WITH x : BE.Div DO

(* Original procedure body. *)
IF BE.eval(x.right) = 0 THEN RETURN null
ELSE RETURN DYNAMIC()
END

ELSE RETURN DYNAMIC() END
END evalXXX1;

(* Extension 4: Handle null valued operands. *)
PROCEDURE evalXXX2 (x : BE.Expr) : INTEGER;

VAR xXXX : BE.Expr;
PROCEDURE DYNAMIC () : INTEGER;
BEGIN RETURN evalXXX1(x)
END DYNAMIC;

BEGIN
(* Type guard and conditional statement *)
(* generated from guarded parameter list. *)
WITH x : BE.Unary DO

IF BE.eval(x.body) = null THEN
(* Original procedure body. *)
RETURN null

ELSE RETURN DYNAMIC() END
ELSE RETURN DYNAMIC() END

END evalXXX2;

PROCEDURE evalXXX3 (x : BE.Expr) : INTEGER;
......

END evalXXX3;
BEGIN

(* Store current value in local variable *)
(* and update imported procedure variable. *)
evalXXX0 := BE.evalXXXvar;
BE.evalXXXvar := evalXXX3;

END ExtExpr.

Figure 19: Transformation of Oberon-2 moduleExtExpr

For example, the two calls to the functionf in the following C++
program have quite different meaning:

void f (double x) { }
void g1 () { f(1); }
void f (int x) { }
void g2 () { f(1); }

While the call contained ing1 calls the first definition of f after
converting the argument of typeint to double , because this is
the only matching definition known at this place, the call con-

tained ing2 calls the second definition, because it matches exact-
ly. Thus, it would be impossible for a precompiler (that does not
perform a complete semantic evaluation of its input) to combine
g1 andg2 into a single function that simply callsf(1) twice.

5. Discussion

5.1 Critical Review

Dynamic routines are at the same time a powerful and a dangerous
device. When used properly, they offer unique possibilities to ex-
tend and retroactively modify software systems, as has been illus-
trated in this paper. On the other hand, when used inappropriately,
they make it quite easy to cause havoc by overriding routines in a
completely nonsensical way. Howev er, this dichotomy is typical
for every effective tool, not only in programming languages
(think, e.g., of pointers, global variables, inheritance, function and
operator overloading, etc.), but also in real life (for tools such as
knives, axes, or razor blades), and it would not make much sense
to completely abandon a useful tool just because itmight be
abused. However, as with real-world tools, a certain amount of
practical experience as well as some basic rules and guidelines
such as the following might be helpful to avoid unintended mis-
use:

• To extend a routine to a new domain without altering its be-
haviour on the original domain, use a guard that is logically dis-
joint from the guards of all previous branches.
A type test for a newly introduced subtype is a typical example
of such a guard.

• To add orthogonal or “cross-cutting” behaviour, again without
altering the original behaviour, define an unguarded branch that
follows the prelude/postlude pattern with an embedded uncondi-
tional call of the previous branch.

• Make as few assumptions as possible about the behaviour of
previous branches, i.e., treat them as a black box whenever pos-
sible. Justadd the code you need for your purpose.

• Think twice before defining a “dead end” branch, i.e., a branch
that does not call the previous branch. Consider calling the pre-
vious branch and ignoring its result to make sure that orthogonal
extensions defined by other branches will be executed, instead
of not calling it at all.

• Clearly document branches that violate any of the above rules if
you really need them.

If well-meant guidelines and rules are not sufficient to prevent
abuse, one might think about enacting strict laws which are en-
forced by some appropriate “authority.” For instance, it might be
reasonable in some circumstances to restrict the right of overrid-
ing or extending a dynamic class method to subclasses or classes
belonging to the same package as the class where the method has
been defined originally. Such laws could be enforced by the pre-
compiler and/or the underlying compiler, if additional language
constructs were available for specifying such restrictions. Current-
ly, the same aim can be achieved indirectly by assigning the dy-
namic class methodprotected or default access and defining an
additional public static method which simply calls the dynamic
method. To achieve more flexible and fine-grained access control,
which, however, cannot be enforced at compile time, but only at
run time, it would be an interesting task to integrate the concept of
dynamic class methods with the Java Security Framework [8].

12

5.2 Related Work

Ideas to support aims similar to those of dynamic routines can be
found in many different areas. For instance, the concepts of open
classes, multimethods, and before- and after-methods, found in
different combinations, e.g., in MultiJava [3], CLOS [24], and
Dylan [5], offer many of the possibilities of dynamic routines. The
latter, howev er, provide additional flexibility by allowing dispatch
strategies that are based on arbitrary properties of their arguments,
not just their dynamic types. Furthermore, even properties of the
“environment,” such as values of global or class variables, user
preferences read from an application’s configuration file, etc., can
be incorporated into the dispatch process if appropriate. Finally,
complete redefinitions of, e.g., erroneous or incomplete library
routines are possible, if the concept is applied consistently, i. e., if
routines are always defined dynamically. (This idea is currently
investigated in a new programming language where dynamic rou-
tines are the sole kind of routines available, thus eliminating the
need for different kinds of routines such as global and member
functions in C++, normal and type-bound procedures in Oberon-2,
and class and instance methods in Java.)

Several scripting languages, including the Unix shell [1] and
many others, allow complete redefinitions of routines at runtime.
Furthermore, the archaic Unix typesetting systemtroff provides
facilities to append additional code to an existing routine and to
rename a routine before redefining it, thus allowing the new defi-
nition to call the original one in the same way dynamic routines
can call their previous branch. By using these facilities carefully, it
is possible with these rather “primitive” l anguages to achieve a de-
gree of extensibility and flexibility that is not provided by most
“advanced” programming languages.

Database triggers [22] are a completely different realization of
basically the same idea by allowing the retroactive specification of
one or more pieces of code that shall be executed instead of or in
addition to data manipulation statements such asinsert , up-
date , and delete when a particular condition (corresponding to
a guard) is satisfied.

Aspect-oriented programming, in particular the languages As-
pectJ [16] and AspectC++ [19], provide powerful concepts to
achieve extensibility of software systems along all three dimen-
sions by weaving the extensions defined by aspects into the source
or byte code of the original system when compiling it as a whole.
Dynamic routines, on the other hand, do not change at all the code
of the system that shall be extended, while offering comparable
flexibility . Furthermore, in contrast to aspect-oriented languages,
the concept requires only marginal language extensions; to the
contrary, as already mentioned above, when dynamic routines are
introduced into a language, all other kinds of routines might be
thrown out, actually yielding a simpler language.

Finally, the new programming language Timor, in whose devel-
opment the author is involved, provides concepts calledqualifying
typesandbracket routines[15] which are quite similar to dynamic
routines. An essential difference, however, is the fact that the ex-
tensions or modifications implemented by bracket routines are ap-
plied only if an object is explicitly associated with an instance of a
qualifying type, while the extensions or modifications implement-
ed by additional branches of a dynamic routine are applied auto-
matically. The latter is especially helpful to cope with unexpected
behavioural extensions or modifications. On the other hand, Timor
provides so-calledgeneralized bracket routineswhich can be ap-
plied to all methods −− separated intoenquiries which cannot
modify the state of their target object andoperationswhich can do
so −− of any type. This is very useful for developing general-pur-
pose software components, e.g., for synchronization, monitoring,

and protection. When using dynamic routines for such purposes, it
is necessary to augment each affected routine separately.

5.3 Conclusion

Dynamic routines have been suggested as a simple yet powerful
concept to achieve horizontal and behavioural extensibility of
software systems in a very general and flexible way. Concrete spe-
cializations of the general concept have been designed and imple-
mented as precompiler-based language extensions for C++, Obe-
ron-2, and Java in order to gain immediate practical experience
with the concept in different programming languages. Together
with a complementary concept calledopen types, which provides
horizontally extensible data structures, the concept of dynamic
routines has been successfully employed so far to implement an
interaction manager synchronizing concurrent workflows [11] and
a graphical editor for interaction graphs [10]. Additional projects
are planned, especially to compare source code implementing the
same functionality with and without dynamic routines, respec-
tively, reg arding its length, readability, extensibility, and run time
efficiency.

Acknowledgement

Many thanks are due to Arne Vogel for doing an excellent job in
implementing the precompiler for C++.

References

[1] L. J. Arthur: UNIX Shell Programming (Second Edition).
John Wiley & Sons, New York, 1990.

[2] G. Baumgartner, V. F. Russo: “Signatures: A Language Exten-
sion for Improving Type Abstraction and Subtype Polymorphism
in C++.” Software—Practice and Experience25 (8) August 1995,
863−−889.

[3] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein: “Multi-
Java: Modular Open Classes and Symmetric Multiple Dispatch for
Java.” In: Proc. 2000 ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA
’00) (Minneapolis, MN, October 2000).ACM SIGPLAN Notices
35 (10) October 2000, 130−−145.

[4] W. Cook: “Object-Oriented Programming versus Abstract Da-
ta Types.” In: J. W. de Bakker (ed.):Foundations of Object-Ori-
ented Language (REX School/Workshop; Noordwijkerhout, The
Netherlands, May/June 1990; Proceedings). Lecture Notes in
Computer Science 489, Springer-Verlag, Berlin, 1991, 151−−178.

[5] I. D. Craig:Programming in Dylan. Springer-Verlag, London,
1997.

[6] M. Evered, J. L. Keedy, A. Schmolitzky, G. Menger: “How
Well Do Inheritance Mechanisms Support Inheritance Concepts?”
In: H. Mössenböck (ed.):Modular Programming Languages
(Joint Modular Languages Conference, JMLC’97; Linz, Austria,
March 1997; Proceedings). Lecture Notes in Computer Sci-
ence 1204, Springer-Verlag, Berlin, 1997, 252−−266.

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides:Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

13

[8] L. Gong: Inside Java 2 Platform Security. Addison-Wesley,
Reading, MA, 1999.

[9] J. Gosling, B. Joy, G. Steele:The Java Language Specifica-
tion. Addison-Wesley, Reading, MA, 1996.

[10] C. Heinlein: “Workflow and Process Synchronization with
Interaction Expressions and Graphs.” In:Proc. 17th Int. Conf. on
Data Engineering (ICDE)(Heidelberg, Germany, April 2001).
IEEE Computer Society, 2001, 243−−252.

[11] C. Heinlein: “Synchronization of Concurrent Workflows Us-
ing Interaction Expressions and Coordination Protocols.” In:
R. Meersman, Z. Tari (eds.):On the Move to Meaningful Internet
Systems 2002: CoopIS, DOA, and ODBASE (Confederated Inter-
national Conferences; CoopIS, DOA, and ODBASE 2002; Pro-
ceedings). Lecture Notes in Computer Science 2519, Springer-
Verlag, Berlin, 2002, 54−−71.

[12] C. Heinlein: “Dynamic Class Methods in Java.” In: D. Rom-
bach (ed.):Net.ObjectDays 2003. Tagungsband(Erfurt, Germany,
September 2003). tranSIT GmbH, Ilmenau, 2003, ISBN 3-
9808628-2-8.

[13] C. Heinlein: Dynamic Class Methods in Java. Nr. 2003-05,
Ulmer Informatik-Berichte, Fakultät für Informatik, Universität
Ulm, July 2003.http://www.informatik.uni-ulm.de/pw/berichte

[14] J.L. Keedy, G. Menger, C. Heinlein: “Support for Subtyping
and Code Re-use in Timor.” In: J. Noble, J. Potter (eds.):Proc.
40th Int. Conf. on Technology of Object-Oriented Languages and
Systems (TOOLS Pacific) (Sydney, Australia, February 2002),
35−−43.

[15] J.L. Keedy, G. Menger, C. Heinlein, F. Henskens: “Qualify-
ing Types Illustrated by Synchronization Examples.” In: M. Aksit,
M. Mezini, R. Unland (eds.):Objects, Components, Architectures,
Services, and Applications for a Networked World (Int. Conf. Net-
ObjectDays, NODe 2002; Erfurt, Germany, October 2002; Re-
vised Papers). Lecture Notes in Computer Science 2591, Springer-
Verlag, Berlin, 2003, 330−−344.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
W. G. Griswold: “An Overview of AspectJ.” In:
J. Lindskov Knudsen (ed.):ECOOP 2001 −− Object-Oriented Pro-
gramming(15th European Conference; Budapest, Hungary, June
2001; Proceedings). Lecture Notes in Computer Science 2072,
Springer-Verlag, Berlin, 2001, 327−−353.

[17] W. LaLonde, J. Pugh: “Subclassing≠ Subtyping ≠ Is-a.”
Journal of Object-Oriented Programming3/91, 1991, 57−−62.

[18] H. Mössenböck, N. Wirth: “The Programming Language
Oberon-2.”Structured Programming12 (4) 1991, 179−−195.

[19] O. Spinczyk, A. Gal, W. Schröder-Preikschat: “AspectC++:
An Aspect-Oriented Extension to the C++ Programming Lan-
guage.” In: J. Noble, J. Potter (eds.):Proc. 40th Int. Conf. on
Technology of Object-Oriented Languages and Systems (TOOLS
Pacific) (Sydney, Australia, February 2002), 53−−60.

[20] B. Stroustrup:The C++ Programming Language (Special
Edition). Addison-Wesley, Reading, MA, 2000.

[21] C. Szyperski: “Import is Not Inheritance. Why We Need
Both: Modules and Classes.” In: O. Lehrmann Madsen (ed.):
ECOOP’92 (European Conference on Object-Oriented Program-
ming; Utrecht, The Netherlands, June/July 1992; Proceedings).
Lecture Notes in Computer Science 615, Springer-Verlag, Berlin,
1992.

[22] J.Widom, S. Ceri (eds.):Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan Kaufmann
Publishers, 1996.

[23] R. Wilhelm, D. Maurer:Compiler Design. Addison-Wesley,
Wokingham, England, 1995.

[24] P. H. Winston, B. K. P. Horn: LISP (Third Edition). Addi-
son-Wesley, Reading, MA, 1989.

14

