Safely Extending Procedure Types
to Allow Nested Procedures as Values
(Corrected Version)1

Christian Heinlein

Dept. of Computer Structures, Waisity of UIm, German
heinlein@informatik.uni-ulm.de

Abstract

The concept of nested procedusdues, ie., the possibility of using nested proceduresaises of
procedure types, is a useful andveoful concept. Neertheless, it is not all@ed in languages such as
Modula-2 and Oberon(-2), because it creates a serious security hole when used inapprdpriately
prevent such misuse while at the same time retaining the ieéfthe concept, alternaé language

rules as well as a small languagaession for Oberon-2 are suggested, whichvalhested proce-

dures to be safely used adues of procedure types and especially to pass them as parameters to other
procedures.

1. Introduction

Nested pocedues i.e., procedures declared local to another procedure, are a useful concept for
structuring and decomposingdarprocedures into smaller and more comprehensible pieces in a natu-
ral way, without needing to introduce aitifal global procedures to ackithat aim. Furthermore, the

fact that nested procedures can directly access the ladables and parameters of their enclosing
procedures helps teekp their parameter lists short, without needing to introduceiattiglobal \a-

riables for that purpose.

Procedue types i. e, types possessing procedures alsies, are another useful concept for pro-
gram deelopment that alles algorithms (eg., for sorting) to be decoupled from their basic opera-
tions (eg., comparing objects) and by that means increasing their generality and applicability

To gve a smple example for both of these concepts, Fig. 1veh@ global Oberon-2 procedure
QuickSort containing nested procedure®vap and SortRange which directly access the
parametern of their enclosing procedure. Furthermore, ¢ef the sorting algorithm independent of
ary particular ordering criterion, a procedun@p comparing tw objects of typerl (and returning an
integer \value smaller than resp. equal to resp. greater than zero ifghebiject is smaller than resp.
equal to resp. greater than the second) is passed as a parameter of the proceCinpPtgpe

The combinationof nested procedures and procedure types, the possibility of using not only glo-
bal, hut also nested procedures as actual parameters of other procedutdsyavan een more use-

ful and paverful concept, as thexamples gien in Sec. 2 will demonstrate. Unfortunatehoweve,
languages such as Modula-2 [13] and Oberon(-2) [14, 8jodallow this combination, ie., theg re-

quire procedurealues (ie., \alues of procedure types) to be global procedures. Affdaiaing in

Sec. 3 the reasons for this apparently strange restriction, in particular the prollenglaig poce-

dure values Sec. 4 suggests alternadilanguage rules whicto allow nested procedurealues (ie.,
nested procedures as proceduakigs) without running into this problem. Since there remains at least

! This is a corrected ancktended ersion of [4] and a replacement for [5].
The correction concerns di@fions L1 and L3 in Sec. 4, which vakeen generalized to eer VARparameters, and rule R3 dealingpkcit-
ly with VARparameters, which has been reatbsnce it contained a loophole for the creation of dangling procediues.

TYPET=..; (* An arbitrary type. *)
TYPE CmpProc = PROCEDURE (x, y: T) : INTEGER;

PROCEDURE QuickSort (VAR a: ARRAY OF T; cmp: CmpProc);
PROCEDURE Swap (i, j: LONGINT);
VAR x: T;
BEGIN x := a[i]; a[i] := a[j]; a[j] := x
END Swap;

PROCEDURE SortRange (i, j: LONGINT);
BEGIN
(* Recursively sort a[i..j]. *)
(* Repeatedly calls Swap and cmp. *)
END SortRange;
BEGIN
SortRange(0, LEN(a) - 1)
END QuickSort;

Figure 1: Simplexample of nested procedures and procedure types in Oberon-2

one important application of procedur@uwes that is permitted by the original rulat hot by the ne
ones, a simple languaggtension is suggested in Sec. 5 t@oome this limitation, too. The paper
closes with a brief gkch of implementation ideas in Sec. 6 and a concluding discussion in Sec. 7.

2. Examples of Nested Procedure Values

If the procedureuickSort of Fig. 1 would be a nested procedurefer instance, because the ele-
ment typeT is a local type— and its enclosing proceduremis to call it with tw or more diferent
comparison procedures, the latteviolisly must be nested procedures, too.

As another xample, Fig. 2 shes a proceduré&rav that recursiely traverses in inix order a binary

treet containing intger \alues, gecuting a callback proceduad for every nodes value. In mag
applications of this procedure, ibwld be natural to use a nested procedure as callback procedure be-
cause of its ability to access locariables of its enclosing procedurerfxample, Fig. 3 shas a
procedure calculating the sum of adilwes stored in the traeby calling procedurdrav with the
nested procedurkdd as callback procedure.

3. Reasonsfor Disallowing Nested Procedure Values

Unfortunately nested procedures ammt allowed as alues of procedure types in languages such as
Modula-2 and Oberon(-2) causing the ed@amples to be actuallflegal. When considering the
usefulness of the concept, this appears to be a completely unreasonable restrictibglande. In
the tree traersing example, for instance, it euld be &tremely unnatural to declaked as a global
procedure because thiguld require to declare tharablesum globally, too. Hovever, there are tw
reasons justifying this restriction, althoughytlaee rarely &plained in language reports oktieooks.

First, due to thedtct that nested procedures can directly accadables of their enclosing proce-
dures, it is more difcult and possibly lessfetient to implement procedure types whoakigs might
be nested procedures. While global procedures can be simplyi@tkhtifthe starting address of their
code block, nested procedures usually need additionalxtontermation, eg., adisplayor astatic

TYPE
Tree = POINTER TO Node;
Node = RECORD
val: INTEGER;
left, right: Tree;
END;
CallbackProc = PROCEDURE (x: INTEGER);

PROCEDURE Trav (t: Tree; cb: CallbackProc);
BEGIN
IF t# NIL THEN
Trav(t.left, cb);
cb(t.val);
Trav(t.right, cb);
END
END Trav;

Figure 2: Taversing a binary tree

PROCEDURE Sum (t: Tree) : INTEGER;
VAR sum: INTEGER;

PROCEDURE Add (x: INTEGER);
BEGIN sum := sum + X
END Add;
BEGIN
sum :=0;
Trav(t, Add);
RETURN sum;
END Sum;

Figure 3: Application of procedui&av

link chain [1, 15]. It has been sham, havever, that this problem can of course be salvn principle,
and that the resulting code is faiently eficient in practice [3].

The second reason for disallmg nested procedurealues is the danger of creatidgngling po-
cedue valuesby assigning a procedure to ariable whose lifetimextends that of the procedure (cf.
Sec. 4 for precise deftions of terminology). While the well-kwen problem ofdangling pointes
has been remved from Oberon(-2) by restricting pointers to refer to dynamically allocated storage
which cannot bexlicitly deallocated by the program, allimg nested procedurealies vould intro-
duce similar and comparably serious security holes, actémepte of Fig. 4 shes. Here, the nested
procedureB, which accesses the locakniablea of its enclosing procedur®, can be called via the
global procedureariableg after its enclosing procedure hagted. Because the locahriablea will
no longer gist at that time, ie., the location on the procedure stack wiBeespects that ariable will
contain some other data ¢e, a \ariable of another procedure even more seriouslycrucial runtime
information such as the return address of a procedure)xéoation of B would erroneously wer-
write that data, resulting in completely uridefl program behdour aftervards.

MODULE DanglingProcedureValue;
VAR g: PROCEDURE;

PROCEDURE A;
VAR a: INTEGER,

PROCEDURE B;
BEGINa:=1
END B;
BEGIN
g:.=1B
END A,
BEGIN
A
g,
END DanglingProcedureValue.

Figure 4: Example of a dangling proceduséue

4. Alternative Language Rulesfor Oberon-2

In order to retain the benef of nested proceduralues without creating the danger of dangling pro-
cedure walues, assignments of procedusdues to “more global” ariables must be forbidden. This
can be achied by replacing the original rule:

RO: Procedure alues must be global procedures.
with the following set of dehitions (L1 to L3) and rules (R1 and R2):

L 1: As wsual, thdifetime of a variabldas defned as theacution time of its directly enclosing proce-
dure. © smplify terminology a nodule is treated as a top# procedure for that purpose.

Of course, the lifetime of aarray elemenbr record field is identical to the lifetime of the enclosing
array or record.

The lifetime of an eplicitly or implicitly derefelenced pointeiis defned as thexacution time of the
program, because a pointeways refers to dynamically allocated storage whose lifetirtengls to
the end of the program as long as it is referenced by at least one.pointer

The lifetime of aVAR parameteris also dehed as the »ecution time of the program, because it
might refer to a global or dynamically allocateatiable.

L2: Likewise, thelifetime of a pocedue nameis defned as theacution time of its directly enclos-

ing procedure.

That means in particulathat the lifetime of a procedure name is quitdedént from the xecution

time of a particular actétion of this procedure. The former actually represents the time where the
procedure can be correctly and safelyoked.

L3: A procedue \alueis either (i) a procedure name or (ii) thelue of a procedureaviable or (iii)

the result of calling a procedure whose result type is a procedure type, either directly by its name or
indirectly via a procedureaviable.

In all these cases, thigetime of a pocedue valueis defned as the lifetime of the procedure name or
variable used to obtain thele.

In contrast to dafition L1, which deines the lifetime of & ARparameter used asvariable, the val-

ue of aVARparameter is treated &khe \alue of a rgular local ariable here, because it might actual-

ly refer to ai variable.

R1: The assignment of a proceduraue to a procedureaviable (ie., a ariable of a procedure type)
is forbidden, if the ariables lifetime exceeds thealues lifetime.

Passing a procedurealue as an actual parameter is treatesl dikassignment of thealue to the cor
responding formal parametére., formal parameters are treateceliariables.

R2: Returning a procedurealue from a procedure is forbidden, if the lifetime of the returning proce-
dure’s rame (not theecution time of the current procedure aation!) exceeds the alues lifetime.

In particular a procedure must not return a local procedure name oratlne wf a local procedureav
riable.

This rule is in accordance with the abodefinition of the lifetime of a procedurealue that is ob-
tained from a procedure call (L3).

Since procedureariables andalues might be embedded in records or arrays, theesables must be
applied to these accordinglyurthermore, it should be noted, that thewabmwiles do not replaceub
rather augment the other rules of the language.ekample, in addition to rule R2, the general rule
that the walue returned by a procedure must be assignment compatible with the preceshuk’
type, has to be oped.

Normally, the relatve lifetimes of tw “objects” (procedure names oariables) are determined by
lexical scoping: Objects declared in the same procedwiewtly have equal lifetimes, while the life-
time of an object declared in a more global proceduceeatls the lifetime of an object declared in a
more local procedure. (The lifetimes of objects declared in unrelated procedueedhianeto be
compared.) As a special additional caseydser, the lifetime of an actual parametealwe alvays e-
ceeds the lifetime of the corresponding formal parameter (which is identical teethgi@n time of
the called procedure)o@ether with rule R1, this obsation implies the important corollary that pro-
cedure alues can be passed as parameté@hout any estriction

5. An Additional Language Extension

Under these rules, theamples gien in Sec. 2 are correct, because procedalaes are only passed
as parameters there andrerestored in ag other variables. On the other hand, thample shan in
Sec. 3 will be rejected since the assignment of the nested pro@&sutiee global griableg violates
rule R1.

Unfortunately rule R1 also forbids the assignment of the paranhetetier to the global array el-
ementhandlers[sig] in Fig. 5, &en if clients would call the procedur@egister with global pro-

MODULE Signals;
CONST Max = ...;
TYPE Handler = PROCEDURE (sig: INTEGER);
VAR handlers;: ARRAY Max OF Handler;

PROCEDURE Register* (sig: INTEGER; handler: Handler);
BEGIN handlers[sig] := handler (* Forbidden by rule R1! *)
END Register;

PROCEDURE Signal* (sig: INTEGER);
BEGIN handlerssig
END Signal;

END Signals.

Figure 5: A simple signal handling module

cedure alues onlyOn the other hand, if modulgignals would violate the strict information hiding
principle by directly gporting the array ariablehandlers (which is used to associate with each sig-
nal numbersig a dgnal handling procedureandlers|sig] that is eecuted whersignal(sig)

is called), then clients euld be alleved to assign global procedures to its elements. So the problem
actually results from theatt that theeal lifetime of the actual parametealue passed tRegister

is lost when it is assigned to the formal paramededler , which is treated lik a bcal \ariable of
procedureRegister

To remedy this particular problem, the programmer needs a language constrpcess ¢hedct that
the actual parametealues passed Register shall alvays be global procedures. More genetatly
must be possible to enhance a procedareble with alifetime guaanteeexpressing the minimum
lifetime of its \alues.

Because the lifetime of an object isidefl as thexecution time of its directly enclosing procedure
(definitions L1 and L2), the names of directly or indirectly enclosing procedures are well suiked to e
press such lifetime guarantees. Therefore, thiaitleh of a procedure type ixtended with an optio-
nal lifetime guaantee claus®F nane after the keyword PROCEDURED express that ariables of that
type must not contain proceduralwes whose lifetime is shorter than tlxeomition time of procedure
name. In other words, only procedures declared in procechase or in more global procedures are
allowed as alues of suchariables. As a special case, it is also possible to useetieid MODULE
instead of the modulg’name to gpress that thealue of a ariable must be a global procedure.

In particular replacing the declaration of typtandler in Fig. 5 with:

TYPE Handler = PROCEDURE OF MODULE (sig: INTEGER);

would cause thexample to become correct, while at the same time forcing clients of mSigule
nals to actually pass global proceduresrvariables of typélandler — to procedureRegister

To generalize the rules stated in Sec. 4adables with lifetime guarantees, the term “lifetime” has to
be replaced with “lifetime guarantée;hich is generally dafed as follovs:

G1: The lifetime guarantee of a proceduegiable is dahed as the maximum of the lifetime guaran-
tee of its type, if applicable @., if the type possesses a lifetime guarantee), andatisbhes life-

time.

Normally, the lifetime of a @riable cannotx@eed the lifetime guarantee of its type, because the latter
is defned as the»acution time of arenclosingprocedure. Dynamically allocatednables, hwever,

i. e., explicitly or implicitly dereferenced pointers, possess maximum lifetime beudon time of

the program) which might indeeda=ed the lifetime guarantee of their type.

Similarly, VARparameters possess maximum lifetime (cfirgggdn L1 of Sec. 4), which might there-
fore exceed the lifetime of their type, too.

G2: The lifetime guarantee of a proceduadue is defied as the lifetime guarantee of its type, if ap-
plicable, or otherwise as the lifetime guarantee of the procedure naragaiies used to obtain the
value (cf. deinition L3 of Sec. 4). br that purpose, the lifetime guarantee of a procedure name is de-
fined identical to its lifetime.

Given that, the gamples of Sec. 2 as well as themple of Fig. 5 with the procedure tydandler
modified as abee ae correct.

To gve an artifcial example which is useful to study borderline cases, Fig. 6 illustrates among oth-
er things the ééct of deinition G2. Since the procedure typepossesses a lifetime guarantee, the
procedure &lue obtained byxecuting the procedure that is currently assigned to the procedrtse v
ble b3 (which is actually the nested procediecan be assigned to the global procedwaeableq,
which would be forbidden by the originaéxsion of rule R1 and deftions L1 and L3. On the other
hand, the analogous assignment of tgressiorbl() to the global ariablep of typeP is still illegd
with the nev definitions and rules, since the typedoes not possess a lifetime guarantee and thus the
lifetime guarantee of thexpressiors value is identical to the lifetime guarantee of the localar

MODULE Artificial;
TYPE P = PROCEDURE; Q = PROCEDURE OF MODULE;
VAR p: P; q: Q;

PROCEDURE A () : P; END A;
PROCEDURE B;
VAR b1: PROCEDURE () : P;
VAR b2: PROCEDURE OF MODULE () : P;
VAR b3: PROCEDURE () : Q;
PROCEDURE C () : P; END C;

PROCEDURED () : Q; END D;

BEGIN
bl:=C; (* Correct. *)
b2 :=C; (* lllegal. *)
b2 := A, (* Correct. *)
b3 :=D; (* Correct. *)
p:=Dbl(); * lllegal. *)
p = b2(); * Correct. *)
g := b3(); (* Correct. *)

END B;

END Atrtificial.

Figure 6: An artiicial example

ble b1 which is in turn identical to its lifetime.olmake aich an assignment correct, it is necessary to
supply the local ariable itself with a lifetime guarantee, which is demonstrated forattiableb?.

6. Implementation |deas

To enforce the alternate language rules suggested in Sec. 4 and to support the langtexggon in-
troduced in Sec. 5, th&ont endof an Oberon-2 compiler has to be changed accordiRglyher
more, it might be necessary to modify the com@lbedk end to generate code that is able to handle
nested procedureaiues.

If nested procedures cannot be used as procediresy a compiler need not maintain a static link
chain [1, 15] which is used at runtime tod intermediate variable§i. e.,local variables of enclosing
procedures), lt simply transform nested procedures to global procedures whichedwiaddresses
of all intermediate &riables as additional parametergr Bxample, the freelyailable oo2c compiler
[11] transforms Oberon-2 programs to ANSI C using this technique.

If nested procedurealues are permitted, tvever, dther a static link chain has to be set-up/kich
is a frequently used techniqueer in the absence of nested proceduwasiigs, It would require ma-
jor modifications to such a kind of compilerer the addresses of the intermediatgiables of a pro-
cedure hee o be gored in an appropriate record (resembling a functicledue) when the proce-
dures mme is used as a proceduadue. This record can be statically allocated on the procedure
stack, just as if it has been declared in the same procedure as the procedure name that isaised as a v
ue. Instead of just containing the address of the procadmde block, a nested procedumdue then
must contain an additional pointer to this record.

A completely diferent stratgy for adapting th@o2c compiler would be to use GNU C instead of
ANSI C as its taget resp. intermediate language, because this alreadys alkested functions as well
as unrestricted “pointers” to them (cf. Sec. 7).

7. Related Work and Conclusion

After describing the dilemma that nested procedataes are on the one hanetry useful, bt on the

other hand forbidden in Oberon-2 and related languages for a serious reason (dangling prakedure v
ues), alternatie language rules as well as a small languagension hge keen proposed to retain
their benets without the danger of running into trouble.

It is interesting to see in this cortethat the problem sodd in this paper does notem gopear in
mary other programming languagesorFexample, standard C [6] and C++ [10] do not alloested
procedures at all, so the notion of nested procedaltessis simply not applicable. (C+function ob-
jectsare a completely dérent matter; thecan be used to sometent to simulate nested procedure
values.) Breuel [3], haever, describes a correspondingtension for C++ that is implemented in the
GNU C (hut interestingly not in the GNU C++) compiléollowing the typical style of C and C++,
however, the problem of dangling proceduralwes (just as the problem of dangling pointers) is not
addressed at the languageeebut left to the programmer. e, he is responsible for using the con-
cept correctlyHere, the approach presented in this paper could be applied in the sgnas for
Oberon-2 to makthe language safer

Likewise, Eifel [7] does not praide nested procedures, while other object-oriented languages such
as Jaa [2] do not preide procedure (resp. methodlwes at all, smestedprocedure alues are not
appropriate eithefEiffel agents are agin a completely diérent mattercomparable to C++ function
objects.)

Functional languages such as Lisp [16], HgiSK.2], or ML [9] fully support nested functions in-
cluding closures which are just another name for nested procedaiiges. But since pure functional
languages lack the notion oivables to which closures might be assigned, the problem of dangling
closures can only appear when a function returns a locallyediefunction, which is forbidden in the
present paper by rule R2utbtypically alloved in functional languages. In such a case, the runtime
system taks care to retain the varonment of a function (e., the non-local alues it accesses) as
long as necessargven dter the enclosing function hagited. While this solution is quite gent and
corvenient from a conceptual point of weits implementation is rathexgensve snce actvation
records cannot be simply put on a LIFO staak, ieve o be dynamically allocated andagbage-
collected on a heap.

When comparing the altermai language rules suggested in this paper with the original rule RO:

» Procedure glues must be global procedures.

the former appear to be much more complicated than the Rdtemost practical applications, e
eve, the simple rule of thumb:

» Procedure wlues must not be assigned to more globahbles.

is suficient, while the rules gén in Sec. 4 are just a more precise and complete spatoiin of that.
Furthermore, the corollary mentioned at the end of Sec. 4:

» Procedure glues can be passed as parameters withgueatriction.

covers a majority of practically relent cases not wolving lifetime guarantees. Finallyhe concept
of lifetime guarantees, which has been introduced in full generality in Secvaidcaay unnecessary
conceptual restrictions, is usually only needed for the special and simpl@rREDULEHrestricting
the values of a procedureariable to global procedures), which is eglént to the original rule RO.

References

[1] A. V. Aho, R. Sethi, J. D. UllmarCompiles. Principles, @hniques, and dols. Addison-\\és-
ley, Reading, MA, 1986.

[2] K. Arnold, J. Gosling, D. Holmesthe &va Pogramming Languge (Third Edition). Addison-
Wesley, Boston, 2000.

[3] T. M. Breuel: “Lexical Closures for C++.” InProc. USENIX C++ €dcnical Confeenc(Derver,
CO, October 1988).

[4] C. Heinlein: “Safely Extending Procedureypes to Allav Nested Procedures aslMes.” In:

L. Boszorméwi, P. Schojer (eds.)Modular Piogramming Languges (Joint Modular Languages Con-
ference, JMLC 2003; Klagenfurt, Austria, August 2003; Proceedings). Lecture Notes in Computer
Science 2789, Spring&ferlag, Berlin, 2003, 144149.

[5] C. Heinlein: Safely Extending Pcedue Types to Allow Nested &cedues as ¥lues Nr. 2003-

03, Ulmer Informatik-Berichte, &kultat fur Informatik, Uniersitat Ulm, June 2003.
http://wwwinformatik.uni-ulm.de/pw/berichte

[6] B. W. Kernighan, D. M. RitchieThe C Pogramming Languge. Prentice-Hall, Engleood Cliffs,
NJ, 1988.

[7] B. Meyer:Eiffel: The Languge. Prentice-Hall, N&v York, 1994.

[8] H. Mdssenbdck, N. Vith: “The Programming Language Oberon-&tructued Piogramming
12 (4) 1991, 179%95.

[9] L. C. Paulson:ML for the Wrking Plogrammer. Cambridge Uniersity Press, Cambridge, 1991.

[10] B. Stroustrup:The C++ Pogramming Languge (Special Edition). Addison-¥sle/, Reading,
MA, 2000.

[11] The OOC Poject http://ooc.sourcefaye.net/.

[12] S. Thompson:Haslell. The Caft of Functional Pogramming Addison-V\sley, Harlov, Eng-
land, 1996.

[13] N. Wirth: Programming in Modula-ZFourth Edition). Springe¥erlag, Berlin, 1988.

[14] N. Wirth: “The Programming Language Obero8dftwae—Prctice and Experiencé8 (7) Ju-
ly 1988, 671-690.

[15] R.Wilhelm, D. MaurerCompiler DesignAddison-Wesley/, Wokingham, England, 1995.

[16] P H. Winston, B. K. PHorn: LISP (Third Edition). Addison-Wsle/, Reading, MA, 1989.

