
Table of Contents

Designing and Simulating Individual Teleo-Reactive Agents 1
Krysia Broda, Christopher John Hogger

Planning in Concurrent Multiagent Systems with the Assembly Model
Checker StEAM . 16
Tilman Mehler, Stefan Edelkamp

A Fuzzy Data Envelopment Analysis Model Based on Dual Program 31
Hsuan-Shih Lee

Optimization of Complex Systems by Processes of Selfmodeling 41
Christina Stoica, Jürgen Klüver, Jörn Schmidt

Towards building Agent-Based Emergency Medical Services Systems 54
Basmah El Haddad

Object-oriented Model-based Extensions of Robot Control Languages 69
Armin Müller, Alexandra Kirsch, Michael Beetz

Meta-Reasoning in Multiple-Strategy Proof Planning 84
Andreas Meier, Erica Melis

Nonlinear System Identification Using ANFIS Based on Emotional
Learning . 99
Mahdi Jalili-Kharaajoo

Fault Diagnosis Features Extraction and Rules Acquisition Based on
Variable Precision Rough Set Model . 110
Qingmin Zhou, Chenbo Yin, Yongsheng Li, Thomas Rathgeber

An Intelligent Agent to Support Collaboration within a Distributed
Environment . 122
Bogdan-Florin Marin, Axel Hunger, Stefan Werner, Sorin Meila,
Christian Schütz

Acquiring Emotion Knowledge of Anger from WWW 137
Xi Yong, Cungen Cao

Preference-based Treatment of Empty Result Sets in Product Finders
and Knowledge-based Recommenders . 145
Dietmar Jannach

Query Plan Distribution in a Mediator Environment 160
Jonathan Gelati

A Self Organising Map (SOM) Sensor for the Detection, Visualisation
and Analysis of Process Drifts . 175
Dietmar Zettel, Daniel Sampaio, Norbert Link, Armin Braun, Michael
Peschl, Heli Junno

Kohonen Networks for Self-organizing Performance of Two Queues
Markov Chains . 189
Dimitar Radev, Svetla Radeva

A Grid-based Application of Machine Learning to Model Generation 204
Volker Sorge, Simon Colton, Andreas Meier, Roy McCasland

Approaches to Case-Base Similarity for Retrieval . 219
Savvas Nikolaidis

Designing and Simulating Individual

Teleo-Reactive Agents

Krysia Broda and Christopher John Hogger

Department of Computing, Imperial College London
kb@doc.ic.ac.uk, cjh@doc.ic.ac.uk

Abstract. A method is presented for designing an individual teleo-
reactive agent, based upon discounted-reward evaluation of policy-restricted
subgraphs of complete situation-graphs. The main feature of the method
is that it exploits explicit and definite associations of the agent’s percep-
tions with states. The combinatorial burden that would potentially ensue
from such associations can be ameliorated by suitable use of abstraction.
For various BlocksWorld examples, the agent’s predicted behaviour is
compared with simulation results to provide insight into the method’s
power and scalability.

1 Introduction

Teleo-reactive agents [10] react to their perceptions of the world by obeying
an internal program (or policy) mapping perceptions to actions. The simplest
policy structure is a set of mutually-exclusive production rules of the form
perception → action, usually intended to control durative behaviour: given some
current perception the agent performs the corresponding action until acquiring
a new perception, whereupon it reacts likewise to that.

Such an agent may or may not have sufficient perceptive capability to know,
at any instant, the entire state of the world. An agent of the kind described in [11]
is presumed at least capable of perceiving an intended goal state whenever that
state arises, and is accordingly designed with that capability in mind. Its program
includes an explicit test for the goal state, whilst the nature and ordering of its
rules are inferred by reductive analysis of that test. Its goal-orientedness is thus
explicit in the program.

A teleo-reactive agent of the kind studied in this paper is, by contrast, pre-
sumed incapable of perceiving the entirety of any state, whether a goal state or
otherwise. In particular, its program contains no rule specifically associated with
a goal. The design process now relies not upon goal-reductive analysis but upon
comparing the extents to which alternative programs dispose the agent towards
achieving a goal – as judged, for instance, by a discounted-reward principle. A
program identified on this basis is implicitly goal-oriented.

Our design process is based upon graphs that relate combinations of per-
ception and objective state, and so differs from approaches that employ graphs
relating perceptions alone. These typically estimate the distribution of states

1

Poster Proceedings KI2004

associated with a current perception using some species of history, whether of
past actions, past states or past perceptions. The key presumption there is that
the history is reliable in that no changes to the state ever occur except by the
known actions of the agent. By contrast, our focus is specifically upon the op-
posite case in which the world may undergo unpredictable exogenous changes
while the agent is pursuing its goal. These changes include, for example, results
of failed actions and mistaken perceptions.

We first outline our basic formulation for teleo-reactive agents using objec-
tive states and perceptions, which are pairwise combined into situations. We
then introduce a method for computing a value for a given policy using the
discounted reward principle and show that the results obtained correspond well
with simulation results (see Case Studies 1-4). In order that our method should
scale to reasonably sized-problems we use a method of abstraction. We make an
assumption that when there is a large number of situations a good policy can
be found by aggregating situations into classes and treating each such class as
a single abstract (or generic) situation. The results from the example in Case
Study 5 vindicate this assumption.

Our core notions are formulated using the following notation. The set of
all objective states that the world may assume is denoted by O; the set of all
perceptions that the agent may have of the world is denoted by P ; the set of
all actions that the agent may take is denoted by A. For each state o ∈ O, the
perceptions that the agent may have of o form some subset P (o) of P , and for
any perception p ∈ P (o) the actions that the agent may take in reacting to p for
some subset A(p) of A. A policy for the agent is any total function f : P → A
satisfying ∀p ∈ P , f(p) ∈ A(p).

For any o ∈ O and p ∈ P (o), the pair (o, p) is called a situation. A goal is a
situation that the agent is required, by the designer, to achieve. The fundamental
problem in identifying a suitable policy is the incompleteness of perceptions
as state descriptors. If they fully described the states then any situation (o, p)
could be contracted simply to o, and the design process would need only to
compare conventional state-transition graphs. However, the realistic position is
that each perception contains only limited knowledge of the world. The problem
is therefore how to optimize, for a goal incorporating a state, an agent that
(generally) cannot recognize that state.

The agents that we consider do not necessarily have any memory capability.
However, our approach easily allows for such capability, by including memory
as additional perceptions. Actions that affect such perceptions can be made
available to the agents. In that way suitable policies for those problems commonly
addressed in the literature, such as the “tiger problem” [7] can be modelled in
our framework.

Example 1: BlocksWorld Formulation This example, like all others in this
paper, employs BlocksWorld to illustrate the ideas involved. It is strongly rep-
resentative of state-transition systems in a wide class of domains. This world
comprises a surface and some number (here 4) of identical blocks. At most one

2

Poster Proceedings KI2004

such block may be held by the agent, whilst the other blocks are arranged as
some configuration of towers standing upon the surface. A goal for this example
might be the situation in which the configuration comprises a 4-tower and in
which the agent is perceiving this tower. A configuration is represented by a list
of integers each denoting the height (>0) of a tower. Figure 1(a) shows the pos-
sible configurations, each determining a state o. The states are named 1, . . . , 8
for brevity. In states 1-5 no block is being held, whilst in states 6-8 one block is
being held.

(a) states

o P (o)

1 [2, 2] {e, i}
2 [1, 1, 1, 1] {d, i}
3 [1, 1, 2] {d, e, i}
4 [1, 3] {d, f, i}
5 [4] {g, i}
6 [1, 1, 1] {a, h}
7 [1, 2] {a, b, h}
8 [3] {c, h}

(b) perceptions

p A(p)

a [s1, h] {l, w}
b [s2, h] {l, w}
c [s3, h] {l, w}
d [s1, nh] {k, w}
e [s2, nh] {k, w}
f [s3, nh] {k, w}
g [s4, nh] {k, w}
h [s0, h] {l, w}
i [s0, nh] {w}

Fig. 1. States, perceptions and actions

A perception is represented by a list [S, H], where S expresses what the agent is
seeing and H expresses its holding status. The domain of S is {s0, s1, s2, s3, s4}
in which s0 denotes “seeing the surface” and sn (n > 0) denotes “seeing an n-
tower”. The domain of H is {h, nh} in which h denotes “holding a block” and
nh denotes “not holding a block”. Figure 1(b) shows the possible perceptions,
named a, . . . , i for brevity. Figure 1(a) also shows alongside each state o the set
P (o) of possible perceptions. From this we can infer, for instance, that state 5
occurs in just two situations (5, g) and (5, i). Declaring perceptions and actions
presumes certain physical characteristics of the agent. Here, we presume three
possible actions – pick (k), place (l) and wander (w). In a k-action the agent
removes the top block from a tower it is seeing, and afterwards holds that block
and sees the resulting tower (or the surface, as appropriate). In an l-action the
agent places a block it is holding upon whatever it sees (the surface or some
tower) and afterwards is not holding a block and sees the resulting tower. A w-
action merely updates the agent’s perception without altering the state. Figure
1(b) shows alongside each perception p the set A(p) of possible actions. The data
in Fig. 1 and the assumed effects of actions jointly determine the transitions the
agent could make between situations if no policy were employed to restrict its
actions, i.e. if it were free to behave with maximum non-determinism. Figure 2
depicts all these transitions as an unrestricted graph, denoted generally by G.
For brevity, each situation (o, p) is displayed there as op.

3

Poster Proceedings KI2004

8c 5g 5i

8h4d4f

4i

2i 2d

6h

6a3e3d

3i

7h

7b 7a 1e 1i

WK

L
W

L

K

W

W

L K

K

L W

L

K

W

KL

W

WK

L

Fig. 2. Unrestricted graph G

In this example we suppress reflexive w-arcs, which can have no influence
upon reachability. This effectively restricts the w-action to cause an immediate
change in the agent’s perception. Later, when we consider agents wandering
incrementally in a positional context, we will permit a w-action to maintain the
current perception.

A policy f renders the agent more deterministic. It prunes arcs from G to
leave an f-restricted graph Gf such that all emergent arcs from any situation bear
the same action label. Some non-determinism remains, in that a w-action from
any situation offers (usually) arcs to several others. Assuming that the agent
is to have some policy and that it can be assigned initially to any situation,
our interest is in defining and identifying for it an optimal policy, given some
intended goal. In the example above, the number of policies to choose from is
256, being the product of the cardinalities of all the A(p) sets.

The remainder of this paper describes one particular method for predicting
the merits of policies, and then tests this method against a set of case studies. The
testing relies upon simulating agents in both positionless and positional modes
and measuring their observed efficacies. The last of the case studies shows that
abstraction at the formulation stage can enhance the method’s scalability.

2 Predicting Policy Values

The value of a policy f should reflect both the agent’s ability to achieve the goal
and the overall benefit of it doing so, as it proceeds (implicitly) through the graph
Gf . One way to predict a value for f is to use the discounted-reward principle
[7]. This assigns a value to each situation on the basis of the expected rewards

4

Poster Proceedings KI2004

gained by traversing its emergent arc(s). Various versions of this principle give
differing degrees of flexibility. We employ a Teleo-Agent Policy Evaluator which
applies this simple version: a situation S having immediate successor-set SS in
Gf has a value V (S) defined by V (S) = Σs∈SS(ps × (rwd(s)+γ ×V (s))), where
ps is the probability that from S the agent proceeds next to s, rwd(s) is the
reward it earns by doing so and γ is a discount factor such that 0 ≤ γ ≤ 1; in
the case that SS = ∅ we have V (S) = 0. More general versions parameterize
their rewards and discount factors by the particular actions entailed in the S-
s transitions. In our version we choose two fixed numbers R and r such that
rwd(s) = R if s is a goal and rwd(s) = r otherwise, where R � r. The difference
between R and r governs the extent to which the method accords merit to the
agent reaching a goal rather than not doing so, whilst γ controls the separation
(but, generally, not the ranking) of policy values. The advantage of the method
is that, provided γ < 1, the values of all situations are finite even when Gf

contains cycles signifying non-terminating behaviour. Moreover, each value is a
linear combination of other values and all may be computed efficiently by linear
equation solving. On the other hand, it may not be easy to choose rewards and
discount factors that relate intuitively to the physics of the agent, such as the
resources expended on perceiving and acting. However, this is not necessarily a
major impediment to the task of distinguishing good policies from bad ones.

The predicted value Vpre(f) for a policy f is then the mean of all the situ-
ations’ values, assuming that the situations are equally probable as initial ones
for the agent to be in. The predicted optimal policy is the one having the highest
predicted Vpre(f) value. We need not always resort to such methods: for partic-
ular combinations of world, agent and goal, good policies may be ascertainable
by intuition alone. Presently we will see examples where this is so, and others
where it is not. Where the method is used, we (currently) evaluate all policies.
This places some limitation on the method’s effectiveness, as there may be many
policies to examine. Various stances can be adopted on this. Firstly, if having an
optimal agent is sufficiently important and if the design process is “once-and-for-
all”, it may be acceptable to expend heavy effort on policy evaluation. Secondly,
intuitions can be applied at the start to eliminate clearly poor policies without
needing to evaluate them. Thirdly, the number of policies can be reduced by the
use of abstraction, that is, by the use of approximate rather than comprehensive
problem formulations; this approach yields less predictive power but can still be
an effective device, as we will later show by a concrete example.

If the set of situations is large, then the approach using abstractions sepa-
rately partitions the set P of perceptions and the set O of objective states into
classes. Each class so obtained is treated accordingly as a single abstract percep-
tion or abstract state. The partitioning is guided by intuition about the agent’s
lack of need to distinguish between the individual members in order to achieve
the goal. Pairwise combinations of abstract states and perceptions yield abstract
(or generic) situations and these become the nodes of the unrestricted graphs.
Let (oG, pG) be a generic situation, then we impose the restriction, called the
principle of genericity that some, and preferably many, of the situations belong-

5

Poster Proceedings KI2004

ing to the cartesian product oG × pG are concrete situations. This means that
oG can be associated with a set of perceptions P (oG) in the same way as for
objective states. Moreover, we can associate with each generic perception pG a
set of actions A(pG). The principle of genericity then also requires that each
action in A(pG) should belong to each perception in pG. These restrictions on
generic situations are made so that good policies predicted using the abstract
graph translate into reliable policies in practice. Case Study 5 uses abstractions
and discusses this issue further.

This kind of approach can be illustrated straightaway, by using an abstraction
with just two abstract states [e4] and [ne4], where e4 denotes “a 4-tower exists”
and ne4 denotes “no 4-tower exists”, and three seeing perceptors, s0, s4 and sx,
the latter denoting “seeing neither the surface nor a 4-tower”. This abstraction
suits the goal of building a 4-tower from an arbitrary but sufficient number of
blocks. Figure 3 shows the restricted graph for the policy whereby the agent, if
seeing a tower of height neither 0 nor 4 (sx), can pick if not-holding (nh) or
place if holding (h), but in all other cases wanders. The intended goal is the
situation ([e4], [nh, s4]). In case there are 4 blocks, the generic state [ne4] consists
of all states except state 5 in Fig. 1. The generic perception [nh, sx] consists of
perceptions d, e, f from Fig. 1. The cartesian product includes 21 pairs, of which
6 correspond to concrete situations.

Fig. 3. Using generic situations

If an unrestricted graph is formed using generic states, as opposed to objective
states, it is likely that the degree of non-determinism present will be increased.
This is because there is more opportunity for variation in the destination states.
For instance, in the restricted graph shown in Fig. 3, after the action pick from
the state ([e4], [nh, sx]), the agent may be looking either at the surface (x = 1),
or at a 4-tower (x = 5) or at some other tower (x 6= 1 and x 6= 5). Initially,
probabilities on multiple arcs issuing from a situation are assigned uniformly,
unless other information is available. However, our simulator is able to estimate

6

Poster Proceedings KI2004

the probabilities of traversing each arc and these empirical values can be used
to give more reliable policy values.

3 Simulating Agents

We test the effectiveness of policies by using a Teleo-Agent Simulator to simulate
agents possessing them. A single run assigns the agent to an initial situation S
and then drives its subsequent activity in accordance with the chosen policy f .
The simulated agent is made to behave deterministically, implicitly traversing
some single path in Gf from S. The run terminates when the agent either reaches
the goal or exceeds a prescribed bound B on the number of transitions performed.
As the path is traversed, the value of V (S) is computed incrementally on the
same basis as used in the predictive Policy Evaluator. Equal numbers of runs
are executed for each initial situation S. The mean observed V (S) over all runs
for all S then gives the observed policy value Vobs(f).

For a set F of n policies we can measure the correlation between their ob-
served and predicted values as follows. A pair (f, g) ∈ F × F (distinct f , g)
for which Vpre(f) ≤ Vpre(g) is concordant if Vobs(f) ≤ Vobs(g), but is other-
wise discordant. If C is the number of concordant pairs and D the number of
discordant pairs, then the Kendall rank-correlation coefficient [8] τF for F is
2 × (C − D)/(n × (n − 1)). We can re-express this measure as a percentage
QF = 50 × (1 + τF). In the best case QF = 100%, when the predicted and
observed ranks of all policies agree perfectly. In the worst case QF = 0%, when
they disagree maximally. The QF values cited in the case studies we report here
all imply, with > 99.8% confidence, that the observed and predicted policy values
are correlated.

The simulator also reports the observed success rate SRobs(f) for the policy,
measured as the percentage of runs that reach the goal. The success rate can
be predicted independently of the simulator by considering the reachability of
the goal in Gf . Let Sits be the set of all situations in the problem formulation
(and hence in G and in all its policy-restricted subgraphs). Then the choice of f
partitions Sits into two disjoint subsets Nf and Tf called the non-trough and the
trough, respectively. Nf contains the goal and all situations from which the goal
is reachable under policy f . Tf contains all the other situations. By definition,
there cannot exist any arc in Gf directed from Tf to Nf . However, there may
exist one or more in the opposite direction, in which case we describe Gf as
NT-bridged. The Policy Evaluator has the secondary function of determining
Nf , Tf and the NT -bridged status for any policy f .

If Gf is not NT -bridged then the agent can reach the goal if and only if
its initial situation is in Nf , so that its predicted success rate SRpre(f) (as a
percentage) is exactly C = 100× |Nf |/|Sits|. If Gf is NT -bridged then we have
only the weaker relationship SRpre(f) < C. In either case C provides an upper
bound on SRpre(f), which we may then compare with SRobs(f). Simulated
runs curtailed by the bound B thereby fail to reach a goal that may have been

7

Poster Proceedings KI2004

reachable in principle. So in general SRpre(f) will overestimate SRobs(f) by an
extent that depends on B.

The simulator supports both positionless and positional simulation modes.
The former associates no positional data to the agent or the towers, and so
precisely mirrors the information content of the original problem formulation.
This means, for instance, that when the agent picks a block from the 2-tower
in the state [1, 1, 2], it is indeterminate as to which tower it will see afterwards
in the new state [1, 1, 1]. By contrast, the positional mode assigns discrete grid
coordinates to the agent and the towers, and exploits these to effect transitions
in a manner somewhat closer to physical reality through knowing precisely where
the agent is located and what it sees.

4 Case Studies in Positionless Mode

Positionless simulation and our prediction method explore an agent’s behaviour
in similar ways and so we expect them to give similar outcomes. It is still useful
to test this by case studies. These studies also serve to introduce concepts and
notations needed later in the paper when we present cases studies of agents in
positional contexts.

Here we compare predicted results with those observed through positionless
simulation, taking three different goals for an agent acting in a world of 4 blocks.
When computing the predicted policy values we suppress any arcs emergent from
the goal, in order to mirror the simulator’s behaviour in terminating the agent
when it reaches the goal; though instituted for the sake of rigour, this nuance
has no discernible impact upon the outcomes in these particular examples. The
prediction parameter values used throughout are R=100, r=-1 and γ=0.9; we
determined by prior experiments that other choices would not have altered the
results or conclusions reported here.

Case Study 1: [Goal=(5,g): construct and perceive a 4-tower] This is the case
introduced in Example 1. The predicted optimal policies are

a → w, b → l, c → l, d → k, e → k, f → w, g → k, h → w, i → w

a → w, b → l, c → l, d → k, e → k, f → w, g → w, h → w, i → w

for each of which Vpre(f) = 37.30 and SRpre(f) < 73.68%. Their graphs are NT -
bridged. Owing to the suppression of arcs from (5, g) the action for perception
g is actually immaterial. From 1007 simulated runs per policy (thus, 53 for
each initial situation) with bound B=100, the same two policies are identically
observed as optimal, having Vobs(f)=37.32 and SRobs(f) = 70.75%.

A broader perspective for this set F of 256 policies is obtained by charting
their observed values against the ranks of their predicted ones. For good pre-
dictive quality the profile should decrease monotonically. The chart obtained, in
Fig. 4, does so and its Kendall measure QF is 99.56%. The optimal policies for
the given goal are intuitive, directing the agent to place a block only upon an

8

Poster Proceedings KI2004

existing tower (so, not upon the surface) and to pick a block only from a tower
of height < 3.

-1 0 .0 0

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

4 0 .0 0

Fig. 4. Observed policy values in Case Study 1

Case Study 2: [Goal=(2, i): construct four 1-towers, perceive surface] Here the
predicted optimal policy is

a → w, b → w, c → w, d → w, e → k, f → k, g → k, h → l, i → w

for which Vpre(f)=41.71 and SRpre(f) = 100%. Its graph is not NT -bridged.
From 1007 simulated runs with bound B=100, the same policy is optimal, having
Vobs(f) = 41.76 and SRobs(f) = 100%. The ranking chart, shown in Fig. 5, is
again almost perfectly monotonic, and QF = 99.88%. Again, the optimal policy
is intuitive – place a block only upon the surface and pick a block only from a
tower of height > 1.

-1 2 .0 0

0 .0 0

1 2 .0 0

2 4 .0 0

3 6 .0 0

4 8 .0 0

Fig. 5. Observed policy values in Case Study 2

Case Study 3: [Goal = (3, i): construct one 2-tower, two 1-towers, perceive
surface] Here the predicted optimal policy is

a → w, b → w, c → w, d → w, e → w, f → k, g → k, h → l, i → w

9

Poster Proceedings KI2004

for which Vpre(f)=31.57 and SRpre(f) = 68.42%. Its graph is not NT -bridged.
From 1007 simulated runs with bound B=100, the same policy is optimal, having
Vobs(f) = 31.37 and SRobs(f) = 68.42%. Figure 6 shows the ranking chart,
which is a little less monotonic. Here QF = 91.75%, not quite as high as before.
More than half (144) of the policies have NT -bridged graphs, whereas the former
cases have just 22 and 8 respectively. The many minor anomalies in Fig. 6, whose
joint effect is to reduce QF , arise only because the constraints upon sampling
and bounding cause the simulations not to cover all those ways in which the
agent may variously avoid or traverse a fateful bridge from the non-trough to
the trough. The optimal policy in the present case – place a block only upon
the surface, and pick a block only from a tower of height > 2 – is now not so
obviously optimal. One might have guessed instead at, say, the policy identified
in Case Study 2, on the grounds that in the state comprising two 2-towers the
agent needs to pick from one of these in order to progress; but this is mistaken,
for that state does not occur sufficiently often to justify this change, and this
alternative policy turns out to have less than half the value and less than half
the success rate of the optimal one.

-1 5 .0 0

-5 .0 0

5 .0 0

1 5 .0 0

2 5 .0 0

3 5 .0 0

Fig. 6. Observed policy values in Case Study 3

In conclusion, the evaluator and the simulator (in positionless mode) correctly
implement the underlying concepts, by mutually validating their outcomes.

5 Case Studies in Positional Mode

Our interest here is in determining how well our Policy Evaluator – which knows
nothing of positions or of the distinct identities of identical towers – predicts
the behaviour of an agent in a position-sensitive world. In its positional mode
the simulator manifests an initial situation as an assignment of the towers and
the agent to distinct cells in a rectangular grid having prescribable dimensions.
Thereafter the simulator drives the agent’s behaviour as dictated by the policy f ,
and updates the agent’s grid position as appropriate. Moreover, towers maintain
distinct identities by having distinct positions.

10

Poster Proceedings KI2004

A key decision for this mode concerns how the agent shall perform a w-
action and what it shall see afterwards. We decided this as follows. A w-action
moves the agent randomly to any vacant cell in its (immediate) neighbourhood
(comprising 8 cells, unless the agent is next to a grid boundary). The agent
then sees the surface if its new neighbourhood is entirely vacant, but otherwise
randomly sees any one tower in that new neighbourhood. This (or any alterna-
tive) decision fixes the probability distribution over the possible w-transitions
between the prior situation and its successors. By contrast, the Policy Evaluator
treats, by default, those transitions as equi-probable, and thus over-simplifies
the agent’s behaviour. So we must expect some shortfall in its predictive power
when applied to a position-sensitive world, and the question is how serious (or
not) that shortfall is.

The grid dimensions are another factor in the shortfall. The smaller they are,
the less freedom the agent has to wander. It may become surrounded by towers,
particularly near boundaries, causing a run to fail on a path that the Policy
Evaluator regards as successful. In our studies we used a 6×6 grid, large enough
to prevent such possibilities from significantly affecting the comparisons made.

It is clear that in positional mode a w-action may leave the agent’s situation
invariant. In the earlier studies this possibility was denied by our excluding
reflexive w-arcs from G. Now, however, we add such an arc to every situation
in G in order that our predictions shall take account of reflexive transitions in
positional simulation. The prediction parameter values used throughout were
again R = 100, r = −1 and γ = 0.9.

Case Study 4: [Goal=(5, g): construct and perceive a 4-tower] This repeats
Case Study 1 but in positional mode and with bound B = 200 (increased from
the former 100 to allow for more wandering). The predicted optimal policies are
the same as before, but with a slightly reduced predicted value 30.47 (reduced
precisely because of the negative rewards of reflexive wanders). However, they
are not quite optimal among the observed values. The observed optimal policy
is a little different:

a → w, b → l, c → l, d → k, e → w, f → w, g → k, h → w, i → w

On seeing a 2-tower when not holding (perception e), it marginally favours w over
k. Figure 7 shows the ranking chart, for which QF = 66.91%. Minor sampling
variations among many policies of similar value are the root cause of this reduced
value. If we contract F to just the 20 best policies then QF = 76.32%, so the
predictive quality is rather better in the region that matters.

The observed values in the chart are much lower than the predicted ones,
since the simulated agent is wandering (in the sparse regions of the grid) much
more than the prediction considers probable. However, it is the relative rather
than the absolute values that are our main interest. The observed and predicted
success rates remain in close agreement, since excess wandering does not alter
the reachability of the goal, but merely delays its discovery.

11

Poster Proceedings KI2004

-8 .0 0

-4 .0 0

0 .0 0

4 .0 0

8 .0 0

1 2 .0 0

Fig. 7. Observed policy values in Case Study 4

Case Study 5: This is the study we feel is of greatest interest, since it bears
directly upon the scalability of the predictive method. The goal is to construct
(at least) one 2-tower and one 4-tower and to perceive the surface. If there were
(say) 10 blocks, then a comprehensive formulation of this problem dealing with
its 72 possible states would not be manageable. Nor might it be realistic to
suppose the agent possessed 11 distinct perceptors s0, . . . , s10; even if it did, the
graph G would contain a huge number of situations and 220 policies to consider.

Our approach to this problem was to assume that solving it did not re-
quire the planning process to distinguish between numerous slightly different
situations. Instead, the formulation uses four generic states [e2, e4], [e2, ne4],
[ne2, e4] and [ne2, ne4], where e2 denotes “a 2-tower exists” and ne2 denotes
“no 2-tower exists” (and analogously for e4 and ne4). The seeing perceptors are
s0, s2, s4 and sx, the latter denoting “seeing an x-tower” (x denotes “neither
2 nor 4”). This formulation gives just 24 situations and 128 policies.

As a further challenge to the predictive method the simulations were done in
positional mode, using 10 blocks and making 1008 runs per policy with bound
B=200. Figure 8 shows the ranking chart which, though having many fluctua-
tions, is reasonably monotonic overall and has a surprisingly high overall quality
measure QF = 86.55%.

-1 5 .0 0

-1 0 .0 0

-5 .0 0

0 .0 0

5 .0 0

1 0 .0 0

1 5 .0 0

Fig. 8. Observed policy values in Case Study 5

The observed optimal policy is that which places a block only upon the
surface or upon an x-tower and never picks a block. It has rank 4 among the
predicted values. The observed second-best policy places a block only upon an

12

Poster Proceedings KI2004

x-tower and picks a block only from an x-tower. This has rank 1 among the
predicted values.

The fluctuations in this chart arise partly from the prediction method mis-
judging the probabilities on the arcs, for the reasons noted at the start of this
section. In principle we can improve the method by determining more accurate
probabilities (by considering how the agent actually behaves) and attaching them
as data to the arcs in Gf to be used in the discounted-reward equations. For the
current example it is not easy to ascertain accurate probabilities analytically,
though it would no doubt be possible, by considering the density distribution
of blocks, to obtain reasonable ones with sufficient effort. To show in principle
that the method can be improved in this way, we made the simulator count,
for each policy f , the number of times each arc was traversed, and used these
totals to assign probabilities to the arcs in Gf . The Policy Evaluator was then
re-run using these more realistic probabilities to provide updated predictions.
Comparing these with the simulations’ observed values yields the less volatile
chart in Fig. 9.

-1 5 .0 0

-1 0 .0 0

-5 .0 0

0 .0 0

5 .0 0

1 0 .0 0

1 5 .0 0

Fig. 9. Result of using better probabilities in Case Study 5

The quality QF over the full range has risen to 91.73%, whilst for the best 20
policies it has improved radically from 69.48% to 86.32%. In particular, the ob-
served optimal policy is now ranked 1 among the predicted values. Some volatil-
ity remains because (i) each graph Gf offers transitions from generic situations
that cannot be realized by all their concrete instances and (ii) the number of
runs (42) for each initial generic situation insufficiently tests each of its many
concrete instances. Cause (i) exacts an inevitable penalty for any approximate
problem formulation, whilst cause (ii) merely calls for more simulation runs per
policy to achieve better sampling.

A more challenging study – of building a 10-tower – used just four generic
state: the state [10], the state [5, 5], states with one 5-tower and all other states.
The agent could distinguish only three cases when seeing an n-tower: n = 5,
n < 5 and n > 5. With this degree of abstraction the predictive quality QF over
the 128 policies was 70.83%. The observed best policy, to pick only from a tower
of height < 5 and place only upon a tower of height ≥ 5, was the one predicted
as best. This further encouraged the use of abstraction for addressing scalability.

13

Poster Proceedings KI2004

6 Discussion and Conclusions

Our work on teleo-reactive agents was inspired by their pioneer and originator
[10, 11]. The main approach to constructing them automatically has been to
employ various strategies based upon learning. An example is the work of [1]
which uses inductive logic programming to learn from experience useful relations
between action and effect. Related work on agent planning by learning is given
in [9] and [12]. The formulation of teleo-reactive programs as restrictions of
situation graphs was introduced in [2]. The discounted reward principle [7] has
recently been used to plan cooperative and communicative teleo-reactive agents
[3, 4]. The contributions of this paper include the following:

(i) statistical comparison of predicted discounted-reward values of teleo-reactive
policies with the results of simulations;

(ii) evidence that sole reliance upon idealized situation graphs affords good
predictive power for simulated agents in position-sensitive cellular worlds;

(iii) elucidation of factors involved in the differences between predictions and
observations; and

(iv) evidence that the approach remains fairly robust when, for the sake of
scalability, the situation graphs employ generic descriptors of states and
perceptions.

Our use of graphs (here termed op-graphs) relating situations contrasts with
the use of simpler graphs (p-graphs) relating perceptions alone. Such p-graphs
are traditionally used to represent decision processes and to reason about them
[6]. In a p-graph each arc denotes an action transition from one perception
to another. Clearly an op-graph distinguishes between situations that share a
common perception, whereas a p-graph does not. If in a p-graph a perception p
occurs in both goal and non-goal situations, then the discounted reward method
overestimates the value of p by attributing the higher reward associated with
goal-reaching arcs to arcs not reaching the goal.

There is a further feature that differentiates the two kinds of formulation
and is not immediately obvious. This is accidental non-determinism, which can
occur in the case when a perception occurs in more than one objective state.
Suppose action a takes o1p1 to o2p2 and o3p1 to o4p4 and further suppose these
are the only transitions when a is the action in states o1p1 and o3p1. In the
p-graph there will be two outgoing arcs labelled by a from p1 – one to p2 and
one to p4. Thus the p-graph makes a into a non-deterministic action when in
perception p1, whereas the op-graph does not. The consequence of accidental
non-determinism when using a p-graph is that the overall policy value may be
over or under-estimated. A node in the trough of a given restricted op-graph may,
for the corresponding p-graph, lie on a path to the goal perception resulting in
overestimation. Or, a short deterministic path to the goal in an op-graph might
project onto a non-deterministic set of paths, including long and futile ones, in
the p-graph, resulting in an under-estimation of policy value. Furthermore, in
the same way that our use of op-graphs extends p-graphs, so also our abstraction
of situations extends approaches, as in [5], that abstract perceptions alone.

14

Poster Proceedings KI2004

It is therefore apparent that there are circumstances in which these factors
render the p-graph approach less well suited to predicting good policies using
discounted reward methods. Accidental non-determinism introduced by using a
p-graph can be removed in some cases by extending perceptions (e.g. transition
histories [6]) to enable detection of which objective state the agent is in for some
particular perception. However, this “solution” increases the number of possible
policies requiring to be considered and evaluated. Our use of op-graphs, kept to
manageable proportions as necessary through the use of abstraction, also enables
us to find policies that maintain an agent’s pursuit of the goal even in a context
of state changes induced by unpredictable exogenous factors. This is because our
planning method judges how best the agent should behave whatever situation
it is currently in, regardless of whether that situation results from the agent’s
previous action or from arbitrary exogenous disturbance.

The key aspects of teleo-reactive agents are their autonomy and their lack
of dependence upon on-board computing power and sophisticated software. It is
plausible that they will play a key role in some nano-technological applications,
and the quest for practical ways to design them is, we believe, a worthwhile
pursuit.

References

1. Benson, S. Learning Action Models for Reactive Autonomous Agents, PhD, Dept.
of Computer Science, Stanford University, 1996.

2. Broda, K., Hogger, C.J. and Watson, S. Constructing Teleo-Reactive Robot Pro-
grams, Proceedings of the 14th European Conference on Artificial Intelligence,
Berlin, pp 653-657, 2000.

3. Broda, K. and Hogger, C.J. Designing and Simulating Individual Teleo-Reactive
Robots, Technical Report TR 2003/8, Dept. of Computing, Imperial College Lon-
don, UK, 2003.

4. Broda, K. and Hogger, C.J. Policies for Cloned Teleo-reactive Robots, To be pre-
sented to the 2nd German Conference on Multiagent System Technologies, Erfurt,
2004.

5. Dearden, A. and Boutilier, C. Abstraction and approximate decision-theoretic
planning, Artificial Intelligence 89: pp 219-283, 1997.

6. Dutech, A. Solving POMDPs using selected past events, Proceedings of the 14th

European Conference on Artificial Intelligence, Berlin, pp 281-286, 2000.
7. Kaelbling, L.P., Littman, M.L. and Cassandra, A.R. Planning and Acting in Par-

tially Observable Stochastic Domains, Artificial Intelligence 101: pp 99-134, 1998.
8. Kendall, M.G. A New Measure of Rank Correlation, Biometrika 30: pp 81-93, 1938.
9. Mitchell, T. Reinforcement Learning, Machine Learning, pp 367-390, McGraw Hill

1997.
10. Nilsson, N.J. Teleo-Reactive Programs for Agent Control, Artificial Intelligence

Research 1: pp 139-158, 1994.
11. Nilsson, N.J. Teleo-Reactive Programs and the Triple-Tower Architecture, Elec-

tronic Transactions on Artificial Intelligence 5: pp 99-110, 2001.
12. Ryan, M.R.K. and Pendrith, M.D. An Architecture for Modularity and Re-Use

in Reinforcement Learning, Proceedings of the 15th International Conference on

Machine Learning, Madison, Wisconsin, Morgan Kaufmann, pp 481-487, 1998.

15

Poster Proceedings KI2004

Planning in Concurrent Multiagent Systems
with the Assembly Model Checker StEAM

Tilman Mehler and Stefan Edelkamp

Fachbereich Informatik
Baroper Straße 301

Universität Dortmund
{tilman.mehler,stefan.edelkamp}@cs.uni-dortmund.de

Abstract. The exploration of a programs state space has become a
popular method lately. In most cases, the intention is to check the pro-
gram against formal properties - such as the absence of deadlocks. The
efforts in this field gave birth to a set of powerful tools - such as the
Java model checker JPF(2) and the C++ model checker StEAM. How-
ever, the potential of those tools is not limited to the verification of
formal properties.
In this paper, we present a method, which uses StEAM as a planner in
concurrent multiagent systems. In contrast to classical planning, we
avoid the generation of an abstract model. The planner operates on
the same compiled code that controls the actual system.
The approach is evaluated in a case study using a C++-implementation
of a multiagent manufacturing system.

1 Introduction

Modern AI is often viewed as a research area based on the concept of in-
telligent agents [20]. The task is to describe and build agents that receive
percepts from the environment. In fact, each such agent implements per-
cepts to actions. So distributed multiagent systems have become an impor-
tant sub-field of AI, and several classical AI topics are now broadly studied
in a concurrent environment. Planning for multiagent systems extends clas-
sical AI Planning to domains where several agents act together. Application
areas include multirobot environments, cooperating Internet agents, logis-
tics, manufacturing etc. Approaches differ for example in their emphasis
on either the distributed plan generation or the distributed plan execution
process, and in the ways communication and perception is used.

The largest discrepancy between generating a plan and executing it, is
that multiagent planners usually cannot directly work on existing programs
that are executed. In this paper, we show how a c++ program model checker
can be utilized to serve as a planning and execution unit to improve the
performance of concurrent multiagent system implementations.

With this respect, this work provides another example of showing on the
cooperation of model checking and planning technology. The rough view is

16

Poster Proceedings KI2004

that finding an error in software programs is closely related to establish-
ing goals in planning. The counterexample provided by the model checker
corresponds to a sequence of actions that solves the planning problem. Con-
currency is established through running threads and communication is im-
plemented via message passing or global variables.

Directing the exploration towards the planning goal or specification er-
ror turns out to be one of the chances to tackle the state explosion problem,
that arises due to the combinatorial growth of system states. In our model
checker we work with different object-code distance metrics to measure the
efforts needed to encounter the error. Thereby, we can also address the eval-
uation problem that multiagent systems or multirobot teams have, since
by having access to object code we can attribute execution time to a set of
source code instructions.

The goal in our research is to develop a planning system which interacts
with the software units to improve the quality of the results. Since the per-
formance of the system on test increases over time, our approach considers
incremental learning. As a special feature, the planner should not build an
abstract model of the concurrent system. Instead, planning should be fea-
sible directly on the implementation of the software units. This introduces
planning on the sorce-code and assembly-level.

The paper is structured as follows. We first introduce software and pro-
gram model checking. Then we discuss concurrent multiagent systems and
how they can be implemented in a C++ program to be checked by our model
checker StEAM. Afterwards, we explain the extensions to the original model
checker, so it can also be used as a planner. We present a general state ex-
ploring algorithm that interleaves simulation and planning. Next, we con-
sider the case study on a multiagent manufacturing system, MAMP for
short. For efficient exploration in these problems we subsequently study
available search enhancements. Experiments show, how the interaction of
StEAM as a planning system can improve the performance of the manu-
facturing process. Afterwards we relate to further work on planning, model
checking, and concurrent multiagent systems. Finally, we draw conclusions
and discuss further efforts in this field.

2 Software and Program Model Checking

Software model checking has proven a useful technique for the verification
of programs written in modern programming languages - such as C/C++
and Java. Some early approaches [6,12,15] rely on the extraction of abstract
models from source code, which can be verified by well-established model
checkers such as SPIN [14] and SMV [18]. Although such an abstraction
generally leads to a more compact state description, this method has several
drawbacks. One being, that it requires a custom-build formal semantics,
which translates source code to the input language of the model checker.
Due to the complexity of the formal semantics of actual programming lan-
guages, the methods based on the extraction of formal models are often very

17

Poster Proceedings KI2004

limited in the subset of programs that can be translated. Also, it is hard to
prove, if the model correctly reflects all aspects of the actual program.

Newer model checkers, like the second generation of the Java Pathfinder
(JPF) [21] and the C++ Model Checker StEAM [17] use a different approach.
Instead of extracting a model from the source code, the investigated soft-
ware is compiled to machine code. Then a virtual machine is used to check
program properties directly on the compiled code. This method of program
model checking has several advantages: First of all, the developers of the
model checker do not have to re-invent the wheel by designing a translation
from the program source to the input language of the model checker. For
common programming languages, such as C++ and Java, plenty of infras-
tructure already exists, such as compilers and machine code interpreters.
This infrastructure only needs to be extended with model checking abilities,
such as a state space description and search methods.

In the case of the StEAM model checker, a C++ virtual machine called
ICVM was extended to a model checker for concurrent C++ programs with
reasonable effort. Since ICVM can compile and execute arbitrary C++ code,
the full formal semantics of the programming language is covered. Further-
more, since ICVM is capable to run complex programs1, we have strong em-
pirical evidence, that the formal semantics of the programming language is
correctly reflected in the compiled code.

Special-purpose statements are part of the control mechanism which tai-
lors the model checking algorithm to ICVM. Essentially, these are macros,
that are placed in the code of the program to be model-checked. The com-
piled code of such a macro is recognized by the model checker and gets
parsed instead of executed. Two examples of such a statements are BE-
GINATOMIC and ENDATOMIC, marking a block that includes no choice
point for the set of executed threads.

3 Concurrent Multiagent Systems in StEAM

We regard a concurrent multiagent system as a set of homo- or heteroge-
neous autonomous software units, operating in parallel. Some components
of the system are shared among all units - such as tasks or resources. The
units cooperate to reach a certain goal and the result of this cooperation
depends on what decisions are made by each agent at different times.

Concurrent multiagent systems can be implemented in the program mo-
del checker StEAM in a straightforward fashion. Software units are rep-
resented as threads. Each unit is implemented by an instance of a corre-
sponding C++-class. Each such class is derived from StEAM’s thread-class
IVMThread. After creating a class instance, a call to the start-method adds
it to the list of concurrent processes running in the system. The shared com-
ponents of the system are represented by global variables.

1 For example it has been tested for time critical computer games like Doom.

18

Poster Proceedings KI2004

Model checking in StEAM is done by performing exploration on the set
of system states, which allows to store and retrieve memorized configura-
tions in the execution of the program. In the simulation mode e.g. controlled
by the user, by random choices, or by an existing trace, the model checker
executes the program along one sequence of source code instructions.

Here, the model checker StEAM serves two purposes. First as a plat-
form to simulate the system, second as a planner which interacts with the
running system to get better results. We assume an online scenario, where
planning has to be done in parallel to the execution of the software units. In
particular, it is not possible to find a complete solution in advance.

We assume that the planner performs a search on system states, which
are of the same type as that of the actual concurrent system. As a result,
the planner finds a desired target state t, which maximizes the expected so-
lution quality. State t will not necessarily fulfill the ultimate goal, because
an exhaustive exploration is in general not possible due to time and space
restrictions. As the next step, the planner must carry over the search re-
sults to the environment. However - in contrast to the plan generation -
the planner does not have full control over the actual system, due to non-
deterministic factors in the environment, such as the execution order of the
agents. Instead, the planner must communicate with the software units to
influence their behaviour, so that the actual system reaches state t or a state
that has the same or better properties as t w.r.t. the solution quality.

3.1 Interleaving Planning and Simulation

We want to integrate the required planning ability into the model checker
with minimal changes to the original code. First, a model checker operates
on sequential process executions, rather than on parallel plans. To address
this issue, the concept of parallel steps is added to StEAM. A parallel step
means that all active processes are iterated one atomic step in random or-
der. With parallel steps, we can more faithfully simulate the parallel execu-
tion of the software units.

Communication is realized by a concept we call suggestion. A suggestion
is essentially a component of the system state (usually a shared variable).
Each process is allowed to pass suggestions to the planner (model checker)
using a special-purpose statement SUGGEST. The SUGGEST-statement
takes a memory-pointer as its parameter, which must be the physical ad-
dress of a 32-bit component of the system state. The model checker collects
all suggestions in set SUG. When the model checker has finished his plan
generation, it overwrites the values of all suggestions in the current state
of the actual environment with the corresponding values in t. The software
units recognize these changes and adapt their behaviour accordingly. For-
mally, the role of suggestions can be described as follows: Let V be the set
of variables that form a state in our system. A system state is defined as a
function z : V → �, which maps variables to their domains. Let s be the
root state of a planning phase and t the designated target state. Then, the

19

Poster Proceedings KI2004

subsequent simulation phase starts at state:

s′ = s \

 ⋃

v∈Sug

{v �→ s(v)}

 ∪

⋃
v∈Sug

{v �→ t(v)}.

A concrete example will be given in the case study in Section 4.

3.2 Combined Algorithm

Our proposed system iterates two different phases: planning and simula-
tion. In the planning phase all units are frozen in their current action. Start-
ing from a given system state, the model checker performs a breadth-first
exploration of the state space until a time limit is exceeded or no more states
can be expanded. For each generated state u an evaluation function value
h(u) is calculated, which measures the solution quality in u. When a time
limit θ is reached, the state with the best h-value is chosen as the target
state t and the simulation phase starts. At the beginning of the simulation
phase, for each element in the set of suggestions, the model checker over-
writes the value of the corresponding component in s with the value in t.
Then parallel steps are executed in s until the criterion for a new planning
phase is met.

Algorithm Interleave in Figure 1 illustrates the two phases of the sys-
tem, and is based on top of a general state expanding exploration algorithm.
Besides the initial state the exploration starts form, it takes the preference
state evaluation function as an additional parameter. A time threshold stops
planning in case the model checker does not encounter optimal depth. For
the ease of presentation and the online scenario of interleaved execution
and planning, we chose an endless loop as a wrapper and have not included
a termination criterion in case the goal is encountered.

The function evaluateCriterion determines, whether a new planning pha-
se should be initiated or not. The function is not defined here, because this
criterion varies depending on the kind of system we investigate. The func-
tion s.iterate(a) executes one atomic step of an agent (thread, process) a in
state s and returns the resulting state.

Figure 2 shows how the generated system states switch from a tree struc-
ture in the planning phase to a linear sequence in the simulation phase. We
see that the simulation (path on right side of the figure) is accompaigned
by intermediate planning phases (tree structure, top left and bottom right
of the figure). The search tree contains the (intermediate) target state t -
i.e. the generated state with the highest h-value. As we will see, state t is
potentially - but not necessarily traversed in the simulation phase.

Ideally, the two phases run in parallel, that is the running multiagent
system is not interrupted. Since we use the same executable in our model
checker to simulate and plan, we store system states that are reached in
the simulations and suspend its execution. The next planning phase always

20

Poster Proceedings KI2004

Procedure Interleave
Input: The initial state s of the system, time limit θ, evaluation function h
1. loop
2. besth← h(s); t← s; Open← {s}
3. while (time < θ ∧ Open �= ∅) /* start of planning phase */
4. Γ (u)← expand(Open.getNext()) /* expand next state in horizon list */
5. for each v ∈ Γ (u)
6. if (h(v) > besth) t← v; besth← h(v)
7. for each σ ∈ SUG
8. s.σ ← t.σ /* write suggestions */
9. c← 0
10. while (¬c) /* begin of simulation phase */
11. for each agent a: s← s.iterate(a) /* do a parallel step */
12. c← evaluateCriterion()

Fig. 1. The Implementation of the Interleaved Planning and Simulation System.

starts with the last state of the simulation, while the simulation continues
with the root node of the planning process. The information that is learned
by the planning algorithm to improve the execution is stored in main mem-
ory so it can be accessed by the simulation.

4 Case Study: Multiagent Manufacturing Problem

In the following we formalize a special kind of a concurrent multiagent
system, which is used to evaluate our approach. A multiagent manufactur-
ing problem, MAMP for short, is a six-tuple (A, J, R, req, cap, dur), where
A = {a1, . . . , an} denotes a set of agents, J = {j1, . . . , jm, �} is a set of jobs
including the empty job �, and R = {r1, . . . , rl} is a set of resources. The
mappings req, cap, and dur are defined as follows:

– req : J → 2R defines the resource requirements of a job,
– cap : A → 2R denotes the capabilities of an agent, and
– dur : J → � is the duration of a job in terms of a discrete time measure.

A solution to a MAMP m = (A, J, R, req, cap, dur), is a function sol : A →
2�×J . For (t, ι) ∈ �×J , let job((t, ι)) = ι and time((t, ι)) = t. Furthermore, let
alljobssol : A → 2J be defined as alljobssol(a) =

⋃
s∈sol(a) job(s). We require

sol to have the following properties.

i. For each sol(a) = {(t0, ι0), . . . , (tq, ιq)} we have that i �= j implies either
(ιi = ιj = �) or ιi �= ιj and for each i ≥ 0 we have ti+1 ≥ ti + dur(ιi).

ii. For each s ∈ sol(a): req(job(s)) ⊆ cap(a).
iii. For all a �= a′ and all s ∈ sol(a), s′ ∈ sol(a′) with req(job(s))∩req(job(s′)) �=

∅ we have either time(s) + dur(job(s)) ≤ time(s′) or time(s) ≥ time(s′) +
dur(job(s′))

21

Poster Proceedings KI2004

Simulate

may be equal
or not

Plan

state t
intermediate target

any state reached
during simulation

new planning phase
starts here

Fig. 2. State generation in the two different exploration phases.

iv. For all a �= a′ we have (alljobssol(a)\{�}) ∩ alljobssol(a′) = ∅.
v. Last but not least, we have

⋃
a∈A alljobssol(a) = J\{�}.

Property i. demands, that each agent can do at most one job at a time.
Property ii. says, that an agent can only do those jobs, it is qualified for.
Property iii. means, that each resource can only be used by one agent at a
time and properties iv. and v. demand, that each job is done exactly once.

An optimal solution sol minimizes the makespan τ until all jobs are done:

τ(sol) = max
a∈A,s∈sol(a)

(time(s) + dur(job(s)).

MAMPs are extensions to job-shop scheduling problems as described e.g.
in [1]. As the core difference, MAMPs also have a limited set of agents with
individual capabilities. While in a job-shop problem one is only concerned
with the distribution of resources to jobs, MAMPs also require that for each
job we have an agent available that is capable to use the required resources.

4.1 Example Instance

Apparently, the solution quality of a MAMP relates to the degree of paral-
lelism in the manufacturing process. A good solution takes care that each
agent works around the clock - if possible. Consider a small MAMP m =
{A, J, R, req, cap, dur} with A = {a1, a2}, J = {j1, j2, j3}, R = {r1, r2, r3, r4, r5},
req(j1) = {r1, r2}, req(j2) = {r3, r4}, and req(j3) = {r3, r5}. Furthermore
cap(a1) = R, cap(a2) = {r3, r4, r5}, and dur(j1) = 2, dur(j2) = dur(j3) = 1.

22

Poster Proceedings KI2004

j
1

j2
j3

j2
j3 j

1

j2
j

1

j3

a 1

a 2

a 1

a 2

time

0 21 3 4

a 1

a 2

Fig. 3. Three different solutions for the same MAMP m.

Figure 3 illustrates a best, an average and a worst case solution for m.
Here, we have a timeline extending from left to right. For each solution, the
labeled white boxes indicate the job, which is performed by the respective
agent at a given time. Black boxes indicate that the agent is idle. In the
optimal solution, a1 starts doing j1 at time = 0. Parallel to that, a2 performs
j2 and afterwards j3. The total time required by the optimal solution is 2.
Note, that the solution does not contain any black boxes. In the average
solution, which is in the middle, a1 executes j2 at time = 0 and j1 afterwards.
This implies that a2 has to be idle up to time = 1, because it is incapable
to use r1 needed for j1 and r3 is used by j1. Then, a2 can at least commence
doing j3 at time = 1 when r3 is available again. The time needed by the
average solution is 3. Finally, in the worst solution, which is the bottom-
most in Figure 3, a1 first performs j2, then j3 and j1, while a2 is compelled
to be idle at all time. The worst solution needs 4 time units to get all jobs
done.

4.2 Implementation

For the chosen concurrent multiagent manufacturing system, our goal is to
develop a planning procedure for an instance that interacts with the multi-
agent system to maximize the level of parallelism and thus to minimize the
idle times of agents, which is expected to improve the quality of the result-
ing MAMP-solution. Additionally, as an immediate result of our proposal,
we avoid the generation of an abstract model of the system. Instead, we
plan directly on the actual implementation.

Information about the state of the jobs and the available resources are
stored in global variables. When running, each agent a automatically sear-
ches for available jobs he is qualified for and executes them. If a finds a free
job j, such that caps(a) ⊆ req(j) and all resources in req(j) are available, the

23

Poster Proceedings KI2004

agent requests the resources and starts executing the job. After finishing
the job - i.e. when dur(j) time units have passed, a will release the resources
and search for the next job. If a cannot find a job, he waits one time unit and
searches again. In the case of our multiagent system, each agent passes
as a suggestion the local variable assigned, which stores the next job to be
executed by the agent. Before an agents autonomously seeks a job, it checks
if the default-value of its assigned-variable has changed. This implies, that -
as a result of the previous planning phase - the model checker has assigned
a job for this agent. If this is the case, the agent skips the procedure, which
looks for a feasible job and starts allocating the required resources.

5 Search Enhancements

When using breadth-first search, for n active processes (agents), the num-
ber of expanded states in the planning phase is bounded by O(nd) where
d is the depth of the search tree. Without search enhancements, it is hard
to reach a search depth which is deep enough to gain information for the
simulation phase. As a result, the solutions obtained through the combi-
nation of planning and simulation would not be any better, than that of a
purely autonomous system without planning. Several pruning and refine-
ment techniques help our planning system to reach a larger search depth.

5.1 State Space Pruning

First of all, the model checker StEAM uses a hash table to store the already
visited states. When a state is expanded, only those successor states are
added to the Open list, which are not already in the hash table.

Second for a multiagent management system it does not make sense to
generate those states of the search tree that correspond to an execution step
of a job. Such an execution only changes local variables and thus does not
influence the behaviour of the other agents. To realize this pruning, threads
can announce themselves busy or idle to the model checker using special-
purpose statements. In the case of the MAMP, an agent declares himself
busy, when he starts working on a job and idle when the job is finished.
When expanding a state, only those successors are added to the Open list
that correspond to the execution of an idle thread.

Third, an idle agent looks for a job in one atomic step. Therefore, the
execution of an agent that does not result in a job assignment yields no new
information compared to the predecessor state. For the given multiagent
system, this implies that we only need to store those successor states that
result in the change of a suggestion (i.e. in a job assignment).

5.2 Evaluation Functions

As shown in Figure 2 the planner cannot always enforce the target state t
to be reached, due to clashes in the simulation phases. A clash occurs, if

24

Poster Proceedings KI2004

an agent a is iterated before another agent b and autonomously picks a job
assigned to b. Our approach considers the value of suggestions to reflect the
individual choices of each agent - in this case the job it will do next. The
value of this choice is determined by the agent or the planner, before the job
itself is taken. Since an agent has no information about the internal values
of other agents, clashes are inevitable. This raises the question, what the
planner can rely on as a result of its interaction with the system. The answer
to this lies in the choice of the evaluation function that is used to determine
the intermediate target state during the planning phase. In our case, we use
the number of allocated jobs as the evaluation function h, where allocated
means that an agent is working on that job. It holds, that h(s) ≤ h(s′) for
any successor state of s, since the counter of assigned jobs never decreases -
even if a job is finished. In other words h describes the number of currently
allocated, plus the number of finished jobs.

Theorem 1. Let t be the intermediate target state in the search tree. Fur-
thermore, let si describe the i-th state of the simulation phase and p i denote
the i-th state on the path from the initial state to t in the search tree, where
i ∈ {0, . . . , m} and pm = t. Then for each 0 ≤ i ≤ m we have that h(si) ≥ h(pi).

Proof. In fact, we have h(s0) = h(p0) and h(s1) ≥ h(t). The equality h(s0) =
h(p0) is trivial, since the two states are equal - except for the values of the
suggestions. This implies that in particular, the variable which counts the
number of assigned jobs has the same value in s0 and p0. Furthermore all
suggestions in s0 are initialized with the values from t. If we now consider
the first simulation step, there are two possibilities:

In the first case, we have no clashes during the parallel step performed
between s0 and s1. This implies that each agent picks the job assigned by the
model checker (if any). So we have at least h(s1) = h(t). Additionally, agents
that have no job in t may pick an unassigned job, so that h(s1) > h(t).

In the second case we assume to have clashes. For each such clash, we
have one agent, that cannot pick its assigned job which decreases h(s1) by
one. However, we also have another agent, that picks a job, although it has
no job in t, which increases h(s1) by one. So, a clash does not influence the
value of h(s1) and thus we have h(s1) ≥ h(t).

Altogether, we have h(s0) = h(p0), h(s1) ≥ h(t) and since the number
of taken jobs never decreases, it holds that for all 1 ≤ i ≤ m, we have
h(si) ≥ h(si−1) and h(pi) ≥ h(pi−1) and in particular h(t) ≥ h(pi−1) which
implies h(si) ≥ h(pi) for all 0 ≤ i ≤ m. �

6 Experiments

In the experiments we used a Linux system with a 1.8 GHz CPU and 1 GB of
main memory. We applied our system to randomly generated MAMPs with
5, 10, or 15 agents and 10, 20, 50, or 100 jobs. The number of resources was
set to 100. Each job requires between 10 and 100 steps to be done and up to

25

Poster Proceedings KI2004

10% of all resources. Our goal is to prove, that the combination of planning
and simulation leads to better solutions than pure simulation. To do this,
for each MAMP m, we first solve m ten times with pure simulation. Then
we solve m ten times with the combination of planning and simulation. In
both cases, we measure the number of parallel steps of the solution and the
total time in seconds spent for planning. A planning phase may be at most
30 seconds long. If during planning a memory limit of 500 MB is exceeded
or the open set becomes empty, the phase ends even if the time limit was not
reached. A simulation phase executes at least 20 and at most 100 parallel
steps. Additionally a simulation phase ends, if at least as many agents are
idle, as were at the beginning.

We expect that in the average case the combination of planning and sim-
ulation gives better results (in terms of the number parallel steps), that
justify the additional time spent on planning. The evaluation function that
counts the number of taken jobs is expected to lead to a maximum of par-
allelism, since more taken jobs imply less idle threads. Table 1 shows the
results. Each row represents ten runs on the same MAMP instance. The
column type indicates the type of run, i.e. either pure simulation (sim) or
combination of planning and simulation (plan). The columns min, max and
µ show the minimal, maximal and average number of parallel steps needed
for a solution of the respective MAMP. Finally, pt indicates the average time
in seconds used for planning.

In almost all cases the average solution quality increases if planning is
used. The only exception is the instance with 10 agents and 20 jobs, where
the heuristic estimate seems to fail. Note that clashes may lead to worse
solutions, since they cause an agent to waste one step realizing that the as-
signed job is already taken. For all other cases however, we have improve-
ments between 6 and 59 parallel steps in the average. The total planning
times range between 26 and 30 seconds, which seems odd, since each plan-
ning phase can be up to 30 seconds long. However, this can be explained
by the fact, that only in the first planning phase all agents are idle. If in
the subsequent planning phases only a small fraction of all agents is idle,
the phases may get very short because the model checker can quickly de-
cide, whether new jobs can be assigned or not. If for example we assume
that each parallel step corresponds to one minute in reality, then the time
spent for planning is neglectible compared to the time gained through the
improved solution quality.

7 Related Work

Here, we will refer to other studies that either relate to the use of model
checking techniques for planning, planning in multiagent systems or both.

Software model checking is a powerful method, whose capabilities are
not limited to the detection of errors in a program but to general problem
solving. For instance, [10] successfully uses JPF to solve instances of the

26

Poster Proceedings KI2004

type agents jobs min max µ pt
sim 5 10 262 315 286 0
plan 5 10 241 315 255 29
sim 5 20 517 616 546 0
plan 5 20 483 527 510 27
sim 5 50 1081 1233 1149 0
plan 5 50 1084 1187 1143 29
sim 5 100 2426 2573 2478 0
plan 5 100 2310 2501 2426 26
sim 10 10 259 266 261 0
plan 10 10 136 286 246 28
sim 10 20 389 465 432 0
plan 10 20 412 467 460 30
sim 10 50 754 902 839 0
plan 10 50 771 856 814 30
sim 10 100 1732 1871 1809 0
plan 10 100 1761 1858 1783 30
sim 15 10 260 263 261 0
plan 15 10 187 236 216 30
sim 15 20 385 463 417 0
plan 15 20 382 410 387 30
sim 15 50 675 896 767 0
plan 15 50 711 747 725 30
sim 15 100 1528 1728 1607 0
plan 15 100 1497 1600 1548 30

Table 1. Experimental Results in Multiagent Manufacturing Problems.

sliding-tile puzzle. The adaption is simple: action selection is incorporated
as non-deterministic choice points into the system.

Symbolic model checkers have been used for advanced AI planning, e.g.
the Model-Based Planner (MBP) by Cimatti et al.2 has been applied for solv-
ing non-deterministic and conformant planning problems, including partial
observable state variables and temporally extended goals.

An architecture based on MBP to interleave plan generation and plan
execution is presented in [4], where a planner generates conditional plans
that branch over observations, and a controller executes actions in the plan
and monitors the current state of the domain.

The power of decision diagrams to represent sets of planning states more
efficiently has also been recognized in probabilistic planners, as the SPUDD
system [13] and its real-time heuristic programming variant based on the
LAO* algorithm [11] show. These planners solve factored Markov decision

2 http://sra.itc.it/tools/mbp

27

Poster Proceedings KI2004

process problems and encode probabilities and reward functions with alge-
braic decision diagrams.

TL-Plan [2] and the TAL planing system [16] apply control pruning rules,
specified in first order temporal logic. The hand-coded rules are associated
together with the planning problem description to accelerate plan finding.
When expanding planning states the control rules for the successors are
derived by progression.

Planning technology has been integrated in existing model checkers,
mainly by providing the option to accelerate error detection by heuristic
search [9]. These efforts are referred to as directed model checking. First
model checking problems have been automatically converted to serve as
benchmarks for international planning competitions3.

The work described in [1] reduces job-shop problems to finding the short-
est path in a stopwatch automaton and provides efficient algorithms for this
task. It shows that model checking is capable to solve hard combinatorial
scheduling problems.

The paper [8] describes a translation from Level 3 PDDL2.1 to timed
automata. This makes it possible to solve planning problems with the real-
time model checker UPPAAL. The paper also describes a case study about an
implementation of the translation procedure which is applied to the PDDL
description of a classical planning problem.

Some work on multiagent systems shares similarities with our proposal.
In [7] a framework called ARPF is proposed. It allows agents to exchange re-
sources in an environment which fully integrates planning and cooperation.
This implies, that there must also be an inter-agent communication.

The work [3] proposes model checking for multiagent systems, with a
framework that is applied to the analysis of a relevant class of multiagent
protocols, namely security protocols. In a case study the work consider a
belief-based exploration of the Andrew authentification protocol with the
model checker nuSMV that is defined by a set of propositions and evolutions
of message and freshness variables.

Multiagent planning is an AI research of growing interest. A forward
search algorithm [5] based on the single-agent planner FF that solves mul-
tiagent problems synthesizes partially ordered temporal plans and is de-
scribed in an own formal framework. It also presents a general distributed
algorithm for solving these problems with several coordinating planners.

The paper [19] is closely related to the work at hand. It describes Ex-
PlanTech, as an enhanced implementation of the ProPlanT multiagent sys-
tem used in an actual industrial environment. ExPlanTech introduces the
concept of meta-agents, which do not directly participate in the production
process, but observe how agents interact and how they carry out distributed
decision making. The meta-agent in ExPlanTech serves a similar purpose as
the model checker in our system, as it is able to induce efficiency consider-

3 http://ipc.icaps-conference.org

28

Poster Proceedings KI2004

ations from observations of the community workflow. Still, the meta-agent
uses its own abstract model of the system.

The approach we consider in this paper differs from the all the above
in that it uses program model checking and that it is applied to multiagent
systems in order to interleave planning and execution and learn from an
existing executable of a given implementation.

8 Conclusions

In this paper we described an approach to use a software model checker for
planning in concurrent multiagent systems. We did a case study on a multi-
agent manufacturing system that implements our formal definition. The ex-
periments indicate that our approach is capable to improve the effectiveness
of the multiagent system by maximizing the parallelism of the manufactur-
ing process. It turns out that one of the major challenges lies in finding an
appropriate evaluation function for the explored states. A suitable definition
depends on the type and implementation of the actual concurrent system.

As the main contribution of the paper we see the proposal of a plan-
ning methodology, which does not require the construction of an abstract
model of the environment. Instead, planning is performed directly on the
compiled code, which is the same as used by the simulation. In the future,
we would like to try the approach on actual multiagent systems - be it pure
software environments or physical systems like a group of robots. Certainly,
many multiagent systems are more complex than the MAMP architecture
presented in this paper as they e.g. also involve inter-agent communication.
We kept our framework simple for deriving a multiagent prototype to test
our planning approach. We are determined to make the approach applicable
to real multiagent environments in the same way as we - and others - want
make assembly model checking applicable to real-world software products.
In the long term, both areas may highly benefit from the assembly model
checking approach, because it eliminates the task of building an abstract
model of the actual system or program. Not only does this save a consid-
erable amount of resources, usually spent on constructing the models, but
performing model checking and planning on the actual implementation also
avoids possible inconsistencies between the model and the real system.

Acknowledgements The first author is supported by DFG in the project
ED 74/2: Directed Model Checking, and the second author is supported by
DFG in the project ED 74/3: Heuristic Search.

References

1. Y. Abdeddaim and O. Maler. Preemptive job-shop scheduling using stop-
watchautomata. In J.-P. Katoen and P. Stevens, editors, AIPS Workshop on
Planning via Model Checking, pages 7–13, 2002.

2. F. Bacchus and F. Kabanza. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 116:123–191, 2000.

29

Poster Proceedings KI2004

3. M. Benerecetti and A. Cimatti. Symbolic model checking for multi-agent
systems. In LP-Workshop on Computational Logic in Multi-Agent Systems
(CLIMA), pages 312–323, 2001.

4. P. Bertoli, A. Cimatti, and P. Traverso. Interleaving execution and planning via
symbolic model checking. In ICAPS Workshop on Planning under Uncertainty
and Incomplete Information, 2003.

5. M. Brenner. Multiagent planning with partially ordered temporal plans. In In-
ternatinal Joint Conference on Artificial Intelligence (IJCAI), pages 1513–1514,
2003.

6. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubachand, and
H. Zheng. Extracting finite-state models from Java source code. In Interna-
tional Conference on Software Engineering (ICSE), pages 439–448, 2000.

7. M. M. de Weerdt, J. Tonino, and C. Witteveen. Cooperative heuristic multi-agent
planning. In Belgium-Netherlands Artificial Intelligence Conference (BNAIC),
pages 275–282, 2001.

8. H. Dierks, G. Behrmann, and K. G. Lahrsen. Solving planning problems using
real-time model checking. In AIPS Workshop on Planning via Model Checking,
pages 30–39, 2002.

9. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model
checking in the validation of communication protocols. International Journal
on Software Tools for Technology (STTT), 2004. To appear.

10. S. Edelkamp and T. Mehler. Byte code distance heuristics and trail direction
for model checking Java programs. In IJCAI-Workshop on Model Checking and
Artificial Intelligence (MoChArt), pages 69–76, 2003.

11. E. A. Hansen and S. Zilberstein. LAO * : A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2):35–62, 2001.

12. K. Havelund. Java PathFinder user guide. Technical report, NASA Ames Re-
search Center, 1999.

13. J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using
decision diagrams. In Conference on Uncertainty in Articial Intelligence (UAI),
pages 279–288, 1999.

14. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,
1997.

15. G. J. Holzmann. Logic verification of ANSI-C code with SPIN. In Model Checking
Software (SPIN), pages 131–147, 2000.

16. J. Kvarnström, P. Doherty, and P. Haslum. Extending TALplanner with concur-
rency and ressources. In European Conference on Artificial Intelligence (ECAI),
pages 501–505, 2000.

17. P. Leven, T. Mehler, and S. Edelkamp. Directed error detection in c++ with the
assembly-level model checker StEAM. In Model Checking of Software (SPIN),
2004.

18. K. L. McMillan. The SMV system. Technical report, Carnegie-Mellon University,
1992.

19. M. Pěchouček, A. Říha, J. Vokřínek, V. Mařík, and V. Pražma. Explantech: ap-
plying multi-agent systems in production planning. International Journal of
Production Research, 40(15):3681–3692, 2002.

20. S. Russel and P. Norvig. Artificial Intelligence, a Modern Approach. Prentice
Hall, 1995.

21. W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - second genera-
tion of a Java model checker. In Post-CAV Workshop on Advances in Verification,
(WAVe), 2000.

30

Poster Proceedings KI2004

A Fuzzy Data Envelopment Analysis Model
Based on Dual Program

Hsuan-Shih Lee

Department of Shipping and Transportation Management
National Taiwan Ocean University

Keelung 202, Taiwan
Republic of China

hslee@axp1.stm.ntou.edu.tw

Abstract. DEA (data envelopment analysis) is a non-parametric tech-
nique for measuring and evaluating the relative efficiencies of a set of
decision-making units (DMUs) in terms of a set of common inputs and
outputs. Traditionally, the data of inputs and outputs are assumed to be
measured with precision, i.e., the coefficients of DEA models are crisp
value. However, this may not be always true. There are many circum-
stances where precise inputs and outputs can not be obtained. Under
such situations, data of inputs and outputs can be represented by fuzzy
numbers. Based on the dual program of DEA models, we propose fuzzy
DEA models for CCR and BCC models. Our fuzzy DEA models provide
crisp efficiency with fuzzy input and output data.
Keywords: Data Envelopment Analysis (DEA); Fuzzy DEA; Fuzzy Num-
bers; Dual Program;

1 Introduction

Since the advent of the work of Charnes et at. [4], data envelopment analysis
(DEA) is a methodology that has been widely used to measure relative efficien-
cies within a group of decision making units (DMUs) that utilize several inputs
to produce a set of outputs. It has been applied to evaluate schools, hospitals
and various organizations with multiple inputs and outputs. Unlike regression
analysis, DEA uses only a single set of observations per DMU. Moreover, DEA
is sensitive to outliers. Therefore, it is very difficult to evaluate the efficiency of
DMU with inputs uncertain by conventional DEA models.

Most of the previous studies that deal with inaccurate and imprecise inputs
outputs in DEA models have simply used stochastic models [1, 7, 13] or simu-
lation methods [2]. Shortcomings of these methods are noted in [5]. Since the
advent of fuzzy set theory [16], it has been proven to be useful in modeling
uncertainty or imprecise value. The DEA models with fuzzy data can more real-
istically represent real-world problems where data may be missing or uncertain
than traditional DEA models. Sengupta [14] proposed a fuzzy DEA model and
solved it by Zimmermann’s method [17]. Triantis et al. [15] solved their fuzzy
model with the parametric approach proposed by Carlsson et al. [3]. Kao and

31

Poster Proceedings KI2004

Liu [10, 11] transformed the fuzzy DEA model to a family of the conventional
crisp DEA models by applying the α-cut approach. Hougaard [9] extended scores
of technical efficiency to fuzzy intervals to allow decision maker to use scores in
combination with other sources of available performance information. Entani et
al. [6] developed a DEA model with an interval efficiency. Guo et al. [8] proposed
a fuzzy DEA model to deal with efficiency evaluation problem with given fuzzy
input and output data, and extended the efficiency to be a fuzzy number.

The fuzzy DEA model in [8] is based on the output/input ratio. Therefore,
the efficiency obtained is a fuzzy number if the data of input and output are
fuzzy. However, if the relative efficiency is measured in terms of the distance
from the frontier in stead of the output/input ratio, the efficiency is still a crisp
number even if the data are fuzzy. A crisp efficiency will be more helpful for
decision makers because it provides clearer information. In this paper, we are
going to derive fuzzy DEA models from this perspective.

This paper is organized as follows: Section 2 reviews traditional DEA models
and their duals. In section 3, fuzzy DEA models are derived from the duals
and their linear programming equivalents are presented. Numerical examples
are demonstrated in section 4. Finally, concluding remarks are made in section
5.

2 The data envelopment analysis model

DEA is a mathematical model that measures the relative efficiency of DMUs with
multiple inputs and outputs with no obvious production function to aggregate
the data in its entirety. Relative efficiency is defined as the ratio of total weighted
output over weighted input. By comparing n units with s outputs denoted by
yrk, r = 1, . . . , s and m inputs denoted by xik, i = 1, . . . ,m, the efficiency
measure for DMU k is

hk = Max
∑s

r=1 uryrk

s.t.
∑m

i=1 vixik = 1,∑m
i=1 vjxij −

∑s
r=1 uryrj ≥ 0 for j = 1, . . . , n,

ur ≥ 0 for r = 1, . . . , s,
vi ≥ 0 for i = 1, . . . ,m.

(1)

Mode (1), often referred to as the input-oriented CCR (Charnes Cooper Rhodes)
model [4], assumes that the production function exhibits constant returns-to-
scale. The following is referred to as the output-oriented CCR model:

1
gk

= Min
∑m

i=1 vixik

s.t.
∑s

r=1 uryrk = 1,∑m
i=1 vjxij −

∑s
r=1 uryrj ≥ 0 for j = 1, . . . , n,

ur ≥ 0 for r = 1, . . . , s,
vi ≥ 0 for i = 1, . . . ,m.

(2)

The BCC (Banker Chang Cooper) model (2) adds an additional constant vari-
able, ck, in order to permit variable returns-to-scale. The following is input-

32

Poster Proceedings KI2004

oriented BCC model:

hk = Max
∑s

r=1 uryrk + ck

s.t.
∑m

i=1 vixik = 1,∑m
i=1 vjxij −

∑s
r=1 uryrj − ck ≥ 0 for j = 1, . . . , n,

ur ≥ 0 for r = 1, . . . , s,
vi ≥ 0 for i = 1, . . . ,m.

(3)

Model (4) is referred to as the output-oriented BCC model:
1
gk

= Min
∑m

i=1 vixik + ck

s.t.
∑s

r=1 uryrk = 1,∑m
i=1 vjxij −

∑s
r=1 uryrj + ck ≥ 0 for j = 1, . . . , n,

ur ≥ 0 for r = 1, . . . , s,
vi ≥ 0 for i = 1, . . . ,m.

(4)

If a DMU proves to be inefficient, a combination of other efficient units can
produce either greater output for the same composite of inputs, use fewer inputs
to produce the same composite of outputs or some combination of the two. A
hypothetical decision making unit, k′, can be composed as an aggregate of the
efficient units referred to as the efficient reference set for inefficient unit k. The
solution to the dual problem of above models directly computes the multipliers
required to compile aggregated efficient unit k′. Therefore, we will focus on the
dual models. The dual of model (1) is:

hk = Minθk

s.t.
∑n

j=1 λkjxij − θkxik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrj ≥ yrk for r = 1, . . . , s,

λkj ≥ 0 for j = 1, . . . , n.

(5)

The dual of model (2) is:
1
gk

= Maxθk

s.t.
∑n

j=1 λkjxij − xik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrj ≥ θkyrk for r = 1, . . . , s,

λkj ≥ 0 for j = 1, . . . , n.

(6)

The dual of model (3) is:

hk = Minθk

s.t.
∑n

j=1 λkjxij − θkxik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrj ≥ yrk for r = 1, . . . , s,∑n

j=1 λkj = 1.

(7)

The dual of model (4) is:
1
gk

= Maxθk

s.t.
∑n

j=1 λkjxij − xik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrj ≥ θkyrk for r = 1, . . . , s,∑n

j=1 λkj = 1.

(8)

33

Poster Proceedings KI2004

3 Fuzzy DEA models

In this section, we are going to extend models (5)-(8) to fuzzy environment.

Definition 1. The α-cut of fuzzy set Ã, Ãα, is the crisp set Ãα = {x|µÃ(x) ≥
α}. The support of Ã is the crisp set Supp(Ã) = {x|µÃ(x) > 0}. Ã is normal iff
supx∈UµÃ(x) = 1, where U is the universal set.

Definition 2. A fuzzy subset Ã of real number R is convex iff

µÃ(λx + (1− λ)y) ≥ (µÃ(x) ∧ µÃ(y)),∀x, y ∈ R,∀λ ∈ [0, 1],

where ∧ denotes the minimum operator.

Definition 3. Ã is a fuzzy number iff Ã is a normal and convex fuzzy subset of
R.

Definition 4. A triangular fuzzy number Ã is a fuzzy number with piecewise
linear membership function µÃ defined by

µÃ(x) =

x−aL

aM−aL
, aL ≤ x ≤ aM ,

aR−x
aR−aM

, aM ≤ x ≤ aR,

0, otherwise,

which can be denoted as a triplet (aL, aM , aR).

Definition 5. Let Ã and B̃ be two fuzzy numbers. Let ◦ be a operation on
real numbers, such as +, -, *, ∧, ∨, etc. By extension principle, the extended
operation ◦ on fuzzy numbers can be defined by

µÃ◦B̃(z) = sup
x,y:z=x◦y

{µÃ(x) ∧ µB̃(y)}. (9)

Definition 6. Let Ã and B̃ be two fuzzy numbers. Ã ≤ B̃ if only if Ã∨ B̃ = B̃.

Definition 7. Let Ã be a fuzzy number. Then ÃL
α and ÃU

α are defined as

ÃL
α = inf

µÃ(z)≥α
(z) (10)

and
ÃU

α = sup
µÃ(z)≥α

(z) (11)

respectively.

Assume inputs and outputs of DMUs are represented by triangular fuzzy
numbers. Fuzzy DEA models correspond to (5)-(8) are shown as follows. Fuzzy
model of (5) is

hk = Minθk

s.t.
∑n

j=1 λkjX̃ij − θkX̃ik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkj Ỹrj ≥ Ỹrk for r = 1, . . . , s,

λkj ≥ 0 for j = 1, . . . , n.

(12)

34

Poster Proceedings KI2004

Fuzzy model (6) is

1
gk

= Maxθk

s.t.
∑n

j=1 λkjX̃ij − X̃ik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkj Ỹrj ≥ θkỸrk for r = 1, . . . , s,

λkj ≥ 0 for j = 1, . . . , n.

(13)

Fuzzy model (7) is

hk = Minθk

s.t.
∑n

j=1 λkjX̃ij − θkX̃ik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkj Ỹrj ≥ Ỹrk for r = 1, . . . , s,∑n

j=1 λkj = 1.

(14)

Fuzzy model (8) is

1
gk

= Maxθk

s.t.
∑n

j=1 λkjX̃ij − X̃ik ≤ 0 for i = 1, . . . ,m,∑n
j=1 λkj Ỹrj ≥ θkỸrk for r = 1, . . . , s,∑n

j=1 λkj = 1.

(15)

Because of the convexity of fuzzy numbers, we can have the following defini-
tion equivalent to definition 6.

Definition 8. Let Ã and B̃ be two fuzzy numbers. Ã ≤ B̃ if only if ÃL
α ≤ B̃L

α

and ÃR
α ≤ B̃R

α for ∀α ∈ [0, 1].

Lemma 1. Let Ã and B̃ be two triangular fuzzy numbers denoted by (aL, aM , aR)
and (bL, bM , bR) respectively. Then Ã ≤ B̃ if only if aL ≤ bL, aM ≤ bM and
aR ≤ bR.

Proof: By definition 4 and 7, we have

ÃL
α = α(aM − aL) + aL,

ÃR
α = aR − α(aR − aM),

B̃L
α = α(bM − bL) + bL,

B̃R
α = bR − α(bR − bM),

If for all α ∈ [0, 1], ÃL
α ≤ B̃L

α and ÃR
α ≤ B̃R

α then

α(aM − aL) + aL ≤ α(bM − bL) + bL

and
aR − α(aR − aM) ≤ bR − α(bR − bM).

Let α = 1. We have aM ≤ bM . Let α = 0. We have aL ≤ bL and aR ≤ bR.

35

Poster Proceedings KI2004

If aL ≤ bL, aM ≤ bM and aR ≤ bR then

α(aM − aL) + aL ≤ α(bM − bL) + bL

and

aR − α(aR − aM) ≤ bR − α(bR − bM)

for α ∈ [0, 1]. That is, ÃL
α ≤ B̃L

α and ÃR
α ≤ B̃R

α for all α ∈ [0, 1]. �

Let X̃ij = (xijL
, xijM

, xijR
) and Ỹrj = (yrjL

, yrjM
, yrjR

). Following lemma
1, we can rewrite fuzzy model (12) as follows:

hk = Minθk

s.t.
∑n

j=1 λkjxijL
− θkxikL

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjxijM

− θkxikM
≤ 0 for i = 1, . . . ,m,∑n

j=1 λkjxijR
− θkxikR

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrjL

≥ yrkL
for r = 1, . . . , s,∑n

j=1 λkjyrjM
≥ yrkM

for r = 1, . . . , s,∑n
j=1 λkjyrjR

≥ yrkR
for r = 1, . . . , s,

λkj ≥ 0 for j = 1, . . . , n.

(16)

Fuzzy model (13) can be equivalently rewritten as model (17):

1
gk

= Maxθk

s.t.
∑n

j=1 λkjxijL
− xikL

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjxijM

− xikM
≤ 0 for i = 1, . . . ,m,∑n

j=1 λkjxijR
− xikR

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrjL

≥ θkyrkL
for r = 1, . . . , s,∑n

j=1 λkjyrjM
≥ θkyrkM

for r = 1, . . . , s,∑n
j=1 λkjyrjR

≥ θkyrkR
for r = 1, . . . , s,

λkj ≥ 0 for j = 1, . . . , n.

(17)

Fuzzy model (14) can be equivalently rewritten as model (18):

hk = Minθk

s.t.
∑n

j=1 λkjxijL
− θkxikL

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjxijM

− θkxikM
≤ 0 for i = 1, . . . ,m,∑n

j=1 λkjxijR
− θkxikR

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrjL

≥ yrkL
for r = 1, . . . , s,∑n

j=1 λkjyrjM
≥ yrkM

for r = 1, . . . , s,∑n
j=1 λkjyrjR

≥ yrkR
for r = 1, . . . , s,∑n

j=1 λkj = 1.

(18)

36

Poster Proceedings KI2004

Fuzzy model (15) can be equivalently rewritten as model (19):

1
gk

= Maxθk

s.t.
∑n

j=1 λkjxijL
− xikL

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjxijM

− xikM
≤ 0 for i = 1, . . . ,m,∑n

j=1 λkjxijR
− xikR

≤ 0 for i = 1, . . . ,m,∑n
j=1 λkjyrjL

≥ θkyrkL
for r = 1, . . . , s,∑n

j=1 λkjyrjM
≥ θkyrkM

for r = 1, . . . , s,∑n
j=1 λkjyrjR

≥ θkyrkR
for r = 1, . . . , s,∑n

j=1 λkj = 1.

(19)

To solve fuzzy models (12)-(15), we solve their equivalent linear programming
problems (16)-(19).

Theorem 1. Efficiencies given by fuzzy models (12)-(15) are all no greater than
1. That is, hk ≤ 1 and gk ≤ 1.

Proof: For models (12) and (14), let

λkj =
{

1 if j = k
0 if j 6= k.

Then θk = 1. Let θ∗k be the optimal objective value of models (12) and (13). We
have

θ∗k ≤ θk = 1.

That is, hk ≤ 1.
Similarly, for models (13) and (15), let

λkj =
{

1 if j = k
0 if j 6= k.

Then θk = 1. Let θ∗k be the optimal objective value of models (13) and (15). We
have

θ∗k ≥ θk = 1.

That is, gk ≤ 1. �

4 Numerical examples

First, we consider DMUs with one fuzzy input and one fuzzy output as shown
in table 1. The efficiencies of DMUs in table 1 measured by fuzzy DEA model
(12) is given in table 2.

Next we demonstrate our fuzzy DEA with a more complicated example shown
in table 3 where DMUs are assumed to have two inputs and two outputs. The
efficiencies of DMUs in table 3 measured by fuzzy DEA model (12) are shown
in table 4.

37

Poster Proceedings KI2004

Table 1. DMUs with one fuzzy input and one fuzzy output

DMUs A B C D E
inputs (1.5,2.0,2.5) (2.5,3.0, 3.5) (2.4,3.0,3.6) (4.0,5.0,6.0) (4.5,5.0,5.5)
outputs (0.7,1.0,1.3) (2.3,3.0,3.7) (1.6,2.0,2.4) (3.9,4.0,4.1) (1.8,2.0,2.2)

Table 2. Efficiencies of DMUs in table 1 measured by fuzzy DEA model (12)

A B C D E

hk 0.5855856 1.0 0.7166667 1.0 0.4980237

Table 3. DMUs with two fuzzy inputs and two fuzzy outputs

DMUs A B C D E

input 1 (3.5,4.0,4.5) (2.9,2.9,2.9) (4.1,4.9,5.4) (3.4,4.1,4.8) (5.9,6.5,7.1)
input 2 (1.9,2.1,2.3) (1.4,1.5,1.6) (2.2,2.6,3.0) (2.2,2.3,2.4) (3.6,4.1,4.6)
output 1 (2.4,2.6,2.8) (2.2,2.2,2.2) (2.7,3.2,3.7) (2.5,2.9.3.4) (4.4,5.1,5.8)
output 2 (3.8,4.1,4.4) (3.2,3.5,3.7) (4.3,5.1,5.9) (5.5,5.7,5.9) (6.5,7.4,8.3)

Table 4. Efficiencies of DMUs in table 3 measured by fuzzy DEA model (12)

A B C D E

hk 0.9279023 1.0 1.0 1.0 1.0

38

Poster Proceedings KI2004

5 Conclusions

Traditional DEA deals with crisp data. When data are difficult to measure, fuzzy
numbers may be introduced to represent the vagueness or uncertainty of the data.
In this paper, we extended the duals of DEA models to fuzzy environment. In our
extension, the efficiency measured with fuzzy data is a crisp value which enables
decision makers to decide whether a DMU is relative efficient or not very clear.
It is also obvious that our fuzzy models encompass conventional DEA models.

Acknowledge

This research work was partially supported by the National Science Council of
the Republic of China under grant No. NSC92-2416-H-019-002-.

References

1. P.W. Bauer, Recent developments in the econometric estimation of frontiers, J.
Econometrics 46 (1990) 39-56.

2. R.D. Banker, H. Chang, W.W. Cooper, Simulation studies of efficiency, returns to
scale and misspecification with nonlinear functions in DEA, Ann. Oper. Res. 66
(1996) 233-253.

3. C. Carlsson, P. Korhonen, A paramet4ric approach to fuzzy linear programming,
Fuzzy Sets and Systems 20 (1986) 17-30.

4. A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision-making
units, European J. Oper. Res. 2 (1978) 429-444.

5. W.W. Cooper, K. Tone, Measures of inefficiency in data envelopment analysis and
stochastic frontier estimation, European J. Oper. Res. 99 (1997) 72-88.

6. T. Entani, Y. Maeda, H. Tananka, Dual models of interval DEA and its extension
to interval data, European J. Oper. Res. 136 (2002) 32-45.

7. W.H. Greene, A Gamma-distributed stochastic frontier model, J. Econometrics 46
(1990) 141-163.

8. P. Guo, H. Tanaka, Fuzzy DEA: a perceptual evaluation method, Fuzzy Sets and
Systems 119 (2001) 149-160.

9. J.L. Hougaad, Fuzzy scores of technical efficiency, European J. Oper. Res. 115 (1999)
529-541.

10. C. Kao, S.T. Liu, Data envelopment analysis with missing data: an application
to University libraries in Taiwan, Journal of the Operational Research Society 51
(2000) 897-905.

11. C. Kao, S.T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy
Sets and Systems 113 (2000) 429-437.

12. S. Lerworasirikul, S.-C. Fang, J.A. Jonies, H. L.W. Nuttle, Fuzzy data envelopment
analysis (DEA): a possibility approach, Fuzzy Sets and Systems 139 (2003) 379-394.

13. P. Schmidt, T.F. Lin, Simple tests of alternative specifications in stochastic frontier
models, J. Econometrics 24 (1984) 349-31.

14. J.K. Sengupta, A fuzzy systems approach in data envelopment analysis, Comput.
Math. Appl. 24 (1992) 259-266.

15. K. Triantis, O. Girod, A mathematical programming approach for measuring tech-
incal efficiency in a fuzzy environment, J. Prod. Anal. 10 (1998) 85-102.

39

Poster Proceedings KI2004

16. L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
17. H.J. Zimmermann, Description and optimization of fuzzy system, Interat. J. Gen-

eral System 2 (1976) 209-216.

40

Poster Proceedings KI2004

Optimization of Complex Systems by Processes of Self-
modeling

Christina Stoica1, Jürgen Klüver2 & Jörn Schmidt3

1 University of Duisburg-Essen, Information Technologies and Educational Processes,
45117 Essen, Germany

christina.stoica@uni-essen.de
http://www.cobasc.de

2 University of Duisburg-Essen, Information Technologies and Educational Processes,
45117 Essen, Germany

juergen.kluever@uni-essen.de
http://www.cobasc.de

3 University of Duisburg-Essen, Information Technologies and Educational Processes,
45117 Essen, Germany

joernschmidt@uni-essen.de
http://www.cobasc.de

Abstract. The hybrid system SOCAIN is described as a formal model of the
self-modeling of complex systems. The system consists of a stochastic cellular
automaton (CA) coupled with a genetic algorithm (GA) and an interactive net
(IN), also coupled with a GA. The IN is understood as the self-model of the
CA. It can be shown that the adaptive success of the whole system SOCAIN is
much greater than the successes of both subsystems alone. Reasons for this are
given and the logic of the system is discussed both logically and sociologically.

1. Introduction

Frequently the problem of the modeling of complex systems is best solved by using
so-called Soft-Computing techniques [16],[20]. The term "Soft-computing" describes
different formal techniques like neural networks (NN), evolutionary algorithms (EA),
fuzzy set theory and fuzzy logic, cellular automata (CA) and Boolean networks (BN).
The common characteristic of these on first sight very different models is their
orientation to real processes, i.e. biological, social or cognitive ones. In other words,
Soft-Computing models use the logic of complex real systems in order to capture the
basic features of real systems as adequately as possible.

Soft-Computing models are very powerful tools because they are potentially
equivalent to Universal Turing machines [17]. The potential logical universality of
cellular automata for example was proven for the special case of the Game of Life [1].
That means, according to the physical Church-Turing-hypothesis, that each real
system can be modeled as completely as the research question demands it by a suited
Soft-Computing system like e.g., cellular automata [23]. The power of such systems

41

Poster Proceedings KI2004

can even be increased if several of them are combined in form of so called hybrid
systems.

In order to avoid misunderstandings one should remember that not all Soft
Computing Systems are Universal Turing machines but only those with suited rules of
interactions. Most cellular automata are much too simple to generate the complex
behavior of Universal Turing machines. That is why we speak of potential Universal
Turing machines, meaning that it is always possible to construct a special soft
computing model logically equivalent to Universal Turing machines.

Hybrid systems are simulation programs, which consist of two - or even more -
different subprograms; these are coupled together to fulfill tasks, which neither of
them could do alone or only worse than the whole hybrid system. Goonatilake and
Khebbal ([6], p.7) proposed a general classification scheme for hybrid systems: They
differentiate between (a) "function replacing hybrids" and (b) "intercommunicating
hybrids" (we skip their third category, because that is no hybrid at all). For reasons we
cannot discuss here we prefer the terms "vertically coupled systems" and
"horizontally coupled systems" [cf. 14]. Vertically coupled systems are combinations
of programs where one program is operating upon the rules and/or parameters of the
second. In such cases, according to the concepts of logical semantics [21], we speak
of the first system as the meta-system and of the second as the base system. An
example for a vertically coupled system, which is described below is the hybrid
system SOZION, a combination of a cellular automaton (CA) as the base system and
a genetic algorithm (GA) as the meta-system. The GA modifies the rules, especially
certain parameters according to certain evaluation criteria. Neural nets that are
combined with GAs in order to optimize the network's topology are also vertically
coupled systems.

Horizontally coupled systems operate in a sort of division of labor insofar as one
system does one part of a job, transferring its results to the second system, and the
second system performs another part of the task. The two systems are operating on the
same logical level, in contrast to the case of vertical coupling. An example of a
horizontally coupled system is THEOPRO [13], which consists of a knowledge-based
system and a neural net. The knowledge based system constructs a special net,
consisting of concepts of a theory of society, and the according weight matrix; the
neural net performs simulations of social processes according to the theory and gives
its results back to the knowledge based system. Of course, with horizontally coupled
systems the problem arises whether the results of one system are compatible with the
results of the second, as the two systems normally operate with very different rule
sets. We shall return to this problem in section 4.

We have by now created higher order hybrids by combining hybrids of these two
types: The program SOCAIN – Society model by Cellular Automata and Interactive
Net - contains a CA, horizontally coupled with an interactive neural net (IN), and
GAs operating on both base systems, i.e. the IN and the CA. In this case we have a
horizontally-vertically-coupled system.
Hybrid systems offer important possibilities for the modeling and simulating of
complex systems. These shall be demonstrated with the problem of the self-modeling
of complex systems.

42

Poster Proceedings KI2004

2. The Problem

Since Hofstadter [8] it has become common to speak of complex systems as "self
referential systems". It is not possible here to define this and related concepts
precisely (see e.g. [18]); apparently, "self-reference" contains several different aspects
among which the concept of "self-modeling" is a salient feature. This means that
complex systems like language, mind, or society are able to construct models of
themselves as parts of their different states. One can speak about language by using
language and construct models of it, the mind can model itself by thinking about
thinking, and social systems build models of themselves by mapping their structures
onto parts of them. Two famous examples shall illustrate this characteristic for the
case of social systems:

(a) As part of his ethnological studies, Geertz described the institution of the
Balinese cockfight as a simulation of the "social matrix" of the Balinese society in the
sense that the important structural aspects of the society are mapped - mirrored - onto
the institution of the cockfight. Among these are class distinctions, the inequality of
wealth and the hierarchy between the sexes. The cockfight is an important part of the
Balinese culture and as a part it constitutes a model of the whole society - "it is a story
they tell themselves about themselves" ([5], p.26).

(b) In their studies about the French higher education system, and especially the
French universities, Bourdieu and Passeron [2] analyze the education system as a
"reproduction" of the society in general. With "reproduction" they imply two aspects:
on the one hand, the structures of society, especially the structures of inequality, are
mirrored in the subsystem of education; on the other hand, the educational process,
determined by the structures of the educational system, reproduces the structures of
inequality as a function for the whole society. Of course, the educational system can
only do this because its structures are reflections of societal structures in general and
are originated this way. Thus, the educational system as a part of society is also a
model of society. The importance of social reproduction via modeling the society as a
whole by a part of society has always been stressed by theorists who are influenced by
Marx (e.g. [7]), though not in these terms.

Self-reference can easily lead into logical paradoxes, as it is well known since the
logical and set theoretical antinomies. That is why self-reference in formal models is
inadmissible in logical semantics [21]. But, as we have seen, because complex
systems like societies, minds or language possess self-reference and especially self-
modeling as two of their most fundamental aspects. We can assume that the main
difference between the systems of the natural sciences on the one hand and systems
like society, mind, or language - the topics of the humanities - on the other hand lies
exactly in these features. Of course, physical or biological systems are very often
complex too. Social and cognitive systems just have an additional dimension of
complexity. If formal models cannot capture these aspects then the construction of
formal models is indeed, as many theoretical sociologists believe, not suited for the
analysis of social systems. Therefore, the most important task is to show that it is
possible despite the cautions of the logical semanticists to construct consistent models
and corresponding computer programs with the ability of self-modeling.

Probably because of the problem of the logical paradoxes with respect to self-
referentiality computer scientists have started to analyze self-referential systems only

43

Poster Proceedings KI2004

since the last decade. In 1981, for example, Hofstadter and Dennett observed that to
model such phenomena with computer programs seems like " a kind of magic trick
which we feel is very close to the core of consciousness. It will perhaps prove one day
to be a key element ... in the approach toward artificial intelligence." ([9], p. 380) To
be sure, hybrid systems, consisting of different Soft-Computing models, are no
"magic trick" but they seem to be a promising possibility to model self-referential
processes without risking the danger of logical paradoxes.

In order to understand why hybrid systems can avoid to get caught in the traps of
the well-known logical paradoxes one has to remember that such systems are no static
structure but dynamical systems like the brain. The brain, as we know, can also avoid
logical paradoxes by introducing the famous difference between object and meta-level
– if it is needed. Consider the antinomy of the Barber as Russell has described the
paradox of "the set of all sets that do not contain themselves as elements". The barber
is the man who shaves all and only those men of the village who do not shave
themselves. Who shaves the barber? By assuming that the barber does not shave
himself the conclusion is that he shaves himself and vice versa.

The solution of this paradox is that the concept of "barber" in this definition
belongs to another category. In other words, the "barber" is not on the same logical
level of "men who do not shave themselves". Therefore, the "barber" is not an
element of the set of men that constitute the potential paradoxically category, but he is
something like a "meta-person". That is the well-known solution of the antinomy of
the "set of all sets that do not contain themselves as an element".
The brain, of course, is able to introduce this distinction between the barber and the
men of the village in order to avoid confusion by logical paradoxes. A logically
hybrid system can basically do the same: if the meta-level of the system perceives that
there are logical paradoxes on the base level, the whole system does not break down
but analyses its base level in order to remove the contradicting elements from the base
level – perhaps by transforming them to one meta level, generating new categories
that contain the problematic elements and so on. This dealing with logical paradoxes
certainly is valid only for such particular cases and is no guarantee that other logical
paradoxes will not occur some time. But that is just the way the human mind deals
with cases like that. It solves the problems at hand and deals with other problems only
when they arise. With a famous remark by John Holland, the inventor of the genetic
algorithm, one can say that hybrid systems of this sort are "muddling through" like the
human mind does.

It is possible to demonstrate the same way that such hybrid systems are also
principally able to overcome the restrictions of Gödel's incompleteness theorem in a
very similar way [14]. They introduce new elements – new axioms in the case of
axiomatic systems – to the base system if the incompleteness with respect to certain
problems is perceived. Then the base system is able to solve the respective problems.
To be sure, the whole base system will remain incomplete, for Gödel's theorem is still
valid in principle. But a hybrid system is able to "outgödel" [3] an incomplete system
by completing it as much as the problem demands. It is just another example of
"muddling through".

44

Poster Proceedings KI2004

3. The Program SOCAIN

As mentioned above, SOCAIN is a horizontally-vertically-coupled system, which
consists of two hybrid systems. The base systems are a CA and an IN, the meta-
system in both systems is a GA.

The CA is rather simple because it belongs to a formal analogue of Wolfram class
II [22],[23]; that means that it will reach an attractor state after a limited number of
time steps and will remain there (a point attractor or an attractor with only short
periods). Its rules are "totalistic": The transition of a cell is determined by computing
the mean value of the cells of the neighborhood (a Moore neighborhood). In contrast
to most CAs, the rules are not deterministic but stochastic; changing of a state value
only occurs with a certain probability. The state of the cells can take one of nine
values - which one depends on the neighborhood and on the probability values which
define the relations between the different states. The different values of the cell states
symbolize different social classes, i.e., each cell represents a member of a society who
belongs to a certain social class. There are nine different classes, which is optional.
Because the optimization process of the whole system was of particular interest to us
the number of nine bears no particular significance.

The theoretical purpose of the model was to test a particular theory of social
evolution, i.e. the theory of social differentiation. The assumption of this theory (cf.
e.g. [4]) is that social evolution occurred in terms of the emerging of different social
roles that are aggregated in according social classes. The causes of the emerging of
social classes are mostly seen in two external factors: overpopulation on the one hand
and difficult environmental conditions on the other hand like for example changing
climate. In other words, the respective societies had to solve environmental problems
by generating new forms of social order that were more effective than the old ones of
hunter-gatherer societies. The structural solutions literally all societies found when
confronted with such problems was the generation of social classes, containing
specialized social roles. The advantages of this solution are that the occupants of these
roles because of their specialization are more effective than people who are not
specialized. In addition, the vertical ordering of the classes into "higher" and "lower"
ones obtains a decision structure of the whole society that also is more effective –
although not as democratic – than the egalitarian structure of the hunter-gatherer
societies.

The CA was constructed to simulate this social differentiation, namely the
differentiation of a homogenous society into a class society (see [14]). In the original
version the CA was coupled with a GA, which modified the probability values and
decided on switching any of the rules on or off. We chose a stochastic CA because we
believe that complex systems tend to avoid too drastical changes. Before they
abandon whole social structures they try to optimize by just varying certain
probability values of their rules.

The IN is a recurrent network. Each unit is connected with all others, but the
weight values of the network are not changed during the runs. This makes INs
suitable for simulations of special social and cognitive processes [19], although INs
are not able to learn by themselves. Our IN consists of nine units and, accordingly, a
weight matrix of 9 * 9 = 81 weight components. A run of the IN begins with an

45

Poster Proceedings KI2004

"external activation" of one ore more units; the run ends when the activation values of
the units stabilize. The IN uses the standard linear activation rule

Ai = ΣjAj * wij (1)

where Ai is the activation value of the receiving unit i, Aj is the activation value of a
sending unit j and wij is the weight value of the relation between the units j and i.
Other activation rules are possible, especially nonlinear ones, but we wanted to keep
the whole system as simple as possible.

The GA is also standardized. It contains the usual genetic operators of crossover
and mutation and is non-elitistic. That means that the best results from a GA-run are
not preserved, though elitistic GAs often do better than non elitistic ones. Its
evaluation function, i.e. the algorithm for choosing the "best" solution, is described
below. The GA operates on vectors in which those rules of the base systems are
represented that are to be changed; the vectors use simple numerical codes, i.e.
integers for the CA-rules and real numbers for the IN (these are the values of the
weight matrix).

To be more exact, the GA of the CA operates the following way: the genetic
operators – mutation and crossover – operate on a "rule-changing vector". The
components of this vector are either 1, 0 or –1. Each component represents either the
antecedens or the action part of one of the transition rules; in addition, other
components represent the elements of a probability matrix A (see below). 1 means
that an antecedens part is valid and the same holds for the action part. Different
combinations of antecedens and action part values determine the transitions (see
below). In all other cases the rule is "locked", i.e., nothing happens. In the case of the
elements of the probability matrix, 1 means the increase of the respective probability
value, 0 means that the value remains constant and –1 means the decrease. In the case
of the hybrid IN the GA operates on a vector where the components are nothing else
than the elements of the weight matrix, i.e., the weight values are changed via the
genetic operators.

The two systems are coupled in the following way: The transformation of cell
states within the CA is determined by the probability matrix", i.e. the 9 * 9 matrix
containing the transition probabilities from each of the nine possible cell states to any
other. The GA of this first hybrid system operates on the transition rules, allowing or
forbidding certain transitions, as well as on the transition probabilities, decreasing or
increasing those values. The CA always runs three steps; then the "success" of the
development of the CA is evaluated. Afterwards the GA starts its changing
operations.
Cell transformation in the CA proceeds according to the following rules:
1. A cell with index value i increases its index value (ascendence),

i. if the average of cell indices in its Moore neighborhood is greater or equal i
(u≥i) and

ii. if the corresponding component in the antecedens part of the rule vector has
the value 1 or 3 (neutral element) and

iii. if the corresponding component of the action part of the rule vector is 1 and
iv. if the probability of ascendence according to the procedure defined below is

given.

46

Poster Proceedings KI2004

2. Correspondingly a cell decreases its index value (descendence),
i. if the average of cell indices in its Moore neighborhood is less than i (u<i) and
ii. if the corresponding component in the antecedence part of the rule vector has

the value -1 or 0 (neutral element) and
iii. if the corresponding component of the action part of the rule vector is 1 and
iv. if the probability of descendence according to the procedure defined below is

given.
3. Otherwise the cell does not transform.

To calculate the transformation probability the elements of the rows i of the upper and
lower triangle of the probability matrix A (representing the probabilities for
ascendence and descendence) separately are consecutively added according to

cij = Σaik (2)

where k runs from i+1 to j (upper triangle) or from j to i-1 (lower triangle), forming
the cumulated probability matrix C (cij=0).

A random number (0.0 ≤ r < 1.0) is generated and the cell index is transformed to
the first index j - beginning from the main diagonal of the cumulated probability
matrix - with cij greater than the random number; if no element cij fulfills the condition,
the cell is not transformed.

After 10 runs (CA+GA) the optimized best probability matrix is taken over by the
second hybrid system as the initial weight matrix of the IN. In addition, the relative
numbers of cells in each cell state of the actual CA serve as external activations of the
IN. The GA of the second system optimizes the weight matrix with reference to its
distance to the "target vector", which is the very same as that of the first system (see
below). The timing of this system is: the IN runs several time steps (usually 50-80)
until it reaches an attractor state. Then the GA starts its operations. The best
optimized weight matrix - and only this matrix - is then fed back to the first system,
and so on.

CA
simulates the differentiation of a
homo- geneous society into a class
society

mobility matrix
= weight matrix

GA (Meta-system)
operates on the weight
matrix

GA (Meta-system)
operates on the transition rules
and on the probability matrix

IN
takes over the best
final state of the CA

The IN gives the optimized matrix (mobility matrix) back to the CA

Fig. 1. The structure of the hybrid system SOCAIN

47

Poster Proceedings KI2004

In more detail, SOCAIN - SOcial Cellular Automaton with an INteractive Network -
always starts with the CA that symbolizes the "real" and whole society. It has one
initial state, namely a homogenous state with only the lowest cell state representing
rural people. The GA uses 20 "rule vectors" that correspond to 20 rule sets for the CA,
or, briefly expressed, to 20 different CA. The selection of the best of the different
CAs is based on the evaluation vector

V = (Σi Ai * Bi1 * F1 ,, Σi Ai * Bi6 * F6 (3)

where V is the "value" of the social system, Ai is the number of cells in the state i and
therefore the number of members of the class i, Bij is the contribution of the class i to
the system function j, and Fj is a weight factor representing the value that the function
j has to the whole system (this is explained in more detail in [14]). The selection
criterion for the GA is the smallest possible distance d of the resulting vector V to a
"target vector" or "environment vector" E:

d = E - V (4)

After the GA has operated a certain number of times on the CA, the CA maps itself
onto an IN in the way described above. The initial state of the IN, that is the initial
activation values of the units, is given by the best final state of the CA before the
mapping CA → IN. Then the IN starts its runs, gets optimized by the corresponding
GA, and gives a modified matrix back to the CA which starts again as before. This
procedure is repeated until a sufficiently low value of d is achieved for the whole
system. The IN is a model of the CA insofar as the mobility matrix of the CA and a
global measure of its last state are directly transformed into the IN. Thus the IN
reproduces the structure of the CA. But it is a reductive model because on the one
hand, the important geometry of the CA has no counterpart in the IN - it operates only
on a macro level from the view of the CA. The CA operates on a micro level and gets
its macro level in form of the IN as a kind of aggregation effect. The GA of the
second system, on the other hand, can only change the weight values of the IN-matrix
and does not affect the transition rules as in the case of the CA. Moreover, it has to be
pointed out that the basic algorithms of the two base systems CA and IN are totally
different.

48

Poster Proceedings KI2004

4. Results

SOCAIN was compared to the original – SOZION = CA + GA, where there is no
coupling to the IN - with reference to its effectiveness to minimize d. The results are
quite remarkable:

10 20 30 40 50 60 70 80 90 100
time steps

0

0.1

0.2

0.3

0.4

0.5

0.6

sy
st

em
 v

al
ue

Fig. 2. Optimization with IN and without IN (dotted) in 2 typical runs of SOCAIN.

SOZION typically reaches optimal distances of about 0.08 after 50 to 100 time steps,
a result, which is not improved by further optimization. The reason is that the set of
rule changing vectors of the GA tends to become nearly homogenous, so that only
higher mutation rates can lead to variation. But "pure" mutations, as is generally
known, in most cases generate worse results.

Combining SOZION with the second system - SOCAIN - leads to much lower
distances - typically lower than 0.01 - within fewer time steps. Surprisingly, the
optimization process within the second system, i.e. the GA operating on the IN, is in
itself much less effective; it rarely achieves distances below 0.2. In particular, often
the hybrid IN even decreases its results: after having reached values of approx. 0.2 the
results start to get worse till d = 0.4 Nevertheless, these sub-optimal weight matrices
are capable of considerably improving the optimization process within the first system
when taken over by this. Apparently, the IN/GA system is a very suitable model for
the CA/GA system, improving its operation by "pushing" the values of the mobility
matrix.

These results are rather astonishing at first sight since CA and IN operate with very
different kinds of rules. This has to be explained in connection with particular
ordering parameters, which we call "meta-parameters":
Logically speaking, adaptive systems do not have one set of rules on one logical level
but at least two different sets of rules: The one set of rules constitutes the base system,
i.e. the whole of the rule governed interactions and actors of the "real" system. The

49

Poster Proceedings KI2004

second set contains the meta-rules of the system, i.e. the rules by which the base rules
are changed. That is why we call adaptive systems hybrid systems in a logical sense:

It is well known that the rule sets of base systems can be classified by so-called
ordering parameters [11],[12]. Ordering parameters are numerical values of the rule
set of a particular system. Consider for example the rules of a binary Boolean net like
the logical disjunction. This rule determines the transition frequency of the unit states.
The logical disjunction generates in three cases a 1 as result and in one case a 0. In
this case the value of the so-called ordering P-parameter is 3/4 or 0.75. The Boolean
function of logical equivalence on the other hand generates in two cases a 1 and in
two cases a 0 as results. In this case P = 0.5. It is possible to prognosticate the
principally possible kind of dynamics such a system can generate: if the P-values are
low, i.e., near 0.5, the system can generate rather complex dynamics with attractors of
long periods; if the values of P are higher than 0.62, the system can generate only
simple trajectories with point attractors or attractors with small periods. In this sense
the different ordering parameters classify the according systems: they determine
which kind of Wolfram class the system belongs to. We could demonstrate that in
addition to the ordering parameters discussed by Kauffman the topology of complex
systems, i.e. the rules that determine "who interacts with whom" contains at least
another ordering parameter that we named the v-parameter - for the German word
"Verknüpfung" = connection - [12].

If one tries to classify adaptive, that is, hybrid systems in the same way by
introducing according ordering parameters then one has to look for meta parameters,
i.e. parameters on the meta level of the whole rule system (meaning base rules and
meta rules together). These meta-parameters determine the adaptive success of an
adaptive system: in other words, specific values of meta-parameters decide whether
an adaptive system reaches its targets fast or not, with a sufficient accuracy or not,
and in a sufficient time or not. Meta-parameters describe the manner of changing the
base rules in a quantitative way and are thus a feature of the meta-rules (for a
systematic analysis of meta-parameters see [14]). They are in this sense the parallel of
the mentioned ordering parameters of the rules sets of the base systems.

When distinguishing between base rules and meta-rules, an obvious criterion for
the variability of an adaptive system is the ruthlessness (ρ) by which the meta-rules
operate on the base rules. The ρ-parameter measures the quantity of changing a
specific rule. In the case of SOCAIN the GA operates on the CA in the way that the
values of the probability matrix are changed only rather softly, i.e. by raising or
lowering them by a constant factor of approximately 0.05. Therefore, a probability
parameter is changed as a consequence of a GA-operation for example from 0.3 to
0.35. The corresponding weight matrix of the IN is changed much more radically: A
weight value in the matrix of the IN can be changed by one GA-operation from 0.3 to
0.9 or even from 0 to 0.9. In the case of the CA we obtain ρ = 0.05, in the case of the
IN ρ = 0.9. When the CA gets its mobility matrix from the IN with the more radical
changing, the CA gets much better results in optimizing itself to a specific
environment than with its "own" matrix, i.e. the matrix which resulted from the more
prudent changes.

Therefore, it seems that high ruthlessness gets better results, but things are not that
simple: The hybrid IN with high ruthlessness is often not as good as the hybrid CA
with low ρ, as was mentioned above. The best results are obtained when the hybrid

50

Poster Proceedings KI2004

CA operates with low ρ, i.e. in a soft way, with the results it gets from the operations
of the IN with high ρ. Therefore the best way seems to be to operate with changing ρ.
The high ruthlessness of IN/GA is the way for CA/GA to get a fresh start when its
own way of changing is too subtle. The difference of ρ in the two particular hybrid
systems CA/GA and IN/GA explains the whole behavior of SOCAIN as well as the
not very successful adaptive behavior of the IN.

In principle, these results are already known from evolutionary processes like, e.g.,
biological evolution. High and drastic mutation rates on the one hand mostly generate
bad results because they frequently lead away from local optima the system has
already obtained. This explains the behavior of the hybrid IN, because the high ρ-
values are mathematically equivalent to high mutation rates. On the other hand, such
high mutation rates just because they force the system away form local suboptima
enable the system to try for new and better optima. This is what the hybrid CA does
after having obtained new probability values from the IN. In this sense, the behavior
of SOCAIN can be seen as a generalization of processes that are well known on more
concrete physical levels.

5. Discussion

1. The GA of the CA mainly operates on the probability matrix and not, for example,
on the frequency values of the transition rules according to the idea that a complex
system can change the probability values of its rules more easily than the rules in
general. If we take a look at political decisions, we can see that politicians first try
to change the "probability" structure of the system, for example the possibility to
choose a profession or to get a better education. Changing social rules more
radically is a sensitive point, and it is the last possibility if the varying of the
probability structure does not have the desired effect.

2. In a formal sense the system IN/GA can be interpreted as the result of the self-
mapping of the system CA/GA. So the operations of IN/GA are to be understood
as virtual experiments with the own future of the whole system - a sort of
mathematical gedankenexperiment. That is why the ruthlessness of the operations
of IN/GA can be much greater than in the case of CA/GA. Virtual experiments
can be done with no consideration for the costs. If they are successful, the system
can take over the results without having to pay for failures.

3. Sociologically speaking, social systems can achieve the ability of modeling
themselves in rather different ways, as was demonstrated with the examples in
section 2. Another possibility is a political one: The CA is a "bottom up" system,
i.e. it can be understood as the model of a society where the social processes are
local interactions between different social roles. The IN, on the other hand, is a
"top down" system insofar as only macro aspects of the society - social classes -
are taken into consideration. Thus a social system can model its bottom up
processes by a top down model and improve its results; metaphorically speaking,
the system is able to make politics "from above" through the process of self-
modeling. This is the old dream of social planners and dictatorial utopians, which

51

Poster Proceedings KI2004

often yielded disastrous results. The Killing Fields of Cambodia or the totalitarian
states of the Soviet Union and National Socialistic Germany will not be the last
examples. All these cases have got one thing in common: wishful thinking, based
on some ideology, had designed a model of a "real" society and tried to carry it
through by force. Neither means nor ends were clearly analyzed.

Our results hint at the possibility that democratic societies can use their own
capability of self modeling in a "soft" way, namely by modeling a hypothetical
future and discussing the advantages and disadvantages of the results. These
modeling processes could be done in the way and by the use of computer systems
like SOCAIN. Presently, however, this is rather science fiction than science.

4. SOCAIN was constructed for theoretical reasons, i.e. the modeling of certain
social processes containing self-referentiality. But the applicability of SOCAIN is
not restricted to theoretical problems like this. Consider for example a firm that is
differentiated in several departments, containing a lot of employees. If this firm
has to improve its economic success by changing its organization then a model of
the SOCIAN-type can be immediately applied on the optimization problems of
this firm. The same holds, e.g. for a military unit, differentiated into different
subunits. According applications can be done with each system – political,
organizational or even cognitive – where the elements of the base system can be
aggregated in the way the elements of the CA of SOCIAN are aggregated t into
social classes.

Hofstadter and Dennett, as was mentioned above, describe the process of the
modeling of self-referentiality as "a kind of miracle" that is probably one of the
most promising ways to AI. Apparently it is indeed possible to model such
complex processes without running into the traps of logical paradoxes. That is
particularly important not only for social systems but also for the mind and brain
as cognitive systems without doubt are able to perform processes of self-
referentiality in most complex ways. Self-modeling is one aspect of self-
referentiality; other types of cognitive self-referential processes like the
conceptual formation of analogies and the mutual interdependent interplay of
cognitive and social dynamics can be modeled in similar way (Klüver et al. 2004)

We must leave it to other experts whether or not "true" AI is possible. But
certainly such hybrid systems as SOCAIN help us to gain insight into complex
processes that could be described without these modeling tools only in verbal and
imprecise manner. Without doubt hybrid systems can be regarded as an important
contribution to the science of formal model building.

52

Poster Proceedings KI2004

References:

 1. Berlekamp, E., Conway, J. H. and Guy, R.: Winning Ways for Your Mathematical Plays.
New York: Academic Press (1982)

 2. Bourdieu, P., Passeron, J.C.: Les Héritiers. Les Etudiants et la Culture. Paris: Editions de la
Minuit (1964)

 3. Chaitin, G.: the Unknowable. Singapore: Springer (1999)
 4. Eder, K.: Die Entstehung staatlich organisierter Gesellschaften. Frankfurt: Suhrkamp

(1976)
 5. Geertz, C.: Deep Play: Notes on the Balinese Cockfight. In: Daedalus (1972) 101, 1–37.
 6. Goonatilake, S., Khebbal, S. (eds.): Intelligent Hybrid Systems. Chichester-New York: John

Wiley (1995)
 7. Habermas, J.: Theorie des kommunikativen Handelns. Frankfurt: Suhrkamp (1981)
 8. Hofstadter, D.R.: Gödel, Escher, Bach. An Eternal Golden Braid. New York: Basic Books

(1985)
 9. Hofstadter, D.R., Dennett, D.C.: The Mind. New York: Basic Books (1981)
10. Kauffman, S.: The Origins of Order. Oxford: Oxford University Press (1993)
11. Kauffman, S.: At Home in the Universe. Oxford: Oxford University Press (1995)
12. Klüver, J., Schmidt, J.: Control Parameters in Boolean Networks and Cellular Automata

Revisited: From a Logical and a Sociological Point of View. In: Complexity (1999) 5/1,
45–52

13. Klüver, J.: Sociological Discourses in Virtual Reality. In: Social Science Computer Review
(1996) 14,3, 280 –292.

14. Klüver, J.: The Dynamics and Evolution of Social Systems. New Foundations of a
Mathematical Sociology. Dordrecht: Kluwer Academics Publishers (2000)

15. Klüver, J., Malecki, R., Stoica, C., Schmidt, J.: Sociocultural Evolution and Cognitive
Ontogenesis: A Sociocultural-Cognitive Algorithm. In: Klüver, J. (ed.): On Sociocultural
Evolution. Special Issue of CMOT – Computational and Mathematical Organization
Theory (2004)

16. Niskanen, V.A.: Soft Computing Methods in Human Sciences. Heidelberg: Springer (2004)
17. Rasmussen, S., Knudsen, C., Feldberg, R.: Dynamics of Programmable Matter. In: Langton,

C.G., Taylor, C., Farmer, J.D., Rasmussen S., (eds.): Artificial Life II. Reading (MA):
Addison Wesley (1992)

18. Roth, G.: Das Gehirn und seine Wirklichkeit. Kognitive Neurobiologie und ihre
philosophischen Konsequenzen. Frankfurt (M): Suhrkamp (1996)

19. Stoica, C.: Die Vernetzung sozialer Einheiten. Hybride Interaktive Neuronale Netzwerke in
den Kommunikations- und Sozialwissenschaften. Wiesbaden: DUV (2000)

20. Stoica, C., Klüver, J.: Soft Computing. E-Course in the virtual curriculum Computer
Science and Economy. Universities of Duisburg-Essen and Bamberg (2002)

21. Tarski, A.: Logics, Semantics, Metamathematics. Oxford: Oxford University Press (1956)
22. Wolfram, S.: Universality and Complexity in Cellular Automata. In: Wolfram, S.: Theory

and Applications of Cellular Automata. Singapore: World Scientific (1986)
23. Wolfram, S.: A New Kind of Science. Champagne (Ill): Wolfram Media (2002)

53

Poster Proceedings KI2004

Towards building Agent-Based Emergency Medical
Services Systems

Basmah El Haddad

Computer Science Dept. Artificial intelligence, Humboldt Universität zu Berlin, Germany
Humboldt-University of Berlin, Department of Computer Science

Unter den Linden 6, 10099 Berlin, Germany1
elhaddad@informatik.hu-berlin.de

Abstract. The papers main aim is to proof that agents integrated in emergency
medical services systems (EMSS) promise efficiency and effectiveness. It assures
the advantage of using agent technology in EMSS during its different phases to
support and assist personnel and decision-makers with flexible information flows
and solutions of complicated distribution problems. First it introduces generally
the EMSS, definition, nature, characteristics and phases. Then it provides a brief
overview of agents and multi-agent systems showing their beneficial use to solve
conflicts suggest solutions and provide information that improves the human
rescue process. The paper includes a case study, describing the emergency
medical control unit in Egypt, its structure, function and role. It presents a
scenario in which agents will be integrated and introduces the agent-based EMSS
architecture. A pre-hospital EMSS model will be explained and analyzed in
details with its different contained agent types and tasks.

1 Introduction

The basic definition of agents, their properties and the nature of the emergency medical
services system processes raises the importance of using agent-based systems in this
domain. Agent’s technology is a promising approach that supports the distributed work
groups in the EMSS domain with the information that facilitates their communication
and coordination needs. It plays an important role in assisting and supporting their
work. The autonomous property of agents allows them to act in behalf of the user to
lighten up his workload while he is practicing his activities and tasks. Through their
social property they are able to communicate, cooperate and negotiate with human
actors as well as other agents in their society. In the proposed agent-based EMSS
model, the agents can proactively take the initiatives to maintain certain tasks. They
introduce reliable, required information and data to the right actors at the right time.
They also submit the decision-makers with proposed solutions and suggestions in a
timely fashion way. Every minute people are born and others die. Life and death are the

1 From October, Institute of National Planning , Salah Salem Nasr City, Cairo, Egypt

54

Poster Proceedings KI2004

most natural phenomena in our lives. The problem arises when the society or the
responsible organizations feel they could have done better or they didn’t do their best
to save a persons life. A lot of studies and reports announce that trauma is the leading
cause of morbidity and mortality all over the world in patients less than 54 years.
Trauma is defined as an emotional shock causing a lasting harmful effect, as a result of
unpleasant experience from wound or injury. One of the most common causes of
trauma is road traffic accident (RTA) [1]. Apart from the cause of trauma, injured
patients require timely diagnosis and treatment by a multidisciplinary team of health
care professionals, supported by the appropriate resources, to diminish or eliminate the
risk of death or permanent disabilities. Death can be avoided by good planning and
providing immediate medical attention. Actually most death that are prevented in the
trauma cases are prevented in the first hour of the accident, which is also known as the
golden hour [1, 2]. According to the journal of trauma; the probability of survival
depends upon:
− The severity and type of injury
− Appropriate care at the scene
− The care shortly after admission golden hour
− Incidence of complications and quality of care at the intensive care unit (ICU)
− Pre-existing serious disease and the age factor (as an indirect reflection of cardiac
 reserve) [3]
 From this point of view the main goals of the proposed agent-based EMSS model is
to make use of the agent’s properties to fulfill the following:
1. Gather and handle medical and organizational information and data fast, easy,

secure and ensure information sharing and integration from various data sources.
2. Improve information flow between the involved parties by introducing reliable and

actual information resulting in an enhancement of medical treatment
3. Easy up the communication and coordination between the different parties during

the process
4. Allow negotiations of the responsible directions targeting an optimal solution

(hospital, control unit, mobile units, police dep., fire dep. etc.)
5. Assure a detailed and reliable creation of various protocols; identification protocol at

the emergency site, an emergency protocol during patient transportation for
physicians in hospitals

6. Assist decision makers in making their different decisions introducing the needed
information, data, protocols and suggested solutions

2 Emergency Medical Services System

From a medical point of view one can define an emergency as “any circumstance that
calls for an immediate action and in which the element of time in transporting the sick,
wounded or injured for medical treatment is essential to the health or life of any
person. Such circumstances include, but are not limited to, general accidents, traffic
accidents and acts of violence resulting in personal injury, and sudden illness” [3].
EMSS should have the ability to identify and modify illness and injury risks, provide
acute illness and injury care and follow-up, and contribute to treatment of chronic

55

Poster Proceedings KI2004

conditions and community health monitoring. EMSS differ from country to country
according to the different policies, strategies, plans and various organizations
responsibilities, coordination and management. It also relates to differences in
geography, population distribution, medical resources, practice, history and local
expectations. Although there are differences but all the systems agree in their basic
roles, main tasks and the fundamental guidelines [1]. Experience, skills and medical
knowledge showed that the provision of EMS in the field, prior to arrival at a hospital,
could save lives. Medical care should be provided in a system in which all components
providing services should be functioning in a well coordinated manner insuring
continuity between phases in the course of the care of the emergency patient as well as
the continuity and harmony during each phase. The EMSS is “a coordinated
arrangement of resources (including personnel, equipment, and facilities) which are
organized to respond to medical emergencies, regardless of cause” [4].

2.1 Nature and Characteristics of Emergency Medical Services System

EMSS processes have almost similar nature. They share characteristics that enable the
integration of agents in their structure. Following are some of their defining properties

− Distributed: required data and information are spread among different requesters and

units, distributed across various kinds of media (fax, data sheets, data bases, etc.)
and introduced in different ontologies. During the patient transportation process,
data and information will be accessed from; accident scene, control unit, mobile
unit, and various hospitals. Emergency case record, patient history and patient
electronic records should be exchanged and transferred if available.

− Parallel: many of the tasks contained at the EMSS processes run parallel. The pre-
hospital phase includes parallel tasks; command a mobile unit to go to the patient,
making communication and negotiation with appropriate hospitals, at the same time
requesting new data and information about the emergency case from the caller etc.

− Decentralized control: the emergency control unit, paramedics at the mobile unit,
clinical stuff, physicians at the EU, patients themselves and others affect the
workflow of processes and information during the different phases of treatment
resulting in a decentralized control, which requires good coordination of activities.

− Communicative: all the data, information, schedules, request etc. have to be
communicated and exchanged easily during the treatment and processes [5]

2.2 Emergency Medical Services System Phases

EMSS provides delivering medical services at the different phases of the patient’s care
it implies that prevention of the death is possible at the accident spot by providing first
aid treatment, transporting the patient to the nearest appropriate hospital and providing
proper medical treatment. The injured or traumatically patient goes through different
phases, in which he needs the most efficient medical care, skilled physicians and
surgeons etc. According to the various definitions and phases of Emergency Medical
Care Systems, it includes four fundamental phases, which are the heart of the system:

56

Poster Proceedings KI2004

− Pre-hospital Care Phase
− Hospital & EU Phase
− Acute Care & Critical Phase
− Post-Hospital & Rehabilitation Phase

Eight major components operate together to support the activities and
responsibilities of the EMSS during the different phases; personnel and training,
communications, transportation, assessment of hospitals, emergency units and critical
care centers, system organization and management, data collection, system evaluation
and information management, education and support, disaster medical response [6].
The proposed agent-based EMSS model will improve medical care, health organization
management and communicating of important data through each phase of the service.

3 Agents

Many researchers have been trying to find a general definition of the term “Agent”, but
all these definitions just light up some aspects of agents. One can tell that a software
agent is a software entity that applies artificial intelligence techniques to choose the
best set of actions to perform in order to reach a goal specified by the user. It should
react in a flexible, proactive, dynamic, autonomous and intelligent way to the changes
produced in its environment [7]. Another definition is IBM’s definition “Intelligent
agents are software entities that carry out some set of operations on behalf of a user or
another program with some degree of independence or autonomy, and in so doing,
employ some knowledge or representation of the user's goals or desires”. While the
Wooldridge and Jennings definition for an agent “… a hardware or (more usually)
software-based computer system that enjoys some main properties of autonomy, social
ability, reactivity and pro-activeness” [8].

3.1 Multi-agent systems

A multi-agent system may be defined as “a collection of autonomous agents that
communicate between themselves to coordinate their activities in order to be able to
solve collectively a problem that could not be tackled by any agent individually” [7].
These group of agents can cooperate together to exchange information or knowledge in
different and diverse social definitions and aspects of cooperation, coordination and
competence. They also have the ability to negotiate on some common issue to fulfill
their different tasks, functions and decision-making. Humans can easily be integrated in
the multi-agent systems having their own role besides the software agents [9].

3.2 Agent-Based Emergency Medical Services System’s Characteristics

Agent-based systems could fulfill the EMSS demands and requirements. They solve
some of the problems facing the different actors during the various phases of their work
in the EMS domain. The following Agent-based system characteristics illustrate the
benefits of using agents and multi-agents in the EMSS domain:

57

Poster Proceedings KI2004

− Distributed problem solving mechanism: the multi-agent system components can be

running on different machines in different places, while each agent keeps the
knowledge and information to solve his part of the problem. They offer a flexible
way of solving distributed problems. In the pre-hospital phase there will be different
agents distributed through various places. The localcontrolunit-agent and the
emergencycase-agent at the local control unit, the mobileunit-agent and the
paramedic-agent at the mobile unit and the physician-agent at the EU and others at
the hospital. Each one has a certain role and some tasks to be done.

− Sociability: agents interact with each other (and possibly humans) via some kind of
agent-communication language to obtain their goals. They can establish various
messaging types and complex dialogues, in which they exchange information and
data, negotiate and collaborate to coordinate actions, activities and solve problems.
During the pre-hospital phase the localcontrolunit-agent communicates and
exchanges data with the human operator as well as the emergencycase-agent. They
sometimes negotiate with the hospital and EU agents.

− Responsiveness and Reactivity: agents perceive their environment, respond and act
in a timely fashion to changes that occur at the perceived environment. They also
take account to the changing environment and the changing user needs.

− Pro-activeness: agents do not simply act in response to their environment; they are
able to exhibit goal-directed behavior by taking the initiative and make suggestions.
They are able to perform tasks that maybe important for the user without to wait for
his command. During the pre-hospital phase the emergency case-agent will record
the emergency case and keep it actualized whenever there is any change. It
communicates with different hospitals and negotiates for a certain place once it
senses the new case.

− Adaptivity: it tailors the interactions reflecting the user needs and changes its
behavior according to the previous experience.

− Autonomy: agents operate without the direct intervention of humans or others and
have some control over their actions; they can make their own decisions based on
their internal state and the environmental information they receive. During the pre-
hospital phase the final control will be with human actors because of some aspects
such as legacy problems, security factor and trust issues [9, 10].

4 Structure of the Emergency Medical Services System in Egypt

The EMSS in Egypt aims to provide an emergency medical top quality treatment and
care for the Egyptian as well as the tourists. It performs a lot of services covering the
whole country and is distributed along 27 governorates. The system is structured to
contain a main central control unit in Cairo, which is connected to all the local control
units at the different places, which are also connected with the EM centers, stations,
tents at the cities or along the high ways. It’s also connected to the hospitals and the
ambulance mobile units through wireless networks. The main emergency medical
control unit can communicate with decision-makers and authorities to manage in case
of emergencies or disasters. The structure of the EMSS is shown in Fig. 1.

58

Poster Proceedings KI2004

Fig. 1. Emergency Medical Services System Structure, Egypt

Case study: Cairo. The EM local control unit in Cairo is divided in two

divisions; the first division is equipped with four phones connected to 30 lines to
receive the emergency calls. These calls will be forward to the second division, which
contains four other persons connected with the emergency mobile units, stations and
centers through a wireless network. Each one is responsible for one of the four
geographically quarters of the city (east, west, south and north). Their main task is to
send the right emergency mobile units to the injured persons at the scene of the RTA or
emergency as fast as possible trying to reduce the definitive treatment time by offering
rapid medical care to the highest priority medical institute, which deals with that type
of emergency. The EM local control unit structure in Cairo is shown in Fig. 2.

4.1 Scenario “What happens while Receiving an Emergency Call”

Upon receiving an emergency call at the emergency local control unit a certain scenario
begins to take place. The emergency local control unit operator receives the emergency
call and decides if it’s a disaster or a normal emergency case. In case of a disaster he
alarms the main control unit to begin the disaster management plans. In case of a
normal emergency, the operator asks about the kind of emergency and the emergency
place. He starts to record all the vital data and forward the case to the appropriate
person at the second division. The operator keeps at the phone trying to take

59

Poster Proceedings KI2004

information and data as much as possible. The responsible person at the second
division decides the mobile unit type to be sent and orders one to go to the emergency
place to transfer the injured patient to a certain hospital. He keeps contact to the mobile
unit until it gets to the patient and then until it receives the hospital. He records all the
important times beginning from the time of receiving the call, till ordering the mobile
unit, till reaching the patient, till transferring the patient to the hospital. During this
phase the local control unit operator keeps aware of all the new upcoming information
or data concerning this case.

Fig. 2. Structure of the Emergency Medical Local Control Unit of the EMSS, Cairo

4.2 Emergency Medical Services System Local Control Unit Tasks and Activities

The main role of the emergency local control unit at the EMSS includes different tasks,
activities, decisions and commands, which should be ordered and which are considered
as their main responsibility. In the proposed model, agents will support these activities:

− Receiving the emergency call and checking its correctness.
− Recording and forwarding the data and required medical services needed to the

appropriate coordinator according to it’s geographically responsibility.
− Registering the case with all its available information and time of call.
− Deciding the number of mobile units which has to be sent in this case.
− Deciding the appropriate mobile unit type which is needed in this case.
− Deciding and contacting the nearest appropriate mobile unit to the scene place.
− Command the emergency mobile unit to the emergency place.
− Decide the hospital to which the case will be sent.
− Forward the initial information and data to the mobile unit and the hospital.
− Capture and keep aware of all new incoming information and make appropriate and

continuous updating to the emergency record with recent information received.
− Following the emergency mobile unit path recording the arrival and departure time

at the emergency place and at the hospital.

60

Poster Proceedings KI2004

− Informing and cooperating with the authorities to manage a crisis or disaster.

4.3 Emergency Medical Services System Problems and Limitations

At this Scenario and others there are a lot of problems threatening the well-being of the
patients, diminishing and weaken the functionality of the EMSS at its different phases.
These happen almost because of the overload and stress of the human actors during this
process. From this critical situation and point of view, one supposes that an agent-based
system could be of great help to overcome the following problems and limitations:
− Failure of correct emergency case identification and detection.
− Wrong emergency case unification.
− Uncertain, unreliable and un-actual information and data.
− Misdiagnosis at the mobile unit and at the operation room.
− Absence of clear and plain roles and responsibility assignments.
− Wrong decisions and treatment due to the distributed nature of the problem.
− Failure of leading communication and negotiation processes between the involved

parties (local control unit, mobile unit and hospital).
− Miscoordination, mismanagement of the emergency case at the local control unit.
− Lack of information integrity.

5 Agent-Based Emergency Medical Services System Process Model

The agent-based EMSS model is a model that presents human workflows during the
EMSS phases, which are performed with the aid of software agents that support these
workflows. It contains main processes that function in a synchronized way to supply
the patient needs from the first moment he calls for help till arriving at the EU of a
hospital and resuming by providing the specialists at the hospital with their different
needs. Each process includes different sub processes that fulfil certain required tasks
and activities. Within each process and sub process there are many roles, which could
be human roles or agent roles. The agent-based model functions through the
cooperation between human roles and software agents. They communicate, negotiate
and exchange data and information with different types of software agents. The more
coordination and organization between the different involved parties of human actors
and software agents, the more efficiency and reliability will be gained in the real world
system. The interaction, communication and coordination of software agents within the
processes and sub processes will be realized through the messaging protocols. They
communicate through exchanging different types of messages; -propose- accept-reject-
retract-disagree… or counter propose - a course of action. The agents are not just
communicating and exchanging some data and information but they can through these
messaging techniques negotiate and handle about certain subjects and aspects. Fig.3
shows the main processes of the EMSS model.

61

Poster Proceedings KI2004

Fig. 3. Emergency Medical Services Main Processes

each of these processes contains their sub processes as follows:

1. Pre-hospital care process
− Notification of an emergency call

• Decide the mobile unit type
• Search for the nearest mobile unit to the patient
• Search for the most suitable hospital

− Patient transportation to the hospital
2. Emergency unit care process at the hospital

− First aid emergency medical treatment at the emergency unit
− Scoring system

3. Acute care management at the hospital
− Operation / Care management plan

4. Post-hospital & rehabilitation process

5.1 Agent-Based Emergency Medical Services System Architecture

The model follows the multi-layered Plaides collaborative agent-based architecture. It
contains three layers of abstraction, for the task, interface and information specific
collaborative agents. The interface agents are the interface between the users and the
system, which enables the user to make their requests and analyse the results. The task
agents will be used to get their instruction from the control or medical personnel to
fulfil the user tasks by contacting and communicating other agents while the
information agents in the information layer will collaborate with one another to provide
the information to the requesting agents. They get their information from many
different sources and databases. They support the information sharing between the
control and medical team and can be used automatically for collecting various
distributed medical or administrative data and information [11]. Fig. 4 shows the
proposed agent-based EMSS architecture with its different contained agents.

5.2 Agent-Based Emergency Medical Services System Pre-hospital Process Model

The Model has been built using the AGIL (Agent- based Information Logistic) shell,
which is a process-modelling tool that helps to model different processes and design
intelligent agents within a good and easy user interface. During the communications
between software agents and human actors or software agents within its society, they

62

Poster Proceedings KI2004

make use of different sort of medium. A medium can be either analogue (e.g., a
telephone call, a fax message, or a patient record) or an agent message, which can be
defined as an ontology, which specifies the information content. All the roles, activities
and different type of mediums are presented at the AGIL shell through specific process
graph symbols.

Fig. 4. Agent-Based Emergency Medical Services System Architecture (adapted from Pleiades
system o Carnegie Mellon University (CUM) collaborative multi-agent system architecture) [11]

Notification of an Emergency Call Process Model At this process, see Fig. 5, one
follows the scenario “What happens while Receiving an Emergency Call” mentioned
before. The process has been analyzed to detect application scenarios of agents and to
be optimized by introducing agents within it. The emergency call will be received at
the local control unit as mentioned before. In case of a disaster the human local control
unit operator sends an alarm message through its local control interface agent, which
forwards this alarm through an acoustic medium to the main control unit manager. The
manager receives this alarm and begins to invoke the disaster management plans and
contacts other required parties according to the situation. In case of a normal
emergency, the human local control unit operator through the user interaction invokes
its local control operator agent to identify the caller and create the caller-id. The
operator continues getting the vital important information from the caller and forwards
it to its agent. The local control operator agent records the vital data and creates an

63

Poster Proceedings KI2004

E_Case_Record. It also initiates an emergency case agent, which will follow this case
till the end of its management. The main task of the emergency case agent is to
actualize and update the E_Case_Record during the whole process and commands the
other subprocesses. It also checks for duplications and solve conflicts. There are
different conflicts for example like; receiving more than one call
− for the same case with different description and information
− for the same case with time lag
− for an escalated case invoking other cases
− for two different cases at the same place assuming there is just one case etc.

There will be also a mobile unit advisor agent, which has the task to decide which
mobile unit has to be sent to the patient according to the specific cases. There are
different mobile unit types; ordinary mobile unit, mobile unit with incubators for safe
transportation of premature, mobile unit containing oxygen cylinder, mobile intensive
care unit equipped with all means of advanced cardiac life support and advanced
trauma life support, surgical mobile unit for surgical operation, air mobile units to
reach touristic and rural places. Each case has its special requirements that have to be
fulfilled. The emergency management agent commands to search for the nearest
appropriate mobile unit to the patient and the most suitable hospital during different
sub processes and according to specific constraints and actualized E_Case_Record.

Fig. 5. Notification of an Emergency Call Process (this Fig is just to give a general overview)

Search for the nearest Mobile Unit to the Patient In this process the main task is to
find the nearest mobile unit to the accident scene that can convey the patient. The
emergencycase-agent invokes this search and forwards the assignment to the
mobileunitmanager-agent, which broadcasts a request to all the mobile units of the free
available mobile units list. It becomes requests or refuses from the different
mobileunitEMT-agents. According to these answers it takes a decision, which unit will

64

Poster Proceedings KI2004

be forwarded to the patient. This solution has to be suggested first to the human local
control unit operator to give its final decision. The model will contain an option so that
the mobileunitmanager-agent can make the final decision and order the mobile unit
immediately to go to the patient, but for authentication reasons and legacy problems the
final decision will be held by the human agent. The model suggests solutions and
makes communications, to easy up the workload and provides explanations and results.
In case that the mobileunitmanager-agent doesn’t get an acceptance from the mobile
units at all it begins to contact other mobileunitmanager-agents of other geographical
sectors.

Fig. 6. Search for the nearest Mobile Unit to the Patient

 Search for the most suitable Hospital At this process the most suitable hospital for
this case will be searched. A broadcast will be send to the hospitalregistrator-agenst,
which will search the hospital availability to receive this case. It should get the E-Case-
Record to make the right decision according to the hospital facilities to deal with such
cases or number of beds available. The hospitalmanager-agent will decide the most
suitable and appropriate hospital from various aspects of availability or location or

65

Poster Proceedings KI2004

specialization. Negotiations will be evolved at these processes as a lot of factors
influence this process decisions. A geographical positioning system could be integrated
in the model if it’s available.

5.3 Design of the Emergency Medical Services System Pre-hospital Agents

The model will contain the following different agent types with their activities:

- Interface Agents: are personal assistance collaborating and communicating with the
user to supply him with requests, information and commands. They represent each of
the involved persons in the process, which means an interface agent for each of the
different specialists during various phases of the system. Interface agents for control
operators, mobile unit EMTs, mobile unit paramedics, hospital registrators, physicians,
surgeons, lab doc. etc. All these agents supply their human actors with a proactive user
interface to obtain their different needs and get all the data and information in a best
way among it. This interface could be a normal computer monitor but it also can be a
kind of hand held device that informs its owner with the latest and recent changes and
variations (PDA) [12].

Table 1. Human Activities versus Interface Agents Activities

Human Agents Interface Agents

Local
control
Unit
Operator

Receiving Emergency Call at the Local
control Unit & get Vital Data, Primary
Evaluation & deciding if it is a Disaster, Get
the Initial Vital Data , Give the first aid
advance, Get the Info & interrupt the
Process if any Problems, Order the Mobile
Unit to go to Patient, Inform Mobile Unit the
Hospital_ID & order to take Patient quickly
to Hospital

Local
Control
Agent

Record New Caller, Send Disaster
Alarm, Record & Forward Vital Data
& Invoke an E_Case_Record,
Forward assigned Hospital, Forward
assigned Mobile Unit, Command to
drive to Patient, Command to drive to
Hospital

Mobile
Unit EMT

Receive the Emergency Alarm, Go to the
Patient, Put the Patient in the Ambulance
Unit, Connect the patient to the Monitor, Go
to Hospital

MobileUnit
EMT-Agent

Request a Mobile Unit (Time
constrained request & Reply once),
Send the Acceptance & estimate the
arrival time to the patient, Refuse
Message give a reason, Record the
arrival time, drive to hospital

Mobile
Unit
Paramedic

Examine the patient, Initial Assessment of
Patient status & Decide decease pattern &
urgent needs, Stabilization, Begin with the
needed 1st Aid services, Triage Process

Mobile
Paramedic-
Agent

Search for the appropriate hospital,
Record the non stopping data
permanently

Caller Emergency Call Hospital A. Reply the Availability Percent,...

FireDep-A. Main
Control
Unit Man.

Receiving Emergency Call at the Main
Control Unit

PoliceDep.A

− Task Agents: are controlled by the interface agent and processes tasks in behalf of

their users. They fulfill information processing activities, solve problems and
terminate when finished. The task agents perform different tasks; like initiating an
E_Case_Record, deciding the appropriate mobile unit type to be sent to the patients,

66

Poster Proceedings KI2004

solving nested organizational conflicts between the control unit, hospitals and the
mobile units. At a later phase they can function as an operation scheduler, trauma-
team consulter, blood examiner etc. Task agents have to know the model of the task
domain as well as how to perform the task and gather the needed information. They
collaborate together within the task layer to solve conflicts and get their request
from the information specific agents [5, 12].

− Information Agents: collect and provide various data and information from their
distributed data sources easily and fast. They respond to information requests and
have the ability to cooperate with other agents when needed to provide the user with
his needs [5]. The information-specific agents have to know how to access the
databases and solve conflicts. Information strategies and protocols for coordination
with relevant software agents are of great importance see Fig. 5.

In this model each agent has been designed to fulfill his activities and tasks.
Table.1 shows the human activities versus the interface agent activities contained in the
pre-hospital phase. Table..2 give an overview of task and information agent activities.

Table 2. Task and Information Agents Activities

EmergencyCase-
Agent

Task Agent

Check for Duplication, Actualize & Update the
ECaseRecord, Search for the nearest Mobile Unit to
the Patient, Search for the most suitable Hospital, Get
the Patient Electronic Record

MobileUnit
Manager-Agent

Task Agent

Request an appropriate available Mobile Unit, Record
the Rejection case & Delete the Mobile Unit from the
available list, Check the Acceptance List & choose
the appropriate Mobile Unit

LocalControl
Task-Agent

Task Agent
Identify the Call origin & Create CallerID

LocalControl
MobileUnit-
Advisor

Task Agent
Suggest a Mobile Unit Type & update the
EcaseRecord

HospitalManager-
Agent

Task Agent
Search for the appropriate hospital

Health-Insurance
Agent

Information
Agent

Get the Patient Medical Data

HospitalInfo-
Agent

Information
Agent

Get the Hospital Information

Contribution and Further Work

Through this paper one can recognize the benefits and importance of using agent-
based EMSS. Agents will be of great help and support for the involved persons to
eliminate a lot of information problems. Beside the discussed benefits of building and
implementing this model, it will face some problems; legacy, authority, privacy, social
trust, special trust etc. This should not be an obstacle or hinder that prevents us to profit
from using the agents technology. The main goal of going forward in this domain is our
aim for successful patient outcomes. The proposed agent-based model will provide all

67

Poster Proceedings KI2004

the requirements and demands of the EMSS and will overcome most of its limitations
and problems. It insures the following:
− Care of the patient at each stage will be coordinated with services to be delivered at

other stages in the response.
− These various services may be provided by different organizations. While it is

important that each organization maintain operational autonomy to efficiently
provide services, this autonomy must be balanced by the equally important need for
multi-organizational cooperation in order to complete the "chain of survival"
through all phases of the EMSS.

− Coordination of all aspects of the EMSS; system participants, facilitating the
interdependent relationships, which are necessary for coordinated care services

− It assures a high quality of coordination, communication and negotiation.
The real system implementation with the various agents has just begun and is in its

first phase. Object-Oriented Programming concepts will be used with Java language
and Jade (Java Agent DEvelopment Framework) , which simplifies the implementation
of multi-agent systems through a middle-ware that complies with FIPA specifications.

References

1. David, B., et al.: Trauma System Agenda For the Future: American Trauma Society Supported
by the U.S. Department of Transportation, National Highway Traffic Safety Administration.
(2002) .Website: www.nhtsa.dot.gov/people/injury/ems/TRAUMA_SYSTEM/index.htm

2. Peden, M., McGee, M., Shama, G.: The Injury Chart Book: A graphical overview of the global
burden of injuries. World Health Organization, Geneva, (2000)

3. Fransis, L.: Benefits of Trauma Scoring Systems in the Emergency Unit at El Kasr El Ainy.
Cairo University, (2000) in Arabic

4. Walker, J., et al.: Ambulance Services, city of Temple, (2003) chapter 5
5. Knublauch, H., et al., Towards a Multi-Agent System for Pro-active Information

Management in Anesthesia: Fourth International Conference on Autonomous Agents (Agents
2000), Workshop on Autonomous Agents in Health Care, Barcelona, Spain (2000)

6. Nabors, M., Harris, M., Pletz B.: The Roles and Responsibilities of Local Emergency Medical
Services Agencies within the California Emergency Medical Services System: A Position
Paper by the Emergency Medical Services, Administrators Association of California, (1996)

7. Moreno A.: Medical Applications of Multi-Agent Systems. Rovira University, Spain, (2002)
8. Franklin, S., Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. Proceedings of the Third International Workshop on Agent Theories, Architectures,
and Languages, Springer- Verlag, (1996)

9. El Hadddad, B.: Towards building Multi-Agent Systems as Supporters in the Health Care
Domain. CSP Workshop , Poland (2003)

10. Bradshow, J.: Software Agents, American Association for Artificial Intelligence, (1997)
11. Sycara, K., et al.: Distributed Intelligent Agents. Carnegie Mellon University, Pittsburgh, USA,

(1996)
12. Knublauch, H., Rose, T.: Tool-Supported Process Analysis and Design for the Development of

Multi-Agent systems. Bologna, Italy (2002) book chapter in: F. Giunchiglia, J. Odell, G. Weiss
(Eds.), Agent-oriented software engineering III, Lecture Notes in Computer Science, Vol.
2585, Springer-Verlag (2003)

13. Jennings, N.R., Wooldridge, M.J.: Agent Technology Foundation, Application, and Markets.
Berlin, Heidelberg, Springer-Verlag, (1988)

68

Poster Proceedings KI2004

Object-oriented Model-based Extensions of Robot
Control Languages

Armin Müller, Alexandra Kirsch, Michael Beetz

Informatik IX, Technische Universit¨at München

Abstract. More than a decade after mobile robots arrived in many research labs
it is still difficult to find plan-based autonomous robot controllers that perform,
beyond doubt, better than they possibly could without applying AI methods. One
of the main reason for this situation is abstraction. AI based control techniques
typically abstract away from the mechanisms that generate the physical behavior
and refuse the use of control structures that have proven to be necessary for pro-
ducing flexible and reliable robot behavior. The consequence is: AI-based control
mechanisms can neither explain and diagnose how a certain behavior resulted
from a given plan nor can they revise the plans to improve its physical perfor-
mance.
In our view, a substantial improvement on this situation is not possible without
having a new generation of robot control languages. These languages must, on
the one hand, be expressive enough for specifying and producing high perfor-
mance robot behavior and, on the other hand, be transparent and explicit enough
to enable execution time inference mechanisms to reason about, and manipulate
these control programs. This paper reports on aspects of the design ofRPL-II,
which we propose as such a next generation control language. We describe the
nuts and bolts of extending our existing language RPL to support explicit models
of physical systems, and object-oriented modeling of control tasks and programs.
We show the application of these concepts in the context of autonomous robot
soccer.

1 Introduction

Robot control languages have an enormous impact on the performance of AI-based
robot controllers. The languages allow for explicit and transparent representation of
behavior specifications for reasoning and execution time program manipulation, and
they provide the control structures for making the robot behavior flexible, reliable, and
responsive. Despite their importance research on the design of robot control languages
that enable intelligent robot control is largely neglected in AI — primarily for historical
reasons.

As the predominant software architecture for autonomous robot control most re-
searchers have used layered architectures, most notably the 3T architectures [15]. Char-
acteristic for these layered software architectures is the use of multiple control lan-
guages: a programming language for the low-level reactive control and a very simple
high-level language for strategic planning. This way the planner can still nurture the
illusion of plans being sequences of plan steps and many existing planning techniques

69

Poster Proceedings KI2004

carry over to robot control more or less the way they are. To bridge the gap between
the partially ordered sets of actions (goal steps) and the low-level feedback control rou-
tines most software architecture use an intermediate control layer. In this intermediate
layer an interpreter for a reactive plan language, such as RAP [7] or PRS [9], takes the
high-level plan steps, selects methods for carrying them out based on sensor data, and
executes them in a robust manner.

Unfortunately, this layered abstraction of robot control comes at high cost. The
planning mechanisms cannot diagnose the behavior produced by a given plan because
the behavior producing mechanism is much more sophisticated than assumed by the
planning mechanisms. In addition, the planning mechanisms cannot exploit the variety
of control structures offered by reactive plan languages to produce better behavior.

Let us illustrate this point using the following example taken from the autonomous
robot soccer domain. A robot is to score a goal. An AI planner would typically produce a
simple two step plan: (1) get the ball; (2) dribble it into the goal, because ball possession
is a precondition for scoring. The navigation and the dribbling actions are considered as
atomic black boxes. Unfortunately, these mechanisms do not allow for the generation
of high performance plans with high scoring probability such as the one depicted in
Figure 1(right). To compute such a high performance plan planning mechanisms have to
tailor the parameterizations of the individual actions using accurate causal and physical
models of the control routines they use.

generated using
causal models

optimized using
projection functions

Belief State Intention Valid Plan Optimized Plan
"Score Goal"

Fig. 1. Chaining of actions.

As plan-based robot control systems come of age and are applied to real world tasks
a new generation of software architectures arises that are capable of dealing with these
problems. These second generation software architectures share a number of important
principles. These shared principles include (1) lightweight reasoning is embedded into
the robot control languages; (2) the architectures invite programmers to specify models
of the robot and its environment explicitly within the program code; (3) have much
richer languages for the specification of goals in terms of constraints on the values of
state variables.

In our research group we are currently working on the next generation of the robot
control/plan language RPL [12] calledRPL-II. RPL-II allows for the explicit specifi-
cation and representation of robot learning problems [5], for the specification of explicit

70

Poster Proceedings KI2004

robot and environment models, is object-oriented and supports the specification of spe-
cialization hierarchies for control tasks and routines and reasoning about them.RPL-II
is an industrial strength robot control/plan language. It is implemented unlike its pre-
decessor on a public domain CommonLisp using state of the art software tools such as
Corba, UFFI, etc.RPL-II is applied to a variety of control tasks with different char-
acteristics including mid-size robot soccer, a simulated household robot, and a robot
assistant in an intelligent camera-equipped office environment.

This paper focuses on a particular aspect of the design ofRPL-II, namely the rep-
resentation and specification of the system that the controller controls and the control
tasks that it performs. In a companion paper [5] we have described the new language
features that support experience-based learning. The main contributions of the paper
are the means for specifying state variables and their management, control tasks and
control routines, and object oriented programming.

We demonstrate the application of these mechanisms to the implementation of our
next generation controller for autonomous robot soccer. The implementation results
in control programs that make extensive and explicit use of learning mechanisms and
routines that can be much better reasoned about and transformed. This is primarily
achieved through the explicit representation of physical entities and control tasks and
the reasoning about them.

The remainder of the paper is organized as follows. In section 2 we describe the
problems we encountered with our former control program for the AGILO soccer robots
and sketch the ways we want to solve them. Section 3 introduces the basic concepts for
model-based reasoning about physical control tasks. The use of these concepts is then
demonstrated in the sections 4 and 5. We conclude with our next intended extensions of
RPL-II, adiscussion of related work, and our conclusions.

2 Languages at the Reactive Layer

The reasons why we want to use a model-based, object-oriented approach in structuring
our control programs, are our experiences with former controllers of the AGILO soccer
robots. [6] Let us therefore sketch how the controllers worked, which problems occurred
and the conclusions we draw from them.

The control program ran in a low-level control loop that (1) updates the world
model (section 2.1) and (2) chooses a command (section 2.2) in every time step (ev-
ery 0.01 sec).

2.1 State representation

We need a set of variables containing information about the most likely current state
of the world. We call this information “belief state”. The belief state is represented in a
class “world model”, that provides variables and functions for any value the robot might
want to know. It is not possible to differentiate between

– constant values (that would actually deserve the name “world model”),
– values taken from the percept or belief state vector, and

71

Poster Proceedings KI2004

– values calculated from the belief state and world model.

So there is a representation of the state of the world, but with several drawbacks.
The variables representing the state are not related to any physical values. In different
parts of the program variables with different names, but the same physical meaning can
occur. The orientation of the robot might in one place be calledphi, in another place
phi-deg. On the other hand does the same variable name not necessarily denote the
same physical value. The variablepos-x can at one time express the robot’s position, at
another time the position of the ball.

Besides, the robot and the environment are not represented explicitly. When starting
the robot in a certain environment the right configuration file has to be loaded and
constant values are set. So we have just variables filled with values that have apparently
nothing to do with the outside world.

Another problem is the heterogeneity of measuring units. This is especially hard
when it comes to angles. Sometimes the value is given in degrees, sometimes in radian
measure. In the action selector it is quite save to assume degrees, but there is no standard
if degrees range from0◦ to 360◦ or from−180◦ to +180◦.

2.2 Action Selection

Figure 2 shows a simplified extract of our old action selection routine. As is easily
visible, there is only procedural knowledge in the controller. The information exchange
between calling and called procedures is done by passing a variableparam. The value(s)
of this parameter sometimes denote the goal, sometimes a parameterization of the called
function.

Furthermore the structure of the code seems very arbitrary. The purpose of the first
three if-conditions is to trap failures. Then a more interesting part follows which decides
what to do whenever the robot has the ball. Then again we have two failure conditions
testing if the robot is in one of the penalty areas. Here we can see another problem. The
reaction of being in the own penalty area or in that of the opponent team is almost the
same and could be done by the same or a related function.

So in the end only three of eight cases build up the real controller code. The rest
is only there for trapping failures. Even worse, the interesting parts are spread over the
code and intercepted by failure testing. It is hopeless to reason about the best action,
when there is no difference between failure trapping and real action selection.

Also the granularity of decisions seems ill-founded in our old controller code. When
the robot has the ball, all we want to do is getting the ball somehow into the goal. Here
the controller already decides how to do this (by dribbling the ball into the goal, kicking
it or passing it to another player).

Another nuisance of our former controller is that it works in single time steps only
and the decisions are purely reactive.

3 Key Concepts of RPL-II

After we have given a summary of the necessity of building a model-based, object-
oriented system in section 2, we now have a closer look at the concepts we want to
employ. These concepts are

72

Poster Proceedings KI2004

function run-soccer-agent(worldmodel)
var param := null
var command
if (not worldmodel.on-field) then command := NO-OP
elseif (worldmodel.stuck-time > MIN-STUCK-TIME) then command := STUCK
elseif (not worldmodel.localized) then command := RELOCALIZE
elseif worldmodel.ball-is-in-guiderail then

// do a lot of calculations and decide whether to call
// PASS2POS, SHOOT2GOAL or DRIBBLE (with the goal as destination)
param := 〈xdest,ydest〉
command := DRIBBLE // for example

elseif (worldmodel.time-in-opp-penalty-area > MAX-PA-TIME) then
param := voronoi-pathplanning
command := LEAVE-OPP-PENALTY-AREA

elseif (worldmodel.time-in-own-penalty-area > MAX-PA-TIME) then
param := voronoi-pathplanning
command := LEAVE-OWN-PENALTY-AREA

elseif (worldmodel.nearest-to-ball = my-robot-no) then
param := voronoi-pathplanning
command := GO2BALL

else command := FACE-BALL
execute(command, worldmodel, param)

Fig. 2. Code extract of our old AGILO controller.

1. state representation with globally accessible state variables
2. goal representation as constraints over state variables
3. control tasks and control routines arranged in an object hierarchy

We use the robot control language RPL (section 3.1), that provides constructs for
monitoring failures while performing an action and parallel execution of processes. So
now we think more in terms of actions than in terms of low-level commands and control
loops.

For the representation of the robot’s belief state we use globally known state vari-
ables that are described in more detail in section 3.2. Every variable corresponds to
a physical value. We have not yet approached the representation of measuring units,
although it should not be difficult within our framework.

The goal is now specified explicitly, tightly coupled to the state variables (section
3.3). We regard a goal as an intention how the world should be changed.

Finally, we require means of how to reach a given goal from a certain belief state.
Our control procedures are structured along two lines, an object-oriented inheritance
hierarchy and a calling hierarchy involving two classes of control procedures (section
3.4). We represent procedures as first-class objects, which allows for the specification
of relevant calling parameters. Thus we can maintain a uniform calling mechanisms for
all procedures. Inheritance is also an important factor when it comes to representing
similarities between procedures. This makes the implementation very structured and
concise.

To structure the calling hierarchy we introduce two classes of procedures,control
tasksandcontrol routines. A skill like “get-ball-into-goal” is implemented as a control

73

Poster Proceedings KI2004

task. The different possibilities to fulfill the job like “dribble-ball-into-goal” or “kick-
ball-into-goal” are represented as control routines. Control tasks and routines are called
alternatively. The success and failure testing is completely done in the control task, as
well as the choice of the appropriate routine in the current situation.

3.1 The Reactive Plan Language RPL

The robot’s plans are implemented in RPL (Reactive Plan Language) [12], which has
been successfully employed in different projects [4, 3, 2]. RPL provides conditionals,
loops, program variables, processes, and subroutines as well as high-level constructs
(interrupts, monitors) for synchronizing parallel actions. To make plans reactive and
robust, it incorporates sensing and monitoring actions, and reactions triggered by ob-
served events.

Connecting Control Routines to “Sensors”Successful interaction with the envi-
ronment requires robots to respond to events and asynchronously process sensor data
and feedback arriving from the control processes. RPL providesfluents, registers or
program variables that signal changes of their values. Fluents are used to store events,
sensor reports and feedback generated by low-level control modules. Moreover, since
fluents can be set by sensing processes, physical control routines or by assignment state-
ments, they are also used to trigger and guard the execution of high-level control rou-
tines.

Fluents can also be combined into digital circuits that compute derived events or
states such as the robot’s current distance to the ball. That fluent would be updated
every time the position of the robot or the ball changes, since it is calculated out of the
respective fluents.

Fluents are best understood in conjunction with the RPL statements that respond
to changes of fluent values. The RPL statementwhenever F B is an endless loop that
executesB whenever the fluentF gets the value “true.” Besideswhenever, wait for(F)
is another control abstraction that makes use of fluents. It blocks a thread of control
until F becomes true.

Behavior Compositionsources use control structures for reacting to asynchronous
events, coordinating concurrent control processes, and using feedback from control pro-
cesses to make the behavior robust and efficient. RPL provides several control struc-
tures to specify the interactions between concurrent control processes (figure 3). The
control structures differ in how they synchronize processes and how they deal with fail-
ures.

The in parallel do-construct runs a set of processes in parallel and fails if any of
the processes fails. The second construct,try in parallel, can be used to run alternative
methods in parallel. The compound statement succeeds if one of the processes succeeds.
Upon success, the remaining processes are terminated. Similarlytry in order executes
the alternatives in the given order. It succeeds when one process terminates successfully,
it fails when all alternatives fail.with policy P B means “execute the primary activityB
such that the execution satisfies the policyP.” Policies are concurrent processes that run
while the primary activity is active and interrupt the primary if necessary. Additional
concepts for the synchronization of concurrent processes include semaphores and pri-
orities.

74

Poster Proceedings KI2004

in parallel do p1...pn
in parallel do navigate(〈1.3, 2.0〉)

face-ball()

try in parallel p1...pn
try in parallel calculate-position-with-odometry()

calculate-position-with-camera()

try in order p1...pn
try in order score-goal()

distract-opponent()

with policy p b
with policy check-holding-ball()

dribble(〈4.2, 1.9〉)
Fig. 3. Some RPL control structures and their usage.

3.2 State Representation

We represent the state of the world by globally declared variables. Figure 4 shows the
class hierarchy of these variables.

Every value that is globally known throughout the system is called aglobal value.
Every variable has a name and a (current) value. The world consists of values changing
over time and values that remain constant.Constantsare initialized when the system is
started and represent the world model (section 4).

More interesting arestate variables. Their value is represented as an RPL fluent,
because it changes over time. Apart from being informed when a state variable has
changed, it is often necessary to have access to former values. Arecording state vari-
ablekeeps a history of its past values. The history values can be accessed by the same
functionget-value that is used to obtain the current value of a state variable by specify-
ing an additional parameter giving the number of steps we want to look back in time.

global value
name

state variable
fluent

recording state
variable
history

observable state
variable

goal

controllable state
variable

derived state variable
elements

combination function

constant

Fig. 4. Class hierarchy of globally known variables.

With these specifications we can now defineobservable state variablesthat repre-
sent our percept or belief state andcontrollable state variablesrepresenting the com-
mand. An observable state variable has an additional parameter for setting a goal value.
This is explained in more detail in section 3.3.

The representation of the plain percept as state variables is usually not sufficient to
make adequate decisions. For example we might want to react if a player is leaving the
boundary of the soccer field. Or maybe we want to know if the robot has been stuck
over a longer period of time. Therefore we introduced the concept ofderived state

75

Poster Proceedings KI2004

variables. From the outside, derived state variables are accessed just like observable
state variables. But instead of keeping a history we remember the components and the
function that produces the value of the derived state variable taking the component
state variables as input. When a past value is accessed it is calculated from the history
elements of the components.

As an example we have a look at the state variables in our soccer robots. The ob-
servable state variables includepos-x, pos-y andphi-deg which represent the x- and
y-coordinates of the robot and its orientation as well asball-x andball-y denoting the
position of the ball. The controllable state variables arec-rotation, c-translation, which
set the robot’s rotational and translational velocities, andkick, a boolean variable indi-
cating whether to use the kicking device. Now we can define a derived state variable
denoting the robot’s distance to the ball:

make-instance derived-state-var
name: distance-to-ball
elementary fluents: pos-x, pos-y, ball-x, ball-y
combination function:

p
(pos-x − ball-x)2 + (pos-y − ball-y)2

The fluent of the variabledistance-to-balldepends on the state variables given inel-
ementary fluents. Thecombination function calculates the current distance of the robot
and the ball.

In order to test whether the robot is approaching the ball, we only need to check
whether the distance to the ball has decreased:

fluent approaching-ball
(get-value(distance-to-ball, t) < get-value(distance-to-ball, t-1))

Sincedistance-to-ballis not arecording state variable, it does not have a history of
its own. As the components and the function for obtaining the value are known and the
components have a history, older values ofdistance-to-ballcan be calculated.

3.3 Goals

Up to now our controller follows the very simple policy of our former control program
described in section 2. In the future we would like to use a belief-desire-intention struc-
ture for the representation of top level goals or intentions (section 6). On the lower level
we have to address the issue of how to tell a routine what to do.

There are two points of view for representing goals. First, we could order a routine
to do something for us like “go to position〈1.0, -1.5〉”. So we have to pass a data
structure that the routine must know how to interpret. The drawback of this idea is that
there is no explicit relationship to the state variablespos-xandpos-y. The routine just
knows that when these two state variables have the value of the goal specification the
work is done.

Now the situation can also be seen as follows. Our control program wants to alter
the world in a certain way, it might for example want to be in a state where the robot
is at position〈1.0, -1.5〉. It can now tell the corresponding state variables that it would
like to have them changed to a different value. Then the controller calls a routine that is

76

Poster Proceedings KI2004

best fit to produce the desired state from the current situation. The called routine looks
up the goal values of the state variables and tries to reach them.

3.4 Procedures

To support an explicit representation of the agent program, we describe procedures as
first class objects, so that we can reason about aspects such as performance measures or
we can find out if a procedure has yet to be learned.

procedure

control procedure

control routine control task agilo controller

environment process

Fig. 5. Class hierarchy of procedures.

Figure 5 shows the basic class hierarchy of procedures. Aprocedureis any kind of
function. At the moment, the for us most interesting subclass ofprocedureis acontrol
procedure. A control proceduremaps recent percepts to a command. Other kinds of pro-
cedures like environment processes, that map a command to a world state, might play a
larger role in the future when we will model environment and perception processes.

For a good robot behavior we found it necessary to introduce two concepts of con-
trol procedures,control tasksandcontrol routines. A robot should have certain skills,
in the robot soccer domain we need skills such as dribbling or scoring a goal. These
skills are calledcontrol tasks. Usually there are different ways to perform a skill. For
example, in order to score a goal the robot might use its kicking device or dribble the
ball into the goal. These implementations are calledcontrol routines. The job of the
control task is to decide which control routine should be called in the current situation.
This decision is based on models of the control routines that predict the time needed to
fulfill a task or the probability of being successful.

Figure 6 shows a typical pattern of how control tasks and routines call each other.
The task of scoring a goal can be achieved by two routines. One of them kicks the ball
into the goal, the other one dribbles the ball to a point inside the goal. This second
routine can be implemented like this:

control routine dribble-ball-into-goal
p := find-goal-point()
adjust-goal(pos-x ← p.x, pos-y ← p.y)
execute(dribble)

We see that we need the task of dribbling in order to fulfill our goal. Therefore the
control taskdribble is executed, which can again be implemented by different control
routines.

The “procedures” we are talking about are actually objects, the function that is really
running is the generic functionexecute. With an object oriented approach we use inheri-
tance mechanisms to get compact and concise implementations of theexecute methods.
This object oriented approach is especially useful in the domain of robot soccer where

77

Poster Proceedings KI2004

score goal

kick ball into goal dribble ball into goal

dribble

dribble 1 dribble 2 dribble 3

Fig. 6. Typical calling pattern ofcontrol tasksandcontrol routines

almost every action comes down to navigation. So by using an object hierarchy we save
a lot of work and redundancy.

Control TasksEvery skill is modeled as acontrol task. It should know when it has
succeeded and when a failure has occurred and either react to it or abort execution. A
special case of a failure is the exceeding of time resources. Since a control task’s job
is to choose the best control routine, it must know which control routines are available.
All this information is given in the class definition:

class control task
success
failure
time-out
available routines

In most cases the control task will choose a control routine and check for failures or
success during the execution. Such a method is shown in figure 7. What remains to do
is the specification of the methodchoose-control-routine, which has to be implemented
for each control task using models provided by the control routines.

method execute (ct of class control-task)
r := choose-control-routine (ct)
with-policy

in parallel do
whenever ct.failure fail(”general failure”)
seq

wait time ct.time-out
fail(”time-out”)

try in parallel
execute(r)
wait for ct.success

Fig. 7. Methodexecute for classcontrol task

Control Routinesare implementations of acontrol tasks. Since a control routine
is always called by a control task, we don’t have to worry about success or failure
conditions. In both cases, the routine is interrupted by the control task. If there are
errors the control task cannot detect, we can check them in theexecute function of the
control routine and return afail command.

78

Poster Proceedings KI2004

A control routine should not only reach a given goal state, it should also be able to
predict how long it will take to reach this goal, what the accuracy of the solution will
be or the probability of being successful at all. Thus, a control routine requires not only
anexecute method, but also methods providing information about its behavior.

4 Description of the Agent and the Environment

An intelligent robotic agent is more than just a program. It is a complex system that
interacts with an environment through percepts and commands. We use this model to
describe the agent, the environment and their interactions.

4.1 Declaration of the System Components

Fundamentally our system consists of two parts: an agent and an environment as de-
scribed in [14]. These two components are absolutely independent, an agent can run in
different environments and an environment can be the home of different agents. There-
fore our first step is to state which agent should run in which environment. These dec-
larations are principally used to declare state variables and constants (see section 3.2).

Figure 8 shows the parts we have to specify and how this information is used in
global variables. Ouragentconsists of abody, an architectureand aprogram. The
program is a control procedure that is called when the agent is given the command
to run. The body describes physical properties of the agent like its dimensions. The
architecture provides the connection to the environment, it describes which features the
agent can receive as a percept and what kind of command can be given. Theenvironment
the agent acts in has certain properties that remain unchanged over time.

width of soccer field
lendth of soccer field
position of own goal

...

Environment

Body
width
length

Program

Belief State
observable state variables

World Model
constants

Command
controllable state variables

percept:
pos−x
pos−y

phi

c−rotation
c−translation

kick

command:

Architecture
Agent

Fig. 8. Initialization of constants and state variables.

To summarize the information given by the agent and the environment we have
three kinds of information, which is then provided by the global variables described in
section 3.2: (1) a constant world model, (2) a belief state changing over time, and (3) a
command.

79

Poster Proceedings KI2004

4.2 Running the System

Now that we have declared an agent and an environment, we can run the agent. To do
this, we call the functionrun-agent, which calls a methodboot and starts a process
update, both depending on theagent-architectureand theenvironment, and starts an
RPL process that runs theagent-program. After initialization by theboot method agent
and environment don’t interact directly. The communication is done by the process
update that gives the command in the controllable state variables to the environment
and receives the percept, which it writes to the observable state variables. The state
variables are set and read by a different process calledRPL process which is running
the agent program (figure 9).

Environment

Program

Architecture

Agent

Body

Belief State
observable state variables

World Model
constants

Command
controllable state variables

RPL PROCESS UPDATE STATE VARS

Fig. 9. The system at work.

When the agent has finished its job or when we want to stop the agent from the
outside, the functionkill-agent is called to stop theRPL andupdate processes and to
call a methodshutdown that specializes over thearchitectureand theenvironment.

5 The Agilo Controller

Using the concepts described in the previous sections we have implemented a very sim-
ple controller for our soccer robots. The controller consists of two processes: a moni-
toring and a controlling process. For this purpose the RPL constructwith-policy can be
used very effectively as shown in figure 10. The action selection is now concentrated in
one loop, whereas the failure testing is done outside.

Of course, this is a very simple controller that has to be enhanced. We are planning
to use a belief-desire-intention architecture to make sophisticated decisions (see also
section 6).

80

Poster Proceedings KI2004

with policy
in parallel do

whenever not-localized relocalize()
whenever ball-position-unknown find-ball()
whenever robot-is-stuck unstick()
whenever out-of-bounds return-to-field()

loop
try in order

when holding-ball score-goal()
when nearest-player-to-ball go-to-ball()
watch-field()

9>>>>=
>>>>;

Failure testing

9>>>=
>>>;

Action Selection

Fig. 10. Controller of our soccer robots

6 Research Agenda for RPL-II

We are developingRPL-II, the nextgeneration of the robot control and plan language
RPL. RPL-II supports the specification of high performance robot control programs
by combining the expressiveness of RPL with respect to behavior specifications with
advanced concepts that enable AI based control mechanisms to better reason about and
manipulate control programs during their execution.

The extensions we have realized so far include the support of specifying explicit
models of the physical systems to be controlled and object-oriented modeling of con-
trol tasks and routines. In two companion papers we have described extensions for the
explicit representation of learning tasks in experience-based learning [5] and the tighter
integration of programming and learning [10].

Still, these research results present only initial steps of the development ofRPL-II,
as a second generation AI-based robot control language. So let us briefly sketch the next
steps on our research agenda: (1) comprehensive mechanisms for goal management,
(2) improved physical system modeling, and (3) bootstrapping learning mechanisms
for complex application tasks.

Comprehensive Goal Management.At the moment we only have the notion of low-
level goals that are essentially constraints on state variables. So farRPL-II does not
support goal selection that is consistent with the robot beliefs and other intentions of
the robot. To support these goal management mechanisms we will add “desires” and
“intentions” in addition to the current concept “goals” as first class objects inRPL-II
and provide the respective reasoning mechanisms. This will give us the possibility of a
much better action selection than the rule-based policy we are using now.

Deep models of state variables.While our current extensions make state variables
explicit in the program code they still do not specify their physical meaning. We plan
to provide such mechanisms by requiring programmers to specify the physical mean-
ing in an explicit domain model formalized in a description logic. We believe that a
concept taxonomy for a wide range can be provided and only small modifications for
the individual application is needed. The slightly increased modeling effort will pay
off immensely because using the domain model automated reasoning processes will be
capable of solving much harder reasoning problems. For example, that all the condi-
tions of a behavior trigger are observable or that two control routines will not interfere
because the state variables they change are independent of each other.

81

Poster Proceedings KI2004

Bootstrapping Learning Mechanisms.Finally, in RPL-II it will be possible to run
partially specified control programs. The interpreter will then detect control tasks that
the robot has no control routines for and acquire them by solving the associated learning
tasks. This way a control program can complete itself or adapt itself to new environ-
ments and tasks by means of bootstrap learning.

7 Related Work

Model-based programming has been a major issue in several space exploration projects
like Remote Agent [13], Livingstone [18], the Mission Data System Project [16], Re-
active Model-based Programming Language [17] and others [1, 8, 11]. All of these
projects represent the physical behavior of very complex systems in an explicit man-
ner. This gives them the power to use lightweight reasoning techniques. The systems in
these projects have to work very reliably. Vital parts of the physical systems are redun-
dant, so that in the case of failure the system can be reconfigured. For this purpose the
properties of the physical system parts have to be known by the controller. In our case
reliability is not such an important issue. However, the environment our soccer robots
have to deal with is much more dynamical. So we are interested in a robot that can adapt
its control program to changing situations in its environment.

8 Conclusions

In this paper we introduce model-based concepts for the programming of robot con-
trollers. The representation of state knowledge is done by state variables that are known
throughout the system. Tightly coupled to the state variables is the representation of
low-level goals. Those goals are achieved by control procedures arranged in two hierar-
chies: an object hierarchy that exploits inheritance mechanisms and a calling hierarchy
including control tasks and control routines.

These concepts enable us to describe the robot and its environment declaratively.
Using the robot control language RPL we can build a highly structured control program,
where failure handling and action selection are separated.

On this basis we plan to include learning mechanisms as well as lightweight rea-
soning techniques. We still need to implement higher-level concepts like a belief-desire-
intention architecture or logic representations to facilitate reasoning in the controller.

References

1. A. Barrett. Domain compilation for embedded real-time planning. InProceedings of the
ICAPS’03 Workshop on Plan Execution, 2003.

2. M. Beetz. Structured Reactive Controllers.Journal of Autonomous Agents and Multi-Agent
Systems. Special Issue: Best Papers of the International Conference on Autonomous Agents
’99, 4:25–55, March/June 2001.

3. M. Beetz. Plan-based Control of Robotic Agents, volume LNAI 2554 ofLecture Notes in
Artificial Intelligence. Springer Publishers, 2002.

82

Poster Proceedings KI2004

4. M. Beetz, T. Arbuckle, M. Bennewitz, W. Burgard, A. Cremers, D. Fox, H. Grosskreutz,
D. Hähnel, and D. Schulz. Integrated plan-based control of autonomous service robots in
human environments.IEEE Intelligent Systems, 16(5):56–65, 2001.

5. M. Beetz, A. Kirsch, and A. M¨uller. Rpl-learn: Extending an autonomous robot control
language to perform experience-based learning. In3rd International Joint Conference on
Autonomous Agents & Multi Agent Systems (AAMAS), 2004.

6. M. Beetz, T. Schmitt, R. Hanek, S. Buck, F. Stulp, D. Schr¨oter, and B. Radig. The AGILO
robot soccer team - experience-based learning and probabilistic reasoning in autonomous
robot control.Autonomous Robots, 2004. accepted for publication.

7. J. Firby.Adaptive Execution in Complex Dynamic Worlds. Technical report 672, Yale Uni-
versity, Department of Computer Science, January 1989.

8. M. Ingham, R. Ragno, and B. C. Williams. A reactive model-based programming language
for robotic space explorers. InInternational Symposium on Artificial Intelligence, Robotics,
and Automation in Space (i-SAIRAS), Montreal, Canada, 2001.

9. F. Ingrand, M. Georgeff, and A. Rao. An architecture for real-time reasoning and system
control. IEEE Expert, 7(6), 1992.

10. A. Kirsch, A. Müller, and M. Beetz. Programming robot controllers that learn. submitted to
International Conference on Intelligent Robots and Systems (IROS), 2004.

11. R. Knight, S. Chien, and G. Rabideau. Extending the representational power of model-
based systems using generalized timelines. InThe 6th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space (i-SAIRAS), Montreal, Canada, 2001.

12. D. McDermott. A Reactive Plan Language. Research Report YALEU/DCS/RR-864, Yale
University, 1991.

13. N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote agent: To boldly go where no
ai system has gone before.Artificial Intelligence, 103(1-2):5–48, August 1998.

14. S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice-Hall, Engle-
wood Cliffs, NJ, 1995.

15. S. Thrun, A. B¨ucken, W. Burgard, D. Fox, T. Fr¨ohlinghaus, D. Hennig, T. Hofmann, M. Krell,
and T. Schmidt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp,
R. Bonasso, and R. Murphy, editors,AI-based Mobile Robots: Case studies of successful
robot systems. MIT Press, Cambridge, MA, 1998.

16. R. Volpe and S. Peters. Rover technology development and infusion for the 2009 mars
science laboratory mission. InProceedings of 7th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space (i-SAIRAS), 2003.

17. B. C. Williams, M. Ingham, S. H. Chung, and P. H. Elliott. Model-based programming of
intelligent embedded systems and robotic space explorers.Proceedings of the IEEE: Special
Issue on Modeling and Design of Embedded Software, 9(1):212–237, January 2003.

18. B. C. Williams and P. P. Nayak. Livingstone: Onboard model-based configuration and health
management. InProceedings of AAAI-96, 1996.

83

Poster Proceedings KI2004

Meta-Reasoning in Multiple-Strategy Proof

Planning

Andreas Meier Erica Melis

German Research Institute for Artificial Intelligence (DFKI)
Saarbrücken, Germany
ameier,melis@dfki.de

Abstract. Monitoring a solution process and applying the right action
at the right moment are at the heart of intelligent problem solving by
humans. This includes the analysis of failure events and the development
of “recommendations” to overcome typical failures.
We present how meta-reasoning on failures can be used in multiple-
strategy proof planning. This reasoning can exploit failures to guide
subsequent proof plan manipulations and refinements. In the automated
proof construction with the proof planner Multi such failure reasoning
cannot only ease the derivation of a solution proof plan but is required
for some problems to find a solution at all.

1 Introduction

In a problem solving process, a step may not result in the expected progress
or may not be applicable as expected. Hence, it is part of intelligent problem
solving to analyze a failure event and to develop “recommendations” to handle
typical failures, i.e., to guide the subsequent solution process. This also holds for
mathematical theorem proving for which “monitoring the state of a solution as
it evolves and taking appropriate action in the light of new information” is a key
skill as Schoenfeld points out in his book on mathematical problem solving [13].

Monitoring the solution process and using “recommendations” requires a
flexible control approach and reasoning about the problem solving situation. In-
telligent humans do not rely upon pre-determined control to guide their problem
solving. Instead, they draw upon a repertoire of heuristics for dynamic solu-
tion construction. As opposed to human problem solving, search-based theorem
proving systems often employ restricted control components. Typically, only the
local selection of the next step of the solution construction is subject of control
reasoning. Other decisions are hard-coded into the system and monitoring and
overseeing the entire problem-solving process is not possible.

In the multi-strategy proof planner Multi the choice points that are subject
to heuristic guidance are not restricted to local decisions, i.e., the choice of the
next goal and the next method. Heuristics are also employed for the decisions
for when and which steps to backtrack and how to deal with certain failures.
They are explicitly represented in so-called control rules, which guide the meta-
reasoning at several levels.

84

Poster Proceedings KI2004

In extensive experiments we applied Multi to several mathematical domains.
The analysis of Multi’s proof attempts revealed typical failure situations as well
as meta-reasoning patterns. It turned out that during the automated proof con-
struction with Multi such failure reasoning patterns do not only guide “clever”
steps that ease the derivation of a solution proof plan but are often necessary to
find a solution at all.

In this paper, we shall describe several meta-reasoning patterns that ana-
lyze and exploit failures to guide proof plan manipulations and refinements. We
explain how the meta-reasoning patterns are realized in Multi and exemplify
their application to proof plan ε-δ-problems. Although we use ε-δ-problems as
application domain all the described meta-reasoning patterns are applicable in
other domains as well.

The paper is structured as follows. First, we introduce the basics of proof
planning with multiple strategies. Afterwards, we describe failure reasoning pat-
terns to guide the search in Multi. Section 4 explains the application of Multi
to ε-δ-problems. Section 5 exemplifies the use of the failure reasoning patterns
with ε-δ-problems and section 6 summarizes conducted experiments. The paper
concludes with the discussion of the results and related work in section 7.

2 Proof Planning with Multiple Strategies

Proof planning [4] was originally conceived as an extension of tactical theo-
rem proving to implement automated theorem proving at the abstract level of
methods. Proof planning considers mathematical theorem proving as Artificial
Intelligence (AI) planning problem: the initial state of a proof planning problem
is specified by the proof assumptions, the goal is specified by the theorem to be
proved, methods are the planning operators.

The knowledge-based proof planning developed in the Ωmega group [12] em-
ploys many AI principles and techniques such as hierarchical planning, knowl-
edge representation in frames, use of constraint solvers, and meta-reasoning to
guide the search. In particular, it emphasizes the integration of domain-specific
knowledge into the planning process. Methods can encode not only general prov-
ing steps but also steps particular to a mathematical domain. Mathematically
motivated heuristics guiding the search can be encoded in so-called control rules.
The control rules are evaluated at choice points in the planning process and can
express meta-level reasoning about the current proof planning state as well as
about the entire history of the proof planning process and the proof context.

Proof construction may require to construct mathematical objects, i.e., to in-
stantiate existentially quantified variables by witness terms. In proof planning,
meta-variables are used as place holders for witness terms. When proof plan-
ning ε-δ-problems, equations and inequalities with meta-variables are passed to
CoSIE , a constraint solver for equations and inequalities over the reals. CoSIE
checks the (in)consistency of the constraints and collects consistent constraints in
a constraint store. Later, it tries to compute instantiations for the meta-variables
that satisfy the collected constraints [14].

85

Poster Proceedings KI2004

The simplest version of proof planning searches at the level of methods only,
i.e., it searches for applicable methods and applies the instantiated methods,
which are called actions, until all goals are closed. The final sequence of actions
forms a solution plan. Operations such as backtracking and meta-variable in-
stantiation are usually hard-coded: backtrack one action in the plan, if and only
if no method is applicable and instantiate meta-variables only at the end, when
all goals are closed.

Case-studies revealed that this somewhat inflexible proof planning fails for a
number of problems [11]. This motivated the development of proof planning with
multiple strategies, which decomposes the previously monolithic proof planning
process and replaces it by separate strategies, which are instances of parameter-
ized algorithms for different proof plan refinements and modifications.

We implemented proof planning with multiple strategies in the proof planner
Multi [11]. Among others, Multi employs general algorithms for action intro-
duction, meta-variable instantiation, and backtracking. The algorithm for action
introduction has parameters for a set of methods and a set of control rules. When
Multi executes a strategy of this algorithm, then the algorithm introduces only
actions that use the methods specified in the strategy. The choices during the
action computation and selection are guided by the control rules specified by
the strategy. The single parameter of the instantiation algorithm is a function
that determines how the instantiation for a meta-variable is computed. If Multi
applies an instantiation strategy wrt. a meta-variable mv and if the computation
function of the strategy yields a term t for mv, then the instantiation algorithm
substitutes mv by t in the proof plan. The single parameter of the backtrack
algorithm is a function that computes a set of refinement steps of other algo-
rithms that have to be deleted. When Multi applies a backtrack strategy, the
algorithm removes all refinement steps that are computed by the function pa-
rameter of the strategy as well as all steps that depend from these steps. Sample
strategies of all three algorithms are discussed in the subsequent sections.

In Multi, no sequence of strategies is pre-defined or hard-coded in a control
cycle. Rather, Multi’s blackboard architecture enables the flexible cooperation
of independent strategies guided by meta-reasoning in strategic control rules. In
a nutshell, Multi operates according to the following cycle:

Job Offers Applicable strategies post their applicability in form of so-called
job offers onto the blackboard.

Guidance Strategic control rules are evaluated to order the job offers.
Invocation The strategy with the highest ranked job offer is invoked.
Execution The algorithm of the invoked strategy is executed with respect to

the parameter instantiation specified by the strategy.

Note that the execution of an action introduction strategy can be interrupted
(i.e., interruption is a choice point in the action introduction algorithm). In
this case, Multi can first apply some other strategies and then re-invoke the
interrupted strategy execution. Failures in the action introduction algorithm,
i.e., a goal for which no method is applicable, are also interrupts. A detailed,
technical description of the Multi system can be found in [9].

86

Poster Proceedings KI2004

3 Failure Reasoning

When searching for a solution proof plan, Multi can encounter impasses, i.e.,
situations in which there is a goal, but there are no methods or strategies ap-
plicable to the goal. Multi’s standard approach to deal with such a failure is
to backtrack the step that introduced this goal, i.e., to erase the problematic
goal. This goal-triggered backtracking involves reasoning about the failure (i.e.,
for which goal no method is applicable?) and tries to tackle the cause of the fail-
ure instead of simply deleting the last introduced step (known as chronological
backtracking).

For many situations, however, a different handling of a deadend is advisable.
The reasons for this are twofold:
(1) Theorem proving often requires steps whose necessity is difficult to predict.
Reasoning about a situation in which a failure occurred can suggest certain re-
covery or solution steps. Hence, the failures and their productive use can hold
the key to discover a solution proof plan.
(2) Goals and applications of methods and strategies can be intertwined in com-
plex ways. In particular, the incorporation of constraint solving into proof plan-
ning causes dependencies that make a ‘standard’ handling of failures difficult.
Rather, dependencies have to be analyzed in order to guide suitable reactions.

In the following, we shall discuss several domain-independent and general
meta-reasoning patterns on typical failures. The meta-reasoning patterns are
declaratively encoded into corresponding control rules. This encoding and the
concrete application to ε-δ-problems are discussed in section 5.

Guiding Case Splits
Case-split is a well-known technique in mathematics. But when is it useful

to apply it and which cases should be considered? The following general pattern
describes the need for a case-split: there is a main goal, which can be solved by
methods introducing some side goals. These side goals are called conditions. If
one of the conditions cannot be solved, then a partial success, i.e., the solution of
the main goal, gives rise to consider patching the proof attempt by a case-split
on the failing condition. Then, the main goal has to be proved for each case.
This approach corresponds to the meta-reasoning pattern:

Case-Split Introduction:
IF failing condition while main goal is solved
THEN introduce case-split on failing condition

In the concrete application of this meta-reasoning pattern to ε-δ-problems, see
section 5, we shall explain how the main goal and the side goals are determined
in this domain.

Unblock Desirable Steps
Lets assume there is a typical combination of several steps to form a solution

proof plan or part of a solution proof plan. Then, the application of certain key
steps becomes “desirable” during the solution process according to this typical

87

Poster Proceedings KI2004

combination. If such a desirable step should be applied but is blocked, then the
application of other steps should be considered, which will unblock the desirable
step. In the most general form, we can formulate this approach as the meta-
reasoning pattern:

Unblock Desirable Steps:
IF particular step is desirable but blocked
THEN perform other steps to enable this step

In section 5, we shall discuss the concrete application of two instances of this
general pattern to ε-δ-problems. The two instances differ wrt. the determination
of desirable steps as well as wrt. the selection of other steps to enable these
desirable steps.

The first instance triggers the backtracking of particular steps to overcome
blocked meta-variable instantiations of the constraint solver CoSIE . This back-
tracking aims at the application of certain desirable steps and makes use of the
freedom in Multi to backtrack any actions in the proof plan under construction.

The second instance triggers the speculation of lemmas. Similar to the intro-
duction of case-splits, in general, the speculation of lemmas is a Eureka step that
potentially may introduce an infinite branching point into the search space that
is difficult to control in automated theorem proving. The pattern instance spec-
ulates lemmas goal-directedly in order to enable a desirable but blocked method
application. Then, the lemmas are subsequently proved.

Analysis of Meta-Variable Dependencies
The instantiations of meta-variables and constraints on the meta-variables

cause dependencies among goals that share these meta-variables. Take, e.g., two
goals G and G′ that both contain a meta-variable mv. Now assume that Multi
first creates a partial proof plan for G and binds mv in such a way that G′

cannot be proved anymore. The default reaction is the standard goal-triggered
backtracking and would remove G′. However, the actual problem is not G′ but
the selection of an appropriate instantiation for mv. That is, part of the subplan
for G has to be removed to introduce another subplan that instantiates mv
differently. This approach corresponds to the general meta-reasoning pattern:

Analyze MV-Dependencies:
IF failure on goal caused by meta-variable instantiation/constraints
THEN backtrack meta-variable instantiation/constraints

In the concrete application of this meta-reasoning pattern to ε-δ-problems,
see section 5, we shall explain how the causal connection of a failure with the
instantiation of a meta-variable or constraints on meta-variables is determined
in this domain.

4 Proof Planning ε-δ-problems

We shall elaborate the usage of these meta-reasoning patterns for ε-δ-problems,
which prove statements about the limit, the continuity, or the derivative of a

88

Poster Proceedings KI2004

function f at a point a. The standard definitions of limit, continuity, and deriva-
tive comprise a dependency of a δ from an ε. For instance, the definition of limit
and continuity are:

lim
x→a

f = l ≡
∀ε (0 < ε⇒ ∃δ (0 < δ ∧ ∀x (|x− a| > 0 ∧ |x− a| < δ ⇒ |f(x)− l| < ε)))

cont(f, a) ≡ ∀ε (0 < ε⇒ ∃δ (0 < δ ∧ ∀x (|x − a| < δ ⇒ |f(x)− f(a)| < ε)))

An example theorem is the Cont-If-Deriv problem that states that, if a function
f has a derivative f ′ at point a1, then f is continuous at a. When the definitions
of limit and continuity are expanded, then the problem’s assumption is

∀ε1 (0 < ε1 ⇒
∃δ1 (0 < δ1 ∧ ∀x1 (|x1 − a| < δ1 ∧ |x1 − a| > 0⇒ | f(x1)−f(a)

x1−a − f ′| < ε1)))

and the problem’s theorem is

∀ε (0 < ε⇒ ∃δ (0 < δ ∧ ∀x (|x− a| < δ ⇒ |f(x)− f(a)| < ε))).

An ε-δ-proof of this problem as well as of similar theorems constructs a real num-
ber δ depending on ε that satisfies certain inequalities.2 The usual procedure for
discovering a suitable δ is the incremental restriction of the range of values. Proof
planning adopts this approach by replacing unknown witness terms such as δ
by meta-variables and by cooperating with the constraint solver CoSIE , which
collects constraints on the meta-variables.

In the remainder of this section, we describe the strategies employed by
Multi to accomplish ε-δ-proofs. A more detailed description of this application
of Multi is given in [9].

Strategies

Central for accomplishing ε-δ-proofs with Multi is the action introduction
strategy SolveInequality, see Table 1. It is applicable to goals whose formulas are
inequalities. SolveInequality mainly comprises methods that deal with inequali-
ties such as ComplexEstimate, TellCS, AskCS, FactorialEstimate, and
Solve*-B. The control rule prove-inequality is in the list of control rules of
SolveInequality.

When faced with an inequality goal, SolveInequality first tries to apply the
methods TellCS and AskCS, which both interface CoSIE . TellCS passes
the goal as constraint to CoSIE (provided it is consistent with the constraints
collected by CoSIE so far), whereas AskCS asks CoSIE whether the goal is

1 That is, if lim
x1→a

f(x1)−f(a)
x1−a = f ′.

2 The construction of a δ is is a non-trivial task for students as well as for traditional,
resolution-based automated theorem provers. Bledsoe proposed several versions of
the problem Lim+ as a challenge problem for automated theorem proving [3]. The
simplest versions of this problem (problem 1 and 2 in [3]) are at the edge of the
capabilities of traditional automated theorem provers but the harder versions are
beyond their capabilities. More difficult problems such as Cont-If-Deriv cannot be
proved by traditional provers.

89

Poster Proceedings KI2004

Strategy: SolveInequality
Condition inequality-goal

Action

Algorithm Action-Introduction

Methods ComplexEstimate, TellCS, Simplify,
AskCS, Solve*-B, FactorialEstimate . . .

C-Rules prove-inequality, . . .

Table 1. The SolveInequality strategy.

entailed by its current constraints. If an inequality is too complex to be handled
by CoSIE , then SolveInequality tries to apply methods that reduce an inequal-
ity to simpler inequalities such as Simplify, Solve*-B, ComplexEstimate,
and FactorialEstimate. For instance, applications of the ComplexEstimate
method exploit the Triangle Inequality and reduce a goal with formula |b| < e
to simpler inequalities in case there is an assumption |a| < e′ and b = k ∗ a+ l
holds for suitable terms k and l. The resulting simpler goals are |l| < e

2 , e′ <
e

2∗mv , |k| ≤ mv, and 0 < mv, where mv is a new meta-variable. The method
FactorialEstimate deals with fractions in inequalities. It reduces a goal of
the form | tt′ | < t′′ to the three subgoals 0 < mvF , mvF < |t′|, and |t| < t′′ ∗mvF ,
where mvF is a new meta-variable. Applications of Solve*-B exploit transitiv-
ity of <,>,≤,≥ and reduce a goal with formula a1 < b1 to a new goal with
formula b2σ ≤ b1σ in case an assumption a2 < b2 exists and a1, a2 can be unified
by the substitution σ.

In this way, SolveInequality successively produces simpler inequalities until it
reaches inequalities that are accepted by CoSIE . This approach – handle with
CoSIE or simplify – is guided by the control rule prove-inequality. This rule
first checks whether the current goal is an inequality. If this is the case, it prefers
the methods of SolveInequality in the desired order: TellCS, AskCS, Simplify,
Solve*-B, ComplexEstimate, FactorialEstimate etc.

To derive ε-δ-proofs Multi also employs the domain-independent action in-
troduction strategies NormalizeGoal and UnwrapAss. Both strategies contain gen-
eral methods for the decomposition of logic connectives and quantifiers. Whereas
applications of NormalizeGoal decompose goals, applications of UnwrapAss de-
compose assumptions.

In order to instantiate meta-variables that occur in constraints collected by
CoSIE , Multi employs the two instantiation strategies InstIfDetermined and
ComputeInstFromCS. The first is applicable only, if CoSIE states that a meta-
variable is already determined by the constraints collected so far. Then, the
computation function connects to CoSIE and receives this instantiation for the
meta-variable. ComputeInstFromCS is applicable to all meta-variables for which
constraints are stored in CoSIE . The computation function of this strategy re-
quests from CoSIE to compute an instantiation for a meta-variable that is con-
sistent with all constraints collected so far.

Application and Cooperation of the Strategies

For proof planning an ε-δ-problem Multi typically proceeds as follows: First,
it applies NormalizeGoal to decompose the initial goal. Afterwards, it applies

90

Poster Proceedings KI2004

SolveInequality to the resulting inequality goals. Some methods of the strategy
SolveInequality can only be applied when suitable assumptions are available (e.g.,
ComplexEstimate and Solve*-B). In case SolveInequality detects promising
subformulas of assumptions, it interrupts (guided by one of its control rules)
such that Multi can apply UnwrapAss to unwrap the promising subformula.
Afterwards, SolveInequality can proceed and use the new assumption.

The invocation of ComputeInstFromCS is delayed by a strategic control rule
until all goals are closed. This delay of the computation of instantiations for
meta-variables is sensible since the instantiations should not be computed be-
fore all constraints are collected, i.e., only after all goals are closed. However, if
the current constraints already determine a meta-variable, then a further delay
of the corresponding instantiation is not necessary. Rather, immediate instantia-
tions of determined meta-variables can simplify a problem [11]. To allow for the
flexible instantiation of determined meta-variables SolveInequality can interrupt
and cooperate with the strategy InstIfDetermined.

5 How Failure Reasoning Works (Examples)

There are default application and cooperation of strategies to accomplish ε-δ-
proofs (see previous section). In addition, since Multi does not pre-define an
order or combination of strategies, control rules can be added, which override
the default behavior and implement failure reasoning patterns.

5.1 Guiding the Introduction of Case-Splits

The Cont-If-Deriv problem is an example for an ε-δ-problem that needs the
introduction of a case-split. When tackling this problem, Multi starts as usual
for ε-δ-proofs. It decomposes the theorem with the strategy NormalizeGoal and
derives the inequality goals 0 < mvδ and |f(cx)−f(a)| < cε (where mvδ is a new
meta-variable and cx and cε are new constants) to which it applies SolveInequality.
SolveInequality passes the first goal with an application of the method TellCS
as constraint to CoSIE but fails to reduce the second goal. Since in the initial

assumption it detects | f(x1)−f(a)
x1−a −f ′| < ε1 as a subformula, which could be used,

it interrupts. Multi applies the strategy UnwrapAss whose application yields the
new assumption

| f(mvx1)−f(a)

mvx1−a
− f ′| < mvε1

and the three new goals 0 < mvε1 , |mvx1 − a| < cδ1 , and |mvx1 − a| > 0 (where
mvx1 and mvε1 are new meta-variables and cδ1 is a new constant).

With the new assumption, SolveInequality closes the main goal |f(cx)−f(a)| <
cε in several steps. In between, SolveInequality interrupts once and switches to
InstIfDetermined, which introduces the binding mvx1→cx. Then, it tackles the
new goals from the application of UnwrapAss. It succeeds to solve 0 < mvε1
and |mvx1 − a| < cδ1 but fails to solve |mvx1 − a| > 0, which meanwhile became
|cx−a| > 0 wrt. the introduced binding mvx1→cx. Thus, in this situation, Multi

91

Poster Proceedings KI2004

can solve the main goal |f(cx) − f(a)| < cε with an assumption that has some
conditions. When Multi uses the assumption, then it introduces the conditions
as new goals. Later, it fails to prove one of these conditions, |cx − a| > 0.

The meta-reasoning pattern Case-Split Introduction analyzes the failure and
suggests its “repair”. Technically, the pattern is realized in Multi by two control
rules, one strategic control rule and one control rule in SolveInequality, which
guide suitable backtracking and the introduction of the case-split. This works
as follows: if SolveInequality fails to prove a condition of an assumption that
was used to prove the main goal, then the strategic control rule triggers the
backtracking of all actions following the introduction of the failing condition.

In our example, the application of UnwrapAss and all actions that depend
on it are backtracked such that |f(cx)− f(a)| < cε becomes a goal again. When
Multi re-invokes SolveInequality after this backtracking, then the control rule in
SolveInequality fires and suggests the application of the method CaseSplit for
the failing condition and its negation. Afterwards, SolveInequality has to prove
|f(cx) − f(a)| < cε twice: once under hypothesis |cx − a| > 0 and once under
hypothesis ¬(|cx − a| > 0). For the first case it proceeds as described above.
The failing condition |cx − a| > 0 now follows from the hypothesis of the case.
The second case is solved differently by SolveInequality. First, it simplifies the
hypothesis ¬(|cx − a| > 0) to cx = a. Afterwards, it uses this equation to
simplify the goal |f(cx)− f(a)| < cε to 0 < cε, which follows from an introduced
hypothesis.

Other ε-δ-problems also require this kind of failure reasoning (see section 6).
In other mathematical domains the same pattern occurs and leads to a case-split
introduction (see discussion of related work in section 7). Whereas the failure
reasoning pattern is domain independent, the actual case-split may depend on
the mathematical domain. So far, however, we employ a general case-split into
the cases cond and ¬cond only.

5.2 Meta-Reasoning for Repair of Constraint Handling

The problem Lim-Div is an example problem for which backtracking is guided
by meta-reasoning on a highly desirable but blocked strategy. To the knowledge
of the authors this is a problem that has not been proved by any other system.
It states that the limit of the function 1

x at point c is 1
c :

∀ε (0 < ε⇒ ∃δ (0 < δ ∧ ∀x (|x− c| < δ ∧ |x− c| > 0⇒ | 1x − 1
c | < ε)))

The decomposition of the initial complex goal by NormalizeGoal results in the
two goals 0 < mvδ and | 1

cx
− 1

c | < cε (where mvδ is a new meta-variable and cx
and cε are new constants). SolveInequality closes the first goal by an application
of TellCS whereas it simplifies the second goal to | c−cxcx∗c | < cε. An application
of FactorialEstimate to this goal results in the three new goals 0 < mvf ,
|cx ∗ c| > mvf , and |c − cx| < mvf ∗ cε (with the new meta-variable mvf).
SolveInequality closes these three goals with TellCS. Now all goals are closed
and in the default behavior CoSIE is supposed to provide instantiations for the

92

Poster Proceedings KI2004

meta-variables mvδ and mvf . That is, the strategy ComputeInstFromCS, which
asks CoSIE to compute the instantiations, becomes a highly desirable strategy.

However, CoSIE fails to compute instantiations here and ComputeInstFromCS
does not succeed. What is the problem? So far, CoSIE collected the constraints

|cx−c|
cε

< mvf , 0 < mvf , mvf < |cx ∗ c|, 0 < mvδ , 0 < c, and 0 < cε.

These constraints are consistent but a solution for mvf exists only, if
|cx−c|
cε

< |cx ∗ c| holds. This, however, does not follow from the collected con-
straints. In particular, the constraints collected so far are not sufficient for an
ε-δ-proof since they do not establish a connection between cε and mvδ . A possi-
bility to overcome this problem is to refine the existing constraints in order to
obtain an extended set of refined constraints for which a solution exists. That
is, selected applications of TellCS (and only these selected applications) have
to be backtracked in order to enable further refinement of some constraints.

An instance of the meta-reasoning pattern Unblock Desirable Steps analyzes
the failure and suggests its “repair”: IF the constraint solver fails to provide
instantiations because of insufficient constraints, THEN backtrack to create and
pass further constraints. Technically, the idea to overcome highly desirable but
blocked meta-variable instantiations by the constraint solver is encoded in the
strategic control rule backtrack-to-unblock-cosie. When all goals are closed,
but the strategy ComputeInstFromCS is not applicable since the constraint solver
fails to compute instantiations, then this control rule analyzes the constraints
passed by applications of TellCS. It triggers the backtracking of actions of
TellCS that pass inequalities to CoSIE that can be refined to simpler in-
equalities by applications of methods such as ComplexEstimate.3 Then, these
simpler inequality goals are may passed to the constraint solver.

In our example, backtrack-to-unblock-cosie triggers Multi to backtrack
the application of TellCS that closes |c− cx| < mvf ∗ cε. Then, SolveInequality
reduces the re-opened goal with the method ComplexEstimate. This action
uses the assumption |cx − c| < mvδ, which is created during the application of
NormalizeGoal, and reduces |c − cx| < mvf ∗ cε to the new goals |0| < cε∗mvf

2 ,
mvδ ≤ cε∗mvf

2∗mv , | − 1| ≤ mv, and 0 < mv (where mv is a new meta-variable).
Afterwards, TellCS passes the new inequality goals to CoSIE . Since CoSIE
also fails on this extended constraint set backtrack-to-unblock-cosie guides
the backtracking of the application of TellCS that closes |cx ∗c| > mvf . Again,
SolveInequality reduces the re-opened goal with ComplexEstimate and passes
the resulting inequalities to CoSIE . This results in the following constraint store:

cε > 0 c > 0 mvf ≥ mv′ ∗mvδ mv′ > c
mvf > 0 mv > 1

cε∗mvf
2 > 0 mvδ > 0

mvδ ≤ cε∗mvf
2∗mv mvf ∗ 2 ≤ c2

3 Currently, the critical constraints are chosen by heuristics encoded in backtrack-

to-unblock-cosie. It would be more convenient, if CoSIE would directly point out
what the critical constraints are. However, this kind of information is not provided
by the CoSIE system yet.

93

Poster Proceedings KI2004

Now the following bindings consistent with these constraints can be computed:

mv→2, mv′→c+ 1, mvf→ c2

2 , and mvδ→min(cε∗c
2

8 , c2

2∗(c+1)).

All ε-δ-problems in which subgoals with fractions occur need to repair the
constraint reasoning (see section 6). In other domains the same meta-reasoning
to overcome blocked instantiations of constraint solvers is applicable.

5.3 Lemma Speculation

An alternative that may unblock desirable steps is the speculation of lemmas.
As example problem consider:

lim
x1→c

f(x1) = l follows from lim
x→0

f(x+ c) = l.

When the defined occurrences of limit are expanded, the problem consists of the
assumption
∀ε (0 < ε⇒ ∃δ (0 < δ ∧ ∀x (|x− 0| < δ ∧ |x− 0| > 0⇒ |f(x+ c)− l| < ε)))
and the theorem is
∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1∧∀x1 (|x1−c| < δ1∧|x1−c| > 0⇒ |f(x1)− l| < ε1))).

The decomposition of the initial complex goal by NormalizeGoal results in the
two goals 0 < mvδ1 and |f(cx1)−l| < cε1 (where mvδ1 is a new meta-variable and
cx1 and cε1 are new constants). SolveInequality closes 0 < mvδ1 by an application
of TellCS but fails to reduce the second goal with the current assumptions.
Since in the initial assumption it detects |f(x + c) − l| < ε as a subformula,
which could be used, it interrupts. Multi applies the strategy UnwrapAss whose
application yields the new assumption |f(mvx + c)− l| < mvε (where mvx and
mvε are new meta-variables) and some additional goals.

Next, SolveInequality should apply Solve*-B to tackle |f(cx1) − l| < cε1
with the new assumption |f(mvx + c) − l| < mvε. However, this fails since
the application of Solve*-B demands to unify |f(mvx + c)− l| and |f(cx1)− l|,
which fails. Since no other method is applicable and there is no further promising
subformula to unwrap, Multi would backtrack. The analysis that |f(mvx+c)−l|
and |f(cx1)− l| are quite similar and that the unification is blocked only because
of the residue mvx + c = cx1 gives rise to consider to patch the proof attempt
by speculating the residue mvx + c = cx1 as a lemma.

An instance of the meta-reasoning pattern Unblock Desirable Steps analyzes
the failure and suggests its “repair”: IF the application of a method is not possible
because of a unification residue that is promising to be provable in the current
context, THEN speculate the residue as lemma and use it for rewriting to enable
the considered method applications.

The question is, when is a residue promising to be provable in the current con-
text (otherwise residue speculation opens a Pandora’s box)? In proofs that use a
constraint solver (such as the ε-δ-proofs, which use CoSIE) the constraint solver
can be exploited to decide whether residues are promising lemmas. Whereas the
employed unification and matching are decidable procedures that do not depend
on domain-specific knowledge, CoSIE employs domain knowledge of inequalities

94

Poster Proceedings KI2004

and equations over the field of real numbers. To exploit this domain knowledge as
well as the context information passed to CoSIE so far we query CoSIE whether
it accepts the residue before we speculate it as lemma. In this way, we combine
the domain-independent unification and matching with the domain knowledge
contained in CoSIE .4

Technically, the described productive use of failing unifications and matchings
for lemma speculation is encoded in the control rule choose-equation-residue
in SolveInequality. choose-equation-residue analyzes the residue of blocked
unifications and matchings and queries CoSIE whether it accepts the residue. If
this is the case, choose-equation-residue fires and suggests to speculate the
residue as lemma and to rewrite the current goal with this lemma.

In our example: When SolveInequality fails to tackle |f(cx1) − l| < cε1 with
the new assumption |f(mvx + c)− l| < mvε, then the analysis of the failure by
choose-equation-residue yields the residue mvx + c = cx1 , which is accepted
by CoSIE . Hence, the control rule choose-equation-residue fires and intro-
duces mvx+ c = cx1 as lemma and guides the rewriting of |f(cx1)− l| < cε1 with
this equation. This results in the new goal |f(mvx+c)− l| < cε1 . The application
of Solve*-B to this goal and the assumption |f(mvx + c) − l| < mvε is now
possible. It results in some simpler inequality goals, which SolveInequality passes
to CoSIE by applications of TellCS.

Other ε-δ-problems require this failure reasoning as well (see section 6). In
other domains with constraint solvers or other means to decide for promising
lemmas the same meta-reasoning to overcome blocked unifications and matchings
is applicable.

5.4 Analyzing Meta-Variable Dependencies

As example for an ε-δ-problem that needs the analysis of meta-variable depen-
dencies consider the following problem:

lim
x→0

f(a ∗ x) = l follows from lim
x1→0

f(x1) = l and a > 0.

Unfolding of the occurrences of limit and normalization result in the goal
|f(a∗cx)− l| < cε. Unwrapping the initial assumption yields the new assumption
|f(mvx1) − l| < mvε1 , which can be used to close the goal. Thereby, mvx1 is
instantiated by a ∗ cx. The unwrapping of the initial assumption also yields
two goals, which become |a ∗ cx| > 0 and |a ∗ cx| < cδ1 wrt. the instantiation
mvx1 7→ a ∗ cx. These two goals can be closed with two assumptions from the
normalization of the initial theorem: |cx| > 0 and |cx| < mvδ . This works as
follows: apply ComplexEstimate with the first assumption to the first goal

4 An alternative to this combination is theory unification, which incorporates domain-
specific equations into the unification procedures. However, the decidability of theory
unification is difficult to determine and depends on the concrete set of domain equa-
tions (e.g., see [2]). We prefer decidable unification and matching procedure in order
to avoid undecidable application conditions whose evaluation can block the complete
proof planning process.

95

Poster Proceedings KI2004

and pass the resulting inequality goals to CoSIE and apply ComplexEstimate
with the second assumption to the second goal and pass the resulting inequality
goals to CoSIE .

Since the control rule prove-inequality suggests the method Solve*-B be-
fore the method ComplexEstimate, Multi does not find this solution directly.
Rather, Multi applies Solve*-B to the first goal |a ∗ cx| > 0 wrt. the second
assumption |cx| < mvδ . This is possible since |cx| < mvδ equals mvδ > |cx|
and mvδ can be trivially unified with |a ∗ cx|. This results in the instantiation
mvδ 7→ |a∗cx| and the new goal |cx| > 0, which follows directly from the first as-
sumption. Next, Multi tackles the second goal |a∗cx| < cδ1 but fails, since with
the introduced instantiation of mvδ no solution is possible. However, not the
second goal is problematic in the end, but the instantiation of mvδ introduced
during the solution of the first goal.

The meta-reasoning pattern Analyze MV-Dependencies analyzes the failure
and suggests its “repair”. Technically, the pattern is realized in Multi by the
strategic control rule BackTrackLastBinding, which guides the backtracking of
steps that introduce instantiations or constraints for meta-variables instead of
the standard backtracking. In this case, the strategic control rule analyzes that
the instantiation mvδ 7→ |a ∗ cx| is very unlikely to be part of a solution of an
ε-δ-problem since the meta-variable for δ is supposed to be constrained during
the proof planning process but not to be instantiated by different means than
CoSIE . Hence, the control rule guides the backtracking of the Solve*-B step
that closed the first goal. As result, Multi has to tackle the first goal differently,
which finally results in the solution of both goals sketched above.

Note that the control rule BackTrackLastBinding can also guide the successive
trial and error of meta-variable instantiations. When Multi fails to solve a goal
under a particular instantiation, then the instantiation of the meta-variable has
to be backtracked (in order to try the next instantiation), rather than the goal
for which Multi actually fails. The suitable backtracking is guided by Back-
TrackLastBinding, which overwrites the standard goal-triggered backtracking in
this case. A domain, where BackTrackLastBinding is used for such a trial and
error of meta-variable instantiations are residue class problems (see [10, 8]).

6 Experiments

All ε-δ-problems discussed in section 5 are taken from the analysis textbook [1].
We systematically applied Multi to solve the ε-δ-problems from the chapters
3, 4, 5, and 6 of this book. Currently, Multi can solve about 60 ε-δ-problems.
Table 2 lists the problems from [1] whose solution requires the meta-reasoning
discussed in this paper. Many similar problems could be formulated.

Since the knowledge engineering for proof planning is pretty difficult, the
number of mathematical domains and problems successfully tackled by proof
planned so far is growing only slowly. However, if not quantitatively then at
least qualitatively, there is striking evidence for the need to meta-reason about
failures in mathematics since the identified meta-reasoning patterns rely upon

96

Poster Proceedings KI2004

Meta-Reasoning Pattern ε-δ-problems

Case-Split Introduction Theorem 4.3.3 (part 3), Theorem 6.1.2, Exercise 5.2.6
Unblock Desirable Steps Theorem 3.2.3(b), Example 4.1.7(c)+(d),

Exercise 4.1.3 (part 1), Exercise 4.1.10(a)–(d),
Exercise 4.1.12(b), Theorem 4.2.4(b), Theorem 5.2.1(a),
Theorem 6.1.3(a)–(c), Theorem 6.1.2

Analyze MV-Dependencies Exercise 4.1.12(a) (+ residue class problems)

Table 2. Proof planning problems whose solution requires meta-reasoning about fail-
ures.

common techniques in mathematics. As evidence for this statement consider
that failure reasoning in the proof planner CLaM (see related work in section 7)
exploits similar failures in a completely different mathematical domain (proving
theorems by mathematical induction) to guide similar proof plan modifications.

7 Conclusion and Related Work

We described three meta-reasoning patterns by which the multiple-strategy proof
planner Multi productively exploits failures to guide the subsequent proof plan-
ning process. They represent heuristics suggesting how to handle a failure that
occurs in conjunction with a pattern of partially successful steps. The meta-
reasoning patterns do not only circumvent failures, they hold the key to the
construction of a solution proof plan.

The described failure reasoning and the repair modifications are possible since
Multi does not enforce a pre-defined systematic backtracking. Rather, when a
failure occurs, then strategic control rules in which our heuristics are declar-
atively encoded can analyze the failure and can dynamically guide promising
refinements and modifications of the proof plan. All the meta-reasoning pat-
terns are generally applicable rather than over-specific as shown in the experi-
ments (see section 6). Further meta-reasoning that exploits the flexible control
in Multi is discussed in [8].

Related Work
Related to the unblocking of desirable steps in Multi is the control reasoning

in elaborate blackboard systems, e.g., see [5] and [6]. When a highly desirable
knowledge source is not applicable, then reasoning on the failure can suggest the
invocation of knowledge sources that unblock the desired knowledge source.

Failure reasoning in the proof planner CLaM is closely related to the intro-
duction of case-splits and lemmas in Multi. In [7], Bundy and Ireland describe
critics as a means to patch failed proof attempts in CLaM by exploiting infor-
mation on failures. The motivation for the introduction of critics is similar to
our motivation for failure reasoning: failures in the proof planning process often
hold the key to discover a solution proof plan.

Critics in CLaM extend the hierarchy of inference rules, tactics, and methods.
A critic is associated with one method – mostly with the wave method – and
captures patchable exceptions to the application of this method. Critics are

97

Poster Proceedings KI2004

expressed in terms of preconditions and patches. The preconditions analyze the
reasons why the method has failed to apply. The patch suggests a change to the
proof plan.

The situations that trigger case-split introduction and lemma speculation in
CLaM and Multi are very similar: unprovable premises of conditional facts from
the context trigger case-split introduction, whereas missing premises in the cur-
rent context trigger lemma speculation. However, the critics mechanism in CLaM
and failure reasoning in Multi considerably differ not only in minor technical
issues but also in their conceptual design. Critics are a method-like entity di-
rectly bound to failing preconditions of a particular method. Moreover, part of
a critic is a patch of the failure, which is a special procedure that changes the
proof plan. In contrast, failure reasoning in Multi is conducted by declarative
and separate control rules. These control rules are not associated with a par-
ticular method but rather test for particular situations that can occur during
the proof planning process (independent of the strategy or method that caused
the situation). The control rules can reason about the current proof plan and
about other information such as the history. The patch of a failure is not im-
plemented into special procedures but is carried out by methods and strategies
whose application is suggested by the control rules.

References

1. R.G. Bartle and D.R. Sherbert. Introduction to Real Analysis. John Wiley& Sons,
New York, 1982.

2. K.H. Bläsius and H.J. Bürckert, editors. Deduktionssysteme. Oldenbourg, 1992.
3. W.W. Bledsoe. Challenge Problems in Elementary Analysis. Journal of Automated

Reasoning, 6:341–359, 1990.
4. A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In Proceedings of

CADE–9, volume 310 of LNCS, pages 111–120. Springer, 1988.
5. D.D. Corkill, V.R. Lesser, and E. Hudlicka. Unifying Data-Directed and Goal-

Directed Control. In Proceedings of AAAI-82, pages 143 – 147. AAAI Press, 1982.
6. E.H. Durfee and V.R. Lesser. Incremental Planning to Control a Blackboard-Based

Problem Solver. In Proceedings of AAAI-86, pages 58 – 64. AAAI Press, 1986.
7. A. Ireland and A. Bundy. Productive Use of Failure in Inductive Proof. Journal

of Automated Reasoning, 16(1-2):79–111, 1996.
8. A. Meier. Multi – Proof Planning with Multiple Strategies. PhD thesis, Fachbere-

ich Informatik, Universität des Saarlandes, Saarbrücken, 2004.
9. A. Meier. The Proof Planners of Ωmega: A Technical Description. Seki Report

SR-04-XY, FR Informatik, Saarland University, Saarbrücken, Germany, 2004.
10. A. Meier, M. Pollet, and V. Sorge. Comparing Approaches to Explore the Domain

of Residue Classes. Journal of Symbolic Computation, 34(4):287–306, 2002.
11. E. Melis and A. Meier. Proof Planning with Multiple Strategies. In Proceedings

CL-2000, volume 1861 of LNAI, pages 644–659. Springer, 2000.
12. E. Melis and J. Siekmann. Knowledge-Based Proof Planning. Artificial Intelligence,

115(1):65–105, 1999.
13. A.H. Schoenfeld. Mathematical Problem Solving. Academic Press, New York, 1985.
14. J. Zimmer and E. Melis. Constraint solving for proof planning. Journal of Auto-

mated Reasoning, 2004. accepted.

98

Poster Proceedings KI2004

Nonlinear System Identification Using ANFIS
Based on Emotional Learning

Mahdi Jalili-Kharaajoo

Young Researchers Club, Azad University, Tehran, Iran
mahdijalili@ece.ut.ac.ir

Abstract. Neural networks and Neurofuzzy models have been successfully
used in nonlinear time series prediction. Several learning methods have been
introduced to train the Neurofuzzy predictors, such as ANFIS, ASMOD and
FUREGA. Many of these methods, constructed over Takagi Sugeno fuzzy
inference system, are characterized by high generalization. However, they differ
in computational complexity. A practical approach towards the prediction of
real world data such as the sunspot number time series profound a method to
follow multiple goals. For example predicting the peaks of sunspot numbers
(maximum of solar activity) is more important due to its major effects on earth
and satellites. In this paper, the emotional learning method, which has been
used in control applications to provide multiple objectives, is proposed to train
neurofuzzy predictors. The emotional learning based fuzzy inference system
(ELFIS) has the advantage of low computational complexity in comparison
with other multi-objective optimization methods. The efficiency of proposed
predictor is shown in two examples of highly nonlinear time series. Appropriate
emotional signal is composed for the prediction of solar activity and price of
securities. It is observed that ELFIS performs better predictions in the important
regions of solar maximum. It is also a fast and efficient algorithm to enhance
the performance of ANFIS predictor in both examples.

1 Introduction

Predicting the future has been an interesting important problem in human mind.
Alongside great achievements in this endeavor there remain many natural phenomena
the successful predictions of which have so far eluded researchers. Some have been
proven unpredictable due to the nature of their stochasticity. Others have been shown
to be chaotic: with continuous and bounded frequency spectrum resembling white
noise and sensitivity to initial conditions attested via positive Lyapunov exponents
resulting in long term unpredictability of the time series. There are several developed
methods to distinguish chaotic systems from the others, however model-free nonlinear
predictors can be used in most cases without changes.
Comparing with the early days of using classical methods like polynomial
approximators, neural networks have shown better performance, and even better are
their successors: Neurofuzzy models [1], [2], [11], [19],[20]. Some remarkable
algorithms have been proposed to train the neurofuzzy models [1], [7], [8], [10], [11],
[14]. The pioneers, Takagi and Sugeno, presented an adaptive algorithm for their
fuzzy inference system [14]. The other methods include adaptive B-spline modeling
[8] and adaptive network-based FIS [7]. These learning methods fulfill the principle

99

Poster Proceedings KI2004

of network parsimony which leads to high generalization performance in predictions
or estimations. The parsimony principle says that the best models are those with the
simplest acceptable structures and smallest number of adjustable parameters.
The next generation of neurofuzzy networks includes locally linear models which are
piecewise linear approximations of the nonlinear function and can be interpreted as
extensions of radial basis function networks [10], [11], [2]. In recent years RBF
networks have shown good results in various fields of prediction and estimation;
therefore, one can expect good results in predicting by locally linear neurofuzzy
models. Of course these models have noticeable characteristics like low prediction
errors, relatively low computational complexity and high generalization.
Following the directions of biologically motivated intelligent computing, the
emotional learning method has been introduced as a kind of reinforcement learning.
This approach is based on an emotional signal which shows the emotions of a critic
about the overall performance of the system. The distinctive feature of emotional
signal is that it can be produced by any combination of objectives or goals which
improve the estimation or prediction. The loss function will be defined just as a
function of emotional signal and the training algorithm will be simply designed to
minimize this loss function. So the model will be trained to provide the desired
performance in a holistic manner.
The emotional learning algorithm is a model-free method which has three distinctive
properties in comparison with other neurofuzzy learning algorithms. For one thing,
one can use very complicated definitions for emotional signal without increasing the
computational complexity of algorithm or worrying about differentiability or
renderability into recursive formulation problems. For another, the parameters can be
adjusted in a simple intuitive way to obtain the best performance. Besides, the training
is very fast and efficient. As can be seen these properties make the method preferable
in real time applications like control tasks, as have been presented in literature [3],
[4], [5], [9], [12], [18].
In this research the emotional learning algorithm has been used in predicting some
real world time series: the sunspot number and the price of securities. The main
advantage of introducing an emotional signal in prediction is adjusting some
important features. For example, in predicting the sunspot number the peak points
which are related to the maximum of eleven-year cycle of solar activity are more
important than the others due to their strong effects on space weather, earth and
satellites. Therefore, in order to achieve good predictions in these points the error and
delay of predicting the peaks may be included in the definition of emotional signal.
Additional achievements are fast training of model and low computational
complexity.
This method can be used in various forms. A multi objective prediction can be done
by introducing a simple definition of emotional signal at the first steps of training and
exchanging it with a more accurate one to improve the accuracy in important regions.
As an interpretation at the first stage of prediction the critic will just give attention to
the overall performance of prediction and after some time, when an acceptable
accuracy is obtained, it will incline to more important goals.
The main contribution of this paper is to provide accurate predictions using emotional
learning algorithm in Takagi Sugeno neurofuzzy model. The results are compared

100

Poster Proceedings KI2004

with other neural and neurofuzzy models like RBF network and ANFIS based on the
prediction error in important regions and computational complexity.
The paper consists of five sections. The main aspects of Takagi-Sugeno fuzzy
inference system along with associated learning methods are described in the second
section. The third section deals with the various forms of utilizing emotional learning
in the prediction problem. The results of applying the proposed prediction method to
benchmark time series are reported and analyzed in section four. Finally, the last
section includes some concluding remarks.

2 Neurofuzzy models

Two major approaches of trainable neurofuzzy models can be distinguished. The
network based Takagi-Sugeno fuzzy inference system and the locally linear
neurofuzzy model. The mathematical description of these models will be described in
this section. It is easy to see that the locally linear model is equivalent to Takagi-
Sugeno fuzzy model under certain conditions, and can be interpreted as an extension
of normalized RBF network as well.
The Takagi-Sugeno fuzzy inference system is based on fuzzy rules of the following
type

()pi

ippii

uuufythen

AuAndAndAuIfRule

,...,,ˆ
...:

21

11

=

== (1)

where Mi ...1= and M is the number of fuzzy rules. puu ,...,1 are the inputs of
network, each ijA denotes the fuzzy set for input ju in rule i and ().if is a crisp
function which is defined as a linear combination of inputs in most applications

pipiii uuuy ωωωω ++++= K22110ˆ (2)

Matrix form () Wuay T ⋅=ˆ
Thus, the output of this model can be calculated by

() ()

()∑

∑

=

== M

i
i

M

i
ii

u

uuf
y

1

1ˆ
µ

µ
 ; () ()∏

=

=
p

j
jiji uu

1

µµ (3)

where ()jij uµ is the membership function of j0 input in the ith rule and ()uiµ is the
degree of validity of the ith rule.
This system can be formulated in the basis function realization which leads to relation
between Takagi-Sugeno fuzzy model and normalized RBF network. The basis
function will be

101

Poster Proceedings KI2004

() ()

()∑
=

= M

j
j

i
i

u

u
u

1
µ

µ
φ (4)

as a result

()∑
=

=
M

j
j u

1
1φ (5)

This neurofuzzy model has two sets of adjustable parameters; first the antecedent
parameters, which belong to the input membership functions such as centers and
deviations of Gaussians; second the rule consequent parameters such as the linear
weights of output in equation (2). It is more common to optimize only the rule
consequent parameters. This can be simply done by linear techniques like least
squares [1]. A linguistic interpretation to determine the antecedent parameters is
usually adequate. However, one can opt to use a more powerful nonlinear
optimization method to optimize all parameters together.
Gradient based learning algorithms can be used in the optimization of consequent
linear parameters. Supervised learning is aimed to minimize the following loss
function (mean square error of estimation):

() ()()∑
=

−=
N

i
iyiy

N
J

1

2ˆ1 (6)

where N is the number of data samples.
According to the matrix form of (2) this loss function can be expanded in the
quadratic form

NYYPWRWWJ TTT +−= 2 (7)

Where () AANR T1= is the autocorrelation matrix, A is the pN × solution matrix
whose ith row is ()()iua and () yANP T1= is the p dimensional cross correlation
vector.
From

022 =−=
∂
∂ PRW
W
J (8)

The following linear equations are obtained to minimize J:

PRW = (9)

and W is simply defined by pseudo inverse calculation.
One of the simplest local nonlinear optimization techniques is the steepest descent. In
this method the direction of changes in parameters will be opposite to the gradient of
cost function

() () ()iRWP
iW

JiW 22 −=
∂
∂

−=∆ (10)

102

Poster Proceedings KI2004

and

() () ()iWiWiW ∆⋅+=+ η1 (11)

where η is the learning rate.
Other nonlinear local optimization techniques can be used in this way, e.g. the
conjugate gradient or Levenberg-Marquardt which are faster than steepest descent.
All these methods have the possibility of getting stuck at local minima.
Some of the advanced learning algorithms that have been proposed for the
optimization of parameters in Takagi-Sugeno fuzzy inference system include
ASMOD (Adaptive spline modeling of observation data) [8], ANFIS (Adaptive
network based fuzzy inference system) [7] and FUREGA (fuzzy rule extraction by
genetic algorithm) [11].
ANFIS is one of the most popular algorithms that has been used for different
purposes, such as system identification, control, prediction and signal processing. It is
a hybrid learning method based on gradient descent and least square estimation.
The ASMOD algorithm is an additive constructive method based on k-d tree
partitioning. It reduces the problems of derivative computation, because of the
favorable properties of B-spline basis functions. Although ASMOD has a complicated
procedure, it has advantages like high generalization and accurate estimation.
One of the most important problems in learning is the prevention of overfitness. It can
be done by observing the error index of test data at each iteration. The learning
algorithm will be terminated, when the error index of test data starts to increase.

3 Emotional learning

Most of new learning algorithms like reinforcement learning, Q-learning and the
method of temporal differences are characterized by their fast computation and in
some cases lower error in comparison with the classical learning methods. Fast
training is a notable consideration in some control applications. However, in
prediction applications, two more desired characteristics of a good predictor are
accuracy and low computational complexity.
The Emotional learning method is a psychologically motivated algorithm which is
developed to reduce the complexity of computations in prediction problems. Using
the distinctive properties of this method one can follow multiple goals in prediction.
In this method the reinforcement signal is replaced by an emotional cue, which can be
interpreted as a cognitive assessment of the present state in light of goals and
intentions. The main reason of using emotion in a prediction problem is to lower the
prediction error in some regions or according to some features. For example
predicting the sunspot number is more important in the peak points of the eleven-year
cycle of sun activity, or predicting the price of securities with better approximation of
variance may be desired. Of course these objectives can be pursued by other methods
too, but by emotional learning any complicated multi objective problem can be solved
using a fast, efficient computation.
This method is based on an emotional signal which shows the emotions of a critic
about the overall performance of predictor. The distinctive feature of emotional signal

103

Poster Proceedings KI2004

is that it can be produced by any combination of objectives or goals which improve
estimation or prediction. The loss function will be defined just as a function of
emotional signal and the training algorithm will be simply designed to decrease this
loss function. So the predictor will be trained to provide the desired performance in a
holistic manner. If the critic emphasizes on some regions or some properties, this can
be observed in his emotions and simply affects the characteristics of predictor.
Thus the definition of emotional signal is absolutely problem dependent. It can be a
function of error, rate of error change and many other features. Then a loss function is
defined based on the emotional signal. A simple form can be

()∑
=

=
N

i
iesKJ

1

2

2
1 (12)

where es is the emotional signal.
Learning is adjusting the weights of model by means of a nonlinear optimization
method, e.g. the steepest descent or conjugate gradient.
With steepest descent method the weights will be adjusted by the following
variations:

ω
ηω
∂
∂

−=∆
J (13)

where η is the learning rate of the corresponding neurofuzzy controller and the right
hand side can be calculated by chain rule:

ωω ∂
∂

⋅
∂
∂
⋅

∂
∂

=
∂
∂ y

y
es

es
JJ (14)

According to (12): esK
es
J .=

∂
∂

and
ω∂
∂y is accessible from (3) where ().if is a linear function of weights.

Calculating the remaining part,
y
es
∂
∂ , is not straightforward in most cases. This is the

price to be paid for the freedom to choose any desired emotional cue as well as not
having to impose presuppose any predefined model. However, it can be approximated
via simplifying assumptions. If, for example error is defined by

yye r −= (15)

where ry is the output to be estimated, then

e
es

y
es

∂
∂

−=
∂
∂ (16)

 can be replaced by its sign (-1) in (14). The algorithm is after all, supposed to be
satisficing rather than optimizing.
Finally the weights will be updated by the following formula:

104

Poster Proceedings KI2004

()

()∑

∑

=

=⋅⋅⋅−=
∂
∂

⋅⋅⋅−=∆ M

i
i

M

i
ii

u

uu
esKyesK

1

1

µ

µ
η

ω
ηω (17)

The definition of emotional signal and the gradient based optimization of the
emotional learning algorithm in neurofuzzy predictors is clarified among two
examples in next section.

4 Predicting the Sunspot number

Solar activity has major effects not only on satellites and space missions but also on
communications and weather on earth. This activity level changes with a period of
eleven years, called solar cycle. The solar cycle consists of an active part, the solar
maximum, and a quiet part, solar minimum. During the solar maximum there are
many sunspots, solar flares and coronal mass ejections. A useful measure of solar
activity is the observed sunspot number. Sunspots are dark blemishes on the face of
sun and last for several days. The SESC sunspot number is computed according to the
Wolf sunspot number R=k(10g+s), where g is the number of sunspot groups, s is the
total number of spots in all the groups and k is a variable scaling factor that indicates
the conditions of observation.
A variety of techniques have been used in the prediction of solar activity and its
effects by sunspot number. The sunspot number shows low dimensional chaotic
behavior and its prediction is a challenging problem for researchers. However, good
results are obtained by methods proposed in several articles [6], [13], [15], [16], [17],
[19], [20].
In this research, both the monthly and the yearly averaged sunspot number are used to
predict. Fig.1 shows the history of solar cycles based on yearly sunspot numbers.

The error index in predicting the sunspot number in this article, the normalized mean
square error (NMSE), is defined as follow

()

()

−

−
=

∑

∑

=

=
n

i

n

i

yy

yy
NMSE

1

2

1

2ˆ
 (19)

In which yandyy ˆ, are observed data, predicted data and the average of observed
data respectively.
At first the emotional learning algorithm has been used to enhance the performance
and accuracy of a neurofuzzy predictor based on ANFIS. The emotional signal is
computed by a linguistic fuzzy inference system with error and rate of error change as
inputs. Figure 2 presents the target and predicted outputs of the test set (from 1920 to
2000). The lower diagram shows the results of best fitted data by ANFIS. The training
is done with optimal number of fuzzy rules and epochs (74 epochs) and has been

105

Poster Proceedings KI2004

continued until the error of test set had been started to increase. The other diagram
shows the target and predicted values after using emotional learning. The emotional
algorithm is just used in fine tuning of the weights of neurofuzzy model which has
been initiated and adjusted by ANFIS. The error index, NMSE, has been decreased
from 0.1429 to 0.0853 after using emotional learning. It’s interesting that training
ANFIS to the optimum performance takes approximately ten times more computation
effort than the emotional learning to improve the prediction. Thus combining ANFIS
with the emotional learning is a fast efficient method to improve the quality of
predictions, at least in this example.
The next results are reported as a comparison of the quality of predicting the monthly
sunspot number by emotional learning with other learning methods, especially the
RBF network and ANFIS. All methods are used in their optimal performance. Over
fitness is prevented by observing the mean square error of test data during training.
Three regressors are used as the inputs of models. The specifications of methods,
NMSE of predictions and computation times (on a 533 MHz Celeron processor) are
presented in Table 1. Note that ELFIS is an abbreviation of the proposed predictor for
Emotional Learning based Fuzzy Inference System.

Fig. 1. The yearly averaged sunspot number.

Tab. 1. Comparison of predictions by selected neural and neurofuzzy models
 Specifications Computation Time NMSE
ANFIS 8 rules and 165 epochs 89.5790 sec. 0.1702
RBF 7 neurons in hidden layer 84.7820 sec. 0.1314
ELFIS 3 Sugeno type fuzzy rules 22.3320 sec. 0.1386

Fig. 2. Enhancement in the prediction of sunspot number by emotional learning, applied to ANFIS.

106

Poster Proceedings KI2004

ELFIS is based on Takagi Sugeno fuzzy inference system, the emotional signal is
computed by a fuzzy critic whose linguistic rules are defined by means of weighted
error, rate of error change and the last targeted output. Thus the critic shows
exaggerated emotions in the solar maximum regions, especially the peak points,
where the prediction is more important due to its effects on earth and satellites. The
weights of neurofuzzy model (equation 2) are adjusted by emotional learning via 17.
According to Table 1 learning in ELFIS is at least four times faster than the others
and is more accurate than ANFIS. It is remarkable that using a functional description
of emotional signal rather than the fuzzy description will generate faster algorithm,
But finding such a suitable function is not easy.
Figures 3 to 5 show the predictions by RBF network, ANFIS and ELFIS respectively.
These diagrams are a part of test set, especially the cycle 19 which has an above
average peak in 1957. It’s observable that ELFIS generates the most accurate
prediction in the solar maximum; however the NMSE of RBF is the least. Noticeably
it’s more important to predict the peak points with small errors rather than the points
in minimum regions. This is a result of the emotions of critic in the solar maximum.

Fig. 3. Predicting the sunspot number by ANFIS

Fig. 4. Predicting the sunspot number by RBF Network

RBF network generates more accurate prediction through the test set; however it is
observed that emotional learning provides better results in the solar maximum,
especially at the above-average peak of 1957. Other test sets are chosen to stop the
training in order to avoid over fitness. In this case even better NMSE can be obtained
by RBF, in expense of higher prediction error especially in 1957.

Fig. 5. Predicting the sunspot number by Emotional learning based fuzzy inference system

107

Poster Proceedings KI2004

5 Conclusion

In this paper, the proposed emotional learning based fuzzy inference system (ELFIS)
has been used as a predictor in two well known examples; In the prediction of solar
activity (the sunspot number time series) the emotional signal is determined with
emphasis on the solar maximum regions (the peak points of sunspot number) and it
has shown better results in comparison with RBF network and ANFIS. In the
prediction of security price, the emotional learning algorithm, defined by emotions of
a fuzzy critic, results in good predictions. In fact the use of a combination of error and
rate of error change leads to late overtraining of neurofuzzy model and thus more
accurate predictions have been obtained. The definition of emotional signal is an
important aid in emotional learning algorithms, which provides high degrees of
freedom. In the problem of security price prediction, better performance can be
obtained through the use of variables in addition to the lagged values of the process to
be predicted (e.g. fundamentalist as well as chartist data).

Reference

1. Brown M., Harris C.J. (1994), Neuro fuzzy adaptive modeling and control, Prentice
Hall, New York.

2. Eppler W., Beck H.N. (1999), “Peicewise linear networks (PLN) for function
approximation,” Proc. of IEEE Int. Con. on neural networks, Washington.

3. Fatourechi M., Lucas C., Khaki Sedigh A. (2001), “An Agent-based Approach to
Multivariable Control,” Proc. of IASTED International Conference on Artificial
Intelligence and Applications, Marbella, Spain, pp. 376-381.

4. Fatourechi M., Lucas C., Khaki Sedigh A. (2001) “Reducing Control Effort by means
of Emotional Learning,” Proceedings of 9th Iranian Conference on Electrical
Engineering, (ICEE2001), pp. 41-1 to 41-8, Tehran, Iran.

5. Fatourechi M., Lucas C., Khaki Sedigh A. (2001) “Reduction of Maximum Overshoot
by means of Emotional Learning,” Proceedings of 6th Annual CSI Computer
Conference, Isfahan, Iran, pp. 460-467.

6. Izeman A. J. (1985), “Wolf J.R. and the Zurich sunspot relative numbers,” The
Mathematical Intelligence, Vol.7, No.1, pp. 27-33.

7. Jang J.R. (1993) “ANFIS: Adaptive network based fuzzy inference system,” IEEE
Tran. On systems, Man and Cybernetics, 23(3), pp. 665-685.

8. Kavli T. (1993), “ASMOD: An algorithm for adaptive spline modeling of observation
data,” Int. J. of Control, 58(4), pp. 947-967.

9. Lucas C., Jazbi S.A., Fatourechi M., Farshad M. (2000) “Cognitive Action Selection
with Neurocontrollers,” Third Irano-Armenian Workshop on Neural Networks,
Yerevan, Armenia.

10. Nelles O. (1997) “Orthonormal basis functions for nonlinear system identification
with local linear model trees (LOLIMOT)”, IFAC symposium for system identification
(SYSID), Fukuda, Japan, pp. 667-672.

11. Nelles O. (2001), Nonlinear system identification, Springer Verlag, Berlin.
12. Perlovsky L.I. (1999), “Emotions, Learning and control,” proc. of IEEE Int. symp. On

Intelligent control/Intelligent systems and semiotics, Cambridge MA, pp. 132-137.
13. Schatten K.H., Pesnell W.D. (1993), “An early solar dynamo prediction: Cycle 23 ~

Cycle 22,” Geophysical research letters, 20, pp. 2257-2278.

108

Poster Proceedings KI2004

14. Takagi T., Sugeno M. (1985), “Fuzzy identification of systems and its applications to
modeling and control”, IEEE Tran. On systems, Man and Cybernetics, vol. 15, pp.
116-132.

15. Thompson R.J. (1993), “A technique for predicting the amplitude of the solar cycle”,
Solar physics, pp. 148, 383.

16. Tong H., Lim K. (1980), “Threshold Autoregressive limit cycles and cyclical data,” J.
Roy. Statistics. Soc. B, no.42, pp. 245-292.

17. H. Tong (1996), Nonlinear time series: A dynamical system approach, Oxford press,
UK.

18. Ventura R., Pinto Ferreira C. (1999), “Emotion based control systems,” proc. of IEEE
Int. symp. On Intelligent control/Intelligent systems and semiotics, Cambridge MA,
pp. 64-66.

19. Weigend A., Huberman B., Rumelhart D.E. (1990), “Predicting the future: a
connectionist approach,” Int. J. Of Neural systems, vol. 1, pp. 193-209.

20. Weigend A., Huberman B., Rumelhart D.E., (1992), “Predicting sunspots and
exchange rates with connectionist networks,” in Nonlinear Modeling and
Forecasting, Casdagli, Eubank: Editors, Addison-Wesley, pp. 395-432.

109

Poster Proceedings KI2004

Fault Diagnosis Features Extraction and Rules
Acquisition Based on Variable Precision Rough Set

Model

Qingmin Zhou 1, 4 Chenbo Yin 2, 3 Yongsheng Li 3 Thomas Rathgeber 2

1. Institute of Computer Application in Planning and Design, Karlsruhe University, 76128
Karlsruhe, Germany

zhou@rpk.uni-karlsruhe.de
2. Institute of Mechanical Design and Automobile Engineering, Karlsruhe University, 76128

Karlsruhe, Germany
yin@mkl .uni-karlsruhe.de

3. College of Mechanical and Power Engineering, Nanjing University of Technology,
210009Nanjing, P.R. China

yinchenbo@njut.edu.cn
4. College of Information Science and Engineering, Nanjing University of Technology,

210009Nanjing, P.R. China
mse@njut.edu.cn

Abstract. Rough set theory is a new mathematical tool to deal with vagueness
and uncertainty. But original rough sets theory generates only deterministic
rules and deals with data sets in which there is no noise. This drawback has
limited the applications of original rough set model for noisy or dirty data. The
variable precision rough set model (VPRSM) was presented to handle uncertain
and noisy information. Because the information of fault diagnosis is obtained
directly from vibration signal system, there are often the existence of noisy data
and uncertain information. Therefore, in this paper, a method based on VPRSM
is proposed to apply to fault diagnosis feature extraction and rules acquisition
for industrial applications. By selecting proper precision level β and using
knowledge reduction, the redundancy in power spectrum data is reduced. The
fault feature is effectively extracted and accurate diagnostic rule is acquired
from the set of incomplete fault power spectrum samples by using the approach.
An example for fault diagnosis of rotary machinery is given to show that the
method is very effective.

1 Introduction

Rough set theory introduced by Zdzislaw Pawlak in 1982 has been described as a
mathematical tool to deal with vagueness and uncertainty [1][2]. In rough set theory,
the approximation region is determined through the indiscernible relations and
classes. By the knowledge reduction, the classified knowledge rules are given. This
approach seems to be of fundamental importance to artificial intelligence and
cognitive sciences. Rough set based methods have been applied to machine learning,

110

Poster Proceedings KI2004

knowledge acquisition, decision analysis, knowledge discovery from databases,
expert systems, decision support systems, inductive reasoning, and pattern recognition
etc.

However, the original rough set only generates deterministic rules and only deal
with data sets in which there is no noise. But in practice the noisy data is inevitable.
Therefore, a model development on the original rough set theory is needed. As an
extension of original rough set model, the variable precision rough set model
(VPRSM) is defined by W. Ziarko [3, 4]. This model inherits all basic mathematical
properties of the original rough set model but allows for a predefined precision
level β . This is an important extension, which will give us a new way to deal with
the noisy data.

In industry application, a fault will cause economic losses and even human
casualties. Generally, fault diagnosis can be treated as a pattern classification task.
The traditional fault diagnosis based on models and residual analysis is not very
effective if there are a few errors in the modeling of the system. Therefore, for a long
time man has been looking for new efficient theories and intelligent methods to fault
diagnosis. The rule-based diagnostic expert system is the most mature and the most
promising [5]. However, many diagnostic rule-based expert systems suffer from the
diagnosis inefficiency problem [6]. To guide the diagnosis, expert systems rely on an
inference engine to derive the conclusions from the knowledge base. But the
diagnosis time increases significantly when the number of queries grows, and the
diagnostic process slows down because of the inefficient search of the knowledge
base. At present, there are some intelligent diagnosis methods based on genetic
algorithm, fuzzy sets theory, neural network and so on. However, in the reality these
intelligent systems are hard to establish the mathematical models, in which the
physics implication of each parameter can be not easily determined. An approach to
fault diagnosis based on rough sets theory has be applied. But because the data
information of fault diagnosis is obtained directly from vibration signal system, the
noisy data is inevitable in fault diagnosis. If noisy data exists, the lower and the upper
approximations cannot normally be formed. Therefore, the misjudgment of the
diagnosis rule is often caused.

In this paper, a method based on VPRSM is proposed to apply to fault diagnosis
feature extraction and rules acquisition for industrial applications. The damage extent
of fault is evaluated by energy distribution of frequency. And the power spectrum
data is smaller influenced by noise than the time series data. From this reason the
power spectrum data is used as fault diagnosis signal. Typical fault of rotating
machines were simulated in our rotor test-bed. For inconsistent data and noise data in
power spectrum, the VPRSM allow a flexible region of lower approximations by
precision variables. By selecting proper precision level β and using knowledge
reduction, the fault feature is effectively extracted and accurate diagnostic rule is
acquired from the set of fault power spectrum samples by this approach. An example
for rotary machinery fault diagnosis is given to show that the method presented in the
paper is very effective.

111

Poster Proceedings KI2004

2 Variable Precision Rough Set Model

2.1 Information System

An information system is composed of a 4-tuple:),,,(fVAUS = , in which

},...,,{ 21 nxxxU = is a finite non-empty universe; },...,,{ 21 naaaA = is a finite

nonempty set of attributes; For each Aa ∈ , V is value set of a ; VAUf →×: is
the information function such that Vxf ∈)(for every Aa ∈ and Ux ∈ . The
special case of information system is called decision table expressed in the form of
relation table. In the decision table each row stands for a member of U, also known as
a decision rule. Each column stands for the attribute and its value. DCA U= ,

φ=DC I , C is set of condition attributes, D is set of decision attributes.

2.2 Approximation of Sets

In rough set theory, uncertainty is defined by the lower approximation and upper
approximation. In information system),,,(fVAUS = , each non-empty subset

AB ⊆ determines an indiscernibility relation as follows:

() () (){ }BayaxaUUyxRB ∈∀=×∈= :, (1)

[]{ }UxxRU BB ∈= :
(2)

BR partitions U into a family of disjoint subsets BRU . BRU denotes all the
equivalence classes of U . For Ux ∈ , its equivalence class is denoted by

[] (){ }BB RyxUyx ∈∈= ,: (3)

For an arbitrary subset UX ⊆ , we can associate two subsets with X :

[] [] }:{)(XxxXR BBB ⊆= U (4)

[] [] }:{)(φ≠= XxxXR BBB IU
(5)

)(XRB and)(XRB are respectively called the BR lower and BR upper

approximation of X. BR boundary region of X is defined as:

)()()(XRXRXBNR BBB −= (6)

112

Poster Proceedings KI2004

Meanwhile,)()(XRXposR BB = is defined as BR positive region of X,

)()(XRUXnegR BB −= as BR - negative region of X.

If ()XRXR BB =)(, then X is BR -definable sets. If ()XRXR BB ≠)(, X is

BR -rough sets. In this case, for a given concept X, we can only know that X contains

at least all elements in)(XRB and does not contain any element outside)(XRB .
The boundary region contains those results that are possible, but not certain.

 2.3 Rough Approximation Analysis

The above-mentioned approximation sets of original rough set model are quite
sensitive to noisy data. For instance, a decision table (,)S U C D= U , E1 and E2 are
two equivalence classes of condition attributes C; Q is an equivalence class of
decision attributes D. There are 100 elements in E1, E2 respectively. For equivalent
class Q, only an element in E1 belongs to Q , and only an element in E2 does not
belong to Q . Based on approximation sets of original rough set model, E1 and E2
belong to same boundary region of Q. That is to say, it is difficult to make a judgment
for two results. However, in E2 only an element that does not belong to X can be
caused by noise. Thus in the above-mentioned approximation sets, the date
classification of 99% consistent and 1% inconsistent can not be distinguished.

To solve this problem, the VPRSM was proposed. The VPRSM was aimed at
handling uncertain and noisy information and was directly derived from the original
rough set model without any additional assumptions. The VPRSM extends the
original one by relaxing its strict definition of the approximation boundary using a
predefined precision level β . Hence some boundary regions are included in the
positive region.

2.4 Variable Precision Rough Set Model

The precision level β denotes the proportion of correct classifications, in this case the
domain of β is 15.0 ≤< β . For a given information system),,,(fVAUS = ,

UX ⊆ , AB ⊆ , lower approximation, upper approximation and boundary region
are defined with precision level β .

[] [] })(:{)(ββ ≥= BBB xXPxXR U (7)

[] [] }1)(:{)(β
β

−>= BBB xXPxXR U
(8)

)()()(XRXRXBNR BBB
βββ −= (9)

113

Poster Proceedings KI2004

[] [])},1()(:{ ββ−∈= BB xXPxU

)(XRB
β and)(XRB

β
 are respectively called the BR lower and BR upper

approximation of X with precision level β . Here, [])(BxXP is referred as
conditional probability function :

[] []
[]B

B
B x

xX
xXP

I
=)(

(10)

where X is the cardinality of the set X .

The rough degree of uncertainty can be measured by β -accuracy)(xB
βα . It can

be defined as:

() ()XRXRx BBB
βββα =)(

(11)

As β decreases, the boundary region of the VPRSM becomes narrower. Namely,
the size of the uncertain region is reduced. Hence, the VPRSM have some tolerance to
the noise [9,10]. The VPRSM can come back to the original rough set model
when 1=β .

2.5 Knowledge Dependability and Approximate Reduction

For a given information system),,,(fVAUS = , DCA U= , C is called the
condition attribute set, while D is called the decision attribute set . UX ⊆ , CB ⊆ .
The measure of classification quality is defined by β -dependability of knowledge as
follows:

() [] []
[] U
x

xX
xDB

B

B
B

≥= βγ β IU :,
(12)

The β -dependability ()DB,βγ measures the proportion of objects in the universe
for which classification is possible with the precision level β .

In VPRSM, knowledge reduction is aimed to select the minimum attribute subsets
of C which don’t change the quality of classification with the precision level β [11].

Assumed ()DCred ,β is β approximate reduction, then

() ()()DDCredDC ,,, βββ γγ = (13)

114

Poster Proceedings KI2004

No proper subset of ()DCred ,β at the same β value can also give the same quality

of classification. In other words, if any one attribute from ()DCred ,β is eliminated,
the formula (13) will be not valid.

A decision system may have many β - reductions. The intersection of all
reductions is called Core. People always pay attention to the reduction that have the
least attributes—minimal reduction sets, because the minimal rule sets of the decision
system can be obtained through the minimal reduction sets. However, it has been
proved that the minimal reductions of the decision system are the NP-hard [12]. The
most important thing is to find a reduction algorithm with low computation cost.

2.6 Rules Acquisition

For decision system),,,(fVAUS = , DCA U= , any expressions ψθ → is
called a decision rule, where θ expresses cause and ψ expresses effect. If ψθ →
is true, then ψθ → is consistent in S. Otherwise, it is inconsistent. For Ca ∈ , if

}{aC − and D is consistent, then attribute a is called dispensable. Otherwise, a is
indispensable. If all attributes of C are indispensable, then C and D are independent.

Let }{dD = , },...,2,1{ nVd = , then },...,,{/ 21 nDDDDU = , the decision

class })(,{ ixdUxDi =∈= . In VPRSM, for each)(iB DRx β∈ a decision rule
may be generated as follows

()(),
r C

r r x d i
∈
∧ → = (14)

3 VPRSM Based Approach for Fault Diagnosis

3.1 Features Extraction to Compose Decision Table

In fault diagnosis, many feature parameters can be used to reflect working state of
equipment. But it is impossible to use all parameters to judge whether equipments
work normally. We can only extract the necessary fault feature attributes and from
these features obtain diagnosis rules. For fault diagnosis of rotating machines such
pumps and motors, time domain, frequency domain and amplitude value domain can
regard as fault features. Because the vibration signals of rotating machines in the
frequency domain are obvious, the frequency domain feature of vibration signals is
regarded as main fault feature. The damage extent of fault is evaluated by energy
distribution of frequency. And the power spectrum data is smaller influenced by noise

115

Poster Proceedings KI2004

than the time series data. Hence in this paper, power spectrum data is used as fault
diagnosis signal. Power spectrum represents the distribution of signal energy with
frequency.

In fault diagnosis of rotating machines, rotor unbalance, bearing oil whip and
misalignment are the common faults. The three typical faults were simulated in our
rotor test-bed. The features of power spectrum obtained from the rotor test-bed are
used for the attributes of decision table. We take the three typical faults to study the
steps of the diagnosis rules acquisition. In application of VPRSM, a decision table
must be first built. Then attributes of decision table are discretized because the
VPRSM cannot deal with continuous attributes. Fault feature is selected by removing
unreasonable features with narrow intervals. Suppose VE is the average value of
vibration energy for each feature frequency spectrum, then

2

1

n

j
j

V
BF

A
E

N
==

∑

(15)

Where jA is the amplitude of FFT spectrum; BFN is the width of noise band with

window (for Hamming window, 5.1=BFN). By calculating the average value of

vibration energy VE and choosing a proper threshold µ [13], the attribute value

iC of decision table can be calculated.

If µ≥VE Then "1"=iC

 Else "0"=iC

"1"=iC represents abnormal spectrum; "0"=iC represents normal spectrum.

3.2 Fault Features Reduction and Diagnostic Rules Acquisition

In fault diagnosis, there are not one to one relations between the fault reasons and the
fault symptoms with relatively high information redundancy. Some of the diagnostic
information is interrelated with each other. Others are independent. The VPRSM can
effectively eliminate the redundant information to reveal the diagnosis rules by means
of reduction and mining.

For decision table),,,(fVAUS = , DCA U= , U is the data set of the
historic fault samples; Condition attribute C is the fault symptom sets; Decision
attribute D corresponds with the result of the fault classification. Firstly, we can
ascertain the appropriate precision level β . For noisy domains or inconsistent data, β
takes smaller value, otherwise β takes bigger value. For the discretized decision

116

Poster Proceedings KI2004

table, we calculate its upper and lower approximation sets with precision level β and
its β -dependability [7]. The ability of approximate classification of the decision
table can be evaluated at precision level β . Subsequently, reduction of decision table
is made, which includes the condition attribute reduction and the diagnostic rule
reduction. For condition attribute reduction, check the condition attributes whether all
the attributes are indispensable. For a decision table, if the quality of classification
with the precision level β does not changed by eliminating an attribute, then this
attribute can be deleted, otherwise it can’t be deleted.

Similarly, we can reduce diagnostic rule from an attribute reduction to get a set of
tidy [8]. The maximum number of condition attribute values of a rule is removed
without decreasing the classification accuracy of the rule. Generally, we select the
least attributes and the simplest diagnostic decision rules.

4 Example

The fault diagnosis for rotating machines is used as an example. By rotor experiments
50 groups sample data of rotor are collected such as table 1. },...,,{ 5021 xxxU = is
a finite sets of the fault samples; The condition attribute },...,,{ 821 cccC = is the
fault symptom sets, und C1,C2,…,C8 indicate respectively frequency range, here 0f is
rotating frequency. Decision attribute D means the fault type. { }3,2,1=D shows
that the sample have respectively the rotor unbalance fault, oil whip fault and rotor
misalignment fault symptom. Because the reference point of power spectrum obtained
from the rotor test-bed does not lie in zero point, so it must be converted to zero
reference point. The maximum point of absolute value of negative number is as zero
point during computing. Then the attributes of decision table are discretized, the
attribute value is {1, 0}, which represents respectively abnormal spectrum and normal
spectrum. The decision table of fault diagnosis is built, see table 2.

Table 1. Fault diagnosis cases

U
0.01~0.39 0f

C1

0.40~0.49 0f

C2

0.5 0f

C3

0.51~0.99 0f

C4

0f

C5

2 0f

C6

3 0f

C7

5 0f

C8

D

x1 -32.20 -28.03 -30.15 -23.27 8.09 -20.21 -22.43 -16.84 1

x2 -29.11 -30.65 -32.76 -11.20 9.68 -21.07 -19.18 -18.50 1

x3 -20.19 24.05 22.86 19.06 0 -14.43 -28.81 -17.66 2

… … … … … … … … … …

x50 -44.37 -48.10 -49.28 -36.22 -18.79 -8.17 -10.01 -22.94 3

117

Poster Proceedings KI2004

Table 2. The decision table of fault diagnosis

U
0.01~0.39 0f

C1

0.40~0.49 0f

C2

0.5 0f

C3

0.51~0.99 0f

C4

0f

C5

2 0f

C6

3 0f

C7

5 0f

C8

D

x1 0 0 0 0 1 0 0 0 1

x2 0 0 0 1 1 0 0 0 1

x3 0 1 1 1 0 0 0 0 2

… … … … … … … … … …

x50 0 0 0 0 1 1 1 0 3

Table 3. The core value table of diagnostic rule for { c2, c5, c6}

Rule

0.40~0.49 0f

C2

0f

C5

2 0f

C6

D

1 0 1 * 1

2 * 1 * 1

3 1 * * 2

4 1 * 0 2

5 * * * 3

6 * 1 1 3

Table 4. The diagnostic rules of reduction for { c2, c5, c6}

Rule

0.40~0.49 0f

C2

0f

C5

2 0f

C6

D

1 0 1 * 1

2 0 1 * 1

2’ * 1 0 1

3 1 * 0 2

3’ 1 0 * 2

4 1 * 0 2

5 0 * * 3

5’ * 1 * 3

5” * * 1 3

6 * 1 1 3

The steps of the rotor fault feature extraction and diagnostic rules acquisition based
on VPRS are as following:
Step 1 The decision table is simplified, and the same samples are combined.

118

Poster Proceedings KI2004

Step 2 Computing respectively all equivalence classes for fault symptom sets C
and fault type sets D, namely { }1 2/ , ,..., iU C X X X= and

{ }1 2/ , ,... jU D Y Y Y= .

Step 3 For inconsistent equivalence class iX , computing respectively conditional

probability function ()j iP Y X .

Step 4 The appropriate precision level β is ascertained. For a given probability
value β , the β -positive region corresponding to a concept is delineated
as the set of objects with conditional probabilities of allocation at least
equal to β . For noisy domains or inconsistent data, β takes smaller value,
otherwise, β takes bigger value. Because the power spectrum data has
smaller influence by noise than time series data, by computing we take

8.0=β .

Step 5 Lower approximation)(XRB
β and upper approximation)(XRB

β
are

calculated with precision level 8.0=β . Then calculate its β -accuracy

)(xB
βα and β -dependability ()DB,βγ . It results that)(xB

βα is equal to

1.0 and ()DB,βγ to 1.0. This indicates that the approximate classificatory
ability of decision table with precision level 8.0=β is accord with
request.

Step 6 The fault symptom sets (condition attribute) are reduced. The Core of the
condition attribute reduction is calculated, here the Core is empty. There
are four simple reduction subsets of condition attribute C relatively to
decision attribute D. Those are { c2, c5, c6},{ c4, c5, c7},{ c3, c6, c7 } and { c3,
c4, c6, c7 }.

Step 7 The diagnostic rules are reduced and minimization of the diagnostic rules is
acquired. Limited by the length of the paper, we only provide the rule sets
of reduction subsets {c2, c5, c6}. The Core value of each diagnostic rule can
be calculated, see table 3. In table 4, the diagnostic rules of reduction are
given.

Step 8 The redundant knowledge rule of the decision table is eliminated. The
corresponding rules are synthesized. The diagnostic rules are acquired as
follows:

 C2[0] C5[1] → D[1]
C5[1] C6[0] → D[1]
C2[1] C5[0] → D[2]
C2[1] C6[0] → D[2]
C5[1] C6[1] → D[3]

 The rules above can be also expressed:
1) If the spectrum in 0f is abnormal, and the spectrum in (0.40~0.49) 0f and in

119

Poster Proceedings KI2004

2 0f are normal, then exists the rotor unbalance fault.

2) If the spectrum in (0.40~0.49) 0f is abnormal, and the spectrum in 0f and in

2 0f are normal, then exists the rotor oil whip fault .

3) If the spectrum in 0f and in 2 0f are abnormal, then exists the rotor
misalignment fault.

The diagnostic rules above are correct and consistent with the actual experiments
result. These rules can be regard as diagnostic knowledge to diagnose other fault
sample data.

5 Conclude Remarks

In fault diagnosis there is no one to one relation between the fault reasons and the
fault symptoms. Therefore the feature extraction and rules acquisition from redundant
fault information data are always difficult problem in the traditional fault diagnosis. In
the paper, a method based on VPRSM is proposed to deal with fault diagnosis feature
extraction and rules acquisition. The data information of fault diagnosis is obtained
directly from vibration signal system in which there are the existence of noisy data
and uncertain information. The method can effectively eliminate the redundant fault
attributes and acquire the correct diagnosis rules from noisy fault information.
Simulation results for rotating machines show that the reduction and classification of
the diagnostic knowledge can be realized and the correct diagnosis rules can be
acquired by the presented method. This method is more effective to rule mining of the
fault diagnosis. It provides foundation in theory and application for the intelligent
fault diagnosis.

References

1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences. 11(5)
(1982) 341-356

2. Pawlak, Z.: Why rough sets. Proceedings of the Fifth IEEE International Conference on
Fuzzy Systems, 2, (1996) 738-743

3. Ziarko, W.: Analysis of Uncertain Information in the Framework of Variable Precision
Rough Sets. Foundations of Computing And Decision Sciences , 18(3-4), (1993)381-396

4. Katzberg, J.D., Ziarko, W.: Variable Precision Extension of Rough Sets. Fundamental
Informatics 27, (1996)155-168

5. Burrell, P., Inman, D.: An Expert System for the Analysis of Faults in an Electricity
Supply Network: Problems and Achievements. Computers in Industry, 37,(1998) 113-123

6. Durkin, J.: Expert Systems. Design and Development, Macmillan, (1994)
7. Zhang, D.-F., Wang, Z.-Q.: VPRS Model Approach to Fault Feature Selection and

Diagnostic Rules Extraction. Journal of system simulation, 15(6),(2003) 793-796
8. Zhang,W.-X., Wu, Z.-W., Liang, J.-Y.: Rough Set Theory and its Method. Science Press,

Beijing(2001)

120

Poster Proceedings KI2004

9. Chen, X.-H, Zhu, S.-J, Ji, Y.-D, Li, Y.-M.: Generalized Rough Set Model and its
Uncertainty Measure. Journal of Tsinghua University, 42(1) , (2002)128-131

10. Mi, J.-S, Wu, W.-Z, Zhang,W.-X.: Approaches to Knowledge Reduction Based on
Variable Precision Rough Set Model. Information Sciences 159(2004) 255-272

11. Beynon, M.: Reducts within the Variable Precision Rough Set Model. A Further
Investigation. European Journal of Operational Research 134 (2001) 592-605

12. Skowron A, Rauszer C.: The Discernibility Matrices and Functions In Information
Systems. Intelligent Decision Support-Handbook of Applications and Advances of the
Rough Sets Theory, Kluwer Academic Publishers, (1992)331-362

13. Hu, T., Lu, B.-C., Chen, G.-J.: A Gas Turbo Generator Fault Diagnosis New Approach
Based on Rough Set Theory. Journal Of Electronic Measurement And Instrument, 15(1),
(2001) 12-16

121

Poster Proceedings KI2004

An Intelligent Agent to Support Collaboration within a
Distributed Environment

Bogdan-Florin Marin1, Axel Hunger1, Stefan Werner1, Sorin Meila1, Christian
Schütz1

1 University of Duisburg-Essen, Oststrasse 99, 47057 Duisburg, Germany
{bmarin, hunger, swerner, meila, c.schuetz}@uni-duisburg.de

Abstract. The motivation for the usage of software agents in University-
Education can differ. The Institute for Multimedia and Software Engineering at
the University of Duisburg-Essen (UDE) is involved in a research project
which aims at the development of new education concepts in virtual learning
environments and also at the internationalization of university education which
plays an important role nowadays. This paper goal is to show how to integrate
agent technology to support collaborative learning in distributed environments.
The aim of this research is to provide the first steps to define a method for
creating a tutor agent which can partially replace human-teachers and assist the
students in the process of learning.

1 Introduction

The communication and interaction between the people, intending to work
together on related tasks using a computer from different locations has been improved
by terms of Computer Supported Collaborative Work (CSCW) systems. The
advancements in the CSCW technologies had led a further research into computer
supported collaborative learning (CSCL) for the educational purposes. CSCL
supports multiple students learning in the collaborative process across the same
networked servers to communicate the ideas and information, access information and
documents, provide feedback and facilitate the group activities by the help of
computer supported systems.

Basic research in Computer-Supported Collaborative Learning (CSCL) and
educational psychology focused on identifying potential indicators of effective
collaborative learning teams ([1], [2] and [3]). Also, CSCL research explored the
types of problems that may result from insufficient group interaction and support ([4],
[5], [6] and [7]). This resulted in several research approaches for observing, analyzing
and assessing collaborative learning interactions as well as for developing methods
and tools that provide guidance and support to on-line collaborative learning teams
([8], [9], [10], [11], [12] and [13]).

Due to the use of collaborative learning in classroom which has proven to be
effective in improving academic achievement, motivation for learning and social
interaction [14], the interest in collaborative environments has increased considerably

122

Poster Proceedings KI2004

[15] therefore studies into creation of collaborative learning environments on the
Internet have shown a topic of great interest for many researchers [16].

In this paper, “collaborative learning” does not mean only “Computer Supported
Collaborative Learning (CSCL)” based on computers and information networks. It
also refers to a new method of group learning which is effective not only for
knowledge acquisition, but also for meta-cognitive skills [17], [18] and
communication skill acquisition [19].

Distance educators and their students benefit greatly from the use of online
collaborative techniques. During the last years, the traditional text-based conferencing
methods have been complemented by audio/video-conferencing methods, whiteboard,
polling, and instant messaging techniques. These operate in synchronous and
asynchronous communication modes, on a variety of computer platforms, and in
stand-alone and integrated designs. Our research is also motivated by a real problem:
distance education.

The development and the setup of a new international degree course are described
in [20]. German students are required to spend at least one semester abroad. With the
usage of the new media and communication technologies it should be easier for
foreign students to follow the studies in Germany. Further, it provides german
students the opportunity to take part in Software-Engineering Course during their
abroad period of study, but also have the chance of getting knowledge in systems
known as CSCW environments. This was the main motivation for the development of
a synchronous groupware called Passenger and its application in Software-
Engineering-Education.

The traditional “Computer Supported Cooperative Work and Software
Engineering” lab at UDE is conducted as a project setup of student teams, each
consisting of four persons: three students and one tutor, where the same tutor can be
in several virtual teams. That can cause problems in terms of tutors’ availability if the
virtual teams meet at the same time but also if the teams meet at times outside the
tutor consultation hours. To make sure that at least a virtual tutor is always available
agent technology shall be used. Therefore, a novel idea and a framework of intelligent
tutor agents conducting a Software Engineering lab using Passenger is presented in
this paper.

This paper is structured as follows: the next section evaluates the need of a new
educational environment to support spatially distributed teams and also presents basic
design concepts of the Passenger groupware, the third section highlights several
aspects of software agents and also introduces the reasons for choosing agents as
tutoring knowledge elements. This section provides also an overview of related work
in this research field. Section 4 presents the tutor based agent and its functionality
within the Passenger groupware. Final section presents the outcome of this research.

123

Poster Proceedings KI2004

2 The Synchronous Passenger Groupware

Computer support for group learning is augmenting by the dissemination of
computer technology networks. There is a great variety of new applications and
possibilities, although one of the major challenges is the transition period required for
transporting the applications, methods, methodologies and techniques of the real
world to the virtual world. This is where the work in the fields of Computer
Supported Cooperative Work (CSCW) and Software Engineering join up. Through
the studies for group work and the methods for developing software it is possible to
model and design software that is proper for supporting groups which is called
groupware.

Within the framework of the lab for the lecture “CSCW and Software-
Engineering” at UDE, the students are trained using the virtual lab concept to work in
spatially distributed teams. The virtual laboratory concept is quite general
encompassing a range of technologies and human factors that are necessary for
operation in any remote environment, whether remote in time, scale or distance.

The organization and execution of such a practical course/lab with spatially
distributed participants require tools for support in different phases:

• Most importantly, the organization of the practical course must be supported.
For example that the students are to announce within the prescribed period
and that the supervisors can generate the group arrangements and schedules
from these data.

• In meetings, relevant meeting information must be announced such that the
participants must be invited explicitly to a meeting. The relevant meetings
information consists of information such as dates and times of the meetings
as well as connecting information.

• During a meeting tools to support one or several forms of co-operation are
necessary: the synchronous group work, the asynchronous group work and
the individual work. These tools must ensure additionally the conflict-free
access to common resources.

Mainly the application of public available tools like Microsoft Netmeeting or
CUSeeMe and their usability on the basis of conducting a distributed software
engineering lab can be found [21]. These tools are rated as more or less suitable for
the application in Software Engineering labs, which are conducted in the above
mentioned manner due to the special requirements resulting from the educational
perspective.

For the special case of the software engineering lab regarded here, no complex
problems are to be solved concerning the organization of the practical course or the
invitation to a meeting. This could rather be solved by using standard Internet
technologies such as HTML (Hyper Text Markup Language) and web-databases. The
emphasis lies on the development of a new educational environment for the support
of the students during a meeting in the context of a Software Engineering lab.

An educational environment must be constructed effectively so that students who
participate into distributed teams learning process through Internet or information

124

Poster Proceedings KI2004

network could interact with other team-members timely and friendly. Namely, the
collaboration is the most important subject with a view to designing an advanced
computer supported educational environment. In order to attain this subject, it is
necessary to discuss an architectural framework from the required resources points of
view:

• Technologically mediated communication channel
• Shared workspace for a team/group
• Personal workspace
• Learning materials/ learning tools

In order to create an educational environment for the spatially distributed teams, a
synchronous groupware called “PASSENGER” was developed at the University of
Duisburg – Essen throughout the last years. A client-/server architecture has been
chosen whereby the server is located at the university, due to the fact that the
university plays a major role in this configuration.

The specified requirements for a groupware used in a Software-Engineering-lab
give a direction how the function- and application-classes of the Passenger-Client
were defined. Therefore the Passenger-Client consists of a communication
component, a cooperation component and several shared tools and resources to carry
out Software Engineering tasks.
 The Passenger Client user interface (see Figure1) contains video screens of each
member and a whiteboard that is divided in a public window for common process on
the outline documents and a private window for individual process on the documents.

Public/Private
Windows of
Whiteboard

Video Screen
for each member

Case Tool
Window

Local/Global
History

Windows

Public/Private
Windows of
Whiteboard

Video Screen
for each member

Case Tool
Window

Local/Global
History

Windows

Figure 1 Passenger Client

125

Poster Proceedings KI2004

Each member has the same view of the public window according to the What You
See Is What I See (WYSIWIS) principle, but only one of them can alter the document
at a certain time. Each member is also equipped with a private working window to try
out own ideas and to work simultaneous on an individual solution.

Three essential differences of our groupware compared to publicly available
solutions can be specified:

a. Passenger floor control [22]: the advantages of the developed Floor-Control
protocol are to guarantee a defined fairness and to prevent the mutual
exclusion and blocking. Thereby, the fairness definition is based on a
theoretically equal distribution of the Floor-holding concerning the
occurrence. Anyway this type of equal distribution is not forced. Since the
defined roles in the group process model are opposed to any kind of equal
distribution, the arrangements to guarantee the equal distribution of the Floor
were renounced. In particular, the Passenger Floor Control does not limit
Floor-holding duration.

b. A user interface designed to support group awareness [23]: The design is
based on common requirements and the special requirements from the
analyzed group behavior. For all design decisions thought has been given to
the requirement for measures to increase the group-awareness. Therefore a
concept for the positioning and resizing of the communication windows was
developed and implemented. Especially solutions for the Floor-Control and
the group-awareness were developed during the design of the user interface.
Group awareness functions are implemented by means of providing all
needed information for a late coming in participant to discover the actual
conference state. This is implemented by highlighting the video screen of the
person who has access to the shared resources.

c. The whiteboard concept materialized in tools to carry out software
engineering tasks. The implemented PASSENGER-CASE-Tool for the
software design features its concept for realizing the private and public work
area and its process specified support for software engineering. The
separated realization between the work and the display area enables the
Floor-Holder firstly to simultaneously access the last two design documents.
Due to this fact he is simply able to compare the two schemes by switching
between the work and display window. The rest of the participants have the
same possibility under condition that they transfuse the content of the
display field of their work area. The transfer of arbitrary documents to the
work area of the Floor-Holder and there to the display area of the others,
should not be commented, in order to set the process rights and the access to
the speaking channel in a shareable Floor-Control.

The Passenger groupware contains also a Telepointer which serves to elucidate
and present the facts. The Telepointer is implemented as a collaborative service
which can be used by the Floor-Holder. This user can lead the attention of the other
participants to some objects or screen areas of the public window during a discussion.

126

Poster Proceedings KI2004

A more detailed description of the functionality of this groupware or its usage in
Software Engineering can be also found in [24].

3 Software Agents

In the last few years, software agents’ technology has become an interesting field
of research. The concept of agent has become important in both Artificial Intelligence
and mainstream computer science. Many researchers consider agent technology as the
translation of social theories into computer programs [26].

Three key issues can be identified concerning software agents:

• Agent theory represents essentially specifications, which can define an agent
and its properties.

• Agent architecture describes the step from specification to implementation.
• Agent languages are programming languages which allow to control or to

interact with the agents

Starting from a simple comparison between a human agent - which is a person who
acts autonomously and behaves intelligently - and a software agent, several issues can
be noticed:

• Agents as intentional systems1: is it legitimate or useful to attribute human
characteristics like beliefs, desires to artificial agents? Being an intentional
system seems to be a necessary condition for an agent, but is it a sufficient
one?

• Knowledge is a pre-condition for an agent’s actions: what an agent needs
to know in order to perform several actions?

• When building intelligent agents it is important that a rational balance is
achieved between the complexity (hardware resources) of an agent and the
tasks that the agent should perform.

There are several basic characteristics, which any intelligent software agent should
have:

• autonomy is the ability of an agent to operate without the direct
intervention of humans or others, and have some kind of control over its
actions

• social ability represents the possibility to interact with humans (maybe
with other agents) via some agent-communication languages

• reactivity represents the ability of an agent to perceive its environment and
respond to the changes that occur in it

1 Human behaviour and activity are predicted and explained through the attribution of attitudes

such as believing (She took her umbrella because she believed that it was going to rain),
wanting (He worked hard because he wanted to posses a new car), fearing, hoping and so on.
An intentional system describes entities whose behaviour can be predicted by the method of
attributing belief, desires [25].

127

Poster Proceedings KI2004

• pro-activeness is the ability of an agent to exhibit goal-directed behaviour
by taking the initiative.

3.1 Why Software Agents as Tutors?

Unfortunately, there is not yet an effective evaluation of the impact of agent-based
architectures properties such as mobility, autonomy, distribution and homogeneity.
Who should develop and build intelligent agents? Should one use static or mobile
agents? What is the adequate autonomy degree? How can the agents be integrated
into existing learning environments? How many agents should be used in order to
partially replace a human teacher? How different should those agents be? How much
will future intelligent learning environments cost, and what kind of resources and
support will they require? The answers to these questions would provide the first step
for setting a framework of pedagogical-software agent-based solutions to remove all
the obstacles from distance learning environments. These and other questions related
to the design, development, integration, implementation, maintenance, and cost of
intelligent learning environments are dominating most of the researchers in this field.

The application of agents in the educational sector comes about mainly in the form
of personal assistants, user guides, alternative help systems, dynamic distributed
system architectures, human-system mediators and others. As a result of all of the
changes that have taken place in the educational system, one now sees the increasing
emergence of complex and dynamic educational infrastructure that needs to be
efficiently managed. Corroborating this, new (types of) educational mechanisms and
services need to be developed and supplied.

In particular these services need to satisfy a series of requirements such as
personalization, adaptation, support for user mobility, support for users while they are
dealing with new technologies, among others. Agents emerge to provide solutions for
these requirements in a way that is more efficient when compared to other existing
technologies [27].

According to Aroyo and Kommers [27], agents can influence different aspects in
educational systems. They supply new educational paradigms, support theories and
can be very helpful both for learners and for teachers in the task of computer-aided
learning.

Lees and Ye [28] believe that the application of the agent paradigm to CSCW
potentially can exchange information more fluid among the participants of groupware
systems (as decision-making systems), help in control of the process flows and also
supply groupware interfaces. These ideas also are applicable to other domains, such
as is the case of interactive learning.

According to Kay [29], in the first computer-assisted teaching environments the
idea was to build "teachers" who could transmit knowledge to the learners. Currently,
these types of environments are more geared up for exploration on the part of the
learners, designing, building and using adaptive systems as tools. These environments
also are being built to give greater responsibility to the learners regarding aspects of
the learning process, and especially regarding control of its model, which is the
central aspect in the adaptability of the tools.

128

Poster Proceedings KI2004

For McCalla & all [30], learner models may have a variety of purposes depending
upon the type of knowledge that needs to be stored and processed. For them, the
computation of all of the learner (sub-)models of an environment can be
computationally expensive and not always necessary. In the work cited four purposes
are presented for a model: reflection, validation, matchmakers and negotiation.

For Kay [29], there are several problems from the learners’ point of view. One is
the increase in the power of choice and control over the model. This could increase
the learners’ workloads or even turn into a distraction. In this case, the learners
should take advantage of the moments such as the end of a course or a topic to
evaluate and reflect upon their participation and the learning process. Another
potential problem is incorrect data being supplied by the learners. The solution
adopted in this work for that problem was to store the type of information learners are
providing and the type the environment extracts.

For Jennings & all [31], autonomous agents and multiagent systems represent a
new modality of analyzing, designing and implementing complex software. The agent
concept has a wide area of applications, ranging from the creation of personal
assistants to air traffic control systems, electronic commerce and the group work
support.

Our research aims at showing how to integrate agents in a synchronous
collaborative environment in order to help students in the process of learning and the
benefits from this human-computer interaction.

The fundamental reason for introducing agents as tutoring knowledge elements is
their capabilities of communication and interaction. These characteristics are
fundamental for agent’s usage in an educational environment.
 Tutoring agents are entities whose ultimate purpose is to communicate with the
student in order to efficiently fulfill their respective tutoring function, as part of the
pedagogical mission of the system [32].
Some of these tutoring functions are:

• to present a topic

• to explain the topic

• to give an example

• to answer a student’s question

• to ask a student a question and evaluate the student’s answer

• to examine and diagnose a student’s behaviour during the learning
process

 This means that the agent should also have the roles of a human tutor within a
group of students, which are:

• Interrogator – poses questions and the students of a collaborative group then
provide answers. The questions should provide help for the students to
reach a common learning goal.

129

Poster Proceedings KI2004

• Reviewer – analyzes the students’ answers, including whether it is correct or
not.

• Monitor – records the answers from all the students and the communications
among students during the collaborative learning process.

• Instructor – gives individualized instructions and helps those students who
cannot keep up with the progress of their group-mates.

 All together: the tutor-agent should be able to present and explain a learning
subject, to pose questions about it, to evaluate the learner answers and also to provide
specific feedback. The tutor-agent should generate relevant replies from a knowledge
base in response to the questions posed by the learner. If the tutor-agent cannot
generate an adequate response to one question then it should communicate with other
tutors (human or agents) in order to accomplish its task.

4 Agent-Tutor in Passenger

Choosing an environment is an important decision for agent researchers and
developers. A key issue in this decision is whether the environment will provide
realistic problems for the agent to solve, in the sense that the problems are true issues
that arise in addressing a particular research question.

Due to the fact that a large number of Passenger sessions can run simultaneous at
the same time, it appeared the need of a system to monitor and manage all these
sessions. The first step in this direction was a web-based system called Watchdog
which monitors the activities of all Passenger Servers (see Figure2).

The following scenario can be assumed: three students would like to meet on-line
using Passenger and learn together or discuss about the topics learned from their
previous lecture. Also, besides the fact that the students might need supervision the
need of a tutor may appear if there is a disagreement between the students. Therefore,
during that session if help of a tutor is needed, one of the students can press “Call
Tutor” button. This request will be send to the Watchdog and the system will provide
this request also with the exact parameters of the session (IP address of the Passenger
server where that session is hosted) to any available human-tutors.

If there are no human-tutors available, then a tutor-agent will connect to the
current session and it will try to provide necessary help to the participants. In
Passenger learning environment the presence of an intelligent-agent, that can perform
a kind of tutoring role, could be benefic in helping the students to reach their common
goal.

130

Poster Proceedings KI2004

Figure 2 Passenger WatchDog-Server

The roles of the agent – tutor within the Passenger groupware are:

• Selects a model (topic) for session/discussion: it is through this negotiation
of meaning and understanding that learning occurs. Therefore each topic
has a tree structure, with nodes that are: first question for the participants,
possible answers by participants, agent response to each of these answers.
Topics are designed to attract participants into an interactive dialogue and to
avoid the “silence” during a Passenger session.

• Assigns roles to the students: during the semester the student-teams will
experience the entire life-cycle of Software Engineering. The students start
with a requirement analysis following the Ward & Mellor [33] approach
during the modeling phase. The given problem for the practical training is
chosen in such a way, that it cannot be solved by one student on its own.
Therefore, each topic is divided in sub-topics which can be assigned by the
tutor agent to one of the participants.

• Provides help for toolbox buttons: each tutor-agent is able to provide
students basic help regarding the usage of the Passenger Client. Within the
tutor-agent’s architecture there is implemented a pattern recognition
algorithm. Using this algorithm the agent can provide adequate answer to
students’ questions like: “How (1) can I draw (2) a control transformation
(3)?” where (1)(2) and (3) ~How… draw… control transformation…~
represent a pattern example. After recognizing a pattern the agent will
search its knowledge database for a proper answer and will provide this
answer to the student. For this example the answer is “You should press the
third button of the CaseTool buttons from the first row, and then go with the
mouse in your working area and click where you want to have a control
transformation… ”

• Supports and gives hints on awareness functions: the tutor agent has the
ability to provide to participants proper feedback on awareness issues like:

Passenger Watch Dog

Passenger
 Server 1

Passenger
 Server 2

Passenger
 Server n

Passenger
 Client 1

Passenger
 Client 2

Passenger
 Client n

Agent
Tutor

Passenger Tutor
Tool

131

Poster Proceedings KI2004

“Why can’t we see Jack? (Answer: Jack should press F3 or select send
video from Video, or maybe Jack does not have a video-camera)”

• Controls and gives hints on floor control mechanism or selects floor
passing method (adaptive): the agent can provide answer to questions like:
“Why my colleagues cannot hear me? (Answer: you must be the actual floor
holder in order that the others can hear you, therefore you should request
the rights. There is a button on …)” or it should be able to avoid the
deadlock situations like: one student which is the floor holder leaves the
session but she/he forgets to pass the floor, therefore the other participants
cannot modify the common artifact or they cannot communicate. One of the
remaining participants can ask the floor from the agent-tutor. The agent can
notice that the actual floor holder is inactive (e.g. he hasn’t made any
changes to the common document for more than 10 minutes). Therefore the
agent has the ability to take the floor from the inactive participant and to
give it to the one that has requested for it.

• Gives hints for next steps in modeling: during a session it can occur that the
students might reach a deadlock- the students do not know how to continue
their work to fulfill their common task. The agent analyzes the current state
of the students’ work and to provide hint for the next steps. If the agent
cannot accomplish this task then it should communicate with other tutor-
agents from another Passenger sessions. If the other agents cannot provide a
proper answer then the analyze evaluation should be communicated to a
human-tutor. The human-tutor if he is available can replace that agent
within its session or he can provide the agent the adequate answer. The
communication and cooperation with other agents, or human-tutors is
realized by specific language as KQML [34], [35].

To make the tutor agent design process easy and accessible (see Figure3), we
proposed a framework where the agent is composed of a set of categories of
components:

• navigational components: that are responsible for agent’s travel
itinerary (within a network) when it needs to communicate with other
tutors (humans or agents) in order to receive help for accomplishing its
task or with the Passenger Watch Dog server.

• Core components which are divided into:

o performing components: that are responsible for executing one
or more learning tasks. Also these components compose the
agent decision system – agent can choose his actions.

132

Poster Proceedings KI2004

Figure 3 Tutor-Agent in Passenger

o reporting components: that determine how the results are
collected and reported back. The agent has the ability to
monitor the activity of each participant in a Passenger session
and to evaluate the level of a student’s understanding and
provides help on those topics which the student didn’t
understand. This evaluation and also the agent-student
interaction is recorded in a database, so that any human teacher
can later check.

• Agent’s interface is an animated cartoon with human like gestures. We
choose to design and implement our own animated agent instead of
using the Microsoft Agent to ensure Passenger platform independence
and extensibility.

Besides all of these described components the agent contains also a self learning
mechanism. Learning is a very important aspect of intelligent agents. The Passenger
tutor – agent can learn to improve its performances from its previous interactions with
students or with other tutors: humans or agents. It interacts with students to provide
the tutoring materials, helps and hints, to pose questions and to analyze students’
answers. Based on these interactions, the agent chooses that accommodates not only
the students’ needs or preferences but also the tutoring goals. The agent’s goals might
be locally achievable which means that tutoring material can be retrieved from a local
knowledge database, or require interaction with another tutor-agent from a different
session or a human tutor in case of a word pattern for which it cannot find it in its
own knowledge database.

The Passenger-tutor-agent’s collaborative learning process is based on both the
students’ direct and indirect feedback. A simple learning algorithm is applied in the

133

Poster Proceedings KI2004

monitoring component to record students’ requests or behavior. When the same
request has been recorded more times and also in different sessions, the agent notifies
a human-tutor about this and also updates his parameters in order to perform future
actions according to students’ request. It also monitors and evaluates the student
indirect feedback or reaction following a suggestion. As an example the following
scenario can be assumed: the students are asked whether they need help/hints or not
after taking more time on a topic than the time allocated. When the students choose a
different solution/action than the suggested one or they refuse the help, the agent
records this behavior as indirect feedback. Also a report concerning the students’
behavior during a training session is send to the tutor after the session is over.

Most current intelligent tutoring systems are electronic page turning, with some
hyperlinks and multiple-choice exercises (e.g. see Web_Soc [36]). Even if this
electronic delivery provides self-paced learning it is not truly interactive. Passenger is
a synchronous groupware to support spatially distributed teams, in other words is a
truly interactive environment which emulates a real face-to-face discussion.

Therefore our research is based on an autonomous agent paradigm instead of an
intelligent tutoring system, because of intelligent agents’ capabilities of
communication and interaction. These characteristics are fundamental for agents’
usage in a collaborative educational environment.

5 Conclusions

In terms of the geographical distribution of the participants, which is one of the
most publicized advantages of the Web-based education environments, there is much
to gain through the use of the agent paradigm.

This paper goal was to show how to integrate agent technology to support
collaborative learning in distributed environments. The aim of this research is to
provide the first steps to define a method for creating a tutor agent which can partially
replace human-teachers and assist the students in the process of learning.

Our tutor agent tries to replace partially the human teacher, in assisting the
students at any time of their convenience and in the meantime the agent can evaluate
the results of the students’ activity during the learning process. This evaluation also
provides a great benefit for a human teacher or tutor.

The basic contribution for this research is conception of a Distance Learning
System in which human and artificial agents can collaborate to achieve a common
learning goal.

Current commercial learning management systems could also benefit from the
development of such agent – based capabilities. The resulting intelligent learning
systems might use a variety of intelligent agents to offer dynamic – and smart –
teaching and learning environments.

134

Poster Proceedings KI2004

References

1. Johnson, D., Johnson, R., Holubec, E. J.: Circles of learning: Cooperation in the classroom
3rd edn. Edina, MN: Interaction Book Company (1990).

2. Webb, N.: Testing a theoretical model of student interaction and learning in small groups. In
R. Hertz-Lazarowitz and N. Miller (Eds.), Interaction in Cooperative Groups: The
Theoretical Anatomy of Group Learning. NY: Cambridge Univ. Press (1990), 102-119.

3. Koschmann, T., Kelson, A., Feltovich, P., Barrows, H.: Computer-supported problem-based
learning. In T. Koschmann (Ed.), CSCL: Theory and Practice of an Emerging Paradigm.
Mahwah, NJ: Lawrence Erlbaum (1996), 83-124.

4. Kiesler, S., Sproull, L. S. (Eds.). Computing and change on campus. New York: Cambridge
Press, (1987).

5. Dobson, M., McCracken, J.: Problem based learning: A means to evaluate multimedia
courseware in science & technology in society. In T. Muldner & T. C. Reeves (Eds.),
Educational Multimedia & Hypermedia 1997. Calgary: AACE (1997).

6. Cameron, T., Barrows, H. S. Crooks, S. M.: Distributed Problem-Based Learning at
Southern Illinois University School of Medicine. In C. Hoadley & J. Roschelle (Eds.).
Computer Support for Collaborative Learning. Designing New Media for a New Millenium:
Collaborative Technology for Learning, Education, and Training. Palo Alto: Stanford
University (1999), 86-94.

7. Thomas, R.: Evaluating the Effectiveness of the Internet for the Delivery of an MBA
programme. Innovations in Education and Training International (2000), 97-102.

8. Nurmela, K., Lehtinen, E., Palonen, T.: Evaluating CSCL Log Files by Social Network
Analysis. Proceedings of the Int. Conference on Computer Support for Collaborative
Learning (CSCL 1999), Stanford, California, USA (1999), 434-442.

9. Barros, M., Verdejo, M.: Analysing student interaction processes in order to improve
collaboration. The DEGREE approach. Int. Journal of Artificial Intelligence in Education,
Vol.11. (2000), 221-241.

10. Soller, A.: Supporting Social Interaction in an Intelligent Collaborative Learning System.
Int. Journal of Artificial Intelligence in Education. Vol. 12 (2001), 40-62.

11. Martínez, A., Dimitriadis, Y., Rubia, B., Gómez, E., Garachón, I., Marcos, J.A.: Studying
social aspects of computer-supported collaboration with a mixed evaluation approach. Proc.
of the Int. Conf. on CSCL, Boulder, Colorado, USA (2002), 631-632.

12. Reiser, B.: Why Scaffolding Should Sometimes Make Tasks More Difficult for Learners.
In Gerry Stahl (Ed.), Computer Support for collaborative learning: Foundations for a CSCL
community. Hillsdale, NJ: Erlbaum (2002), 255-264.

13. Zumbach, J., Mühlenbrock, M., Jansen, M., Reimann, P., Hoppe, H.-U.: Multidimensional
Tracking in Virtual Learning Teams. In G. Stahl (Ed.), Computer Support for Collaborative
Learning: Foundations for a CSCL community. Hillsdale, NJ: Erlbaum (2002), 650-651.

14. Slavin, R.E.: Research on cooperative learning and achievement: What we know, what we
need to know. Contemp. Educ. Psychol., vol21, (Jan 1996).

15. Pinto, M., Amor, M., Fuentes, L., Troya, J.M.: Collaborative Virtual Environment
Development – An Aspect-Oriented Approach, 21st International Conference on Distributed
Computing Systems Workshops (ICDCSW '01), Mesa Arizona (April 16-19, 2001).

16. Jennings, N.: “On Agent-based Software Engineering, Artificial Intelligence” No. 117,
Elsevier Press (April, 2000), 277-296.

17. Pintrich, P., De Groot1, E.,: Motivational and Self-Regulated Learning Components of
Classroom Academic Performance, Journal of Educational Psychology, No.82 (1990), 33-
40.

135

Poster Proceedings KI2004

18. Spiro, R.J., Coulson, R.L., Feltovich, P.J., Anderson, D.K.: Cognitive flexibility: Advanced
knowledge acquisition ill-structured domains, Proceedings of the 10th Annual Conference of
Cognitive Science Society, Erlbaum, Hillsdale, NJ (1988), 375-383.

19. Endlsey, W.R.: Peer tutorial instruction Englewood Cliffs, NJ: Educational Technology
(1980).

20. Hunger, A.: The concepts of the internationally oriented degree course, computer science
and communication engineering, In Proceedings of the International Conference on
Engineering Education, Rio de Janeiro, Brazil (August 17-18, 1998).

21. Sarjoughian, H.S., Zeigler, B.P., Ham, M., Parris, J.: Conducting distributed group
software-engineering projects, challenges to state-of-the-art collaboration technologies, In
Proceedings of WMC 99, SCS Publishing (1999).

22. Dommel, H.-P., Garcia-Luna Aceves, J.J.: Group coordination support for synchronous
Internet collaboration, IEEE Internet Computing, (March-April 1999), 74-80.

23. Dourish, P., Bellotti, V. (Eds.): Awareness and coordination in shared workspaces”, In J.
Turnier and R. Kraut, Proceedings Of CSCW’92- Sharing Perspectives, ACM Press Toronto
Canada (1992), 107-114.

24. Werner, S., Hunger, A., Schwarz, F., Schütz, C., Jung, M.: A Synchronous Groupware and
Some Scenarios for Conducting a Software Engineering Lab with Distributed Teams,
Proceedings of Iasted International Conference Computers and Advanced Technology in
Education, Greece (June2003).

25. Dennett, D. C.: The Intentional Stance, The MIT Press (1987).
26. Ekdal, B., Davidsson, P.: A workable definition of computerized agents, 3rd World

Multiconference on Systemic, Cybernetics and Informatics, Florida, USA (1999).
27. Aroyo, L., Kommers, P.: Preface - Intelligent Agents for Educational Computer-Aided

Systems. Journal of Interactive Learning Research, Vol.10 (3/4), (1999), 235-242.
28. Lees, B., Ye, Y.: Preface of the Proceedings of ASCW01 – Workshop of Agent-Supported

Cooperative Work, In: The 5th International Conference on Autonomous Agents, Montreal,
Canada (2001).

29. Kay, J.: Learner Control. User modeling and User Adapted Interaction, 11, Kluwer
Academic Publishers, Netherlands (2001),111-127.

30. McCalla, G., Vassileva, J., Greer, J., Bull, S.: Active Learner Modeling, In: Gautier,
Frasson & Vanlehn (Ed.). Proceedings of ITS'2000, Springer LNCS 1839 (2000), 53- 62.

31. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and
Development, Autonomous Agents and Multi-Agent Systems, 1, Kluwer Academic
Publishers (1998), 7-38.

32. Viccari, R.M., Martins-Giraffa, L.M.: The use of Agents techniques on Intelligent Tutoring
Systems, IV Congresso RIBIE, Brasil (1998).

33. Ward, P.T., Mellor, S.J.: Structured development for real time systems. Prentice-Hall
Internat (1985).

34. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication
Language, Proceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM’94), ACM Press, USA (1994).

35. Labrou, T., Finin, T.: A Proposal for a new KQML Specification, Technical Report TR CS-
97-03, University of Maryland, USA (1997).

36. Chang, K.E., et al.: Web_Soc: A Socratic-Dialectic-Based Collaborative Tutoring System
on the World Wide Web, IEEE Transactions on Education (2003 February), 69-78.

136

Poster Proceedings KI2004

Acquiring Emotion Knowledge of Anger from WWW

Xi Yong1,2, Cungen Cao1

1Key Lab of Intelligent Information Processing,
 Institute of Computing Technology,

 Chinese Academy of Sciences,
 Beijing 100080, China

2Graduate School of the Chinese Academy of Sciences
{yongxi, cgcao}@ict.ac.cn

Abstract. Emotion knowledge is a special part of human knowledge. This pa-
per focuses on acquiring and representing knowledge of one single emotion, i.e.
anger. Our method consists of three parts. First, we extracted numerous scenar-
ios of anger from Web pages. Second, we analyzed those scenarios, in which
we considered the agent and anger-eliciting context from several perspectives.
Third, we manually abstracted the scenario details away and formalized them
into a knowledge representation model to obtain an anger knowledge base. We
believe that this method can easily be extended for other emotions.

1．Introduction

Human emotion knowledge is a special kind of human knowledge [9], and this
knowledge is very important in applications such as human-computer interaction,
affective computing, natural language understanding, and psychoanalysis [11].

In this paper, we focus on one single human emotion, i.e. anger, which is one of
the basic human emotions [9]; and discuss the methods of acquiring and formalizing
anger scenarios from WWW.

In the psychological literature, psychologists have extensively investigated the an-
tecedents of anger, as well as its waxing and fading. Lakoff proposed an interesting
study of anger through the use of metaphors [6]. He examined a large number of
metonymies for anger and classified them, which led to the extraction of high-level
metaphors for anger, and finally presented a prototypic cognitive model of anger
which he claims is a central model with a few variants, and upon which all the meta-
phors he worked out were converged. But the model is over-simplified and too ab-
stract, and it does not account for differences in various individuals.

The model proposed by Averill is a well-known and comprehensive study on anger
[1]. Averill constructed a model of anger according to a number of self-report surveys,
which he used to explore various aspects of anger such as motives, responses, targets
and so on. And he worked out a very comprehensive list of rules and norms associ-
ated with anger. His research offers a rich picture of anger and provides us with much
inspiration.

137

Poster Proceedings KI2004

On the basis of previous work, Chris Vogt presents a practical method for repre-
senting anger in a general way [13], and frames are adopted as the representation.
Each slot of a frame described a specific aspect of an anger event, such as Person,
Caused-by, Results and so on. While the frame has included all the key points of
anger, it can only be used to store some discrete instances of anger when it has been
identified. The identification method and the organization of these instances are still
unsolved problems.

In this paper, we present a method for acquiring and representing commonsense
knowledge from anger situations extracted from Web pages. Through careful seman-
tic analysis, we have constructed a formal representation framework for anger and
summarized numerous anger-eliciting patterns which can give rise to anger, accord-
ing to which we can give a reasonable explanation to the production of anger in each
represented situation and determine whether a given situation will make a given agent
feel anger or not. This model has incorporated most of the key characteristics of anger
as described by leading emotion researchers and effectively revised a number of
shortfalls existing in previous work. Furthermore, it is designed in a very general way
and could easily be modified to accommodate other emotions.

This paper is organized as follows: Section 2 shows our knowledge acquisition
method. Section 3 introduces the underlying emotional theory behind our model and
analyzes the semantic structure of anger situation. In Section 4 we describe our repre-
sentation framework and explain it in more detail by some instances. Finally, section
5 concludes the paper.

2．Extracting Scenarios of Anger from WWW

The lack of commonsense knowledge about emotion has highly limited the ability of
intelligent systems to interact with users more naturally and socially. It is one of the
most pressing issues to build a systematic, structural and operational knowledge base
that contains various formalized commonsense knowledge about emotion. And this
depends on a large-scale real-world knowledge corpus about social emotion-eliciting
situations.

We believe that Web pages are a particularly important source of emotion knowl-
edge because large bulks of postings are Internet-based; and with the rapid develop-
ment of the network industry today, there are countless information resources in tex-
tual form available on the Internet. This kind of knowledge can avoid the partial opin-
ions toward emotion-eliciting situations caused by individual considerations of single
researcher or small research group and the biases which people are likely to make
towards stereotypical or socially desirable answers in some general acquisition meth-
ods such as questionnaire. After comprehensive analysis of all kinds of situations and
reactions in people’s emotional experiences, the emotional knowledge represented
can become commonsense in deed.

Therefore, we firstly used a large amount of textual Web pages from WWW
(about 1.2T), and then extracted text segments, in proper length and with proper key-
words (e.g. angry and rage), from these pages as our initial corpus. At present the
approaches of textual affect sensing commonly include keyword spotting, lexical

138

Poster Proceedings KI2004

affinity, statistical methods and hand-crafted models [4]. Because there is such a great
bulk of Web pages that we can only employ the easiest and fastest method of key-
word spotting to extract the segment containing some emotional information from
them. So, we adopted all the words listed in the ‘anger’ category in a Chinese Synon-
ymy Thesaurus edited by J.J. Mei as our keywords, which includes most of the words
and phrases we used to represent anger in everyday life in different forms such as
emotional concepts (e.g. “anger”, “rage”, “indignation”), expressions and actions (e.g.
“stamp with fury”, “catch fire”, “brawl”) and so on. By locating these keywords in
Web pages we picked them up along with relative context in proper length that we
experientially assume as sixty words. These textual segments provide us with a rich
corpus.

As we see, the content of the corpus is very rough and cursory, full of incomplete
or irrelevant information, but they are good heuristic clues to infer real-world emo-
tion-producing processes. We revised and complemented them after careful analysis
and as a result gained 21334 anger scenarios, each of which contains a piece of com-
monsense knowledge about a special emotion-eliciting situation. Some of the refined
pieces are shown in table 1.

Table 1. Some anger scenarios (translated from Chinese)

1
After reading the report in the newspaper, he thought it stabbed his
reputation and got very angry. Then he decided to bring an accusation
against the writer of the report.

2 If you reproach a man for his naive behavior or words, he must fly
into a rage at once.

3 Father flew into a rage when he heard that I failed in my English test
again.

4 She got so angry when he missed the date that she was unwilling to
see him again since then.

5 Mother was so angry that her face was drained of blood when she
knew his son had committed the serious crime.

6 He knew only I could help him to escape the punishment, so he flew
into fury when I said I wouldn't help him and hit me with the club.

7
Teacher ordered me to clean the whole classroom. I was indignant
because I felt that I had been punished unfairly. I want to revenge the
person who maligned me to the teacher no matter whoever he/she is.

8 The atrocity of the governor caused widespread indignation and social
criticisms.

9 When I was reviewing my lessons before the exam, these flies were
annoying me.

10 He is such an arrogant man and we're annoyed at his cavalier treat-
ment to his old friends.

139

Poster Proceedings KI2004

3．An Appraisal-Based Analysis of Anger

In the literature, dominant theories of emotion are appraisal theories. They suggest
that emotions are generated by appraisal of a subjectively important event by the
person who is experiencing the emotion. While the original cause of one’s emotion is
derived from the external stimulus, the appraisal process has the special nature of
subjectivity, which is due to the subject’s particular goals and the like.

For example, if a person is in a situation which could drive him closer to some im-
portant goal, the emotion experienced would be one of a pleasant type, and to deter-
mine which the particular pleasant type is actually generated and what its intensity is
would require more information about the situation and the person’s present internal
mental structure which include his/her beliefs, goals, and so on.

Reisenzein [8] views appraisal processes as components of a continuously operat-
ing mechanism that monitors the compatibility of newly acquired beliefs of the per-
son with pre-existing beliefs and desires. The belief-congruence appraisal tests
whether newly acquired beliefs are congruent or incongruent with pre-existing beliefs
and the desire-congruence appraisal tests whether newly acquired beliefs are congru-
ent or incongruent with pre-existing desires.

Although his work offers a suggestive proposal, it is too simple to explain the
cause of a particular emotion generated in real-world situations. After a comprehen-
sive survey on the emotional scenarios acquired from Web pages, we presented a
more clearly actual appraisal process, which can give a rational explanation to the
occurrence of anger.

The first influencing factor is irritating events. Irritating events are what may trig-
ger anger. They are the most important components of anger-eliciting situations. But,
whether anger is really triggered still depends on several other factors, as discussed
below.

Second, we consider personal expectations. Expectations refer to all kinds of de-
sires and needs of a person. When the conditions in the external context meet any of
one’s expectations, he/she will experience some emotion of a positive type. On the
other hand, if the conditions are against with the person’s expectation, which is
caused by some others, then the person will generate some negative emotion such as
anger.

Third, to judge whether an irritating event causes someone to feel angry depends
on how he/she interprets the event. The judgment is essentially subjective, which is
based on his/her beliefs that are accumulated by past experience.

Fourth, when a person highly values something, he/she would struggle to obtain or
maintain it. For example, if one thinks that personal reputation or image is highly
valuable, he/she will maintain a good reputation.

Fifth, anger is usually accompanies with a certain reaction. Again what the reac-
tion is appropriate depends on how the person interprets the irritating event and how
the event affects or violates his/ her expectation and/or personal values.

Sixth, anger may also depend on interpersonal relations. Being insulted by one’s
children may not necessarily cause one to be angry, but being insulted by an opponent
tends to irritate one inevitably.

140

Poster Proceedings KI2004

Finally, but most importantly, we consider the attribution of negative events [14].
When a loss or failure is attributable to others, an emotion of anger is likely to come
into being; but when a person attributes the loss or failure to the uncontrollable nature,
he/she may not be angry towards others, instead of feeling despaired.

4．A Parametric Representation of Anger

Based on previous analysis, we built a two-layered frame-based representational
model of anger knowledge. The first layer defines categories of anger situations based
on irritating events. This layer is parameterized in that we define relevant parameters
in the categories, and these parameters will be instantiated on the second layer where
more concrete anger knowledge is defined.

In each category, parameters are typed. Common types include:
 person. Agents who experience anger or make somebody angry.
 event. (Irritating) events are causes of anger.
 object. Non-personal things, such as bad news, which contribute to anger.
 reaction. The behavior that an angry person tends to take.

In our work, category parameterization is significant for knowledge reuse, and pa-

rametric categories are actually “generators” of anger knowledge.

Fig.1. A category of Anger

As illustration, we generalize the first scenario in table 1 into a category (Fig. 1)
and an instance frame of anger (Fig. 2). In Fig. 1, the emotion angry(?y) depends on
whether ?y knows the event of insult(?x, ?y, ?m). Knowing insult(?x, ?y, ?m) can be
inferred by hearing from others or happening to read a newspapers article and the like.

In Fig. 2, we first instantiate the category of insultation-caused-anger by assigning
each parameter with an actual value, and two values (i.e. person001 and person002)
are further defined in the following frames of the category person.

In the instance frame of person001, we see that he has some personal beliefs and
values. These are determinate factors that cause him/her to be angry when getting
insulted by person002.

defcategory insultation-caused-anger
{

person: ?x
person: ?y
event: insult(?x, ?y, ?m)
emotion: know(?y, insult(?x, ?y, ?m)) → angry(?y)
reaction: ?z

}

141

Poster Proceedings KI2004

Fig.2. An Instance of Anger

To demonstrate the flexibility of our representation framework, we define another
category of anger in Fig. 3. This category of anger is primarily caused by mistreating.
But for mistreating to really provoke anger, we need to define the mistreated person
and mistreating person, just as what we have done with insultation.

In Fig. 3, the emotion is simply angry(?y). This is different from that in Fig. 1,
where the emotion is know(?y, insult(?x, ?y)) → angry(?y). The reason is that when a
person is mistreated, he/she can generally recognize the situation of mistreating.

Fig.3. Another category of Anger

instantiate insultation-caused-anger to
{

m=writing newpaper article
x=person001
y=person002
z=accuse(y, x)

}

defperson person001
{

gender: male
beliefs: {insult(x, y, public)→lose(y, reputation), lose(y, reputation)→lose(y,

bussiness)}
personal-values: {gain(y, reputation), gain(y, bussiness)}
attribution: attribute(lose(person001, business), person002)
interpersonal: opponents(person001, person002)

}

defperson person002
{

belief: lose(y, reputation) → lose(y, bussiness)
expectation: lose(person001, business)
interpersonal: hate(person002, person001)

}

defcategory mistreatment-caused-anger
{

person: ?x
person: ?y
event: mistreat(?x, ?y, ?m)
emotion: angry(?y)
reaction: ?z

}

142

Poster Proceedings KI2004

5．Conclusion

Anger is one of the basic and common human emotions. In this paper, we analyzed
anger in several determinate aspects, i.e. irritating events, beliefs, personal values,
expectations, reactions, interpersonal relations, attributions. This analysis led to a
formal representation of anger.

There may be many situations that make people angry. To obtain a reasonable
complete list of the anger situations, we extracted from WWW a long list of anger
episodes, and conducted a survey on the list. We argued that the WWW-based emo-
tion knowledge acquisition is more practical and realistic than any others methods
based on laboratory interviews.

We believe that the method proposed for acquiring knowledge of anger can be
generalized to extract knowledge of other emotions such as joy, sadness and fear.
This is on our research agenda.

Acknowledgements

This work is supported by the Natural Science Foundation (#60073017 and
#60273019), and the Ministry of Science and Technology (#2001CCA03000).

References

1. Averill, J.R.: Anger and Aggression: An Essay on Emotion. Springer-Verlag (1982)
2. Berkowitz, L.: On the Formation and Regulation of Anger and Aggression. American

Psychologist, Vol. 45, No. 4 (1990) 494-503
3. Boeree, C.G.: Anger: A Phenomenological Sketch. Ph. D., Shippensburg University

(1998)
4. Carlson, J.G., Hatfield, E.: Psychology of Emotion. Harcourt Brace Jovanovich Col-

lege Publishers (1992)
5. Kovecses, Z.: Emotion Concepts. Springer-Verlag, New York Inc. (1990)
6. Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal about the

Mind. University of Chicago Press (1987) 380-409
7. Liu, L.G., Lieberman, H., Selker, T.: A Model of Textual Affect Sensing using Real-

World Knowledge. Proceedings of the 8th International Conference on Intelligent
User Interfaces (2003) 125-132

8. Reisenzein, R.: Appraisal Processes Conceptualized from a Schema-Theoretic Per-
spective: Contributions to a Process Analysis of Emotions. In: Appraisal processes in
emotion: Theory, Methods, Research (1999)

9. Shaver, P., Schwartz, J., Kirson, D, O'Connor C.: Emotion Knowledge: Further Ex-
ploration of a Prototype Approach. Emotions in Social Psychology (2001) 26-56

10. Scherer, K.R.: Studying the Emotion-Antecedent Appraisal Process: An Expert Sys-
tem Approach. Cognition and Emotion(1993) 325-355

11. Tian, W., Cao, C.G.: Research on the Human Psychological Commonsense. Ph. D.,
Institute of Computing Technology, Chinese Academy of Sciences (2003)

12. Tian, W., Cao, C.G., Wang, H.T.: Acquisition, Representation and Analysis of Psy-
chological Commonsense Concepts. Computer Science, China (2004)

143

Poster Proceedings KI2004

13. Vogt, C.: Anger and Knowledge Representation. Northeastern University Press (1993)
14. Weiner, B.: An Attributional Theory of Motivation and Emotion. New York:

Springer-Verlag (1986)

144

Poster Proceedings KI2004

Preference-based Treatment of Empty Result Sets in
Product Finders and Knowledge-based Recommenders

Dietmar Jannach

Institute for Business Informatics & Application Systems
University Klagenfurt, A-9020 Klagenfurt, Austria

dietmar.jannach@ifit.uni-klu.ac.at

Abstract. “Your search returned 0 results” is an undesirable message for
customers using an online product-finder or a web-based sales advisory system.
Such a situation typically occurs when a filter-based recommender system is
used and the user’s requirements are unrealistic or inconsistent. In this paper,
we present two orthogonal techniques for dealing with such situations, whereby
the work is based on a general model of this class of recommendation systems.
First, an algorithm for priority-based filter relaxation is presented where the end
user can actively participate in the problem resolution process by specifying the
importance of the predefined advisory rules that led to the empty result.
Second, we adapt an algorithm from the field of model-based diagnosis and
repair in order to compute a set of action alternatives for the customer. Each of
these alternatives corresponds to a possible (small) revision of the originally
inconsistent requirements, such that a product proposal can be made.
The paper finally describes practical results from experiences in different real-
world application domains and discusses domain-specific heuristics and
techniques for further search time improvements for complex problems and
multi-user environments.

Introduction

Due to the huge variety of available products and services, many companies run
product finders or more intelligent systems like recommender systems or sales
advisory systems on their corporate web-sites. Based on the users’ inputs, these
systems filter out those products that fulfil the given specifications or match the needs
and preferences of the customer. In particular for technical domains, where
recommendations are not based on the concepts of “quality” and “taste”, knowledge-
based recommender systems have their specific advantages compared to other
prominent approaches based on, e.g., collaborative filtering. Once the knowledge of
the expert is made explicit and encoded in a knowledge base, the recommender
system will behave like an experienced sales assistant and the quality of the
recommendation will be constantly high, even if there are new products or new users
involved. Even more, when adopting a knowledge-based approach, such systems will
also be able to “explain” their recommendations to the customer. One of the main
criticisms of such filter-based approaches [1] is that the undesirable situation can arise

145

Poster Proceedings KI2004

where all products are filtered out and no proposal can be made. “Your search
returned 0 results” is the only response of many online systems in such situations. An
experienced sales assistant, however, would explain to his customer why there are no
results, i.e., which advisory guidelines and rules he did obey. Even more, he could
inform the customer what he can do about the situation, for instance reconsidering the
potentially conflicting requirements, or he could even propose alternative solutions
that satisfy most of the given customer requirements.

In this paper, we present two orthogonal techniques for dealing with such
situations. First, we show how filter-relaxation based on priorities can be exploited in
order to take the different importance levels of the given advisory guidelines into
account and help the user in understanding the proposals. Second, we describe an
algorithm for computing a suitable set of alternatives that tries to minimize the
differences between the original requirements and other slightly changed
requirements such that a solution is possible and respects the strict time restrictions of
online recommendation systems.

Example and definitions

For demonstration purposes, we shall use a small example from the domain of digital
cameras, a typical problem area where hundreds of different products are available
and where online sales advisory systems are already used to assist the customer in
finding the right product. We use the following very general model of a filter-based
recommender system. Each product in the knowledge base is characterized by a set of
attributes, whereby in many domains also set-valued attributes must be supported.
Next, there is a set of variables that correspond to the user preferences, e.g., direct
inputs or indirectly computed characteristics. Finally, a set of filtering rules describes
the relation between the customer characteristics and the fitting product properties.

Our digital cameras are described by the property set P, whereby P = {weight,
price, interfaces} and the following products exist in the product knowledge-base

PKB = {
{id(p1). weight(100). price(80). interface(usb)}
{id(p2). weight(100). price(150). interfaces(usb). interfaces(firewire).}
{id(p3). weight(200). price(200). interfaces(usb). interfaces(firewire).
 interfaces(dockingstation).}

}

During the advisory session the customer can specify his preferences by assigning
values to the variables from the set V that contains pref_weight (with the domain
“low, medium, irrelevant”), pref_class (cheap, middle, high, premium, irrelevant) and
pref_interfaces (standard, advanced)1. We represent the actual customer requirements
in a set REQ of positive ground literals that use the predicate symbols from V, e.g.,
 REQ = {pref_class(premium). pref_weight(low). pref_interfaces(advanced).}

1 Note that in many technical domains it is advantageous to question the customer about his

preferences and not directly about product properties, in particular when the knowledge level
of the customers can be low [2].

146

Poster Proceedings KI2004

The expert’s filter rules FR = {f1, f2, f3} determining the contents of the result set
RS are as follows, whereby the trivial axiom RS ⊆ PKB has to hold.

f1: pref_weight(low) ∈ REQ � ∀ X,P: P ∈ RS: weight(X) ∈ P ∧ X < 150.
f2: pref_interfaces(advanced) ∈ REQ � ∀ P: P ∈ RS: interface(firewire) ∈ P.
f3: pref_class(premium) ∈ REQ ∨ pref_class(high) ∈ REQ
 � ∀ X,P: P ∈ RS: interfaces(dockingstation)∈ P ∧ (price(X) ∈ P ∧ X > 180).

Given that the customer wants a premium class camera with an advanced set of

interfaces and a model that also has a low weight, the application of the rules will
result in no suitable product. One approach to deal with the problem is to assign
priorities to each filter rule in advance and to iteratively retract the rules until a
sufficient number of products remains. Retracting the weight-rule f1 results in product
p3, retracting f2 alone will not help, and retracting f3 leads to product p2. If we
assume that the domain expert annotates the filter rules with initial priorities f3 > f1 >
f2, because from experience he knows that the Firewire – requirement (f2) is not that
important for most customers, the system will initially come up with solution p3, i.e.,
the rules f2 and f1 will be relaxed. If we assume that for each rule an explanatory text
is maintained both for the case that the rule is applied and for the case it is relaxed, the
system could explain:

• (f3 - positive): Based on your preferences, I propose the premium or high class
model “p3” that also ships with a convenient docking station.

• (f1 - negative): Due to your other requirements, I included a camera in the
proposal that does not fulfill your requirements with respect to a low weight.

Note that although filter f2 was retracted, the conditions of the filter are fulfilled for
product p3. As such, we can include the positive explanation for f2.

• (f2 - positive): This camera fulfils your requirements on advanced interfaces.

After this initial proposal and the explanation, the customer can be given the
possibility to dynamically change the priorities of the rules, if they differ from the
domain expert’s predefined priorities and trigger the computation of another result.

Nonetheless, there are domains where there are strict rules that should never be
relaxed or situations where the customer interactively states that he explicitly
stipulates the application of specific rules. Consequently, a situation with an empty
result set still can arise. In this case, it would be helpful for the customer if the system
provides a set of alternatives of slight changes in the requirements such that a product
can be recommended. If we assume that all filter rules in our example are strict ones,
some good options for the customer could be as follows.

• (1) If you change your weight requirement from “low” to “middle”, I can
propose the following products: p3.

• (2) If you change your class requirement from “premium” to “middle”, I can
propose the following products: p2.

Theoretically, there are lots of other alternatives that differ from the previous ones in
their “quality”. For instance, all repair-alternatives that contain (1), as well as
additional changes in the requirements can be seen as suboptimal. Furthermore,

147

Poster Proceedings KI2004

alternatives where requirements are completely taken back, i.e., changes where the
removal of a predicate from REQ leads to a solution, are also not optimal.

After the description of the algorithm for preference-based relaxation in the next
section, we will describe a technique for efficient computation of suitable repair
alternatives in cases where no result exists.

We will use the following general definition of knowledge-based recommendation
problems for the subsequent algorithms2.

Definition: A Knowledge-based Recommendation Problem (KBRP) is a tuple <P, V,
PKB, FR, REQ>, where P and V are sets of predicate symbols that are used for
describing product properties and customer requirements. PKB represents the
available products and is a set of sets of positive ground literals using the predicate
symbols from P. FR is a set of logical sentences with the structure of “filter rules”.
REQ is a set of positive ground literals using the symbols from V and correspond to
actual customer requirements.
A”filter rule” is a logical sentence in form of an implication, where the antecedent is
a logical expression where predicate symbols from V are allowed, and where the
consequent describes restrictions on elements of PBK by the usage of predicate
symbols from P.�

Definition: Given a Knowledge-based Recommendation Problem KBRP<P, V, PKB,
FR, REQ>, KBRP is a called a “Valid KBRP” if there exists a set REQ (including the
empty set) such that there exists a subset RS of PKB where FR ∪ REQ ∪ RS is
satisfiable. �

Generally, a knowledge-based recommender in this implementation independent
problem formulation is a software system capable of computing a valid
recommendation RS, given the parameters PKB, FR, and REQ, or reporting failure of
finding a solution.

Priority-based relaxation

The algorithm for priority-based relaxation is straight-forward and from the basic
idea similar to the Hierarchical Constraint Satisfaction approach [3]. We extend the
KBRP<P, V, PKB, FR, REQ> with a function Φ that relates each filter rule from FR
with a priority value, i.e., a positive integer, whereby higher values stand for lower
priorities and zero means that a rule should not be relaxed. The algorithm takes
KBRP, Φ and a search limit as input and returns a set of products that remain after a
successful relaxation process or otherwise an empty set. In addition, for each product
in the result set, the sets of applied and removed filter rules for the explanation

2 We use first order logic as a representation language in order to facilitate a clear and precise

presentation.
In this context, we use the more general term “knowledge-based recommendation problem”;
in the literature, the terms “filter-based recommendation” and “filter-based product retrieval”
are also used to describe this class of systems.

148

Poster Proceedings KI2004

process is constructed, whereby we include those filter rules in the set of applied
filters that were originally removed due to a higher priority, but would hold for a
given product, see filter rule f2 in the example section.

Algorithm RELAX(PKB, FR, REQ, ΦΦΦΦ, limit)
result = ∅ // initialize the result
allrelaxed = ∅ // remember everything we relaxed
relaxable = subset of elements f of FR where Φ(f) > 0
while (| result | < limit ∧ | relaxable | > 0) // as long as there are relaxable filters
 // and the limit is not reached.
 priority = highest value of Φ(f), where f ∈ relaxable
 // determine the set of filters to remove.
 relaxset = subset of relaxable, were Φ(f) = priority
 relaxable = relaxable \ relaxset // remove the set from the original set.
 allrelaxed = allrelaxed ∪ relaxset // remember the removal
 result = filter(PKB, relaxable , REQ); // call the recommender/product finder.
end while
// compute the correct explanation sets
// variable “explanations” contains triples of products, applied, and relaxed filters
explanations = computeExplanations(relaxable, allrelaxed, result)
return result;

Algorithm 1. Priority-based relaxation

Algorithm COMPUTEEXPLANATIONS(applied, relaxed, result)
// The algorithm computes a set of positive and negative explanations
// for each product in the result set by testing each filter in the applied
// and relaxed sets.
explanations = ∅;
for each p ∈ result
 // prepare the real sets for the explanations
 pos_arguments = applied
 neg_arguments = relaxed
 for each f ∈ relaxed // test all relaxed individually

 rs = filter(p, f , REQ) // call the recommender, check if the
 // current product fulfils the filter rule

 if (| result | > 0) // if filter consistent for that product
 pos_arguments = pos_arguments ∪ f // update the explanation sets, e.g.,
 neg_arguments = neg_arguments \ f // filter f2 in the example

 end for
 // add the new explanation tuple.
 explanations = explanations ∪ <p, pos_arguments, neg_arguments >
end for
return explanations

Algorithm 2. Computing adequate explanations

149

Poster Proceedings KI2004

With regard to complexity of the algorithm, the computation of the result set
without the explanations takes at most as many iterations as there are different values
in the range of Φ. For each element in the result set, the number of iterations for the
explanations is |result| * |relaxed|. Note that in a practical setting we will not pre-
compute all explanations in advance but rather on demand, when a user asks for the
explanation for a specific product.

Computing repair alternatives

In domains where some of the rules are strict and cannot be relaxed definitely, a
situation with an empty proposal can still arise. Then, it would be helpful if the
system can propose the customer a set of “repair” actions which corresponds to slight
changes and revisions of the initial requirements. In principle, two basic approaches
are possible. First, the underlying recommendation knowledge base can be extended
with additional domain knowledge, i.e., a set of explicitly modelled repair rules like
shown in [4] for the domain of product configuration and reconfiguration. Such
approaches, however, are costly in terms of knowledge acquisition and in particular
maintenance as for each change in the knowledge base also the repair rules have to be
checked and possibly adapted. Even more, such knowledge bases tend to get complex
because of the strong interdependencies between the rules. On the other hand, model-
based (diagnosis) approaches like, e.g., [5] or [6], that try to minimize the amount of
additional needed domain knowledge for the repair task, face the problem of large
search spaces for the computation of possible repair alternatives. Applied to real-
world problem settings, such systems rely on domain-specific heuristics for
discriminating between the alternatives or different forms of (structural) abstractions
in order to produce adequate results within limited resource bounds.

If we follow such a model-based approach, the search complexity in our domain is
determined by the size of the domain of the variables (i.e., the user inputs) and the
property, whether these variables can be multi-valued or not. For each single-valued
variable with a domain-size of n, we have n+1 possible assignments when we include
a special null-value with the meaning that the user did not specify a requirement for a
variable. For each multi-valued variable, there are 2n possible answer combinations. If
we assume that there are three single-valued and three multi-valued variables
involved in the remaining strict rules and we have an average number of four possible
answers, there are theoretically more than 60.000 possible answer combinations.
Obviously, an exhaustive search for those combinations is not feasible, given the tight
time limits of an online recommendation system3.

In the following, we present algorithms and techniques for efficient computation of
a suitable set of alternatives where we use domain-independent heuristics as well as
application-dependent variants in order to reduce the required search times for
practical settings.

Diagnosing the requirements. Depending on the application domain it can be
sufficient that the system presents the user a list of requirements that should be

3 An offline pre-computation for all possible input combinations is not possible, given the vast

search space for, e.g., twenty to twenty-five questions in a realistic scenario.

150

Poster Proceedings KI2004

completely retracted for a possible solution, e.g., “If you skip your requirements on
the weight, I can propose the following solution...” In such cases, the computation of
alternatives can be performed by using the standard Hitting-Set algorithm that is
commonly used in the field of model-based diagnosis ([7], [8]). The algorithm is used
in a way that the nodes of the Hitting-Set DAG4 are labelled with conflicts which are
in our case subsets of user requirements that cause the result set to be empty. If there
is no conflict generation support, it will be the union of all variables that are used in
the non-relaxable filters that have to be applied in the current situation.

Definition. Given a Knowledge-based Recommendation Problem KBRP<P, V,
PKB, FR, REQ>, a “conflict” for KBRP is a set C ⊆ REQ such that there is no set RS
⊆ PKB for which FR ∪ RS ∪ C is satisfiable.

A conflict is “minimal”, if there is no proper subset C’ of C such that C’ is also a
conflict for KBRP<P, V, PKB, FR, REQ>. �

The outgoing edges of the DAG are labelled with variable names from the nodes
which are retracted in the current search phase. The main advantage of this approach
is that the diagnoses are computed in ascending order with respect to their cardinality,
which is reasonable because we assume that alternatives with fewer changes in the
requirements are preferred by the users. Even more, the tree pruning techniques from
[7] can be exploited to reduce the search space, as we are typically only interested in
minimal diagnoses. As an example, if we found that omitting the weight requirement
results in a solution, we can remove branches in the search space that involve the
weight requirement and any additional requirement.

As a simple heuristic which helps us to find a first solution more quickly is to try
those variables first which are involved in more non-relaxable filter rules.

Fig. 1. A simple example for HS-DAG construction

During the breadth-first HS-DAG construction (Fig. 1), each call to the Theorem
Prover (TP) [7] corresponds to a search for products performed by the underlying
knowledge-based recommender, where we leave out all requirements that are on the
path from the root node of the DAG to the current node. If this search results in a

4 Directed acyclic graph.

151

Poster Proceedings KI2004

solution, we can close this node n and add H(n)5 [7] to the set of diagnoses. Note that
for each TP-call all the other current user requirements that are not involved in the
current set of non-relaxable filters have also to be taken into account. Therefore, in
order to guarantee that the algorithm will always find at least one solution, we make
the assumption that there are no filter rules in the knowledge base whose antecedent
defines a condition on the non-existence of a requirement, like
 ∀X: pref_x(...) ∉∉∉∉ REQ � ….

If this – for many domains realistic assumption – holds, we can guarantee that by
retracting user requirements no additional filter rules will get active during the search
for solutions and we can thus safely prune the search tree.

Optimizations.
1. In general, we cannot assume that the underlying recommender system is capable

of generating (minimal) conflict sets, such that we start with one single conflict that
includes all problematic, i.e., conflicting user requirements. Nonetheless, during
the HS-DAG construction, we remove elements from this conflict and check if a
solution exists. If we encounter a situation where the removal of one input does not
lead to a solution, we know that the remaining user inputs alone cause a conflict.
As an online recommendation system will be used by many customers and
subsequent customers may have a similar set of requirements, we can cache these
already minimized conflicts and reuse them in the next session where a similar
repair is needed. A safe reuse of such a conflict is possible if the cached conflict is
a subset of the requirements of the next customer (compare, e.g., to [9]).

2. Because we allow disjunctions of predicates in the filters’ pre-conditions, it can be
the case that there are unassigned variables in the union set of the variables of the
non-relaxable filters. Therefore, these variables can be removed from the initial
conflict – which consequently reduces the search space – such that these variables
do not have to be considered during the HS-DAG construction process.

Searching for alternative solutions. In some application domains, just presenting
a set of requirements to be removed might not be satisfying for the customer. Even
more, when individual requirements are fully removed, the customer might get a
proposal that is not “near” to his original preferences. Fully removing a “low price”
preference, for instance, could result in the proposal of premium priced products if no
other filter rules constrain the price limit. Consequently, it would be preferable if the
user can choose among several variants and interactively decide which of his
requirements he is willing to give up or relax. In order to cope with such situations,
the following value-based variant of the first approach can be used (see Fig. 2).
Similar to the first approach, we proceed in a breadth-first approach. However, upon
creation of a new node, all alternative settings for the variable under examination are
tested individually except for the conflicting assignment. In cases, where more than
one variable is tested (e.g., at the second level), we theoretically check all possible
combinations of these variables, i.e., the Cartesian product of the possible values.6

5 H(n) equals the set of all edge-labels from the root of the DAG to n.
6 At the moment, the value-level approach handles user requirements with finite domains of

enumeration values. For free-input requirements like a price limit we reduce the search space
to respecting the requirement or not but do not search for alternative values.

152

Poster Proceedings KI2004

Fig. 2. Value-based algorithm

Note that in the value-based approach, we add a special “null” value (marked grey
in Fig. 2) to the domain of each variable as the full removal of a requirement could be
a possible option in some domains.

The main advantage of the breadth-first approach is that alternative solutions with
fewer changes are found first. In practice, proposing alternatives with more than three
or four variables changed does not help the users too much anyway, as the differences
to the original preferences are not satisfying for the users. Therefore, in practical
situations, the search is stopped when the first few alternatives are found.

When using the value-based approach, pruning has also to be performed on the
value level. As we can see in Fig. 2, the node with the path (pref_interfaces,
pref_class) cannot be immediately closed like in the first algorithm. Although we
already found several solutions by changing the value of pref_class alone, there was
no solution when we tried the value “high” (indicated by the question mark).
Nonetheless, as we make no restrictions on the filter rules except for those on the
structure described in the definitions, it could be the case that there exists a
combination of pref_class(high) and some value of pref_interfaces such that a
solution with changes in both variables is possible. However, note that we only have
to check the combinations with pref_class(high) because combinations with other
values of pref_class would result in a superset of an already found diagnosis. On the
other hand, nodes that would involve pref_weight can be immediately closed since all
alternative assignments to pref_weight result in a suboptimal solution.

Nonetheless, additional pruning approaches can be applied to reduce the search
space, but come at the cost of loss of solutions. First, we could omit such cases as
described in the last paragraph and prematurely prune the node with the path
(pref_interfaces, pref_class), when we have domain-specific knowledge about the

153

Poster Proceedings KI2004

filter constraints. In addition, for each node we can stop examining the possible value
combinations, once we found a first solution, e.g., after trying the “cheap” value for
pref_class we do not check the other alternatives. Such an approach can be useful in
cases where we are only interested repair alternatives that involve single changes.

In general, the diagnosis algorithm will always find at least one solution given a
valid recommendation problem, as the search space is exhaustively searched and no
minimal solutions get lost by the value-based pruning techniques.

Discriminating between diagnoses. In cases when there are lots of solutions, i.e.,
repair alternatives returned by the search alternatives, these proposals should be
ranked such that the customer can choose the alternative that matches his preferences
best. A quite intuitive ranking will be based on the number of changes that are
required in the requirements. Depending on the domain, other application-specific
orderings can be used in order to rank the alternatives with the same number of
changes. First, we can prefer those alternatives that maximize the number of products
that can be proposed if the changes are applied. Another ordering can take the
differences to the original requirements on the value level into account. In many
domains, the possible values for a specific variable have an implicit ordering, like a
price preference (low, medium, high etc.). As a consequence, from a practical
perspective, it can even be better to promote an alternative where two of the
requirements are changed to a neighbouring value, than to propose a single-change
alternative where a customer’s preference has to be inverted, e.g., changed from “yes”
to “no”. In principle, an initial “cost model” for changes can be computed without
further domain knowledge, if we assume that the possible values for a variable are
defined in such an implicit order. Before the results are presented to the user, the
system can rank the alternatives based on these costs which are determined by the
distance to the original requirement and the overall number of the possible values7.
For multi-valued variables, changes where the original requirement statement and
some more or fewer values lead to a solution can be for instance preferred over others
that have complete different values.

If desired, such a model of “change costs” can also be explicitly defined in the
knowledge base. The definition of such a model however can require significant
knowledge acquisition efforts as these cost functions have to be defined manually for
each variable. Nonetheless, compared with approaches where “repair rules” are
explicitly defined, the definition of cost functions has the advantage that changes in
the model only have local effects and the overall consistency of the knowledge base is
not affected.

Finally, when such a cost model exists, it can be exploited during the search phase
in settings where we perform an incomplete search and stop at a certain threshold,
e.g., when a defined number of alternatives is found. As an example, we could stop
examining other possible values for a price preference, when we found that a change
from “low” to “medium” results in a solution, as we know that increasing the price
limit further will only result in a suboptimal alternative with respect to the costs, i.e.,
the quality of the repair alternative.

7 The number of possible values is important, because the distance from “yes” to “no” is small,

but there are no other alternatives, so the cost estimate should be correspondingly high.

154

Poster Proceedings KI2004

Experimental results

The described algorithms were implemented as add-on to the ADVISOR SUITE [10]
framework, a research toolkit for rapid development of personalized online sales
advisory systems. For the evaluation process, knowledge bases from several real-
world problems from different application domains were tested. The application
domains range from complex areas like investment alternatives to technical items like
digital cameras or skis, up to “quality and taste” domains like wine or cigars.

Run timeDesign time

Advisor Suite Repository

Knowledge Acquisition Tools

JSP

<html>
 <head>
 </head>

</html>

JSP

<html>
 <head>
 </head>

</html>

GUI
Generation

Module

Advisor Suite
Server

Interaction &
Personalization

Agent

HEWLETT
PACKARD

Web Server
Virtual advisory session

Dynamic Web
pages

Fig. 3. Overall architecture of ADVISOR SUITE

Figure 3 depicts the overall architecture of the ADVISOR SUITE framework. The
required knowledge for recommendation and personalization is captured using
graphical knowledge acquisition tools and stored in a knowledge base which is built
on top of a relational database system. In the Java-based ADVISOR SUITE SERVER
module, the core recommendation logic is implemented; the individual advisory
sessions are managed by the INTERACTION AND PERSONALIZATION AGENT. Short
response times and high overall performance are key issues for such online Web-
based systems. In general, the knowledge-based ADVISOR SUITE framework thus
extensively caches and pre-loads the contents of the knowledge base and pre-compiles
the recommendation rules into a compact internal format, such that a fast rule-
evaluation process is possible.

Problem size. In our real-world advisory problems, the knowledge-base typically
comprises twenty to thirty questions (variables) whereby – based on a personalization
process – not every user is asked every question [2]. The number of filtering rules that
determine the product selection mostly remained manageable and ranges from twenty
to sixty expert rules8. The number of available products varies with the domain, from
a few dozens when “services” are recommended, to several hundred when the domain
is investment advisory or digital cameras.

Priority-based relaxation. The computation of explanations in terms of applied
and relaxed advisory rules (Algorithm 1) is not problematic, as the search complexity

8 The overall knowledge base is more complex, as it contains additional knowledge for the

personalization of the dialogue flow, the adaptive user interface, as well as for the
personalized ordering of the results records.

155

Poster Proceedings KI2004

is linear with the number of priority levels, typically not more then twenty or thirty.
Each check whether a sufficient number of results will be available upon relaxation of
the filter rules on a certain level, can be performed within 10 to 20 milliseconds on a
standard PC and database system depending on the number of available products, the
overall response times for all tested cases were below one second. From the end-user
perspective, however, this feature was highly appreciated by users in all domains
where such an advisory application was implemented. First of all, the existence of a
personalized explanation significantly increases the customers’ confidence in the
proposal, i.e., when reading the natural language explanations of the applied advisory
rules and the justification for the products the user implicitly “learns” things about the
domain. Furthermore, the possibility to stipulate the application of individual rules or
decrease the priority of a rule lets the user express his real preferences in an intuitive
and comprehensible way, in cases where the priorities which are predefined by the
domain expert do not match his personal interests. Nonetheless, we also found that
some of the users were overwhelmed when they are asked to assign relative priorities
to the rules, such that in most cases we followed an approach where the only
possibilities are to force the application of a rule or completely ignore it and to undo
these choices.

Search for alternatives. The search for possible alternatives is computationally
complex and has to be fine-tuned for each application domain. In typical applications,
the list of explanations of the expert rules leading to the empty result set is presented
to the user, followed by the list of repair alternatives. Depending on the domain, the
complexity of the problem, and also the skill-level of the users, we have to tune the
parameters of the diagnosis process: In some cases, only single-step or two-step
repairs are comprehensible for the users; in other domains users want to have a choice
of many different and possibly complex alternatives. In most cases, the maximum
cardinality of the desired repairs is three or four as repairs that involve more changes
are hard to comprehend and asses for the end user. If for instance five or more of the
originally fifteen requirements have to be changed, the customer’s confidence in the
proposal might be low, because the product that is proposed after the change does not
match a large part of his preferences.In our test cases, the computation of diagnoses
up to cardinality three with single-valued attributes showed acceptable response times
below one second for the computation of all possible repair alternatives without any
further optimization, even in cases where nearly all of the customer requirements
were involved in a conflict. For the computation of diagnoses with higher cardinality,
we introduced several optimizations described as follows, such that the response
times stay within the acceptable limit of two or three seconds for the hardest real-
world problems with cardinality five.
1. Result caching. For each node in the search tree, we have to check whether

changing a value results in a solution or not which corresponds to a call to the
recommender system. In the ADVISOR SUITE framework, the results of previous
sessions (together with explanations and repairs) are compactly stored in memory
and on disk such that the system constantly “learns” new relations between

156

Poster Proceedings KI2004

requirements and solution9. Our experiences show that only a fragment of the
theoretically possible input combinations actually occur and many users have same
or similar requirements such that the space requirements for this cache are limited.
A typical example for such a “pattern” in user requirements is that customers who
specify a high price-limit also have a high preference for brand products. We
encode such previous results (and also those that origin during the diagnosis
process) compactly, such that the check for a solution for an already known
combination is then less then one millisecond. Finally, we also cache the possible
repair alternatives which can subsequently be accessed without reasoning, when
the same set of requirements occurs a second time. The experiences of an
application with about fifteen thousand online advisory sessions in the first week of
deployment shows that a high “cache-hit” rate can be achieved that justifies the
limited overhead of managing such a cache.

2. Conflicts re-using. The same principle of such a system-wide cache can also be
applied for conflicts, as in particular the computation of minimal conflicts can be a
time-consuming task.

3. Domain-dependent heuristics. Finally, domain-dependent heuristics can help us in
reducing the search space, in particular for multi-valued requirements that
significantly enlarge the size of the search space. In many domains, we know for
each multi-valued attribute, whether more values in such a requirement reduce the
set of possible products or broaden this set, e.g., when the requirements have an
implicit “one-of” semantics. Therefore, depending on the semantics, we can limit
the search to alternatives with more or fewer values in the requirements and prune
out all other constellations, which will not result in good solutions.

In general, the diagnostic approach for the search of repair alternatives has to be
more parameterized and fine-tuned for a specific application than the relaxation
technique. In particular, special attention has to be paid that the underlying
complexity is hidden from the user and the user is not overwhelmed by a large set of
complex alternatives. From the user interface perspective it is therefore important that
we for instance aggregate the alternatives on the same variable set (e.g., “change the
weight requirement to middle or irrelevant”) and give the user the chance to accept
and apply the alternative in a single interaction.

Conclusions

We have presented two techniques for dealing with empty result sets in knowledge-
based recommender systems, whereby we based our work on a general model of this
class of recommender systems that in practice base the search on product filtering.

The technique described for finding alternative requirements follows the tradition
of approaches described in ([6],[8],[11], or [15]), where similar algorithms were used
for computing action repair actions both for the domains classical model-based

9 The pre-computation of all possible user input combinations and corresponding results is not

feasible both with respect to time and space requirements. The cache has to be invalidated
upon the periodic changes in the knowledge base, e.g., when new filter rules are introduced.

157

Poster Proceedings KI2004

diagnosis (e.g., electronic circuits) as well as for the domains of re-configuration and
debugging of software and knowledge-bases. The algorithms in this paper are
designed in a way that they can be implemented non-intrusively as add-on to existing
advisory systems and product finders. The only requirements are that filter rules can
be selectively removed and added to the knowledge base (priority-based relaxation)
and user inputs can be removed or changed dynamically (search for repair
alternatives). The underlying implementation of the product finder has not to be
changed or known for the application of the described techniques.

From the end user perspective, the usage of one or the other of the techniques adds
a preference aspect ([12], [13]) to the advisory system, where the personalization of
proposals is not only limited to preferences expressed on initial user requirements; the
end user is also given a certain degree of freedom in his choice of repairs
(compromises in the conflicting requirements) and the prioritization of advisory rules.
The experiences show that the acceptance of the system and the confidence in the
proposal increase, when the end user is able to understand and manipulate the results
of the advisory process in these ways.

The presented work also strongly corresponds with the field of “Cooperative
Answering” [18] in database systems, where the problem exists, that direct answers to
database queries like “yes” or “no” are not always the best answers, i.e., an intelligent
system would e.g. allow for the usage of “soft constraints” or preferences and
cooperatively provide extra or alternative information. In the work of [19], for
instance, automated analysis of the individual parts of a failing query is proposed,
such that the system can provide an explanation which parts of the query caused the
failure. While the approach in [19] involves high costs for identifying such sub-
queries, this division in sub-queries in our application domain is indirectly given by
the filter constraints themselves. In addition, our approach allows us to define natural-
language explanations for failed sub-queries as well as interactive, preference-based,
and non-technical selection of sub-queries to be applied.

Our future work includes the analysis whether similar techniques can be applied to
the class of recommendation systems based on Case-based Reasoning ([16], [17]) in
particular when the case base has to be updated after changes of the recommendation
rules or when new products are available. Vice-versa, it will be analyzed if techniques
from the CBR field can be adopted for filter-based recommender systems. In addition,
we will further evaluate successful approaches from the areas of configuration and
constraint satisfaction; in particular techniques based on local search [14] whose
principle of iterative solution improvement matches the requirements of our
application domain. Finally, further work will be spent on personalizing and
improving the quality the resulting explanations such that they contain no spurious
elements (see, e.g., [20]) or are adapted according to the current user’s skills or
preferences.

158

Poster Proceedings KI2004

References

[1] D. Bridge. Product recommendation systems: A new direction. In R. Weber and C.
Wangenheim, editors, Procs. of the Workshop Programme at the Fourth International
Conference on Case-Based Reasoning, p. 79-86, 2001.

[2] L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach, M. Zanker, and R. Schäfer. A
framework for the development of personalized, distributed web-based configuration
systems. AI Magazine, 24(3):97-110, 2003.

[3] T. Schiex, H. Fargier, and G. Verfaille. Valued constraint satisfaction problems: Hard and
easy problems. In International Joint Conference on Artificial Intelligence, p. 631-639,
Montreal, Canada, 1995.

[4] T. Männistö, T. Soininen, J. Tiihonen, and R. Sulonen. Framework and Conceptual Model
for Reconfiguration. In Configuration Papers from the AAAI Workshop, AAAI Technical
Report WS-99-05. AAAI Press, 1999, p. 59-64.

[5] S. Srinivas and E. Horvitz, Exploiting System Hierarchy to Compute Repair Plans in
Probabilistic Model-Based Diagnosis, In: Proceedings of Eleventh Conference on
Uncertainty in Artificial Intelligence, Montreal, 1995, Morgan Kaufmann, p. 523-531.

[6] G. Friedrich, G. Gottlob, and W. Nejdl: Formalizing the Repair Process - Extended
Report. Annals of Mathematics and Artificial Intelligence, Vol. 11(1-4): 187-201 (1994)

[7] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1),
Elsevier, 1987, p. 57-95.

[8] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner. Consistency-based diagnosis of
configuration knowledge bases, Artificial Intelligence, 152(2), p. 213-234, 2004.

[9] R. Greiner, B.A. Smith, R.W. Wilkerson. A correction to the algorithm in Reiter’s theory
of diagnosis. Artificial Intelligence, 41(1), Elsevier, 1989, p. 79-88.

[10] D. Jannach and G. Kreutler, Building on-line sales assistance systems with ADVISOR
SUITE, In Proceedings: 16th Intl. Conference on Software Engineering and Knowledge
Engineering (SEKE'04), Banff, CAN, 2004.

[11] M. Stumptner and F. Wotawa, Reconfiguration using Model-based Diagnosis, in:
Proceedings of the International Workshop on Diagnosis (DX99), June 1999.

[12] U. Junker, Preference-Based Search for Scheduling. In Proceedings: AAAI/IAAI, Austin,
TX, USA, 2000. p. 904-909.

[13] U. Junker, Preference programming for configuration, In Proceedings IJCAI’01 –
Workshop on Configuration, Seattle, 2001.

[14] R. Sosic and J. Gu. Efficient Local Search with Conflict Minimization: A Case Study of
the N-Queens Problem. IEEE Transactions on Knowledge and Data Engineering, Vol. 6,
5, p. 661-668, Oct 1994.

[15] L. Console, G. Friedrich, D. T. Dupré: Model-Based Diagnosis Meets Error Diagnosis in
Logic Programs. IJCAI 1993, Chambéry, France, p. 1494-1501.

[16] R. Burke, The Wasabi Personal Shopper: A Case-Based Recommender System, In
Proceedings: AAAI/IAAI, Orlando, Florida, 1999, p. 844-849.

[17] R. Burke, Knowledge-based Recommender Systems. In A. Kent (ed.), Encyclopedia of
Library and Information Systems. Vol. 69, Supplement 32. Marcel Dekker, 2000.

[18] T. Gaasterland, P. Godfrey, and J. Mincker, An overview of Cooperative Answering,
Journal of Intelligent Information Systems Vol. 1(2), pp. 123-157, Kluwer, 1992.

[19] J.M. Janas. On the Feasibility of Informative Answers. In: Gallaire et al., Advances in in
Database Theory, Vol. 1. Plenum Press, 1981

[20] G. Friedrich, Elimination of spurious explanations, Proc. of 16th European Conference on
Artificial Intelligence, Valencia, Spain, 2004.

159

Poster Proceedings KI2004

Query Plan Distribution in a Mediator

Environment

Jonathan Gelati

Dipartimento di Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

Via Vignolese 905, 41100 Modena, Italy
jonathan.gelati@unmore.it

Abstract. Mediator systems provide an integrated view over a set of
distributed and heterogeneous data sources. They have typically two
main functionalities: first they allow to build an integrated representation
(or Global Virtual View) of the heterogeneous data and secondly allow
users to pose queries over it. In this paper we tackle the issues related to
the creation and actual execution of a query plan. We discuss how the
control and the execution of a query plan can be distributed using the
abstraction of software agents and multi-agent systems.

1 Introduction

Mediator systems are meant to provide an homogeneous interface to access a va-
riety of data sources, hiding the lower level complexity to the users and managing
the conflicts that could arise while manipulating data coming from heterogeneous
sources. [1, 8, 3, 2] are examples of such systems.

The task of a mediator system is usually split into two main functions: the
first is the integration of the schema related to the distributed, heterogeneous
data sources in order to obtain what we call an integrated Global Virtual View

(GVV) of the underlying data, the second is the execution of queries posed over
the GVV.

We will focus on the second task, when the system has to build a plan and
execute distributed queries (i.e. queries that consider data belonging to different
sources). We will describe the steps that bring to the definition of the data struc-
tures needed for the query solving phase and how query plan can be subsequently
implemented in a distributed way.

The paper is organised as follows. In Section 2 we present the techniques we
used in the MIKS system to integrate heterogeneous schema. In Section 3, we
show how, given a query posed by a user, a query plan can be built, starting from
the mappings obtained during the integration process. In Section 4 we describe
how the control and the execution of a query plan can be distributed. In Section
5 we discuss related work. Finally, Section 6 presents some final observations.

160

Poster Proceedings KI2004

2 Integrating heterogeneous schemas

Information integration of data coming from distributed, heterogeneous data
sources takes into consideration two kinds of knowledge: the intensional one
and the extensional one. For clarity sake, the following example will be used
throughout the paper. We assume we have to integrate the schemas of three
data sources (Figure 1).

Fig. 1. The schema of the data sources of our running example

The first data source is a relational database comprising of six relations
concerning the people working at a university, the department they work in
and the rooms they use. The second one is an object database concerning the
people who works in the Computer Science department of the university. The
third data source is file-based and stores administrative information about the
students which apply to the university.

We assume also the following extensional rules (their meaning and relevance
is discussed in Section 2.2) holding among the relations of the schemas:

1. U.School Member SY Next TP.Student
2. CS.Student NText U.School Member
3. U.Research Staff NText U.Worker
4. CS.Professor NText U.Research Staff
5. CS.Professor DISJext U.School Member
6. U.Research Staff DISJext TP.Student
7. U.Research Staff DISJext CS.Student

2.1 Intensional integration

The intensional integration aims at resolving the conflicts that may arise at
schema level when the same concept of the application domain is represented
using different terms or structures in different data sources. For example, there

161

Poster Proceedings KI2004

may be two relations on two distinct databases that model the same real world
concept and thus have to be considered linked by a synonym relationship. Rela-
tionships between two relations or two attributes may be of four types: narrow
term, broader term, related term and synonym (for a discussion of the meaning
and how they apply to inter-schema and intra-schema integration see [2]). Once
the relationships have been stated, classes with a certain degree of affinity (see
[2]) are clustered together to produce one global class. The process results in
a data structure, which we call Mapping Table, that reports how the global
attributes of a global class are mapped into the attributes of the local classes
(see Figure 2).

Fig. 2. The mapping table of our example

With respect to the representation of intensional overlappings used in [12],
our mapping table contains information on how intensional conflicts are solved.
We in fact apply the methodology not to the attributes taken from the local
schemas to be integrated, but to the global classes of the GVV and to their
global attributes.

2.2 Extensional integration

Once all the intensional conflicts are solved, we can proceed to the extensional
integration. The challenge is to compose all the features that are related to
a same modelled entity, these features being originally sparsed over the data
sources.

We have to identify the extensional rules holding among the extensions of
the local classes composing a global class. As a global class clusters in principle
all the objects related to the same abstract entity, there must be no extensional
relationships between local classes belonging to different global classes.

Extensional rules and base extensions Def. We define the extension of a

class C at time t as the set of objects that populate the class C at time t.
Given two classes A and B we can have four types of extensional relationships:

– Equivalence: A ≡ B ⇔ ∀t : ExttA = ExttB

162

Poster Proceedings KI2004

– Inclusion: A ⊆ B ⇔ ∀t : ExttA ⊆ ExttB
– Disjunction: A � B ⇔ ∀t : ExttA

⋂
ExttB = �

– Overlapping: A ∩ B ⇔ ∀t : ¬(A ≡ B) ∧ ¬(A ⊂ B) ∧ ¬(B ⊂ A) ∧ ¬(A � B)

If we give a graphical representation of the extensional relationships among
the considered local classes, we obtain a partitioning over the union of the ex-
tensions. Figure 3 depicts the partitioning for our example, given the set of
extensional rules presented in Section 2.

(a) (b)

(a) (b)

Fig. 3. The (a) graphical and (b) tabular representations of the resulting base exten-
sions

Each such partition is called a base extension. Note that in Figure 3 every
instance of a class belongs to only one base extension (whilst, if we consider
classes, this is not true in general; for instance, when we have inheritance the
instances of a class are instances also of the class it inherits from). In order to
identify a correct set of base extensions, we have to consider also the so-called
existence requirements, conditions that have to hold for the rules to be valid (see
Table 1). For instance, if there is a rule of type A ∩ B then the following sets
must be not empty: AB, ¬AB and A¬B.

Extensional rule Existence requirement

A ≡ B AB

A ⊂ B AB,AB

B ⊂ A AB,AB

A � B AB, AB

A ∩ B AB, AB, AB

Table 1. The existence requirements for each extensional rule

163

Poster Proceedings KI2004

In [12, 14] the full algorithm for computing the set of base extensions of a set of
local classes is reported and commented.

For each base extension belonging to a set satisfying the extensional rules
and the existence requirements, we have that its extension is given by the inter-
section of the extension of the local classes composing the base extension and
its intension is given by the union of the global attributes mapped by the local
classes composing the base extension.

Extensional hierarchy We now briefly report how to organize the set of base
extensions into a hierarchy. The construction of such a hierarchy facilitates the
search operation for a base extension containing the attribute needed to solve a
query.

To build the extensional hierarchy we use the theory of concept analysis [15]
as explained in [12]. A context is defined as a triple (G, M, I), where G is a set of
classes, M a set of attributes and I ⊆ G×M is a binary relation that says that
a class g ∈ G has the attribute m ∈ M if and only if (g, m) ∈ I . We consider the
context where G is the set of base extensions and M the set of global attributes.
In order to define I we combine the information of the two tables we have built so
far. The first one results from the intensional integration (see Figure 2) and tells
how local attributes map to global attributes. The second one tells which local
attributes belong to a base extension, for each base extension (see Figure 3(a)).
It is now possible to obtain a third table, which reports which global attributes
are mapped by each base extension (Figure 4). This is our binary relation I .

Fig. 4. The mapping between base extensions and global attributes

The next step is to compute the intent of base extensions and the extent of
global attributes.

Def. The intent of a subset of base extensions A ⊆ G is composed by all global

attributes m ∈ M for which exists at least one base extension g ∈ A such that

(g, m) ⊆ I.

164

Poster Proceedings KI2004

The intent of a single base extension is given by reading the corresponding
column on Figure 4.

Def. The extent of a subset of attributes B ⊆ M is composed by all base

extensions g ∈ G for which exists at least one m ∈ B such that (g, m) ∈ I.

The extent of one global attribute is given by reading the corresponding row
on Figure 4. We can now build the two sets Int{intent({g}) : g ∈ G} and
Ext{extent({m}) : m ∈ M}, corresponding to the set of intents for each base
extension g ∈ G and the set of extents for each attribute m ∈ M , deriving the
two sets ConI{(extent(I), I) : I ∈ Int} and ConE{(E, intent(E) : E ∈ Ext)}
containing concepts as follows:

The union of the two latter sets gives us a set of new objects, which we call
here virtual classes. Table 2 lists the set of virtual classes we obtain for our
example.

C1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, name)
C2 = (1, 2, 3, 4, 5, 6, 10, 11, 12, name, rank)
C3 = (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, name, faculty)
C4 = (4, 5, 6, 7, 8, 10, 11, 12, name, works, pay)
C5 = (4, 5, 6, 8, 10, 12, name, faculty, works, pay)
C6 = (1, 2, 3, 4, 5, 6, name, rank, faculty, year, tax fee, student code)
C7 = (4, 5, 6, name, rank, faculty, year, tax fee, works, student code, pay)
C8 = (10, 11, 12, name, rank, relation, e mail,works, pay)
C9 = (10, 12, name, rank, faculty, relation, e mail, works, pay)

Table 2. The existence requirements for each extensional rule

Over the set of virtual classes we can compute the binary relation that gives
us the specialisation relation between two classes. The matrix representing the
subset relations is illustrated in Figure 5 (a).

This matrix can be further refined by eliminating the transitive specializa-
tions as shown in Figure 5 (b).

The set of virtual classes can be organized in an inheritance hierachy following
the specialisation relations synthetised in the non-transitive matrix. Figure 6
depicts the inheritance hierarchy for our running example.

3 Building a query plan

In this section, we show how we can use the intensional and extensional infor-
mation to support query execution.

We first review the process that leads to the creation of a query plan. A
query plan is needed whenever a query is posed on the GV V (thus called global

query) and must be solved in terms of the integrated schema.

165

Poster Proceedings KI2004

(a) (b)

(a) (b)

Fig. 5. The (a) matrix and (b) its non-transitive form representing the specilisation
relations among base extensions

Fig. 6. The resulting inheritance hierarchy for our running example

166

Poster Proceedings KI2004

Given a global query, the building of a query plan can be ideally decom-
posed into two actions: the identification of the local classes to be queried and
the rewriting of the global query into queries executable on the identified local
classes.

We take as our example query the following one: SELECT name, rank, faculty

from worker.

3.1 Identification of the local classes

The first decomposition step is to ensure that a global query is splitted into a set
of queries, each addressing one single global class. We call this kind of queries
basic queries. In general, a global query is equivalent to a set of basic queries
and a set of operations to join the answers.

For each basic query, the following steps are required to identify the set of
local classes:

1. identification of the set AGQ union of the set of global attributes contained in
the select-list and the set of global attributes contained in the where-clause;

2. identification of the target virtual classes: exploiting the extensional hierar-
chy, we need to find out the most general virtual classes that hold all of the
desired attributes:

TV C = {V ∈ V |(AGQ ⊆ INT (V)) ∧

(¬∃V ′ 6= V |AGQ ⊆ INT (V) ∧ V ISAEXT V ′)} (1)

The goal is to identify the most general virtual classes, i.e. we start examining
from the root of the extensional hierarchy and go down to a lower level only
if the considered virtual classes do no hold the complete set of attributes.

3. identification of the set of base extensions: the identified set of target vir-
tual classes implies a set of base extensions, composed by the union of the
extensions of the target virtual classes:

BEin =
⋃

V ∈TV C

EST (V) (2)

In order to compute a base extension we execute joins between the classes
that compose it. Executing joins actually produces a superset of a base
extension. We thus introduce the concept of dominance between two base
extensions.
Def. Given two base extensions B1 and B2 and a set of attributes A =

{a1, a2, ..., an}, B1 dominates B2 with respect to A if and only if A is included

in the intension of B1 and in the intension of B2 and the classes which

compose B1 are a subset of those which form B2:

A ⊆ ABE(B1) ∧ A ⊆ ABE(B2) ∧ F (B1) ⊂ F (B2) (3)

167

Poster Proceedings KI2004

4. the set of base extensions BEin identifies a set of local classes CLin as
follows:

LCin = {L ∈ SG(G)|∃B ∈ BEin, L ∈ F (B)} (4)

The set of local classes can be reduced in the following cases:
(a) given two local classes having the same extension, we can delete from

the set the one that has less attributes present in the query;
(b) given two classes belonging to the same data source and a specialisa-

tion relationship between the two, we can delete the superclass from the
subset.

In our case, the list of attributes is name, rank, faculty and the most gen-
eral virtual classes comprising these global attributes are C2 and C3. The set
of corresponding base extensions is BE = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12} which,
considering the dominance of base extension 1 over base extensions 2 and 3,
of base extension 6 over 4 and 5 and of 10 over 12, must be transformed
into BEopt = {1, 6, 8, 9, 10, 11}. The set of local classes identified by BEopt is
LC={U.Research Staff, U.School Member, U.Worker, CS.Person, CS.Professor,

CS.Student, TP.Student}.

3.2 Generation of local queries

The data structure obtained from the extensional integration allows us to deter-
mine which local classes have to be queried. At this stage, the Mapping Table

resulting from the intensional integration (see Figure 2) comes into play.
For each identified local class, the original basic query must be rewritten.

This requires both the translation of the global attributes refered by the query
(in the select-list and where-clause) into local attributes and the transformation
of the predicates of the where-clause. Particular attention must be paid to map
global operands into operands that can be understood by the data source each
local query refers to. How to perform this operation has been discussed in [14].

In our example, for the local class U.Research Staff we can rewrite the basic
query as SELECT first name, last name from Research Staff. For the local
class U.School Member the query becomes SELECT first name, last name,

faculty from School Member. Analagously for the other local classes.

4 Implementing the query plan

In section 3 we have described how a plan can be obtained for a given basic
query. Due to its unified nature, the plan is directly executable in a centralised
way, under the control of a single module. This approach however does not
seem to be very practicable for a number of reasons. First, a mediator system
typically manages a large amount of data and offers its services to a potentially
high number of users. Scaling up the performance of such a system is difficult.
Secondly, operating in a distributed environment is risky, in the sense that some
things may go wrong during execution.

168

Poster Proceedings KI2004

Due to these constraints, we need a technique that permits the modification
of the original query execution plan to cope with the unpredictable conditions
of the environment. Distributing the control and the execution of a plan brings
in general the following advantages:

– avoidance of a single point of failure by reducing dependence on centralized
control;

– localisation of communication;
– local problems solved through local planning without traversing higher levels

of control or execution;
– high-level planning and communication is involved only when local planning

fails.

To shift from a centralised plan to a distributed version we propose to use the
abstraction of agents and multi-agent system. A multi-agent system is a logical
environment where software agents execute, interact and can possibly move. We
call this logical environemnt a MAS platform. A MAS platform may comprise of
a number of virtual places or container (usually linked to some physical host) and
make them accessible in a seamless way to software agents. As discussed in [16,
13], software agents are entities that hold some nice features. For our application
we restrict our attention to mobility, coordination and communication (see [7]).

The abstraction of a multi-agent system is particularly suitable to model
distributed processes (see [9]). Rather than viewing the system as based on the
client-server paradigm, we consider a mediator environment as a system com-
posed by peers, each bringing data and possibly resources. We can decompose
the problem in smaller ones and encapsulate the capabilites to solve each of them
in a particular type of software agent. Agents will then communicate with each
other in order to organize or better coordinate their actions. Agents can exploit
the resources made available by the hosts participating to the agent platform to
scale up the system.

To exploit the distribution of the environment, we need to reformulate the
original query plan, preserving its meaning and organizing it as composed by
many sub-plans. Once we have decomposed it, we can distribute it to a number
of agents, each responsible for carrying out a portion of the plan, activating the
necessary coordination mechanisms. In the following we present how this can be
done with a query plan produced according to the steps described in previous
sections.

4.1 Quality of service requirements

In order to answer a query we consider two basic properties to be guaranteed:
(a) correctness and (b) completeness. Even though a correct and complete an-
swer represents the ideal situation, in a distributed query process we assume
correctness to hold more significance than completeness. This is to say that a
correct but incomplete answer is to be preferred to a complete but incorrect
answer. While presenting the re-planning actions that can be undertaken in our

169

Poster Proceedings KI2004

scenario, we will point out when a modification to the plan impacts on the qual-
ity of the obtained answer, i.e. whether either correctness or completeness will
be affected by the planned change.

4.2 Plan organisation

A query plan describes how the following steps have to be performed in order
to reconstruct the answer to a basic query:

1. execution of local queries
2. reconstruction of base extensions
3. fusion of base extensions

The first two steps are dependent on queries executed on local data sources,
while the fusion of base extensions can be perfomed by using the obtained par-
tial results. It follows that until all base extensions are completely formed, we
have to deal with the fact that data are distributed over different sources. Once
we have the required BEs reconstructed the process becomes independent from
the distribution of data sources. We will therefore restrict our attention to the
portion of a query plan that consider the first two steps.

Def. A query plan P is of the form {LQ, JO} where LQ is the set of local

queries to be executed and JO is the set of join operations to be performed among

the result of local queries.

Def. The knowledge K(Q) required to build a query plan P is of the form

{MT, ET} where MT is the mapping table and ET is the extensional hierarchy.

Def. A planning space Ω is of the form {P, K(P)}, where P is the plan to be

implemented and K(P) is the knowledge used to build it.

Our ultimate goal is to distribute the execution and control of our planning
space. This implies partitioning the actions to be executed and distribute them to
different execution entities and partitioning the knowledge useful to re-planning
actions among different control entities. We need to identify a way to associate
in a coherent way to a sub-plan, the knowledge that serves to reason about
re-planning for that sub-plan.

A rational way to decompose a planning space is to define sub-spaces which
are closed with respect to the rest of the planning space. We call these sub-plans
regions.

Def. A region α in a planning space Ω = {P, K(P)} is of the form {Q, K(Q)}
where Q ⊆ P and K(Q) is the knowledge pertaining to the sub-plan Q.

We can now define a partition of the planning space using the concept of
region.

Def. Closeness: A region α = {Q, K(Q)} ∈ Ω = {P, K(P)} is closed with

respect to planning space Ω if the set Q has no intersection with the set of actions

R of any other region S = {R, K(R)} ∈ Ω.

Def. A planning space Ω is cloaseable if it is can be obtained as the union of

closed regions.

In our case, this means that within a region, all local queries to be carried
out do not depend from local queries belonging to a different region. This defines

170

Poster Proceedings KI2004

a partition over the original planning space. Determining such regions has some
nice consequences. The execution of the tasks of a region can be carried out
independently from the rest of the plan. The execution of the tasks of a region
can be executed remotely with respect to the rest of the plan. The control over
the execution of the actions of a region can be demanded to an independet
entity that knows all and only the information required to undertake re-planning
actions on the sub-plan of the region.

In our case, regions are identified by base extensions. Identifiying regions with
base extensions defines the desired partition over the original planning space.

A region will then comprise a sub-plan, including the set of local queries to be
solved in order to resonstruct the corresponding base extension and the set of join
operations to obtain the base extension from the produced query results, and
a knowledge set including the part of the mapping table concerning the local
classes corresponding to the local queries to be executed and the extensional
relations of the virtual classes related to the base extension to be solved.

In our example query, base extension 1 is included in the set BEopt. From
the table mapping base extension on classes (Figure 3), the queries of interest for
base extension 1 are those on the classes U.School Memeber and TP.Student.
The join operations have to be performed on attributes in common between
the two, and more precisely, reading the Mapping Table we have that the join
attributes for U.School Memeber are first name, last name and faculty and
for TP.Student, name and faculty. The knowledge related to this sub-plan is
given by the subset of the Mapping Table reporting the mapping for the two
local classes and some extensional information. This includes: the subtrees of
the extensional hierarchy starting with the virtual classes {C2, C3} and the
dominance relations of base extension 1.

4.3 Plan distribution

We focus here on two aspects: the tasks we assign to agents (which define the
agent types within the platform) and their organisation. Other issues that go
beyond the scope of the paper are central when designing agents (see for instance
[11, 17, 10]).

Task allocation The execution of the actions of a region is assigned to Execu-
tion Agents (EAs). Different choices can be made to decide which subset of local
queries to assign to a particular EA. Among the alternatives, two ways appear
feasible: either assigning the execution of a single query to a EA or assigning to
a EA the queries that directly join to compose the result. This is a tradeoff to
be evaluated. In any case, each local query is assigned to only one agent.

The control over the actions required to reconstruct base extensions is de-
manded to Control Agents (CAs). A CA agent is responsible for one base exten-
sion. A CA receives as input all the knowledge pertaining to one region (what
we have defined to be its K(Q)) which includes a subset of the Mapping Table

and a subset of the extensional hierarchy relations.

171

Poster Proceedings KI2004

Organisation Further to the knowledge about which queries to execute, an EA
knows to which CAs it must send the obtained results. As a query can be used
to compose different base extensions, the EA may be charged to contact more
than one CA. On the other hand, decoupling the assignment of queries with the
regions, gurantees that a query is executed only once.

Whenever a QA registers that one of its queries cannot be solved, it must
alert all CAs which manage the reconstruction of a base extension for which the
answer to that query is needed. This is a very critical problem as it means that
the affected base extensions cannot be reconstructed. At this stage it is required
a re-planning action. A CA which is notified such an event can undertake the
following measures:

– intensional re-planning: exploits the ISAINT relationships. Suppose there is
a problem executing the local query on CS.Professor. Using the intensional
knowledge, we can determine a class that is the father of CS.Professor, i.e.
CS.Person. The basic requirement is the father class has all attributes be-
longing to the where-clause. This might imply the loss of the attributes
proper to the child class and thus correctness cannot be guaranteed as these
attributes cannot be used to perform join operations formerly required to
get the base extension. Nevertheless we guarantee the completeness of the
answer, as all of the instances of the child class are as well instances of its
father;

– extensional re-planning based on ISAEXT : when a base extension is not
solvable, then we cannot build the virtual classes which include that base
extension. However, it is possible to identify an alternative set of virtual
classes that covers the set of attributes AGQ and does not imply the unsolv-
able base extension. To determine this set exists, it is sufficient to take the
extensional hierarchy and starting from the unsolvable virtual class, we go
down until we identify the set of virtual classes covering all the attribues in
AGQ. Note that given a father, each child class in the hierarchy has only a
subset of the base extensions of the father and thus it is possible to find a set
of childs at some level that does not include the unsolvable base extension.
This kind of re-planning guarantees correctness but not completeness as only
a particular subset of instances corresponding to the father can be returned.
It has also the advantage of reusing the results for the base extensions orig-
inally included in the plan and that still belong to the new plan;

– extensional re-planning based on dominance: when a base extension is not
solvable, we need to identify an alternative set of base extensions that covers
the set of attributes AGQ. This can be obtained from the dominance relations
of the base extension that is not solvable. This is not in general a re-planning
measure to be undertaken as the dominated base extensions imply a superset
of the local classes of the dominating one and therefore also the unsolvable
base extension;

– raw re-planning: the most straightforward solution is to drop the unsolvable
query from the list together with all join operations where it is involved.
This produces an answer that is incorrect (instances are not filtered on the

172

Poster Proceedings KI2004

missing partial results) and incomplete (the instances of the unsolved query
are lost).

According to the quality requirement preferences expressed, a CA can imple-
ment an algorithm that takes into consideration the above re-planning measures,
applying them according to the priority given to the quality requirements. For
instance, if correctness prevails over completenss then the algorithm will try to
pursue first an extensional re-planning based on ISAEXT .

5 Related work

How to integrate schemas has been a topic exaustively tackled by previous work,
both as far as the intensional integration is concerned (see [2]) and the exten-
sional integration (see [12]). Our plan generation is based on ideas developped
in [14].

The issues related to planning and how to undertake corrective or alternative
actions to recover from failures pertain to field of distributed planning. A survey
of the approaches and the directions the community is taking is reported in [4].
With respect to the classification proposed by DesJardins et al. our approach
consider distributed, continual planning. Distributed as the control is spread
over a number of entities that execute in different places (in terms of agent
platform, containers). Continual is referred to the fact that the software agents
exchange information about the ongoing activities and in the case of failure of
some action, the community of agents tries to find out whether an alternative
execution is practicable, even under the loss of some property (correcteness or
completeness). Even though being influenced from other studies, our approach
distinguishes from those described in [6, 5] because it is problem-specific, lacking
any intention of capturing general aspects of planning outside the domain of
distributed query execution for mediator systems.

6 Conclusions and Future Work

We have reviewed the integration process allowing a mediator system to build the
GVV given a set of heterogeneous data sources. Both the intensional and exten-
sional knowledge are needed in order to support the subsequent phase of query
execution. Thanks to the mapping information produced during the integration
process, we are able to construct a unified query plan. We have presented how
to distribute control introducing the concept of planning space and regions and
how to distribute execution by means of software agents. We have also shown as
these two techniques combined allow for re-planning in the case of unsuccessful
actions. Future work will address extensions of the proposed mechanism. Our
first step will be to consider caching techniques based on the extensional knowl-
edge in order to improve the time of response to queries.
Acknowledgements

I special thank to Sonia Bergamaschi for the revision of the present work.

173

Poster Proceedings KI2004

References

1. Yigal Arens, Chun-Nan Hsu, and Craig A. Knoblock. Query processing in the
SIMS information mediator. In Michael N. Huhns and Munindar P. Singh, editors,
Readings in Agents, pages 82–90. Morgan Kaufmann, San Francisco, CA, USA,
1997.

2. S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini:. Semantic integration
of heterogeneous information sources. Special Issue on Intelligent Information

Integration, Data and Knowledge Engineering, 36(1):215–249, 2001.
3. Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland,

Yannis Papakonstantinou, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS
project: Integration of heterogeneous information sources. In 16th Meeting of the

Information Processing Society of Japan, pages 7–18, Tokyo, Japan, 1994.
4. M. E. desJardins, E. H. Durfee, Jr. C. L. Ortiz, and M. J. Wolverton. A survey

of research in distributed continual planning. AI Magazine, pages 13–22, Winter
1999.

5. J. Dix, H. Munoz-Avila, D. S. Nau, and L. Zhang. Impacting shop: Putting an ai
planner into a multi-agent environment. Ann. Math. Artif. Intell., 4(37):381–407,
2003.

6. E. H Durfee and V. R. Lesser. Partial global planning: A coordination framework
for distirbuted hypothesis formation. IEEE Transactions on Systems, Man and

Cybernetics, 1(1):63–83, 1991.
7. FIPA. Fipa communicative act library specification, 2000.
8. Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: an

information integration system. pages 539–542, 1997.
9. M. Huget. Agent uml class diagrams revisited, 2002.

10. John Mylopoulos, Manuel Kolp, and Jaelson Castro. UML for agent-oriented
software development: The tropos proposal. Lecture Notes in Computer Science,
2185:422–??, 2001.

11. J. Odell, H. Parunak, and B. Bauer. Extending uml for agents, 2000.
12. Ingo Schmitt and Gunter Saake. Merging inheritance hierarchies for database inte-

gration. In Proceedings of the 3rd IFCIS International Conference on Cooperative

Information Systems, New York City, New York, USA, August 20-22, 1998, Spon-

sored by IFCIS, The Intn’l Foundation on Cooperative Information Systems, pages
322–331. IEEE Computer Society, 1998.

13. Katia Sycara, Massimo Paolucci, Martin Van Velsen, and Joseph Andrew Gi-
ampapa. The retsina mas infrastructure. Technical Report CMU-RI-TR-01-05,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, March 2001.

14. F. Venuta. Trattamento della conoscenza estensionale nel sistema momis, tesi di
laurea, 2000.

15. R. Wille. Concept lattices and conceptual knowledge systems. In Computer and

Mathematics with Applications, pages 493–515, 1992.
16. Michael Wooldridge. Intelligent agents. In Gerhard Weiss, editor, Multiagent

Systems: A Modern Approach to Distributed Artificial Intelligence, pages 27–78.
The MIT Press, Cambridge, MA, USA, 1999.

17. Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia methodol-
ogy for agent-oriented analysis and design. Autonomous Agents and Multi-Agent

Systems, 3(3):285–312, 2000.

174

Poster Proceedings KI2004

A Self Organising Map (SOM) Sensor for the Detection,
Visualisation and Analysis of Process Drifts

Dietmar Zettel1, Daniel Sampaio1, Norbert Link1, Armin Braun1, Michael Peschl2
and Heli Junno3

1University of Applied Sciences Karlsruhe, Moltkestrasse 30, 76133 Karlsruhe, Germany
{dietmar.zettel, daniel.sampaio, norbert.link, armin.braun}@fh-karlruhe.de

2Harms & Wende Hamburg GmbH, Grossmoorkehre 9, 21079 Hamburg, Germany
michael.peschl@fh-karlsruhe.de

3University of Oulu, ISG, PO BOX 4500, 90014 Oulu, Finland
heli.junno@ee.oulu.fi

The control of processes (enforcement of given state variable values) by means
of some driving force, where the state variables are not directly measurable
quantities, is a very common problem class. The usual solution approach is by
construction of a so-called observer based on an analytical process dynamic
model and a statistical model of process and measurement noise. The observer
gives an optimum estimate of the state variable values based on a measured
history of accessible measured observable values. For cases, in which the
necessary models are not available, we propose a SOM sensor which is able to
estimate deviations (distance and direction) between states of the process and
thus the process deviation from its optimum. The output can then be used as the
input of a controller to determine the driving force. The SOM sensor is derived
from a process sample containing a set of feature vectors (covering almost all
process states) derived from the process observables. As SOM a two-
dimensional, discrete Kohonen map is trained with a representative process
sample to optimally reflect the topology of the original feature space. It is
therefore well suited to visualise the movement of the process by the motion of
the winner neuron in the SOM. The resulting path can be analysed in order to
detect drift or to gain control relevant information. For the proof of concept a
spot welding process consisting of several thousand welds over the whole
lifetime of the welding machine electrodes is analysed as a sample application
with the objective to reveal the quality loss related to electrode wear.

1 Introduction

The classical approach to solve the control problem in cases where the state variables
are not directly accessible but only observables can be measured is to use a state
observer, which is used to estimate the values of the state variables (figure 1). For this
purpose a model of the dynamic of the process under consideration is needed. The
model should reflect all aspects of the process including systematic disturbances like
degradation of system components in order to give a correct estimate of the state
variable. To arrive at a comparison between estimated state and the measured real

175

Poster Proceedings KI2004

process observable one has to set up a second model, the measurement model, which
defines how the state variables transform to the observable variables. The difference
between the real and estimated observable values is fed back by the observer to the
process model in order to correct the state estimate.

Process
x

Model

x̂

Observer

u

r

y

ŷ

yy ˆ−

Fig. 1. Observer used to estimate state x from measurement y

The most common observer is the Kalman observer [2]. It consists of a Kalman
filter [3] that is responsible for the quantity estimation, a measurement model and a
feedback loop with a Kalman matrix for the optimisation of the value estimated which
is used as input in a process control (figure 2).

The requirements of such system are:

• Dynamic process model for the estimation of the state variable quantities;
• Model of the measurement system;
• Systematic disturbances (process or measurement) must be previously identified

and included in the models or eliminated from the system;
• Process and measurement noise distribution functions must be known.

Many applications of the Kalman observer can be found in recent literature. In
vision-based control of motion it is used for predicting the target position [14], in
autonomous unmanned vehicle it is used to estimate a submarine position as shown in
[15], another application of the Kalman Observer is to receive in a sensorless way the
actual values of the rotor position, the rotor velocity, and the rotor flux of an induction
motor. This practical example is based on a field orientated control method, where the
necessary control variables position, speed, and rotor flux are estimated with a
Kalman observer [16].

176

Poster Proceedings KI2004

Process
Control

Process

Kalman

Observer

ν
r

y
optt u

Model

Process
Dynamic

Measurement
Model ŷ

x̂
r

Fig. 2. Closed loop control with Kalman observer to estimate state x from measurement y

Some common points in these applications can be identified. Sudden state changes
are not well predictable by the Kalman observer, which possibly reacts with strong
oscillations. Non-linear systems with uncertainties in modelling produce large
estimation inaccuracies that perhaps can be compensated by the control strategy but
has as result a relatively lower performance. Implementing a Kalman Observer is a
very complex problem, and it requires a precise model to be calculated in real time.
The observer equations must be calculated, which normally means many matrix
multiplications and a matrix inversion. In many situations neither a process model is
available nor the distribution of the process noise can be assumed to be normal. In
these cases a statistical approach has to be developed.

2. Proposed Solution (Method)

In many cases, the processes are highly non-linear with many external influences that
can not be modelled and also the noise distribution parameters can not be measured or
reasonably be estimated. For such situations, in special for a process drift detection, in
this paper the substitution of the Kalman observer by a statistical image of the process
using a SOM is proposed (figure 3).

The process observable variables form the input vector y for the SOM. From a
sample of the high dimensional input vectors y , representative of the complete state
set of the process, the SOM forms a two dimensional image (map) of the process
states. By calibration, a map area can be marked, where the process can be identified
as optimum. If the actual position of the process in the map (actual relative process

177

Poster Proceedings KI2004

state) is in an area of the image apart from the optimum area, a process optimisation
can be made on the basis of distance (d) and angle (ϕ) between these two areas. Both
values (d,ϕ) are defined as the output of the statistical drift sensor.

This difference information should now be converted to the same quantity as used
in the process control. The vector C represents the adjust values and can be used
directly as input to the process controller.

Control
Variables

C
r

∆

d ϕ

SOM

Process
Optimum

Process
Actual
Position

Process
Observables Process

Control

Process

Statistical
Drift

Sensor

Converter

ϕ,d

Disturbances

yr

Control
Adjust

Startup
Control
Parameters

C
r u

vr

Fig. 3. Process control with SOM drift sensor

From the mapping of the high dimensional space of y in a two dimensional space
it is also possible to:
• form and analyse the process path by tracking the process and
• visualise the process state and its temporal evolution.

Both information can be used to modify the start-up control parameters C .

3. Application to Resistance Spot Welding

The characteristics of the statistical drift sensor allow to meet the application needs in
the field of resistance spot welding. Resistance spot welding is a process very
commonly used in the industry that consists of the joining of two or more metal parts
together in a localized area, based on the heating produced according to Joule’s Law
(Q = RI2t). The parts to be joined are pushed against each other by a tong-like

178

Poster Proceedings KI2004

arrangement of two opposing electrodes. High current is passed through the parts via
the electrodes and since heating (Q) is produced mainly at the interface between the
parts due to the electrical current, a molten pool is created in this location by the net
heating energy flowing in. Thermal expansion occurs and pressure should be applied
in the electrodes in order to avoid expulsion of molten material. After switching off
the current, this molten material cools down and a solid weld nugget is produced. The
complete process consists of a repeating sequence of the production of such welding
spots, where all spots should have the same good quality without respect to
disturbances. For this kind of process no complete physical model (also taking into
account disturbances like material unevenness, electrode wear and others) is available
and even the measurement of necessary model parameters is not possible on-line. For
example, these parameters are the temperature between the welded metal parts, the
pressure over time applied by the electrodes and the conditions of the surface of the
welded metal parts. Therefore no observer based in a model (figure 4) is applicable to
this kind of process.

Only two quantities are accessible and can be measured during the welding
process: the voltage and the current signals for each welding spot. The only material
characteristic which can be extracted for each individual spot from the accessible
voltage and current signals is the electrical resistance. The latter forms the basis for
deriving process features. The desired state value would be (depending on the
application) the value of a certain quality measure like the resulting spot diameter or
the maximum shear force the spot can withstand.

Welding
Control

Welding

Process

Kalman

Observer

ν
r

R
r

optq pI rr
,

Model

Process
Dynamic

Measurement
Model

q̂
R̂
r

Fig. 4. Scheme of a welding process controller with Kalman observer

For such an application, a welding process controller is to be developed. It should
be able to control a process with very short welding times (10-40 ms) and compensate
electrode wear and also external disturbances. In this way, the controller should
compensate the resulting process drift and keep the quality of the controlled process
always in a optimum range.

179

Poster Proceedings KI2004

Welding
controller

Current

Voltage

Welding apparatus

Electrodes

Parts

Fig. 5. Scheme of the welding process joining two metal sheets

The possible control variables in this process are the level of the welding current
and the welding time given that in this application the electrode force is fixed. As the
welding time is permitted to vary only in a very small range in order to maintain the
machine’s cycle time of 400 parts per minute, it is also kept fix. Therefore the only
really controllable variable in this process is the welding current level.

The figure 6 shows the proposed spot welding control system in which the Kalman
observer and the model of figure 4 is replaced by a SOM drift sensor connected to a
converter.

d ϕ

SOM

Process
Optimum

Process
Actual
Position

Welding
Control

Welding

Process

Statistical
Drift

Sensor

Converter

d,ϕ → pI rr
,

ν
r

R
r

pI rr
, **, pI rr

Modification
of I
r

and pr

ϕ,d

Pre-
Processing

Feature
Extractor

(PCA)
SOM

Drift
Detector

Fig. 6. Spot welding control system with SOM drift

180

Poster Proceedings KI2004

4. The SOM Drift Sensor

The SOM drift sensor is composed of four components: A pre-processing unit to
obtain noise filtered curves of the electrical resistance over time („resistance curve“),
a feature extractor for a first reduction of the dimensionality, the SOM to finally
reduce the process state space to a discrete, two-dimensional map and the drift
detector to derive the difference from the optimum process state. The details and set-
up of these components are discussed in detail below.

4.1 Pre-processing

In the application area of short-time weldings the middle frequency technology is
state-of-the-art. Therefore the resistance curve has to be calculated from the phase-
corrected current and voltage signals. For the removal of the high-level noise from
these raw signals a non-linear filter is used, which smoothes the curves without
eliminating relevant information.

4.2 Feature Extraction

The resistance curves from the pre-processing step are sampled with approximately
600 points. In order to arrive at a reasonable number of features with respect to the
training and response time of the SOM, the linear sub-space, which approximates the
sample in the best manner, is found via principal component analysis (PCA). The
effect is:
• Reduction of the training time and the response time of the SOM during operation,
• Elimination of irrelevant information,
• Saving memory with the operational system.

PCA reconstructed curve
with 5 coefficients

Original resistance
curve

Fig. 7. Original resistance curve compared to resistance curve reconstructed from
the first five coefficients

181

Poster Proceedings KI2004

The resulting features are then the projection coefficients onto the first principal
components (linear sub-space basis vectors with highest variance), which are
calculated as the Eigenvectors with the highest Eigenvalues of the co-variance matrix
of the sample vector set.

As shown in figure 7, only five such coefficients are sufficient to represent a
resistance curve with originally 600 samples.

4.3 Self-organising Map

Self-organising maps (in our case we use Kohonen maps) are a special kind of neural
networks, which consist of one layer of „active neurons“ [4]. They are mainly used
for data analysis and data classification.

The basic property of a SOM within the context of our drift sensor is the mapping
of the high-dimensional feature space onto an only two dimensional discrete map
(grid). Each cell (also called neuron) of the grid is assigned a representative feature
vector.

Distance d

Angle ϕ

Winner neuron

Fig. 8. SOM with process optimum area (rectangle, center: white circle), one winner neuron

These representatives (called weight vectors) are formed during the training from a
representative feature vector sample of the process in a way that the neighbourhood
relations of the feature vectors are optimally retained in the map. For the training of
the SOM no a priori knowledge is required. After the training, each new feature
vector is only characterized by the grid location of the most similar representative (the
winner neuron) in the map. The grid positions of different such winner neurons define
a 2-D difference vector, which can be used to measure a distance and a deviation

182

Poster Proceedings KI2004

direction of the actual process state from the process optimum, once the map area of
the optimum is identified (Figure 8).

Later on, a subsequent converter can use the difference measures to calculate
increments of the welding parameters, which are fed into the welding controller in
order to push the process back to the optimum state.

Once the welding signals have been pre-processed and the PCA coefficients have
been calculated for all sample resistance curves, the following three steps are
executed to set up the SOM:
1. Training;
2. Calibration of the SOM with respect to the process optimum;
3. Process observation.

4.3.1 Training

Before the SOM can be used as a sensor, it has to learn the process topology. For this
purpose a process representative learning sample data set consisting of a set of PCA

coefficient vectors (training vectors X x1 , .. , x n
T

, n=number of PCA

coefficients) is used. The representatives (weight vectors w j w1 j , ... , wnj
T

, j:
cell index) of each cell are initialised with random numbers. When training the SOM,
in one training step a training vector X is compared with all weight vectors w j to
determine the most similar weight vector (winner). As difference measure we choose
the mean square difference of the vector components. After the winner neuron has
been found, all weight vectors are adjusted by adding a proportion of the difference
from the training vector, weighted by a learning function, which depends on the map
distance of the corresponding neuron from the winner neuron. Usually a Gaussian or a
step function of the radius from the winner neuron position is used. This is repeated
for all training vectors (14,900 in our case) in one training epoch. In the subsequent
epochs, the variance of the Gaussian or the threshold of the step function as well as
the proportionality factor is reduced and the procedure repeated, until the learning rate
decreases to zero.

In order to define the training procedure, two steps are necessary:
1. Generation of the training data set;
2. Determination of the optimum learning parameters.

4.3.1.1 Generation of the training data set

Due to the fact that the state variables (the quality measure in our case) can not be
monitored and a process representative sample is necessary, assumptions about the
process underlying the training data set have to be made and verified, if possible.

The training data set must contain more data close to the process optimum than
marginal data. The process optimum is defined as an ideal quality value, which is
neither too low nor too high. With a too high quality the tools might wear too fast or
the energy is not used most efficiently.

183

Poster Proceedings KI2004

Normal process
distribution without

control

Quality optimum

Quality
[Q]

time [t]

B
es

t d
is

tri
bu

tio
n

of
a

tra
in

in
gs

 d
at

as
et

N
um

be
r

pa
rts

[n
p]

Fig. 9. Quality distribution of the training dataset from a regular industrial process

In a regular industrial production process these assumptions are justified on the
average over the lifetime of the production tools used, if there is no interference by
adjusting process parameters.

4.3.1.2 Determination of the optimum learning parameters

A common issue during the unsupervised training of a SOM is to find the ideal
training, topology and initialisation parameters. There is no way to directly make sure
the correctness of the produced SOM.

In order to determine the optimum learning parameters and obtain an accurate
SOM, variables that are process-relevant and measurable should be selected. These
variables should have also a direct effect on the not measurable actual process
state x and can be considered to be their substitute in the context of SOM assessment.
A representative dataset T t1 ...t n (n number of measurements) for the process
under consideration is then determined. An initial training parameter set is defined as
well as its range of variation. For each defined combination of training parameters the
SOM is validated with the variables introduced above in order to find the best one.

The validation process consists of the following steps:

− A winner neuron is found for each vector of the dataset T and the value of the
chosen relevant variable is associated to it.

− For each neuron, a histogram is created with all associated values belonging to it.
− The associated value with highest frequency in the histogram will define the class

of the neuron.

In an ideal trained SOM, the sum of the histogram’s highest frequency of each
neuron (called here score) should be equal to the size of the training dataset, this
means that vectors with the same relevant variable value will be associated to the
same neuron (belong to the same class) and a neuron will embrace only vectors with

184

Poster Proceedings KI2004

the same relevant variable value. In a real case this rarely will happen due to the
reduced dimension of the SOM, the size of the dataset T and the number of classes
present in it. Therefore the combination of training parameters that achieve the
highest score will be considered the optimum learning parameter combination due to
the best separability of classes.

∑
=

=
n

i
winnerhs

0
 (1)

where:
hwinner = Maximum value of the histogram,

 s = Score for the SOM
 n = Number of neurons in the list

The ideal score s is the number of training vectors.
This method of varying the training parameters and obtain for each combination a

score has been called “Scoreboard”. The figure 10 shows an example for a
scoreboard.

Score: 65 - Directory:
2003-12-10_v002/rect/9x8/bubble/alpha_0.9/radius_3/rlen_1000
Score: 65 - Directory:
2003-12-10_v002/rect/10x7/bubble/alpha_0.9/radius_10/rlen_200000
Score: 65 - Directory:
2003-12-10_v002/hexa/9x8/bubble/alpha_0.9/radius_4/rlen_500000
Score: 64 - Directory:
2003-12-10_v002/rect/9x7/bubble/alpha_0.9/radius_5/rlen_20000
Score: 64 - Directory:
2003-12-10_v002/rect/10x8/bubble/alpha_0.9/radius_5/rlen_1000
Score: 64 - Directory:
2003-12-10_v002/rect/10x8/bubble/alpha_0.9/radius_10/rlen_20000
Score: 64 - Directory:
2003-12-10_v002/rect/10x7/bubble/alpha_0.9/radius_9/rlen_200000
Score: 64 - Directory:
2003-12-10_v002/rect/10x7/bubble/alpha_0.9/radius_9/rlen_100000
Score: 64 - Directory:
2003-12-10_v002/rect/10x7/bubble/alpha_0.9/radius_6/rlen_20000
Score: 64 - Directory:
2003-12-10_v002/rect/10x7/bubble/alpha_0.9/radius_5/rlen_500000

Fig. 10. Example for a Scoreboard

4.3.2 Calibration of the SOM with respect to the process optimum

Under the assumption made for the training data set, the label „process optimum“
defines the region of the map where most of the hits (winner neuron occurrence) can
be found. In complement to that, a histogram for the whole SOM is created. During
the tests clearly a region showed up where a small group of neurons forms a hit
frequency maximum. After labelling the „process optimum“ region, the distance and
angle for each other neuron or region in the map can be calculated (see fig. 8).

185

Poster Proceedings KI2004

4.3.3 Process observation

The first tests with a trained SOM showed a very noisy behaviour of the winner
neuron position in the map, which reflects the process noise. A Kalman filter might
again be the appropriate measure if latency would be a serious problem. In our case
the noise correlation times are short compared to the time constant of the system and a
much simpler sliding average filter was implemented, where the filtered position xf
and yf is calculated from the actual and past s-1 positions x and y by:

∑
−

=
−=

1

0
)(

1 s

i
ipf x

s
x

(2)

∑
−

=
−=

1

0
)(

1 s

i
ipf y

s
y

(3)

Fig. 11. Process motion through the map (dark gray=begin, middle gray= middle, white=end)

After this filtering with s=10 a clear path of the process becomes visible, where the

process (marked by the winner neuron) only moves to neighbouring neurons at a time.
This is illustrated in figure 10, where winner neurons are coloured according to their
sample number (proportional to process time). Only the last hit was retained in the

186

Poster Proceedings KI2004

map colouring. The counter-clockwise motion of the process can be clearly seen. The
observed path from high distance from the optimum in the beginning to a first „island
of stability“, then to the process optimum (where the process lasts for the longest
period) and then again to high distance at the end is in good agreement with quality
observations of the producers.

5. Conclusion

A Self-Organising-Map sensor is proposed to generate input for process
controllers, where the state variables are not available and an observer approach is not
possible due to lack of appropriate models. A difference between process optimum
and present state is derived from the process map, which is obtained by training with
process samples and can be used as controller input. The approach was applied to a
spot welding process. A general procedure for the training in such cases was set up
and successfully applied. The process optimum map area was identified and the
motion of the process in the map was visualized and found to be in accordance with
quality observations of similar spot welding processes. On going work is to check the
reusability of such maps and to close the control loop.

Summarising, the observer approach and the SOM sensor approach are compared
in the table 1.

Table 1. Comparison between Observer and SOM Sensor

 Observer SOM Sensor
Estimation of state
variables

yes not possible

Process Model necessary not needed
Training (sample) not needed necessary
Process Modification new model must be set up new training data set must

be recorded
Systematic
Disturbances

must be modelled or
eliminated

must be contained in
training data set

The observer has a clear advantage when the process is well defined and a precise

dynamical model exists, while in all other cases the SOM sensor is preferable.

6. Acknowledgements

We would like to express our gratitude to our colleagues at the University of Oulu and
in the Harms + Wende GmbH & Co.KG and also SBT Stanzbiegetechnik GesmbH
Austria for providing the data set and the expertise needed at the various steps of
research and for numerous other things that made it possible to accomplish this work.
Furthermore, this research has been carried out with financial support from the
Commission of the European Communities, specific RTD programme “Competitive

187

Poster Proceedings KI2004

and Sustainable Growth”, G1ST-CT-2002-50245, “SIOUX” (Intelligent System for
Dynamic Online Quality Control of Spot Welding Processes for Cross(X)-Sectoral
Applications”). It does not necessarily reflect its views and in no way anticipates the
Commission’s future policy in this area.

7. References

1. O. Föllinger: Regelungstechnik, 7. Auflage, Hüthig, Heidelberg, 1992, p.511 ff
2. Arthur Gelb: Applied Optimal Estimation, 9th ed., MIT Press, Cambridge, MA, 1986
3. Mohinder S. Grewal, Angus P. Andrews: Kalman Filtering: Theory and Practice, J. Wiley &

Sons, 2001
4. Andreas Zell: Simulation Neuronaler Netze, Addison Wesley 1994
5. Armin Braun: Self-organising maps (SOM's) for analysis and visualisation of resistance sport

welding processes, Master Thesis FH-Karlsruhe 2004
6. SIOUX Midterm Report, (EU project G1ST-CT-2002-50245) 2003
7. SQUAW Final Technical Report, (EU project BRPR-CT98-0677) 2001
8. Kohonen, Teuvo; Hynninen, Jussi; Kangas, Jari; Laaksonen, Jorma: SOM_PAK – the self-

organising map program package, version 3.1, Helsinki University of technology 1994
9. Kohonen, Teuvo: Self-organising maps, Springer 2001
10. Richard O. Duda, Peter E. Hard, David G. Stork: Pattern Classification, Wiley & Sons 2001
11. Martin Hart: Auswertung direkter Brennrauminformationen am Verbrennungsmotor mit

estimationstheoretischen Methoden, Doktorarbeit Universität-Gesamthochschule Siegen
1999

12. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brain P. Flannery: Numerical
Recipes in C, Second Edition, Cambridge University Press 1996

13. Dietmar Zettel: Data Mining for Resistance Sport Welding Process. Master Thesis FH-
Karlsruhe 2003

14. S. Chroust, E. Zimmer, M. Vincze, Pro and Cons of Control Methods of Visual Servoing,
Vienna University of Technology – Institute of Flexible Automation, Proc. 10th Int.
Workshop on Robotics in Alpe-Adria-Danube Region, 2001.

15. Kevin J. Walchko, David Novick, Michael C. Nechyba, Development of a Sliding Mode
Control System with Extended Kalman Filter Estimation for Subjugator, University of
Florida www.mil.ufl.edu/publications/fcrar03/Walchko-1.pdf

16. S. Bejerk, Digital Signal Processing Solutions for Motor Control Using the TMS320F240
DSP-Controller, First European DSP Education and Research Conference, 1996

17. Heli Junno, Perttu Laurinen, Eija Haapalainen, Juha Röning, Resistance spot welding
process identification and initialisation based on self-organizing maps, to be published in 1st
International Conference on Informatics in Control, Automation and Robotics, ICINCO
2004

188

Poster Proceedings KI2004

Kohonen Networks for Self-organizing Performance of
Two Queues Markov Chains

Dimitar Radev1, Svetla Radeva2

1 Assoc. Professor, Ph.D., Eng., Department of Communication Technique and
Technologies, University of Rousse, 7017 Rousse, Bulgaria

dradev@abv.bg
2 Assoc. Professor, Ph.D., Department of Computer Aided Engineering, University of

Architecture Civil Engineering and Geodesy, 1046 Sofia, Bulgaria
svetla_fce@abv.bg

Abstract. The paper is devoted on implementation of Kohonen networks for
modeling of two node queues, presented with embedded Markov chains. Vector
quantization is implemented for performance of stochastic networks with
parallel and tandem two node queues. Probability density estimation for
feasible set of arrival entrance process and holding time services is modeling as
combination of single queues with random distribution. Kohonen learning rules
are applied for two-dimensional vector quantization. The performance
estimation of steady state tandem Jackson queue with infinite first queue is
realized with self-organizing map. Simulation and numerical results for
communication networks with Poisson, Gamma and exponential distributions
are shown.

1 Introduction

Stochastic simulation of queuing networks is using for investigation of the
probabilistic processes at entrance distribution and link occupancy distribution, call
blocking, continuous arrival processes, remaining time services phases, overflow
probability, consecutive cell loss performance, packet loss, holding and remaining
time services, which determine quality of service and guarantees call level of
communication networks. The queuing theory studies systems in which customers
randomly arrive at a service station in order to be served, since there may be other
customers ahead of them and they may need wait in a buffer. For studying the
properties of queuing models most often are searched solving of the problem for
homogeneous Markov arrival processes with the help of Discrete Time Markov
Chains (DTMC) [1], [2], [7]. The steady state analysis of Markov chains is
formulated as the solution of a special linear system with direct, iterative and
projection methods [13]. There are several algorithms for the numerical steady state
analysis of Markov models with more than 104 states, which are no general [4].

In this investigation is suggested one generalized approach with Kohonen networks
for steady state clustering of probability distribution of two-dimensional (2D) DTMC
with variety of input data.

189

Poster Proceedings KI2004

2 Vector Quantization for Discrete Time Markov Chain Models

Let the stationary stochastic process is presented with time series {x} for which
X0,X1,…,Xi,…, Xn, ∈ S, is a series of discrete non-negative random variables of
DTMC, when the Markov property holds for all Xi. Than for the conditional
distribution P is valid (1) for all finite state space S = {1,2,…,M}.

()
() ()

() ()000011

221111

0011 ,,,

xXxXxX
xXxXxXxX

xXxXxX

nnnnnnnn

nnnn

===
=====
====

−−−−−−

−−

PP
PP

P

K

K

K
 (1)

For steady state analysis is used a stochastic system, which is in a state j ∈ S, of the
state space S in every discrete time epoch. The consequences of stability for
embedded DTMC are determined of n transient state probability vectors (2) and k
one-step transient probability matrixes (3).

[] ()iXpppp n
n

i
nnnn === PP)()(

2
)(

1
)(

0
)(,,,, K (2)

[] ()iXjXaaX nkn
k

ij
k

ij
k

n ====→ +PA)()()(, (3)

The transition into consecutive states is determined of the probability, that the
customer leaves state i for state j at time n, determined with (4).

()
∑ ≠

=<=≠=
im im

ij
mnn a

a
nmiXiXjX ,,P (4)

Every transition in the DTMC corresponds to an elementary event in the queuing
model: an arrival or a service completion at one of the queues. These transition events
are defined independently of the state, and there is only one transition event for a
service completion at a given queue. This single transition event corresponds to a
transition out of every state in which the particular queue is not empty. Not all
transition events are enabled in every state (in the state where a particular queue is
empty, the service completion event of that particular queue is not possible). In this
way the elements of k one-step transition matrixes can be evaluated with (5).

=

=
= ∑ ≠

0)(

)(
)(

k
ii

im im

ijk
ijk

a
a

a
a

A (5)

Based on the well-known results available for the matrix elements, (5) have been
applied for numerical computation of probability distribution of high order continuous
and discrete Markov chains [8], [14]. Although because of high complexity and
variety of constraint conditions in most of cases the transient analysis leads to a rude
representation of the reality. In this study for performance evaluation the real
configuration of telecommunication network can be treated as certain combination of
two queues, connected in parallel or in tandem. In [12] are presented the

190

Poster Proceedings KI2004

transformation rules according to which a complex configuration of queuing system is
transforming into a combination of two-node queue networks with 2D DTMC
models. In these models the states are arranged on a grid with as many dimensions as
the number of queues and on each axes are represented the number of customers in
one of the queues. The probability of interest is determining of the occupancy and
entrance distribution, partial overlap, call blocking probabilities of steady state or
feasible states of 2D Markov sets.

2.1 Two Parallel Queues Performance Estimation

Let consider the chain of two parallel queues with Markovian arrival and time
service processes. The input parameters of the system for each state are the set of
arrival rates (λ1, λ2) and departure rates (µ1, µ2). The model state is unique
characterized by the couple (n1, n2), where n1 is the number of customers in the first
queue and n2 – number of customers in the second queue.

The queues n1 and n2 are with full access and only transitions between neighboring
states are allowed as presented on Fig. 1.

n2

µ2

λ2

λ1
µ1

n1 +

0 2 Ν−1

λi
(n)

µi
(n)

1 Ν

λi
(n) λi

(n)

2µi
(n) Νµi

(n)

Fig. 1. Two parallel queues M/M/N/N performance

The two-node queues can be presented as two (n=1,2) separate M/M/N/N queues,
which arrival rates λj , and departure rates µj , j=1,2,…, N, and N is the number of
states of DTMC model. In this way the queues n1 and n2 determine the auxiliary
coordinates of two-dimensional grid set for visualization of the state attribute space of
the discrete model. There is four transition events: arrivals rate at the first and second
queues λ1 and λ2 and full access holding service times iµ1 and jµ2 for both queues.
The transition from the state i to state j of embedded discrete Markov chain is
described with the graph (6).

191

Poster Proceedings KI2004

−==
=−=

+==
≤≤=+=

=

1,.
,1.

1,
,0,,1

2

1

2

1

jjiij
jjiii

jjii
Njijjii

aij

µ
µ

λ
λ

 (6)

As an illustration, is presented a model of two-dimensional set of two parallel
queues. Let the embedded discrete Markov chain has, for example, 16 feasible steady
states, as is shown on Fig. 2, upper. The model nodes are described as a combination
of steady states of the two queues. The one-step transitions between these steady
states are realized with orthogonal vectors, where for example, for state (1,2) n1 =1, n2
=2, λ1 is orthogonal to λ2 and 2µ1 is orthogonal to 2µ2. The one-step transition in both
queues is independent of each other. At the same time this DTMC can be presented
via two-dimensional Vector Quantization (VQ) with separated inputs. If the both
inputs are the time series x (1) and x (2), as is presented at (7), than we can receive 2D
model of Vector Quantization with axial coordinates, which are number of customers
n1 and n2.

{ } { })2()2(
2

)2(
1

)2()1()1(
2

)1(
1

)1(,...,,,...,, NN XXXXXX == xx (7)

The clustering problem is reduced to a set of hit values, which determine belonging
to one of M target classes S1,…,SM, (as is shown on Fig. 2, down, M = 4 ×4 = 16).
Than each input cluster can be presented only with the class to which it belongs. The
vector quantization can be adapted in such a manner, that for each steady state, the
Markov chain corresponds to strictly determined class (for 16 steady states we have
16 rectangular cluster classes). The components of the input time series most often are
continuous values and we can keep the label of corresponding target class instead of
the input vector. Indeed, while class labels are not used to constrain the structure of
the model, freedom from this constraint coupled with careful initialization of the
models using any prior information available about the data, can yield very quick and
effective models. These models have the additional feature that the centers are
arranged in a low dimensional rectangular grid, such that nearby points in the
topological structure map are to nearby points in the attribute space [3]. The
probability distribution of input clusters of time series is determined as conditional
probability of random values, which output are associated with the distribution of
probability (8).

() {)2()2()2(
1

)2(
1

)1()1()1(
1

)1(
1

)2()2(
1

)1()1(
1 ,...,,,...,,...,,..., NNNNNN xXxXxXxXxxxx ≤≤≤≤= PF } (8)

The basic problem is to determine weight centers of each class, which in practice
correspond to feasible steady states of DTMC. Furthermore, using a neural structure
with Kohonen learning rules gives possibility for optimal adjusting of classes’
boundaries in such a manner to receive the most possible precise solution for
probability density function.

192

Poster Proceedings KI2004

As is described in [11], Learning Vector Quantization (LVQ) with adjusting of
target classes boundaries, can suggest a solution for which the weights centers of
target classes (the circles on Fig. 2, down) approximates the Markov chain feasible
states. The boundaries of classes are orthogonal to the lines connecting the weight
vectors of neighbor classes.

λ2 3µ2

λ1

1µ1

0,3 1,3 2,3 3,3
λ1

2µ1

λ1

3µ1

λ2 3µ2 λ2 3µ2 λ2 3µ2

λ2 2µ2

λ1

1µ1

0,2 1,2 2,2 3,2
λ1

2µ1

λ1

3µ1

λ2 2µ2 λ2 2µ2 λ2 2µ2

λ2 1µ2

λ1

1µ1

0,1 1,1 2,1 3,1
λ1

2µ1

λ1

3µ1

λ2 1µ2 λ2 1µ2 λ2 1µ2

λ1

1µ1

0,0 1,0 2,0 3,0
λ1

2µ1

λ1

3µ1

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

(0,1)
(0,2)

(0,3)
(1,3)

(2,3)

(3,3)

(3,0)(1,0)
n1

n2

(1,2)

(1,1)

(3,2)

(3,1)

Fig. 2. Solution of the 2D stable set of parallel M/M/N/N queues with finite

interarrival and service times

193

Poster Proceedings KI2004

2.2 Markov Chain Models for Tandem Queues

Consider the tandem Jackson queues n1 and n2 with arrival rate λ and holding time
services of first and second queues µ1and µ2, as is presented on Fig. 3.

λ
µ1

n1 n2

µ2

i,0 i,1 i,2 i,N

i-1,1 i-1,2i-1,0

n2

i-1,N-1

i-1,N

a(3) a(3) a(3) a(3)
a(2) a(2) a(2)

a(1)

0,j 1,j 2,j N,j
a(1)

1,j-1 2,j-1 N,j-1

n1 N-1,j

N,j

a(1) a(1)

a(2) a(1) a(1) a(1)

Fig. 3. Tandem queues performance with DTMC

The customer arrival processes and time series phases are random distributed
Markovian variables. The complete state of the Markov model is given with the pair
(n1, n2). The set of feasible steady states are defined with the help of possible
movement between neighbor nodes according three transient matrixes, which describe
the horizontal, up and down transitions from state (i,j) to corresponding state (i+1,j);
to state (i-1,j+1) and to state (i,j-1), presented at [12]. The horizontal transition
increases the content of queue n1 with arrival rate λ, described with the graph (9).

()

≠==+=
+

=≠=+=
+

≠≠=+=
++

=

,0,0,,1

,0,0,,1

0,0,,1

2

1

21

1

jijjii

jijjii

jijjii

aij

µλ
λ

µλ
λ

µµλ
λ

(9)

The up transition increases the content of queue n2 and at the same time decreases
the content of queue n1 with departure rate µ1 and is described with the graph (10).

()

≠=+=−=

=≠+=−=
+

≠≠+=−=
++

=

,0,0,1,10

,0,0,1,1

0,0,1,1

1

1

21

1

2

jijjii

jijjii

jijjii

aij µλ
µ

µµλ
µ

 (10)

194

Poster Proceedings KI2004

The graph a(3) presents down transitions, which makes the content of the queue n2
empty with departure rate µ2 and its elements are presented at (11).

()

≠=−==
+

=≠−==

≠≠−==
++

=

,0,0,1,

,0,0,1,0

0,0,1,

2

2

21

2

3

jijjii

jijjii

jijjii

aij

µλ
µ

µµλ
µ

 (11)

As is seen from graphs (9) – (11), for the three one-step transient matrixes the values
in matrixes kernel differs from axial values.

The three one-step transitions matrixes are not orthogonal to each other, which
make difficult the presentation of embedded two-dimensional DTMC as a two-
dimensional neural network with separated inputs. The one-step matrix a(2) influences
on horizontal queuing structure n1 and on vertical queuing structure n2 (see Fig. 3,
down). This influence is restricted via treating of n1 and n2 as time series with random
discrete distribution.

In this research is suggesting an approach in which we utilize distribution functions
of the two tandem queues without the necessity of using continuous numerical
procedures about the number of phases of arrival processes and the general holding
time. In this approach, is spread the scope of the input distribution in such a manner
that we approximate single G/G/1, M/G/1, GI/M/1 and M/M/1 queues with the help of
combinations of approximations of standard distribution functions.

The probability of interest is the probability distribution of the total population of
the two queues, which reaches a given level L within a busy cycle. The system starts
immediately after the first arrival of a busy cycle in state (1,0). It is searched the
probability distribution for n1 + n2 ≤ 2M.

It is possible to solve of two separated tasks. In first case the first queue n1 is finite
and the solution is searched in constraints n1≤M and n2 ≤M. The embedded two-
dimensional DTMC in this case is squared grid with 16 steady states, shown on Fig. 4
with small empty white circles. The customers constraints are reached at all states
(3,j) and (i,3). The solution of this task is analogous as presented at 2.1 example, and
can be made with the help of LVQ neural network.

The second task is solving for the case of infinite first queue and constraints
n1+n2≤2M. Then all end steady states (i,3(i)) and (3,j(i)) lies on the line n1 + n2 = 2M.
The transformation of these states is shown on Fig. 4 with big gray circles. Analogous
are transformed steady states (i,2(i)) and (2,j(i)), which as well lies on a line. In this
way are transformed all steady states with exceptions of the states (i,j) for all i=j,
which satisfy the conditions of both tasks. The analysis shows that embedded DTMC
for infinite first queue is not appropriate to be solved with the help of rectangular or
squared cluster zones. Analogical solutions lead to big difficulties with searching
steady states probability density distribution and increases number of errors [9].

In this research will be shown one solution of the second task with implementation
of self-organizing map learned to classify input time series x(1) and x(2) according to
how they are grouped in the attribute space. This is deferent from competitive layer of
LVQ, where neighbouring neurons are learned to recognize neighbouring clusters.

195

Poster Proceedings KI2004

n1

n2

a(2)

1,00,0 3,0

0,1 2,1

1,2 3,2

0,3 2,3

a(1)

a(3)

3,3

2MM

M

2M

3,2(i)

3,1(i)

3,0(i)

2,3(i)

1,3(i)

2,2

1,3

3,1

0,3(i)

0,2(i)

2,0(i)2,0

1,1

0,2

1,0(i)

0,2(i)

n1+n2=2M

Fig. 4. The embedded 2D DTMC with finite and infinite first queue

Thus, self-organizing map learns the topology of weight vectors, which it trains on for
receiving of distribution into cluster zones, corresponding to the steady states of the
embedded DTMC.

3 Probability Density Function with Neural Networks

The Kohonen networks solve classification problems in which the probability
density function is unknown in advance. With vector quantization are estimated non-
parametric classification distribution procedures, which can be used without the
assumption, that the form of the underlying densities are known [5], [10]. Kohonen‘s
network algorithm provides a tessellation of the input space into patches with
corresponding code vectors. It has an additional feature that the centers are arranged
in a low dimensional structure (usually a string, or a square grid), such that nearby
points in the topological structure (the string or grid) map to nearby points in the
attribute space. The Kohonen learning rule is used when the winning node represents

196

Poster Proceedings KI2004

the same class as a new training pattern, while a difference in class between the
winning node and a training pattern causes the node to move away from training
pattern by the same distance. In training, the winning node of the network, which is
nearest node in the input space to a given training pattern, moves towards that training
pattern, while dragging with its neighboring nodes in the network topology. This
leads to a smooth distribution of the network topology in a non-linear subspace of the
training data. Recall that M, n, N denotes the number of classes, of input samples and
attributes, respectively. Classes will be denoted by S1,…,SM and attribute values for
input samples (p=1,2,…,n) will be denoted by the N-dimensional vector

. The classification procedure is linked with the estimation of the
local probability density at each target class and contains the kernel density method.

{)()(
1

)(,..., p
N

pp XX=x }

3.1 Density Estimation

For density estimation is proposed a nonparametric approach, where we have to
estimate the densities Fk(x), k=1,2,…,M. To introduce the kernel density, is made
assumption that we have to estimate the N – dimensional density function F(x) of an
unknown distribution. This process is performed for each of the M densities Fk(x),
k=1,2,…,M. Let F is the estimate of F(x) as an average function of x and the input
samples x

)(ˆ x
(p). In general can be used (12),

∑
=

=
n

p
n

pK
n

F
1

)(),,(1)(ˆ λxxx (12)

where K(x, x(p),λn) are kernel functions and λn is the length of the edge of the n-
dimensional hypercube. If λn is very large, than the kernel K(x, x(p),λn) changes very
slowly with x and as a result the estimation of F(x) is very smooth. For solving of the
classification problem is made a choice for density estimation via specification of the
kernel and the value of the smoothing parameter.

The kernel function can be restricted to the kernels with N independent
coordinates. It is presented according to (13),

),,(),,(
)(

1

)(λλ
p

jj

N

j
j

p KK xxxx ∏
=

= (13)

where Kj indicate the kernel function component of the j-th attribute and λ is average
smoothed length of the hypercube and is not dependent on j. It is clear that kernels
could have a more complex form and that the smoothing parameter could be
coordinate dependent. The kernels depend on the type of variables. If are used two-
dimensional coordinates, the kernel function is presented by (14) and boundaries of
target classes are edges of rectangular or square.

2)(
)(

1
1),,(

 −

+
=

p
jjp

jjjK
xx

xx λ
λ

λ (14)

197

Poster Proceedings KI2004

3.2 Two-dimensional Learning Vector Quantization

The main goal of a learning neural model for vector quantification is to determine
the probability density function for each steady state of two-dimensional embedded
DTMC set.

The probability distribution of the input attribute space is determined with two
neural layers – first, competitive and second, linear layer. The competitive layer is
based on a set of input/target pairs (15),

{ } { } { } { }NNjj CxCxCxCx ,,,,,,,,, 2211 KK (15)

with the help of which is trained the neural network. Here xj are two N-dimensional
input vectors, and the M- dimensional vector Cj describes the condition of target
classes, presented at (16).

{ }
{ } MkSSSS

NjXX

Mkj

jjj

,...1,,...,...,
,...,1,,

21

)2()1(

==
==

C
x

 (16)

The hidden neurons from first layer compete via initializing of the weight matrix
Wkj and are determining the winner. This is the neuron, which has minimal Euclid
distance dk to the input vectors xj. Then the corresponding target class receives value
1 and the rest target classes receive 0, as is presented by (17).

()
otherwiseS

WXddforS

k

N

j
kjjkkk

,0

,,1
1

2min

=

−== ∑
=

 (17)

The neuron-winner has feedback negative links to the rest of neurons and strong
positive link to himself, which is used for learning in linear layer. During the training
in the next epoch q are changing the coefficients of all neurons according to Kohonen
learning rule [6], which is summarized at (18).

() () () ()() 10,11 ≤<−−±−= ξξ qWqXqWqW kjjkjkj (18)

The coefficient ξ depends on the number of training epochs q and can be adjusted
in advance in interval [0,1], where standard is determined equal to 0,1. The sign
before the training coefficient ξ is positive for the neuron-winner, and negative for the
neighbor neurons. As a result during the process of the training is changed the area of
neighbor neurons for the neuron-winner, e.g. decreases the Euclid distances.

As an illustrative numerical example on Fig. 5 is shown the training of two-
dimensional embedded Markov chain with LVQ. A model of partial overlap single
link transmission is under study, where are used two parallel single queues for
estimation of link occupancy distribution. On the input of the queue n1 is given vector
x(1), which contain 600 discrete random variables in interval (0,70) which are
distributed according to exponential density distribution. On the input of the queue n2
is given vector x(2), which contain 600 discrete random variables in interval [0,50)
which are distributed according to Poisson density distribution. Both queues are

198

Poster Proceedings KI2004

modelling a small single link with capacity 24 Bandwidth Units (BU). Let the peak
bandwidth requirements for the traffic flow of n1 are b1 =5 BU and for n2 are b2 =7
BU. The traffic flows are characterized as well with minimal accepted bandwidth,
which are determined as b1

min = 2,8 BU and b2
min = 4,2 BU. At the same time the link

cut-off parameters are limited to N1 = 4 and N2 = 2. This partial overlap allocated
strategy gives possibility to use an embedded discrete Markov model with 15 feasible
steady states (5 for n1 and 3 for n2).

10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

Link Occupancy

N1

N2

(0,0)
(1,0)

(2,0)

(3,0) (4,0)

(4,1)

(4,2)

(3,1)

(3,2)

(0,2)

(0,1)

(1,2)

(2,2)

(2,1)

Fig. 5. An example for 2D Learning Vector Quantization

The clustering procedure consists of two stages – VQ with equal number of target
values in each class and optimization of the weights of cluster classes via learning. As
a result from VQ the input space is divided into 15 cluster classes, which total number
of target values in each class equal to 40. The boundaries, which are shown with thick
lines on Fig. 5, are determined according to (14) and limited the rectangular faces of
cluster classes.

The process of bipartition is realizing in such a manner, that at first partition under
consideration is one class and the rest of values are in another class. The weight
vectors for both classes are determining via training of neural network. These “rest
values” are dividing into two classes and again are determining weight vectors via
training, which procedure is repeating until finishing number of classes.

The results from training of the weight neurons for each of 15 target classes with
1000 epochs and ξ = 0,1 are shown with black points on Fig.5. The role played by the
discrete random values of input vectors and trained epochs is clear. Their very large
number leads to improving the model estimation and model’s weight characteristics.

199

Poster Proceedings KI2004

The occupancy density probability distribution for each of target classes, received
with LVQ network is shown on Fig. 6.

Density

0.021

0.038

0.057 0.058
0.068

0.075

0.103 0.108

0.164

0.103

0.066
0.058

0.039

0.023 0.020

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(4,0) (0,0) (1,0) (3,2) (3,1) (1,2) (0,2) (2,1) (1,1) (2,2) (0,1) (3,0) (2,0) (4,1) (4,2)

Class

Fig. 6. Probability density of model’s feasible states

The classes are ordered according their density, that’s why they aren’t consecutive.
It is clear, that at classes (4,0) and (4,2) there are minimal density and at classes (1,1)
the density is maximal. This example illustrated possibilities of non-supervised neural
learning for steady state analysis and estimation of two-dimensional discrete time
Markov Chain models in queuing systems.

4 Self-organizing Map for Two-node Tandem Queue

As an input of a two-dimensional self-organizing map is used two N-dimensional
input vectors xj, determined according to (16). In 2D output space is expected a map,
corresponding to the M- dimensional array of output neurons Ci, which can be one or
two-dimensional. The connection between inputs and outputs is realized with the
weight matrix Wij. At competitive learning for winner is selected the output neuron i*,
which weight vector is closer to the current input according to (19).

[]NjXWXW jijjij
,...1,* ∈∀−≤− (19)

The Kohonen learning rule is differ from vector quantization rule and is determine
by (20).

()() NjMiWXiiW ijjij ≤≤≤≤−∧=∆ 1,1,, *ξ (20)

200

Poster Proceedings KI2004

The neighborhood function ∧(i, i*) is equal to 1 for i = i*, and decreases with
increasing of distance between neurons i and i*in input array. The neurons closer to
the winner i*, changes their weights more quick than remote neurons, for which the
neighborhood function is very small. The topological information contents in the fact,
that closer neurons are changing almost in the same way and in this manner
corresponds to neighbor input samples. The learning rule (20) attracts the winner’s
weight vector to the point Xj. The self-organizing map is supposed to be an elastic set
in input space, which wont to be moved maximal closer to the input values. The set
has topology of input array and it points have as coordinates weight vectors.

For optimizing of clustering procedure a minimum-squared-error algorithm is used.
Suppose that there are given a dataset x of points in some Banach space, partition the
data into k clusters such that some empirical loss function to minimize is (21).

() () { }∑∑ ∑
= =

∈ ==∈−=
k

j

n

i

k

j
jCxiijjijjij

j

ji
nnIxxCxsx

n
xD

1 1

2
,,;1 (21)

Here dataset points belong to a d-dimensional Euclidean region (d ≥ 2), Cj denotes the
j-th cluster, nj denotes the number of point xi in Cj and I is the indicator function of
{xi∈Cj}. The mean vectors and the criterion function are updated after each pattern
move. These approaches guarantee local but not global optimization. Different initial
partitions and sequences of the training patterns can lead to different solutions.

One example for implementation of two-dimensional self-organizing map for
determination of weighs vectors, which corresponds to steady states of DTMC, is
presented in this chapter. A tandem Jackson queue is under study, with infinite first
queue n1. The condition for proper work of the network which has a buffer with
capacity M=100 cells, e.g. n1+n2≤M. The embedded DTMC model of this network has
16 steady states, which are determined of arrival rate λ and holding time services µ1
and µ2 of the first and second queues respectively. Let λ and µ1 and µ2 are continuous
in time and buffer content in n1 and n2 has Gamma and exponential distribution
respectively.

The problem for this queuing network is that the probability density distribution is
impossible to be determined with two-dimensional VQ, and that’s why is impossible
to implement LVQ neural network. One possible solution of this problem is shown
SOM on Fig. 7. On the input of the queue n1 and queue n2 are given 600 discrete
random variables in interval [0,100].

Received one-layered neural network defines 16 output neurons in such a manner
that four of them are on axial coordinate n1 and the rest four are placed on axial
coordinate n2. The starting input neurons are depicted with squared black points.
Their topology differs significant after 10 000 epochs of training and it is shown with
circle black points, which are connected with lines. As is seen, instead of updating
only the winner, the map updates the weights of the winner and its neighbors. The
result is that neighbouring neurons tend to have similar weigh vectors and to be
responsive to the topology of input data.

The receiving of neural map corresponding to the two-dimensional discrete
Markov model is a good basis for further classification of steady states. With the help
of (21) easy can be determined target values from surrounding area of each weigh

201

Poster Proceedings KI2004

vector. As a result, boundaries of target classes can be approximated via geometric
figures and can be calculated probability density distribution in target classes.

0 20 40 60 80 90

20

40

60

80

100
Weight Vectors

N1

N2

Fig. 7. Self-organizing map of embedded 2D DTMC with infinite first queue

In any case, such solution is much more correct than using of LVQ with
rectangular boundaries of target classes.

5 Conclusions

In this study are shown simulation techniques for implementation of Kohonen
networks in two-node queuing systems. The two-dimensional models of discrete time
Markov chains are presented for parallel and tandem queues, which have
implementation in packet-switching communication networks.

An approach for LVQ of discrete models is suggested with the help of Kohonen
neural network. This network via proper determined learning and training parameters
gives possibility for qualitative estimation of probability density distribution for
Markov chains in their steady state nodes at variety of random discrete distribution of
arrival processes and holding time services.

The presented approach can be useful for investigation of the entrance
distributions, link occupancy distribution, homogeneous continuous arrival processes,
remaining time services phases, overflow probability, consecutive cell loss
performance, packet delivery services analysis and other performance parameters of
queuing systems.

202

Poster Proceedings KI2004

The developed simulation procedure for SOM implementation at two-dimensional
queuing models is suitable for determining of feasible steady states topology for
models with unknown in advance clustering. An example for creating of steady state
model topology at tandem queues with infinite first queue is shown. Simulation and
numerical results for implementation of SOM and LVQ networks in digital
communication nets with Poisson, Gamma and exponential distributions of arrival
and service processes are shown.

References

1. Borkar, V. S.: On the Lock-in Probability of Stochastic Approximation. Combinatorics,
Probability and Computing, 11 (2002) 11–20

2. Borst, S. C., Mitra, D.: Virtual Partitioning for Robust Resource Sharing: Computational
Techniques for Heterogeneous Traffic. IEEE Journal on Selected Areas in Comunications,
vol. 16, 5 (1998) 668–678

3. Bourland, H., Wellekens, C. J.: Links between Markov Models and Multilayer Perceptrons.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990) 1–12

4. Fazekas, P., Imre, S., Telek, M.: Modeling and analysis of broadband cellular networks with
Multimedia Connections. Telecommunication Systems, vol. 19, 3-4 (2002) 263–288

5. Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation.
Addison-Wesley, New York (1991)

6. Kohonen, T.: Self-Organizing Maps, Second Edition, Springer Verlag, Berlin (1997)
7. Kollman, C., Baggerly, D., Cox, D., Picard, R.: Adaptive Importance Sampling on Discrete

Markov Chains. Annals of Applied Probability, 9 (1999) 391–412
8. Kroese, D. P., Nicola, V. F. Efficient Simulation of Overflow Probabilities in Queues with

Breakdowns. Performance Evaluation, 36 - 37 (1999) 471–484
9. Michie, D., Sammut, C.: Machine Learning from Real-time Input-output Behaviour.

Proceedings of the International Conference Desing to Manifacture in Modern Industry,
Digit. Libr. 1 (1997) 108–121

10. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. John Wiley,
New York (1992)

11. Radev, D., Lockshina, I., Radeva, S.: Neural Modelling of Link Occupancy Distribution for
Broadband Telecommunication Transmission. 35-th Annual Meeting of the Decision
Sciences Institute, Boston, USA, (2004), under press

12. Radev, D., Radeva, S.: Artificial intelligence modelling of stochastic processes in digital
communication networks. Journal of Electrical Engineering, vol. 54, 9-10 (2003), 255-259

13. Rubinstein, R. Y., Melamed, B.: Modern Simulation and Modelling. John Wiley Series in
Probability and Statistics, New York (1998)

14. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. Chapman and Hall,
New York (1995)

203

Poster Proceedings KI2004

A Grid-based Application of
Machine Learning to Model Generation

Volker Sorge
���

, Simon Colton
�
, Andreas Meier

�����
, and Roy McCasland

��
School of Computer Science, University of Birmingham, UK,

V.Sorge@cs.bham.ac.uk, http://www.cs.bham.ac.uk/˜vxs	
Department of Computing, Imperial College London, UK,

sgc@doc.ic.ac.uk, http://www.doc.ic.ac.uk/˜sgc

DFKI GmbH, Saarbrücken, Germany,

ameier@dfki.de, http://www.ags.uni-sb.de/˜ameier�
School of Informatics, University of Edinburgh, UK

rmccasla@dai.ed.ac.uk, http://www.dai.ed.ac.uk/˜rmccasla

Abstract. The classification of mathematical structures is a driving force in pure
mathematics. A first step in producing algebraic classification theorems is to de-
termine for which sizes certain algebras exist. Computational approaches to solv-
ing such existence problems using constraint satisfaction and model generation
approaches have had much success. We look here at the question of distributing
the model generation process using Grid technology. We present a novel distri-
bution approach which involves using the HR machine learning program to intel-
ligently suggest specialisations of the problem which are given to separate pro-
cessors. Using the MACE, FINDER and SEM model generators, we demonstrate
how this approach provides greater efficiency over a single-process approach for
a series of quasigroup existence problems. We compare several approaches for
the production and choice of specialisations, including the generation of proved
classification theorems for algebraic structures of small sizes. We discuss how
this approach could be used for more general problems.

1 Introduction

The classification of finite simple groups in 1980 was one of the major intellectual
achievements of the twentieth century. Often, the first step towards such algebraic clas-
sification theorems is to determine how many structures exist up to isomorphism for
each size. In particular, it is instructive to determine for which sizes algebras exist at
all. Such existence problems have also attracted much attention in the research fields
of automated reasoning and constraint solving. For instance, solving open quasigroup
existence problems has become a challenge for friendly competition [18, 20], and such
problems are used for benchmarking AI systems.1 Existence problems are often solved
by the construction of an algebra of the given size. If asked to perform the same task,
a mathematician would probably not attempt to construct a multiplication table as a
constraint solver or model generator would. Instead, they might determine the families
which include a model of the given size, and attempt to write down the correct member
of a particular family. For instance, writing down a multiplication table for a group of
�

The author’s work was supported by a Marie-Curie Grant from the European Union.��
Author’s work supported by EU IHP grant Calculemus HPRN-CT-2000-00102.

1 For example, see prob003 of the CSPLIB library (http://www.4c.ucc.ie/˜tw/csplib).

204

Poster Proceedings KI2004

size 17 is trivial, because only one group exists of this size and this group is cyclic, so
its multiplication table consists of the seventeen possible cycles of the elements. Con-
structing a size 17 multiplication table from the axioms alone, however, is not trivial.

In the case of cyclic groups, a constructive theorem exists which describes how to
build the models. The existence of such a theorem is not true in the general case. How-
ever, we can still propose a middle ground between the computational (brute force) ap-
proach and the more mathematical approach suggested above. This involves automati-
cally specialising the model generation problem in the hope that one of the specialised –
more constrained – sub-problems will be easier to solve. Such an approach may work if
the existence problem can be solved positively, i.e., by actually finding a solution. The
specialisations are generated via an un-supervised machine learning approach which
uses smaller models that satisfy the axioms of the algebra to intelligently suggest prop-
erties to specialise the problem. For instance, if the problem was to produce a group of
size 12, a model generator would be used to find groups of size 1 to 11, which become
the input to an un-supervised machine learning system. The system would recognise
that many of the models given to it are Abelian, i.e.,

��� ��� �����������������
. Hence

this suggests specialising the problem of finding a group of size 12 into the problem of
finding an Abelian group of size 12, a much easier task.

We compare two machine learning approaches for automatically specialising model
generation problems, including a sophisticated method that involves constructing and
automatically proving (using automated theorem proving) classification trees for decid-
ing the isomorphism family of algebras of given sizes. Both specialisation procedures
are capable of producing large numbers of suitable sub-problems. This provides an op-
portunity for further efficiency gains by distributing the sub-problems over multiple
processors. To gain the maximum efficiency possible, we have employed Grid tech-
nology to organise the distribution of processes. As a third specialisation method we
also employed a simple method for distributing the problem, namely by instantiation
variables. All specialisation methods are integrated into a uniform framework.

To demonstrate the effectiveness of our distribution approach, we performed a se-
ries of experiments using a standard problem set: QG-quasigroups. Using the MACE

[15], FINDER [17] and SEM [21] model generators, we compared the three speciali-
sation methods against a single-processor approach which uses the axioms alone. We
show that in most cases, in particular, for larger sizes, the classification method for
specialising into sub-problems produces substantial gains in efficiency over the other
approaches, when distributed using Grid technology.

The paper is organised as follows. In section 2, we provide necessary background
information, including a description of the problem domain (QG-quasigroups) and de-
scriptions of the constituent AI programs in our system. In section 3, we provide an
overview of how our system operates, including details of the Grid technology em-
ployed. In section 4, we provide details of the three methods employed to specialise the
model generation problems. Following this, in section 5, we describe the experiments
we performed in order to test the efficiency of the system and the results we obtained.
Finally, in sections 6 and 7 we place this work in context and conclude by looking at
the potential of this approach for more general problems.

205

Poster Proceedings KI2004

2 Background

2.1 Problem Domain

Finite algebras describe a set of elements and a set of operators which each define a
function taking a subset of elements to a boolean or a subset of elements, e.g., the
multiplication function, which takes a pair of elements to a third element. The axioms of
the algebra dictate properties of the operators which identify the algebra. Quasigroups
– also known as Latin Squares – are algebras over a single multiplication operator,

�
,

which is subject to a single axiom:
��� ��� �! "� �#�$�%�&�'�)(%�! "� �*�+�,�-�'�

. This
corresponds to the property that every element appears in every row and every column
of the multiplication table. As an example consider the following five quasigroups of
order . , which constitute representants of the five different isomorphism classes:/ � �0�21� �3�*1

� �415�
1 1����

/ � �4�61� �*1��
� 15�3�
1 �3�*1

/37 �4�61
� �4�61
� �21+�
1 13�0�

/38 �0�21
� �0�21
� 1+�0�
1 �61$�

/�9 �0�21
� �41��
� �3�*1
1 1����

The discovery of quasigroups with certain properties is interesting outside of pure
mathematics, because the underlying structure of quasigroups is similar to that found in
many real-world applications, such as scheduling and timetabling, experimental design,
error correcting codes, and wavelength routing in fibre-optic networks [12, 13]. Con-
straint satisfaction and model generating methods have been applied to decide quasi-
group existence problems with much success (see section 6). Moreover, such problems
have become benchmark domains for model generators and constraint solvers. Of par-
ticular interest are the so-called ‘QG’-quasigroup families of problems [18] which al-
gebras satisfying the quasigroup axiom and one of these additional axioms:

[QG1]
��� ��� ��1 ���:�;�'�<�;�=�>�!�+�?1@�A�?1CBD�=�%1

[QG2]
��� ��� ��1 �!�E�?�F�<�;�=�>�!1G�?�F�A�?1CBD�=�%1

[QG3]
��� ��� �����:�;�'�<�+�!�E�?�F�E�H�F�

[QG4]
��� ��� ���!�E�?�F�<�+���:�;�'�E�H�F�

[QG5]
��� ��� ����I�E�?�"�J�;�'�<�;�=�,�F�

[QG6]
��� ��� �����:�;�'�<�;�=�%�$�+���:�;�'��

[QG7]
��� ��� ���!�E�?�F�<�;�=�%�$�+�!�G�?�F��

We are interested here in the following problem setting: given a specification of a (finite)
algebra in the form of a set of axioms

/
, construct an algebra of given finite size K which

satisfies these properties? Naturally, solving such problems also solves the question of
whether an algebra of size K satisfying

/
exists.

2.2 Artificial Intelligence Systems Employed

The following Artificial Intelligence system were used in our experiments:L
The MACE [15] model generator first constructs all instances of the given axioms

over the given finite domain and then employs a decision procedure that searches for
models, i.e., satisfiable instances of the formulas.

206

Poster Proceedings KI2004

[a, b, c, d] : b*c=d

[a, b, c] : b*b=c

match

[a, b] : (all c ((c*c=b)))

forall

[a, b] : b in a

forall

[a] : (exists b ((all c ((c*c=b)))))

exists

Fig. 1. Example construction by the HR System
L

The SEM [21] model generator also first constructs all instances of the given axioms
over the given finite domain. Then, it performs a heuristic search over the possible
interpretations on the instances to find a model.L

The FINDER [17] model generator performs an exhaustive search for interpretations
of the given axioms, using the axioms to direct its backtracking. Thereby, first a candi-
date model is generated and tried against all the axioms together. If all axioms are true,
then the candidate model is accepted. If one of the axioms is false, the candidate model
is adjusted to deal with the detected badness, resulting in a new candidate model.L

HR [1] is a machine learning program which performs automated theory formation
by building new concepts from old ones using a set of production rules, and using mea-
sures of interestingness to drive the search [2]. It uses the examples of the concepts to
empirically form conjectures relating their definitions and employs third party theorem
proving and model generation software to prove/disprove the conjectures. In particular,
for the application discussed in this paper HR used the following four production rules:

Compose: this composes functions using conjugation.
Match: this equates variables in predicate definitions.
Exists: this introduces existential quantification.
Forall: this introduces universal quantification.

As an example construction, consider the concept of there being a single element on
the diagonal of the multiplication table of an algebra. This concept is constructed by HR
using the match, forall and exists production rules, as depicted in Fig. 1. In this scenario,
two concepts are supplied by the user, namely the concept of an element of the algebra
and the multiplication of two elements to give a third. Using the match production rule
with the multiplication concept, it invents the notion of multiplying an element by itself.
By using this in the forall production rule, it invents the concept of elements which all
other elements multiply by themselves to give. Then, using the exists production rule,
HR invents the notion of algebras where there is such an element.

HR has a variety of different search strategies for employing the production rules.
For the application described here, we employed a ‘tiered’ search for concepts, whereby
the Match, Exists and Forall production rules were used greedily, with the
compose rule used only when no further steps with the other rules were available. Al-

207

Poster Proceedings KI2004

ternatively, HR can use heuristic searches whereby it employs a variety of measures of
interestingness to assess the worth of a concept, then chooses the best concepts to build
new concepts from [2]. For more details of how HR forms concepts, see [3]. In addi-
tion to forming concepts, HR makes conjectures about the concepts and uses third party
software to prove/disprove these conjectures, details of which are described in [1], but
are beyond the scope of this paper.

3 System Overview

In model generation, while solutions to small problem instances, e.g., QG5 quasigroups
of size 5, are easily found, the search spaces explode combinatorially, and their sizes
prohibit the systems from finding models for larger problems unless the problems are
sufficiently constrained. Therefore, dividing the search space into more tractable parts is
crucial for problems involving structures of a larger size. A division of the search space
can be achieved by adding auxiliary properties to the problem in order to specialise the
original axioms thus reducing the search space. In order not to change the problem itself
it is necessary to divide the search into two parts: one with the additional property and
another one with its negation. This ensures that the union of both search spaces will still
contain all possible solutions.

When searching for a single model which satisfies the axioms, the hope is that
it can be found faster in one of the two subspaces, than in the search space of the
original problem. Thus, if two processors are available, parallelising the search into
two separate model generation processes should produce a result faster than for the
original problem. Furthermore, if we can employ a set of such specialising properties,
a subsequent division into several parallel model generation processes should result in
an overall speed up. The input to our system is a quadruple M /2NPO#NPQRN�SUT , where

/
is

the set of axioms describing the algebra we are interested in,
O

is the order (size) of the
algebra we want to construct a model for,

Q
specifies the type of specialisation method

to be employed and
S

is the model generator to use (SEM, MACE or FINDER).
Given this input, the system first generates a set of specialisation sub-problems V

which consist of using model generator
S

to find models of size
O

which satisfy ax-
ioms

/
and an additional set of properties. The number and nature of the sub-problems

depends on the specialisation process employed, as discussed in section 4. The speciali-
sations used to attack the problem of, say, generating size 10 QG5-quasigroups can also
be used for the problem of generating size 12 QG7-quasigroups. Hence, the specialisa-
tion procedure usually amounts to looking up the set of pre-determined specialisations
to use, which have been generated automatically. Once the sub-problems V have been
generated, for each VXW in V , model generator

S
is used to try to find a solution to VGW .

As discussed above, the benefit of the heuristic to constrain the model generation
can be greatly improved if we distribute the search. Our approach lends itself well
to distribution over a set of processors: each specialisation sub-problem can be run
on a different processor. In order to achieve maximum distribution, we employ grid
technology, which ensures that the processes are evenly distributed over a cluster of
processors, as a single processor is assigned exclusively to each process. It also keeps
the communication time to a minimum and free from interfering network traffic by

208

Poster Proceedings KI2004

using the cluster specific interconnection facilities. The distribution itself is relatively
straightforward: for each specialised axiom set a separate model generation process is
created and distributed on the grid. When a process terminates, the result is checked,
and if it has resulted in a solution, all other model generation processes are terminated
immediately, since we have successfully solved the existence problem. If it does not
contain a model, the other processes continue to run. Thus, if applied to a problem for
which no model exists, all processes have to run until their search space is exhausted.

As discussed in section 5, we compare this approach with a single process approach
that uses the original axiom set, hence covers the entire search space. This is run at the
same time as the sub-problems, and is given the same status on the Grid as the special-
isation processes. This has an additional benefit: for problems which have no solution,
we have found that this process often finishes quicker than the set of specialisation sub-
problems. Obviously, if the entire search space is traversed and no model is found, then
no specialisation problem will be successful, and hence every process can be halted.

4 Generating Specialisation Concepts

An important process in our system is the way in which it decides how to specialise the
original problem into a set of sub-problems for distribution. It is possible that adding
properties to a set of axioms can increase the search space. In particular, if properties
involve existentially quantified variables, the search for models of Skolem terms can
enlarge the search space rather than reduce it. Even when the specialisation reduces
the search space, we need to take into consideration the constrainedness knife-edge
[9]: adding too few constraints can leave the problems unsolvable in a reasonable time,
yet adding too many constraints may over-constrain the search space. Bearing these
considerations in mind, we adopted an experimental approach where three methods for
generating specialisations are compared and contrasted:L

One possibility is to split the search space into subspaces of roughly equal sizes, and
we look at a simple way to do this in section 4.1.L

A second possibility is to more intelligently generate properties using machine learn-
ing procedures to generate and choose the properties. We discuss how the HR system
can be used for this purpose in section 4.2.L

A final possibility is to attempt to place sub-problems onto the knife-edge, whereby
the problem is constrained enough to be solvable in a reasonable time, yet not over
constrained. We look at a method which uses classification trees to attempt to do this in
section 4.3.

4.1 Instantiating Variables

As a simple way of specialising the model generation problems, we instantiated vari-
ables as follows: given a problem to generate an algebra of size K satisfying axioms A,
the first specialisation has axioms A with the property that Y<Z[Y � Y , the second special-
isation has axioms A with the property Y�Z?Y �]\ and so on, with the nth specialisation
being axioms A with the property YJZ�Y � K$^ \ . In addition, further specialisations with

209

Poster Proceedings KI2004

properties YRZ \��_� (with
�#`ba Y N@cdc@c�N K:^ \fe) are possible. This acts as a control in our

experiments – it may be that the distribution alone increases the efficiency, and not the
specialisation procedures we have implemented, which would mean that this method
would be competitive with the specialisation procedures.

4.2 Using Applicability

One approach to dealing with the constrainedness knife-edge is to be cautious, and
choose properties which are not likely to over-constrain the search space. As discussed
above, HR can generate numerous concepts which specialise the notion of algebra, and
it can choose from these using various measures of interestingness [2]. To do this, the
system takes the axioms of the algebra under investigation and uses the model generator
specified to generate models of size 1, 2, 3, etc. up until the model generator fails
to find a model in a given time. These are used as the objects of interest in a theory
formation session with HR, and HR’s search is adjusted to favour the production of
specialisation concepts. In addition to working with smaller algebras satisfying exactly
the same axioms as the problem we are looking at, we can employ more general or more
specific axiom sets for property generation.

Once the theory has been produced, the applicability measure is used to extract
the best specialisations with respect to that measure. The applicability of a concept is
measured as the proportion of models which satisfy the concept. The idea is that, when
being cautious, it is better to choose specialisations with high applicability, as, given the
evidence of smaller sizes, it is unlikely that these will over-constrain the search space.
In practice, applicability is used via a threshold: given a theory formed by HR which
contains specialisation properties

a V � N@cdc@c'N VJg e , the system chooses a subset of these
concepts as possible constraining properties by considering those concepts that hold for
at least a certain, specified number of the given structures. Given a threshold Y�hjilk \ ,
only those properties are considered that actually hold for at least iRm'K structures.

For instance, if i � Y con all properties are chosen that hold for at least half the mod-
els. The system then takes the set of chosen properties

aqp � N@c@cdc@N p$rse5tua V � N@c@cdc'N V g e
and generates sets of axioms that will be employed to generate models. Suppose we
are looking for structures that satisfy a particular set of axioms v , the system will then
generate the sets of axioms of the form vxw aqp � e , vxw ayp � e , . . . , vzw ayp:rse , and
v,w ay{Gp ��| {Gp �<| c@cdc | {Gp r e . These }�~ \ axiom sets are then submitted to the model
generators. Any structure found will naturally also be a model of the original axiom
set v . As an example, when considering existence problems of QG5 quasi-groups, to
generate properties with HR, the system generated a set of QG5 quasigroups of size 3
to 9. HR then came up with 68 properties of which 19 were chosen as they hold for
more than half of the quasigroups. These resulted in 20 sub-problems being given to
the model generators.

4.3 Using a Classification Algorithm

Being cautious with the addition of specialising properties may mean that the sub-
problems are still under-constrained and take too long to solve. One way to reduce
the search space without over-constraining is to reduce symmetry: two solutions which

210

Poster Proceedings KI2004

may be syntactically different, may be considered by the user as really the same, and
adding constraints which rules out one of these solutions without ruling out the other
is said to break the symmetry. In algebraic domains, the main cause of symmetry is
isomorphism. Two algebras are considered isomorphic if a permutation of the elements
of one means that it can be re-written to look exactly like the other one. Hence, when
generating algebras, we could consider a problem on the constrainedness knife-edge if
it was guaranteed to find only solutions in a particular isomorphism class. Some com-
putationally tractable techniques exist for determining isomorphism types – e.g., for
groups [16] – but in general, it is as difficult to do this as it is to exhaust the space of
models for a given size. However, we can approximate the properties required for iso-
morphic specialisation of the problem size of interest, by looking at properties which
can be used to classify smaller sized algebras up to isomorphism.

In [4], we present a bootstrapping algorithm for generating theorems which enable
the classification of algebras up to isomorphism. As a simple example, the algorithm is
given the axioms of group theory and told to find a classification theorem for groups
of size 6. It returns the following (paraphrased) result: “all groups of size 6 can be
classified up to isomorphism as either Abelian or non-Abelian”. The implementation of
this algorithm uses HR, MACE, SEM, FINDER, the automated theorem prover Spass,
and the Gap computer algebra system [8] to generate such results. Note that Spass
is used to show that the theorems provide valid classifications by proving that each
concept in the theorem is a classifying property, i.e., true for all members of exactly
one isomorphism class.

The general idea of the algorithm is to construct a decision tree by successively gen-
erating non-isomorphic algebraic structures and associated discriminants until all iso-
morphism classes have been found. A discriminant property V for two non-isomorphic
structures

/ � and
/ � is a property that is invariant under isomorphism such that V does

hold for
/ � but not for

/ � or vice versa. That is, the existence of V for
/ � and

/ �
is a proof that

/ � and
/ � are not isomorphic. The algorithm takes the size K and the

axioms of the algebraic structures to be considered as input. It returns a decision tree
for isomorphism classes of the algebraic structure that serves as classification for the
specified algebras up to isomorphism for a given cardinality.

For example, Fig. 2 gives the decision tree constructed for the classification of quasi-
groups of order 3. The edges of the tree are labelled with properties. Each node in the
tree is associated with the conjunction of the properties that are the labels of the edges
of the path leading from the root node to the node. For instance, node � is associated
with the property V � (V � . The tree shows

n
isomorphism classes for quasigroups of size

. corresponding to the leaf nodes � , � , � , � , and � , which are called the isomorphy nodes
of the tree. For isomorphy nodes, the property associated with the node uniquely char-
acterises an isomorphy class of quasigroups of size . . That is, all quasigroups of size .
satisfying the property associated with an isomorphy node are isomorphic. The repre-
sentants of the isomorphism classes are the quasigroups given in section 2.1 where the
enumeration of the quasigroups corresponds to the labels of the respective isomorphy
nodes, e.g.,

/ � is the representant of the isomorphism class given by node � .
Initially, the decision tree consists only of the root node. The single nodes of the

tree are expanded by first generating an algebraic structure satisfying the properties
specified by the node. For example, for the root node

\
in Fig. 2, an arbitrary quasigroup

211

Poster Proceedings KI2004

of order 3 is constructed; for node . , however, a quasigroup that additionally satisfies
the property

 �� �F���?���
is required. If no representant can be generated, we must prove

that there exists no algebraic system of cardinality K satisfying both the original axioms
and the additional properties generated up to this point.

When a representant is generated we have two cases to consider: there exists a non-
isomorphic structure exhibiting the same properties considered so far or the property
represented by the node constrains the structures to a single isomorphism class. In the
former case, we have to branch further by generating a structure non-isomorphic to the
original one. The two structures are then passed to HR to compute two — generally the
smallest — discriminants. In the example, the quasigroup

/ � given in section 2.1 was
constructed as a non-isomorphic counterpart to

/ � . Given those two quasigroups, HR
came up with discriminants V � and

{ V � as stated in Fig. 2. Depending on the nature
of the discriminants, either two or four child nodes are constructed. The case of two
child nodes can be observed in the expansion of nodes

\
and . in Fig. 2, whereas the

expansion of node
n

leads to four children.
This construction mechanism guarantees that the resulting tree is a decision tree for

algebras, i.e., each single branching as well as the whole tree are covering (an algebra
satisfies the properties associated with at least one child node/leaf node) and exclusive
(an algebra satisfies the properties associated with at most one child node/leaf node).
However, by this construction mechanism the algorithm can also introduce nodes for
which no algebra of the considered size and axioms exists. Such nodes are called dead-
ends. For instance, since there is no quasigroup of size . satisfying the properties V � ,{ V � , and

{ V � (�{ V � node � , in Fig. 2 is a dead-end node.
The tree in Fig. 2 is a classifying decision tree for quasigroups of size . . That it is

a decision tree, however, holds for arbitrary algebras, for instance, also for quasigroups
of size � , n , � , c@cdc . However, for other algebras the tree is not longer classifying, i.e.,
the leaf nodes do not necessarily specify isomorphy classes and dead-ends for other
algebras.

� � �R����� � 	G� ��)���"� � 	G� ��
 ����� �"� �P�$�� �� �l����� �"� �P�$�� �� �

� �

� � � �

� � � � �

� 	 � � 	
�
X� � � �
J� � � � � �
X� � ��

�
 � � � �

Fig. 2. Decision tree for the classification problem of order 3 quasigroups.

The classification trees produced by this algorithm are employed by the system
discussed in this paper as follows. Let

a V � N@cdc@c@N VJ� e be the properties associated with
the leaf-nodes of a classifying decision tree and let v be a set of axioms, then our

212

Poster Proceedings KI2004

system combines these to K specialisations of v by adding each property to the set of
original axioms. These sets of axioms are then submitted to the model generators. For
instance, consider the classifying decision tree for quasigroups of order . depicted in
Fig. 2. The specialisation properties are the properties associated with the leaf nodes.
We therefore get six different axiom sets as specialisations: v�w ay{ V � e , v�w a V � (V � e ,
v,w a V � (6{ V � (V � (V � e , v,w a V � (6{ V � (V � (6{ V � e , v,w a V � (6{ V � (6{ V � (V � e ,
and v>w a V � (�{ V � (�{ V � (0{ V � e .

Note that this heuristic can be approximated by the applicability approach described
in section 4.2. If the system started off with a covering set of non-isomorphic algebras
for each size, and if the threshold was set so that properties which applied to only a
single algebra were chosen, then each property must be a classifying property (although,
as Spass is not employed, this is not proved). However, in practice, there is no guarantee
that the model generator has produced exemplars of each isomorphism class, and when
the number of initial algebras becomes more than around 10 or so, HR usually fails
to produce classifying properties for all isomorphism classes. In addition to potentially
placing the sub-problems closer to the constrainedness knife-edge, another potential
advantage of the classification tree approach is that, since the specialisation properties
result from a decision tree, they divide the search space of possible algebras disjointly
and hence there is little repetition of work. Also, it is more likely that the specialisation
properties split the search space more evenly. Moreover, the properties cover the search
space, so no solutions are lost.

5 Experiments and Results

Our aim here is to compare and contrast the three specialisation methods described
in the previous section. In particular, we want to determine whether any gains in ef-
ficiency can be made when applying model generators FINDER, SEM and MACE to
the quasigroup existence problems introduced in section 2.1. We have used each spe-
cialisation technique for all of the QG problems, but, due to space considerations, we
present here only the results for QG1, QG4 and QG5 (for more detailed results please
see ftp://ftp.cs.bham.ac.uk/pub/authors/V.Sorge/quasigroups/results.dvi). We compared
the seven following approaches to solving the model generation problems:L

[Orig] This used a single processor with the original (non-specialised) axiom set. This
is essentially a benchmark our parallel approach with respect to the performance of the
original systems.L

[Inst1 + Inst2] refers to the two methods described in section 4.1. For Inst1, we fixed
a single pair of elements

� Y N Y � and pre-instantiated all possible results. For a problem
involving quasigroups of size K the heuristic resulted in K specialised axiom sets. For
Inst2, we additionally fixed a second pair

� Y N \ � , which resulted in K0m � K�^ \ � speciali-
sations.L

[Appl] refers to the method given in section 4.2. The 19 concepts of applicability 0.5
or higher resulted in 20 specialised axiom sets.L

[Class3, Class4, Class5] employ results of the classification algorithm described in
section 4.3. In detail, Class3 uses the classifying properties from the decision tree for

213

Poster Proceedings KI2004

System Problem Orig Inst1 Inst2 Appl Class3 Class4 Class5
FINDER QG5.6 ¡ 0.04 0.03 0.08 0.05 0.05 0.06 0.15

QG5.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QG5.8 27.06 0.04 0.01 27.27 0.01 0.02 0.02
QG5.9 0.04 0.02 0.02 0.01 0.04 0.04 0.01
QG5.10 ¡ 3569.51 35300.13 7905.71 t/o 3570.17 t/o t/o
QG5.11 t/o 62.36 9.01 t/o 21.84 16.12 15.25
QG5.12 316.42 317.22 57.26 332.12 321.72 3.57 494.4
QG5.13 11342.30 12881.42 1682.91 8217.31 4014.80 3533.37 118.74

SEM QG5.6 ¡ 0.00 0.00 0.01 0.01 0.00 13.71 142.55
QG5.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QG5.8 0.06 0.11 0.01 0.02 0.00 0.00 0.00
QG5.9 0.00 0.00 0.00 0.00 0.02 0.01 0.00
QG5.10 ¡ 1172.52 t/o 42749.04 1927.82 15193.60 t/o t/o
QG5.11 t/o t/o 19.19 2518.37 38.69 40.28 170.89
QG5.12 t/o 84.72 t/o t/o 3.94 0.01 0.10
QG5.13 t/o t/o t/o t/o t/o t/o 89.83

MACE QG5.6 ¡ 0.03 0.05 0.12 0.06 0.01 8.38 5.31
QG5.7 0.57 0.58 0.60 0.01 0.01 0.01 0.01
QG5.8 46.80 47.40 48.75 0.58 0.57 0.58 0.46
QG5.9 48.52 48.63 47.95 0.00 0.00 0.01 0.01
QG5.10 ¡ t/o t/o t/o t/o t/o t/o t/o
QG5.11 t/o t/o t/o t/o t/o t/o t/o
QG5.12 t/o t/o t/o t/o t/o 105.04 t/o
QG5.13 t/o t/o t/o t/o t/o t/o t/o

FINDER QG4.6 ¡ 1.58 0.33 0.04 1.58 1.22 1.20 2.07
QG4.7 ¡ 84.75 38.77 8.81 98.26 89.87 90.59 123.47
QG4.8 0.05 0.02 0.03 0.05 0.06 0.06 0.61
QG4.9 0.38 0.14 0.01 0.31 0.37 0.36 0.66

SEM QG4.6 ¡ 0.00 0.01 0.02 0.12 0.01 45.29 29.00
QG4.7 ¡ 0.06 0.63 0.97 0.21 0.16 885.64 488.59
QG4.8 0.09 0.02 0.00 0.01 0.01 0.01 2.26
QG4.9 2.51 0.22 0.01 0.03 0.01 0.01 0.05

MACE QG4.6 ¡ 0.07 0.07 0.13 0.10 0.02 37.82 54.66
QG4.7 ¡ 2.64 2.87 5.68 4.22 0.31 76.78 4123.43
QG4.8 61.49 61.45 60.86 0.88 0.87 0.92 2.27
QG4.9 27023.21 26798.08 27040.67 2343.61 329.87 339.73 134.94

FINDER QG1.6 ¡ 1660.59 782.67 117.88 1885.42 4875.55 5139.38 t/o
QG1.7 0.34 0.26 0.24 0.05 0.09 0.01 0.02
QG1.8 12776.18 100.18 4778.38 2.50 8704.15 4.54 74.13
QG1.9 6438.08 74275.36 144.66 8929.90 6518.62 7.82 82.71

SEM QG1.6 ¡ 0.69 6.58 1.36 2.16 1.62 6313.57 t/o
QG1.7 0.29 0.01 0.00 0.01 0.01 0.00 0.00
QG1.8 1566.77 0.34 0.37 0.04 1.25 0.01 0.21
QG1.9 0.00 0.00 0.00 0.00 12.49 0.00 0.00

Fig. 3. Experimental results for the QG problem domain. Times are given in seconds, t/o indicates
the model generator exceeded the 1 day timeout. Asterisks indicate that a given problem does not
have a solution.

quasigroups of order 3, which comprises 6 properties and therefore the same number of
specialisations. Class 4 uses the 41 properties of quasigroups of order 4 produced for
the decision tree. For quasigroups of order 5, the decision tree yields more than 1500
properties, which we considered an impractical size. We therefore used the data from
an intermediate decision tree for order 5 quasigroups, which yielded 468 properties,
i.e., the tree still had all the properties of a decision tree, but the leaf nodes were not
necessarily isomorphism classes for quasigroups of size 5.

The results from running these methods for QG1, QG4 and QG5 quasigroups of
various sizes are given in table 5. Each row contains the time (in seconds) needed to
solve a problem. The first column indicates the model generator for which the results
were obtained; the second column specifies the particular problem, where QG ¢ . K is
the problem to show the existence of an order K quasigroup for which QG ¢ holds.
Asterisks indicate that a given problem does not have a solution. For example QG5.6 £
is the problem to find a QG5 quasigroup of order 6 and the asterisk indicates that there
is no such quasigroup. T/o indicates the model generator exceeded a 1 day timeout.
The times are recorded as the time when the first of the parallel model generation pro-

214

Poster Proceedings KI2004

cesses succeeded in finding a model. In the cases where no model exists, all processes
have to terminate in order to guarantee that the search was exhaustive. Thus the time
corresponds to the run time of the last process that terminated.

The experiments where conducted on a 113 node 2GHz Pentium 4 cluster with
2GB of RAM each with regular Ethernet interconnect. As a grid engine, we employed
GridEngine v5.3 running on a quadruple 2.4GHz Xeon with 4GB of memory. For some
of the experiments – notably for Class5 and the Inst2 heuristic for quasigroups of order¤ \ Y – the number of specialisations exceeded the capacity of the cluster. We therefore
ran these in several blocks, and the results should be understood as a simulation of
a cluster of the necessary size. The results for the problems for which no model exists
(QG5.6, QG5.11, QG4.6, QG4.7, QG1.6) demonstrate that in this case our specification
approach fails. This is not surprising, as to conclude that no model exists, the search
must terminate on all specialised axiom sets. Thus, if only one of the added properties
has a negative effect on the search space, it affects the overall result.

The situation is exactly the opposite if there exists a model. Then, one specialised
sub-problem which provides a model is sufficient to solve the overall problem. The re-
sults of our experiments demonstrate that employing the instantiation heuristic already
gives a speed up in the cases where a model exists. Employing the classifiers can often
further increase the speed up. In particular, for the more complex problems, the speed
up is sometimes not only significant but also the model generators can find solutions
for problems on which they timeout without the specialisations.

The results for the problems for which a model exists do not point out a clear winner,
i.e., no method consistently outperformed all the other methods. However, altogether
for each problem for which a model exists and which is non-trivial (i.e., the original
problem is solved in less than 1 second) at least one specialisation heuristic gives a
considerable speed up.

Another pattern also appears to emerge: for the small sizes, there seems to be little
point in using a specialisation method. For the intermediate sizes, simply distributing
the process using the Inst2 method appears to be quicker in many instances. For the
larger sizes, however, the classification methods appear to do better. Also apparent is
that the classification methods usually outperform the applicability method. It is very
interesting to compare the three decision trees methods for the generation of speci-
fication sub-problems. The Class4 decision tree outperforms the Class3 decision tree
on almost all problems for which a model exists (and for the exceptions of this rule
the Class3 tree performs only slightly better). However, for the Class5 tree we cannot
observe a clear improvement as compared with the Class4 tree: except for QG5.13 it
does not perform significantly better but on the other problems it performs worse. This
may indicate that our approach is limited: splitting the problem into more sub-problems
will not necessarily result in faster solutions. We intend to evaluate this hypothesis with
more experimentation.

6 Related Work

The study of quasigroups, and more generally, automated discovery in finite algebras,
stimulated much research in Automated Reasoning. For instance, [7, 14, 18, 19] report

215

Poster Proceedings KI2004

on the use of model generation techniques and propositional provers to tackle quasi-
group existence problems. In particular, open problems in quasigroups became a chal-
lenge for friendly competition. J. Zhang was the first to use a general reasoning program
to solve an open quasigroup existence problem. Later, Fujita, Slaney, Stickel, McCune,
and H. Zhang used their systems to solve several open cases and reported very com-
petitive results. More recently, completing partial quasigroups has been proposed as a
structured benchmark domain for the study of constraint satisfaction methods [11].

The difficulty with using automated reasoning techniques and constraint satisfaction
techniques is that the underlying problems are intractable (undecidable, NP-complete).
No matter how good the algorithms are, there is a constant need for more computing
power. This motivated the distribution of problems and the application of concurrently
running applications in the context of quasigroup existence problems. [19] presents
Psato a parallel prover for propositional satisfiability for networks of workstations. A
key property of the approach is that the concurrent processes explore disjoint portions
of the search space such that parallelism is employed without introducing redundant
search. [11] and [10] report on the possible concurrent application of randomised al-
gorithms, which are among the best current algorithms for solving computationally
hard problems. The time required by these algorithms to solve a particular problem in-
stance can vary drastically (indeed the algorithms studied in [11, 10] exhibit so-called
heavy-tailed runtime distributions). Hence, running several instances of a randomised
algorithm can boost the performance.

In contrast to Psato, the randomised algorithms all search the same search space
but because of the inherent randomisation they traverse it differently. Our approach is
similar to the Psato approach with respect to the disjoint partition of the algebra space
that results from the usage of decision trees. However, since the generation of classi-
fying decision trees is not deterministic (see [4] for details) we could also randomly
create different decision trees to use in our approach and employ concurrency on these
decision trees, which would then be similar to different runs of randomised algorithms.

Automatically re-formulating problem statements in order for solvers to more effi-
ciently find solutions has been addressed in many areas of Artificial Intelligence, most
notably constraint solving. In particular, the process of deriving additional information
from the problem statement so that implied constraints can be added without loss of
generality has been researched recently [6]. Also, in [5], Colton and Miguel use the
HR program to generate additional constraints for quasigroup existence problems, and
this approach provided up to 10 times speed up for certain problems. In contrast to the
work described here, however, this approach was semi-automated, ad-hoc and concen-
trated more on using implied constraints, rather than the case splits we use here. It also
focused on improving a single constraint solver, rather than distributing the workload
over a grid, as discussed here.

7 Conclusions and Further Work

We have presented a novel approach to distributing a model generation process for
solving algebraic existence problems. Based on a general framework, we investigated
several methods to split a model generation problem into multiple more specific sub-

216

Poster Proceedings KI2004

problems, which can be processed in parallel. The specialisations range from simple
instantiation to more intelligent choosing of specialisation properties. Our experiments
demonstrate that, by using a grid-based concurrent distribution, our approach provides
greater efficiency over a single-process approach. Moreover, in many cases, the more
elaborate specification approaches outperformed the simple specification approaches.
We plan to perform more experiments in order to determine more precisely when a
particular approach will outperform another.

We have used this approach for the QG5 problem of size 18, which is still an open
problem. Unfortunately, none of the specialised sub-problems has returned a solution,
which gives some evidence towards the hypothesis that no solution exists. We have
also looked for cases where a search using specialising property V and a search using
specialising property

{ V have both ended unsuccessfully, thus proving that there are
no solutions, but none have been forthcoming. One avenue for further work may be to
generalise this approach: suppose that the search for sub-problems with specialisations
V � N@cdc@c'N VJ� have all finished without solutions. Then, if a solution does exist, it must
have the property

{ V \l(c@cdc (�{ V$K . Hence, we could take successively larger subsets
of
ay{ V \ N@cdc@c'N { V � e and attempt to prove with an automated theorem prover that all the

properties in the subset holding at once is inconsistent with the axioms, hence showing
that no solution can exist.

Our experiments with the three specialisation methods described in the paper did
not provide us with a clear winner, i.e., a method that outperforms all other meth-
ods on all problems. Furthermore, without additional experimentation, it is difficult
to draw generalisations about how best to specialise model generation problems into
sub-problems. However, the specialisation methods showed a significant speed up over
a single-process approach, and, in particular, for larger sizes, the classification methods
appear to be better than the other specialisation methods. It is also difficult to choose a
clear winner for the the three different classification trees approaches. In the worst case,
a specialisation method turned out to take even longer than the original problem. These
observations raise the question whether it is possible to predict the performance of a
particular method on a particular problem. If this is possible, then a suitable method
can be chosen. Our current experiments do not provide sufficient data to give an ac-
count on this question. However, we hope that further experiments will provide enough
data that we can try to figure out (learn) problem and specification parameters for an
automated selection of the specification method.

Although we experimented here only with quasigroups, our approach is general
enough for model generation of any finite algebra with particular properties. Moreover,
the idea to specialise problems goes beyond algebraic domains and beyond the use of
model generators. That is, we can envisage our approach being used for general prob-
lems in model generation and constraint solving. While our main motivation remains
adding to the mathematical literature on finite algebras, we hope to demonstrate that the
notion of specialising problems into sub-problems, then distributing these sub-problems
on a Grid architecture has much potential for Artificial Intelligence problem solving.

References

1. S. Colton. Automated Theory Formation in Pure Mathematics. Springer Verlag, 2002.

217

Poster Proceedings KI2004

2. S Colton, A Bundy, and T Walsh. On the notion of interestingness in automated mathematical
discovery. International Journal of Human Computer Studies, 53(3):351–375, 2000.

3. S. Colton, A. Bundy, and T. Walsh. Automatic identification of mathematical concepts. In
Proc. of the 17th International Conference on Machine Learning (ICML2000), pages 183–
190. Morgan Kaufmann, USA, 2001.

4. S. Colton, A. Meier, V. Sorge, and R. McCasland. Automatic generation of classification
theorems for finite algebras. In D. Basin and M. Rusinowitch, editors, Proc. of the Inter-
national Joint Conference on Automated Reasoning (IJCAR–2004), LNAI. Springer Verlag,
2004. Forthcoming.

5. S. Colton and I. Miguel. Constraint generation via automated theory formation. In Proc. of
CP-01, 2001.

6. A.M. Frisch, I. Miguel, and T. Walsh. Extensions to proof planning for generating implied
constraints. In Proc. of Calculemus-01, pages 130–141, 2001.

7. M. Fujita, J. Slaney, and F. Bennett. Automatic Generation of Some Results in Finite Al-
gebra. In R. Bajcsy, editor, Proc. of the 13th International Joint Conference on Artificial
Intelligence (ICJAI), pages 52–57. Morgan Kaufmann, USA, 1993.

8. Gap. GAP Reference Manual. The GAP Group, School of Mathematical and Computational
Sciences, University of St. Andrews, 2000.

9. P Gent, E MacIntyre, P Prosser, and T Walsh. The constrainedness of search. In Proceedings
of AAAI-96. American Association for Artificial Intelligence, 1996.

10. Carla P. Gomes and Bart Selman. Algorithm portfolios. Journal of Artificial Intelligence,
126:43–62, 2001.

11. Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of Automated Reasoning, 24:67–
100, 2000.

12. S.R. Kumar, A. Russel, and R. Sundaram. Approximating latin square extensions. Algorith-
mica, 24:128–138, 1999.

13. C. Laywine and G. Mullen, editors. Discrete Mathematics using Latin Squares. Wiley, 1998.
14. W.W. McCune. A davis-putnam program and its application to finite first-order model search:

quasigroup existence problems. Technical report, Argonne National Laboratory, Division of
MSC, 1994.

15. W.W. McCune. Mace4 Reference Manual and Guide. Argonne National Laboratory, Divi-
sion of MSC, 2003. ANL/MCS-TM-264.

16. G L Miller. On the ¥[¦ §©¨©ªP« isomorphism technique. Technical Report TR17, The University
of Rochester, 1976.

17. J. Slaney. FINDER, Notes and Guide. Center for Information Science Research, Australian
National University, 1995.

18. J. Slaney, M. Fujita, and M. Stickel. Automated Reasoning and Exhaustive Search: Quasi-
group Existence Problems. Computers and Mathematics with Applications, 29:115–132,
1995.

19. H. Zhang, M. Bonacina, and H. Hsiang. PSATO: a Distributed Propositional Prover and its
Application to Quasigroup Problems. Journal of Symbolic Computations, 21:543–560, 1996.

20. H Zhang and J Hsiang. Solving open quasigroup problems by propositional reasoning. In
Proceedings of the International Computer Symposium, 1994.

21. J. Zhang and H. Zhang. SEM User’s Guide. Department of Computer Science, University
of Iowa, 2001.

218

Poster Proceedings KI2004

Approaches to Case-Base Similarity for Retrieval

Savvas J. Nikolaidis1

1Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece.

e-mail: snikol@csd.auth.gr

Abstract: Similarity measurement, the most important factor to the perform-
ance of a Case-based reasoning system, has been generally considered in a
rather restricted view. Most case-based reasoners tend to look at similarity as
the measurement of distances of objects. However, this restricted aspect con-
strains the scope of Case-based reasoners to areas where the cases can be de-
scribed as measurable vectors. Alternative approaches to Case-based similarity
for retrieval can extend the scope of Case-based reasoners to fields where it was
not possible with the classical approach. In this paper we study some alterna-
tive approaches and conduct experiments to study under which circumstances
these alternative methods have performance advantages against the classic ap-
proach.

Keywords: Case-Based Reasoning, Case Retrieval, Similarity Measurement.

1 Introduction

Case-based reasoning is in essence analogical reasoning where the system tries to
predict the outcome of a given situation according to the outcome of the most similar
case, or cases, from a knowledge base of solved cases. Case Based Reasoning is a
technique used in situations where we want to reduce the burden of knowledge acqui-
sition, avoid repeating mistakes made in the past, work in domains where a well un-
derstood model doesn’t exist, learn from past experiences, reason with incomplete or
imprecise data, provide means of explanation and reflect human reasoning [14].
There are four key issues in the case-based reasoning process: (a) identifying key
features, (b) retrieving similar cases in the case base, (c) measuring case similarity to
select the best match, and (d) modifying the existing solution to fit the new problem.
The most important part of a case-based reasoning system is the retrieval stage, where
the system must find, in a sometimes-huge case base, the best matching case or cases
from which to produce the prediction for the outcome of a given situation. The case
based reasoning system must be able to identify the suitable cases for retrieval. The
efficiency of this stage is a critical factor for the overall system performance. If the
system is not able to properly identify a suitable case this case may not be retrieved,
although it might be useful. Improving retrieval is an open problem in case-based
reasoning research and case-based reasoning system development [11]. Case adapta-

219

Poster Proceedings KI2004

tion may also be needed. Case attributes can be qualitative, quantitative, descriptive
or other.
The retrieval stage in Case-Based Reasoning systems requires the use of some kind of
similarity measurement for the best case to match. Search for similarity, is a problem
which occurs in diverse applications, such as stock market prediction [17], [20], pla-
giarism detection [19], forest fire prediction [18], and protein and DNA sequencing
[16]. A number of similarity measuring techniques have been used in different sys-
tems. The selection of the similarity measurement is very important, because, if the
one selected is not the appropriate, the system will produce erroneous results. The
selection depends on being able to identify relevant attributes and make use of them.
There is no similarity measurement that can fit in all situations. The Question of de-
fining similarity is one of the most subtle and critical issues raised by case-based
reasoning [12]. Very serious consideration must be given to the nature of the data,
which dictate the selection of the suitable similarity measurement.

2 New Approaches for Case Identification and Retrieval

In this paper we present different approaches for representing similarity and identify-
ing cases for the retrieval stage in case based reasoning systems. First we study the
Euclidean distance. Euclidean distance is a similarity measure frequently used in the
literature. The Euclidean distance is employed in the Nearest Neighbor algorithm and
the k- Nearest Neighbor algorithm. With the NN algorithm we try to find from our
Knowledge Base the closest match for a given situation and with the k-NN algorithm
we are searching for the k closest matches. Then from the results we derive our
evaluation. Two different measures of similarity, namely the unweighted Euclidean
distance and the weighted Euclidean distance are in use. Each one of them is detailed
below. The Euclidean distance can only be used with quantitative attributes. All for-
mulas presented assume that x and y represent size attributes. If our attributes are of a
different kind we have to devise a mapping to the set of real numbers so that we can
use this method. The number of attributes employed will determine the number of
dimensions used. It is common in CBR for the attributes, i.e., features vectors to be
weighted to reflect the relative importance of each feature.
Depending upon the problem we are called to confront and the nature of the data
involved on top of the classic distance-based approach we have a useful array of
alternative techniques that can be used. In the case of textual similarity, as for exam-
ple when we are trying to compare documents or web pages the “edit distance” is an
interesting approach. This similarity function is discussed in detail in [15]. Edit Dis-
tance ed(s1, s2) between two strings s1 and s2 is the minimum number of character
edit operations (delete, insert, and substitute) required to transform s1 into s2, normal-
ized by the maximum of the lengths of s1 and s2.
Cases that are not simple in form can be described as graphs. Pin graphs are finite
collections of particular graphs which have certain distinguished properties. There are
special nodes which may be replaced by complete individual graphs. For more details
the reader is referred to [1] and [9]. Pin graphs can be used for case representation.
These structures can naturally describe certain technical objects and there are algo-

220

Poster Proceedings KI2004

rithms known to be more efficient on hierarchically structured graphs than on flat
ones. In these structures structural similarity is employed as the similarity function.
A much promising alternative approach to similarity measurement is the incorpora-
tion of fuzzy logic to case based reasoning systems. Fuzzy logic methods and tech-
niques have been used in CBR since the early nineties [3], [4], [6] and they have been
extensively used during more resent years. [5], [8], [10]. Main et al [13] explain how
fuzzy logic applies to CBR. A case-based reasoner has to find a case or a set of cases
similar to the target problem. Most CBR systems are based on similarity relations
between the target and the cases. These relations are vague by nature. Fuzzy logic
deals with vague relationships. We also combine fuzzy logic with CBR because fuzzy
logic is helpful for acquiring knowledge and it provides methods for applying knowl-
edge to real-world data. Fuzzy logic simplifies elicitation of knowledge from domain
experts, such as knowledge of how similarity between two cases depends on the dif-
ference between their individual, collective, and temporal attributes. Fuzzy logic
emulates human reasoning about similarity of real-world cases, which are fuzzy, that
is, continuous and not discrete. [8]. A fuzzy approach is proposed and implemented
below.
More complex applications may require the combination of different concepts and
techniques. Formal concepts as well as sophisticated heuristics may be employed to
deal with more complicated situations.
In the CBR cycle, during the analysis of the similarity among cases, the Initially
Match Process during the Retrieve Step [7], fuzzy classification methods can be used
in order to improve the performance and the efficiency of the CBR system. The cases
can be “preprocessed” and assigned to one or more of a number of fuzzy categories.
The retrieval of previously solved problems similar to the current one is a two-step
process. The initial matching process can be described as a procedure to isolate inter-
esting, or as we say, potentially applicable cases. For example we could have four
preprocessed categories of a person’s age: “child”, “young”, “middle aged” and “old”
and search only the appropriate one(s) when we encounter a new case. During this
step the system reduces the set of cases to be compared to the current case in the
second step of the similarity computation. Using the Similarity Function in the second
stage we evaluate selected cases to determine the definitely applicable ones. The
algorithm can be described:

1. Locate and retrieve potentially applicable cases from the case-base.
2. Evaluate selected cases to determine the applicable ones.
3. Transfer knowledge from the old case(s) to the current one.

The fuzzification process is a feature selection algorithm and creates fuzzy categories
that are used for indexing. The fuzzyfier dictates the way an attribute is turned into a
classifiable one in a fuzzy set. At the end of the process the case base has been con-
verted into an indexed case base according to the fuzzy categorization.
The fuzzification process works through the case base according the following steps:

1. Eliminate one attribute and test (try to find irrelevant attributes).

221

Poster Proceedings KI2004

2. Eliminate all but one attributes and test (find the relative significance of different
attributes).

3. Assign weights to the attributes.
4. Identify significant or irrelevant ranges in attribute values. Enhance the former and

discard the later.
5. Normalize to the fuzzy set belonging range [0, 1].
6. Repeat the above steps until there is no significant result improvement (the per-

formance “tops up”).

The fuzzification process is shown in Figure 1.

Fig. 1. The fuzzification algorithm

For similarity function we use the similarity function used in case cased reasoning
systems based on the
By using the above procedure we preserve a lot of the information that would be lost
if we were using crisp sets, useless information that could produce erroneous predic-
tions is discarded and finally our prediction results become more easily justifiable.

3 Experiments

We have executed a series of experiments. Initially we used two unrelated sets of data
describing the real estate market situation. The common aim of all the experiments is
to estimate the real value of the property from the data in each data set.

Case Base

Eliminate one and test

Eliminate all but one and test

Assign weights

Identify significant and irrelevant ranges

Normalize to the range [0, 1]

Repeat until
performance

“tops up”

End

222

Poster Proceedings KI2004

Table 1 Mean values of correct and wrong evaluations of the value of real estate property
using randomly selected 50 member testing sets, according to different methods for the first
data set consisting mainly of nominal attributes.

 “Hits” “Misses” Percentage

Unweighted Euclidean 14,3 35,7 28,6%

Weighted Euclidean 27,6 22,4 55,2%

k-NN 32,3 17,7 64,6%

F-CIR 37,2 12,8 74,4%

The first data set consists mainly of quantitative data. Attributes in these set include:
property surface area in m3, the flour on which the property is located, distance from
the city center and from major highways in km, age of the building etc. The data has
been tested with the unweighted Euclidean distance method, the weighted Euclidean
distance method (NN) and k-NN with different values of k, and our Fuzzy method.
From the dataset of more than 500 cases 50 were randomly selected for evaluation
and the rest for training. The experiment was repeated 400 times for statistical pur-
poses. The results are shown in Table 1.
All Algorithms except the unweighted Euclidean Nearest Neighbor performed well.
The slightly better performance of F-CIR compared with the weighted Euclidean is
derived from the identification of significant and irrelevant attribute ranges during the
fuzzification process.

Table 2 Mean values of correct and wrong evaluations of the value of real estate property
using randomly selected 50 member testing sets, according to different methods for the second
data set consisting mainly of nominal attributes.

 “Hits” “Misses” Percentage

Unweighted Eucledean 13,5 36,5 27%

Weighted Eucledean 16,8 33,2 33,6%

k-NN 18,3 31,7 36,6%

F-CIR 33,1 16,9 66,2%

223

Poster Proceedings KI2004

0%

20%

40%

60%

80%

100%

Unweighted
Eucledian

Weighted Eucledian k-NN F-CIR

Fig. 2 Different methods performance comparison for the evaluation of the value of real estate
property using data describing the real estate market situation which consists mainly of nomi-
nal attributes.

The data set used in the second set of experiments, consists mainly of nominal data.
Attributes in these set include: city area where the property is located (city center,
east side, name of suburb), description of the apartment (studio, 2-bedroom etc),
accessibility to the employment centers, traffic conditions in the area, apartment ori-
entation, level of pollution in the area etc. The experiments were conducted with the
same philosophy as the ones for the first dataset (400 repetitions). The results are
shown in Table 2 and Figure 2. F-CIR worked satisfactory.

4 Conclusions

We have examined and tested different approaches to the similarity measuring prob-
lem for the case-based reasoning systems retrieval stage. We have seen that the clas-
sic distance based approach may work satisfactory in a number of situations but it can
be inadequate to describe efficiently the similarity between objects in a case base.
Under these circumstances the use of a non-standard similarity function is required.
Depending on the nature of the problem and the data involved alternatives include a
number of methods. The selection of the appropriate one is critical for the perform-
ance of the system. As the problems faced by case based reasoning systems get in-
creasingly complex the need for alternative approaches, or even combinations of
them, is certain to increase. The fuzzy case based reasoning system we presented here
was tested and it performed satisfactory.

224

Poster Proceedings KI2004

References

1. Helmut Alt and Johannes Blomer. Resemblance and symmetries of geometric
patterns. In Burkhard Monien and Thomas Ottmann, editors, Data Structures and
Effcient Algorithms, volume 594 of Lecture Notes in Computer Science, pages 1-
24. Springer-Verlag 1992.

2. Bandini S., and Manzoni, 2001, Proceedings of the 2001 ACM symposium on
Applied computing, pp.462-466

3. Bento, C. and Costa E., 1993: A similarity metric for retrieval of cases imperfectly
described and explained, in: Proceedings First European Workshop on Case-Based
Reasoning, Richter, Wess, Althoff and Mauer (eds.), Vol. 1, 1993, pp 8-13.

4. Bonissone, P.P., and Ayub, S., 1992: Similarity measures for case based reasoning
systems, in Proceedings of the IPMU-92 Conference, 1992, pp. 483-487.

5. S. Chaudhuri, K. Ganjam, V. Ganti, R, Motwani, 2003: Robust and Efficient
Fuzzy Match for Online Data Cleaning, Procceedings of SIGMOD 2003.

6. Dubois and Prade, 1992: Gradual inference rules in approximate reasoning, Infor-
mation Sciences, 61, 103-122

7. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo (CA), 1993.
8. Hansen, B. K. (2000) Weather prediction using similarity between temporal cases

and fuzzy sets, Master of Computer Science thesis, Dalhousie University – Dal-
tech.

9. Franz Hofting, Thomas Lengauer, and Egon Wanke. Processing of hierarchally
defined graphs and graph families. In Burkhard Monien and Thomas Ottmann, edi-
tors, Data Structures and Efficient Algorithms, volume 594 of Lecture Notes in
Computer Science, pages 44-69. Springer-Verlag, 1992.

10.Jeng, B. C., and Liang, T.-P. (1995) Fuzzy indexing and retrieval in case-based
systems, Expert Systems With Applications, Vol. 8., No. 1, 1995. Elsevier Science
Ltd., 135–142.

11.Leake, D. B. (1996) CBR in context. The present and future; in Leake, D. B. (edi-
tor) (1996) Case-Based Reasoning: Experiences, Lessons & Future Directions,
American Association for Artificial Intelligence, Menlo Park California, USA, 3–
30.

12.Luger, G. F., and Stubblefield, W. A. (1998) Artificial Intelligence: Structures and
Strategies for Complex Problem Solving, Addison Wesley Longman, Reading,
Massachusetts, USA, pg. 238.

13.Main. J., Dillon, T. S., and Khosla. R. (1996) Use of fuzzy feature vectors and
neural vectors for case retrieval in case based systems, NAFIPS 1996 Biennial
Conference of the North American Fuzzy Information Processing Society, IEEE,
New York, NY, 438–443.

14.Main, J.; Dillon, T. S.; and Shiu, S. C. K. 2000. A tutorial on case-based reason-
ing; in Pal, S. K.; Dillon, T. S.; and Yeung, D. S. eds. 2000. Soft Computing in
Case Based Reasoning. London, UK, Springer.

15.G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for ap-
proximate string matching. IEEE Data Engineering Bulletin, 24(4):19--27, 2001.

225

Poster Proceedings KI2004

16.Pearson, W. R., and Lipman, D. J. (1988) Improved tools for biological sequence
comparison, Proceedings of the National Academy of Sciences, Vol. 85, 2444–
2448, April, 1988, Biochemistry.

17.Rafiei, D. (1999) Fourier-Transform Based Techniques in Efficient Retrieval of
Similar Time Sequences, Ph.D. thesis, Department of Computer Science, Univer-
sity of Toronto, Ontario, Canada.

18.Rougegrez, S. (1993) Similarity evaluation between observed behaviours and the
prediction of processes. In Wess, S., Althoff, K. D. and Richter, M. (eds.), Topics
in Case-Based Reasoning, Proceedings First European Workshop on Case-Based
Reasoning, 1993, Springer-Verlag, Berlin, 155–166.

19.Shivakumar, N., and Garcia-Molina, H. (1995) SCAM: A copy detection mecha-
nism for digital documents, Digital Libraries ‘95, The Second Annual Conference
on the Theory and Practice of Digital Libraries, 155–163.

20.Xia, B. B. (1997) Similarity Search in Time Series Data Sets, Master of Science
thesis, Department of Computer Science, Simon Fraser University, BC, Canada.

226

Poster Proceedings KI2004

