
19th Workshop on (Constraint) Logic
Programming

Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
University of Ulm

U
N IV

ERS ITÄT
ULM

·
S

C
IE

N
D

O

·DOCENDO
·CU

R
A

N
D

O
·

Preface

This volume contains the refereed and accepted papers and system de-
scriptions presented at the 19th Workshop on (Constraint) Logic Programming
W(C)LP 2005 held in Ulm, Germany, from February 21 to 23, 2005.

This year marks the 40th anniversary of Alan Robinson’s seminal paper on ”A
Machine-Oriented Logic Based on the Resolution Principle” that forms a basis
for automated deduction and in particular logic programming, that started some
three decades ago with the work of Robert Kowalski and Alain Colmerauer.

The workshop on (constraint) logic programming is the annual meeting of
the Society of Logic Programming (GLP e.V.) and brings together researchers
interested in logic programming, constraint programming, and related areas like
databases and artificial intelligence. Previous workshops have been held in Ger-
many, Austria, and Switzerland. The technical program of the workshop included
an invited talk, presentations of refereed and accepted papers and system de-
scriptions, as well as non-refereed system demonstrations and poster presenta-
tions. The contributions in this volume were reviewed by at least two referees.

We would like to thank all authors who submitted papers and all workshop
participants for their fruitful discussions. We are grateful to the members of the
program committee and of the local organisation as well as to the referees. We
would like to express our thanks to the Society of Logic Programming (GLP e.V.)
for handling finances and the University of Ulm for hosting the workshop.

February 2005 Armin Wolf, Thom Frühwirth

Marc Meister

PDF processed with CutePDF evaluation edition www.CutePDF.com

http://www.cutepdf.com

Program Chair

Armin Wolf Fraunhofer FIRST, Berlin, Germany

Local Chair

Thom Frühwirth University of Ulm, Germany

Local Organisation

Marc Meister University of Ulm, Germany

Program Committee

Slim Abdennadher German University Cairo, Egypt
Christoph Beierle FernUniveristät Hagen, Germany
Francois Bry Ludwig Maximilians University, Munich, Germany
Henning Christiansen Roskilde University, Denmark
Thom Frühwirth University of Ulm, Germany
Ulrich Geske Fraunhofer FIRST, Berlin, Germany
Michael Hanus University of Kiel, Germany
Petra Hofstedt Technical University Berlin, Germany
Steffen Hölldobler Technical University Dresden, Germany
Christian Holzbaur Vienna, Austria
Ulrich John DaimlerChrysler Research, Berlin, Germany
Ulrich Neumerkel Technical Universtiy Vienna, Austria
Alessandra Raffaeta Universtiy Ca’ Foscari, Venezia, Italy
Georg Ringwelski 4C, Cork, Ireland
Hans Schlenker Fraunhofer FIRST, Berlin, Germany
Tom Schrijvers Catholic University Leuven, Belgium
Dietmar Seipel University of Würzburg, Germany
Michael Thielscher Technical University Dresden, Germany
Herbert Wicklicky Imperial College, London, Great Britain
Armin Wolf Fraunhofer FIRST, Berlin, Germany

WCLP 2005 2 Ulmer Informatik-Berichte 2005-01

Table of Contents

Full Papers

XML Transformations based on Logic Programming 5
Dietmar Seipel and Klaus Praetor

A PROLOG Tool for Slicing Source Code . 17
Marbod Hopfner, Dietmar Seipel, and Joachim Baumeister

Combining Domain Splitting with Network Decomposition for
Application in Model-Based Engineering . 29
Rüdiger Lunde

Towards an Object-Oriented Modeling of Constraint Problems 41
Armin Wolf, Henry Müller, and Matthias Hoche

Expressing Interaction in Combinatorial Auction through Social
Integrity Constraints . 53
Marco Alberti, Federico Chesani, Alessio Guerri, Marco Gavanelli,

Evelina Lamma, Paola Mello, Michela Milano, Paolo Torroni

Level Mapping Characterizations of Selector Generated Models for
Logic Programs . 65
Pascal Hitzler and Sibylle Schwarz

Truth and knowledge fixpoint semantics for many-valued logic
programming . 76
Zoran Majkic

Impact- and Cost-Oriented Propagator Scheduling for Faster Constraint
Propagation . 88
Georg Ringwelski and Matthias Hoche

Static and dynamic variable sorting strategies for backtracking-based
search algorithms . 99
Henry Müller

The CHR-based Implementation of a System for Generation and
Confirmation of Hypotheses . 111
M.Alberti, F.Chesani, M.Gavanelli, E.Lamma, P.Mello, P.Torroni

Guard Simplification in CHR programs . 123
Jon Sneyers, Tom Schrijvers, and Bart Demoen

Analysing the CHR Implementation of Union-Find . 135
Tom Schrijvers and Thom Frühwirth

WCLP 2005 3 Ulmer Informatik-Berichte 2005-01

DB CSPA Framework and Algorithms for Applying Constraint Solving
within Relational Databases . 147
Chuang Liu, Ian Foster

System Descriptions

Meta-S – Combining Solver Cooperation and Programming Languages . . . 159
Stephan Frank, Petra Hofstedt, and Dirk Reckman

Cmodels for Tight Disjunctive Logic Programs . 163
Yuliya Lierler

WCLP 2005 4 Ulmer Informatik-Berichte 2005-01

XML Transformations Based on Logic Programming

Dietmar Seipel
�

and Klaus Prätor
�

�

University of Würzburg, Institute for Computer Science
Am Hubland, D – 97074 Würzburg, Germany

seipel@informatik.uni-wuerzburg.de
�

Berlin–Brandenburg Academy of Sciences and the Humanities
Jägerstr. 22–23, D – 10117 Berlin, Germany

praetor@bbaw.de

Abstract. Critical or scientific editions are a promising field for the application
of declarative programming, which can facilitate the parsing and the markup of
texts, and the transformation of XML documents.
We have used a logic programming–based approach for the production of critical
editions: In particular, we propose a transformation of XML documents based on
a compact and intuitive substitution formalism. Moreover, we have developed a
new XML update language FNUPDATE for adding navigation facilities.
We have implemented a transformation tool in SWI–PROLOG, which integrates
and interleaves PROLOG’s well–known definite clause grammars and the new
substitution formalism.

Keywords. PROLOG, grammars, critical editions, XSLT

1 Introduction

The mainstream approach to XML processing is based on concepts such as the Ex-
tensible Style Sheet Language for Transformations (XSLT), the XML query language
XQuery, and the underlying path language XPATH. Originally, XSLT was meant as an
advanced sort of Cascading Style Sheets (CSS), but then it developed into a tool for the
transformation of markup – the real formatting tool was delivered afterwards as XSL
Formatting Objects (XSL–FO).

The way XSLT works resembles remarkably the way of PROLOG. The transforma-
tion is done by traversal of a tree, and by testing the matching of nodes against patterns
in the style sheet. Comparing PROLOG and XSLT, of course the mainstream character
and the extent of support are arguments in favour of XSLT, but there are also some
drawbacks [9]. Firstly, XSLT is not a universal programming language, which means
that not all problems are solvable within this framework. Secondly, XSLT is not de-
signed from ground up as a declarative language. In simple examples this is not easily
visible, but as applications get more complex you see the barely disguised imperative
background shining through in control structures (xsl:if, xsl:for-each etc.) and pattern
matching. A detailed comparison of XSLT and PROLOG can be found on the WWW
pages of SWI–PROLOG [13].

WCLP 2005 5 Ulmer Informatik-Berichte 2005-01

Logic programming is very well–suited for natural language processing (NLP) [8]
and for text processing in general. In particular, definite clause grammars (DCGs) are
a powerful declarative approach to writing parsers [11]. According to Richard O’Keefe
the great advantage of DCGs is that it is important not to think about the details of
the translation: Any time you have stereotyped code, using a translator to automatically
supply the fixed connection patterns means that the code is dramatically shorter and
clearer than it would otherwise have been, because you are hiding the uninformative
parts and revealing the informative parts. Thus, the code is easier to write and to read,
and it has fewer mistakes, because the pattern is established once in the translator and
thereafter tirelessly applied with machine consistency. DCGs are just one example for a
more general idea (cf. [10, 14]): define a little language embedded in PROLOG syntax,
write an interpreter for that language, and devise a translator which turns constructs of
that language into the (useful, non–book–keeping) code that the interpreter would have
executed for those constructs.

Prätor [15] has shown that techniques of logic programming are especially apt for
the structures and the specific problems of critical editions. DCGs and a graph traver-
sal had been used for transforming between the different layers of XML documents in
the pilot project Jean Paul. In the present paper we extend this approach by proposing a
more compact and intuitive substitution formalism, which can be interleaved with PRO-
LOG’s built–in DCG formalism, and we have developed a new XML update language
FNUPDATE for adding navigation facilities.

The rest of this paper is organized as follows: In Section 2 we review some charac-
teristics of critical editions in general, and we give an introduction to the different types
of XML structures used within the pilot project Jean Paul. In Section 3 we show how
XML documents can be represented in PROLOG, and we present transformations based
on sequential scans and on tree traversals, respectively. Finally, in Section 4 we use an
XML update language FNUPDATE, that we have implemented in PROLOG, for adding
topology and navigation facilities to XML documents.

2 Critical Editions

Critical editions are notoriously difficult sorts of text, as they form not one linear text
but rather a complex of different variants and readings of a text, which are to be han-
dled within a critical apparatus (think of a set of foot– or endnotes). They are enriched
by commentaries with historical and philological information and made accessible by
indices and directories. Other peculiarities are the mostly large extent of the editions
and the fact that the period of production as well as of usage is very long reaching
from decades to centuries. Especially in electronic editions it is necessary to care for
sustainable availability and usability.

Some problems are due to the print form. Lack of space leads to elaborate systems
of abbreviations and to steady considerations, which material and information can still
be incorporated and which one has to be left out. The print can hardly handle the in-
herent nonlinearity of the documents, and of course there is no thought of adaptation to

WCLP 2005 6 Ulmer Informatik-Berichte 2005-01

different situations of usage. Compared to the print form, electronic editions show some
advantages, which result from the advanced ways of navigation and retrieval and from
the possibility to provide different types of output. The larger storage capacities provide
room for additional information regarding, e.g., involved persons or historical circum-
stances. Hypertext capacities facilitate the constitution of temporal, spatial or thematic
relations. Different editions may be nested and entirely new information spaces may be
created in this way.

2.1 The Pilot Project Jean Paul

The Academy of Sciences and Humanities of Berlin–Brandenburg is the home of many
edition projects of all ages – editions in a broader sense including aside from work
editions also source editions and dictionaries. Most of these editions are still focussed
on the print form, but we are working on the migration to genuine electronic editions.

Fig. 1. Comment to a Letter of the Jean Paul Edition

Jean Paul has been a frequently read and appreciated author of novels in the times
of Goethe. The Jean Paul Edition is organized in 6 volumes, each of which consists of
about 150 letters to Jean Paul. The two aims of the pilot project were to produce an elec-
tronic equivalent of the just finished first volume, and to demonstrate some additional
features of an electronic edition in an enriched selection. Aside from the usual contents
it provides a simple full text search, and – most importantly – three paths to the letters
via correspondent, year or place of the respective letter.

In this paper we focus on the comments to the letters. For each letter there exists
one comment; the comment to the first letter of the first volume is shown in Figure 1.

WCLP 2005 7 Ulmer Informatik-Berichte 2005-01

The source texts of the edition were originally produced with Microsoft Word,
which is not a desirable choice as an editor’s tool at all, but just legacy. They were
subsequently translated to a migration layer in HTML by a commercial tool. In the Sec-
tions 3 and 4 we will show transformations from this migration layer layer to the archive
layer of the edition. The timeframe, in which a critical edition should be usable, is very
long. Different users or situations may demand different presentations, which can then
be produced from the archived documents.

2.2 Transformation Techniques

Two orthogonal concepts are used for transforming documents, DCGs and subsititution
rules, which can also be mixed by calling them from each other:

– We use DCGs for grouping elements that are on the same level in the source doc-
ument to form complex, nested structures. They are well–suited for parsing a se-
quence of items by a sequential scan.

– We use subsititution rules for transforming a complex, nested document. They tra-
verse a tree–shaped XML document recursively: first the subelements of an element
are transformed, then the resulting element is also transformed.

We propose a new, compact and intuitive substitution formalism, which can be inter-
leaved with PROLOG’s well–known built–in DCG formalism,

3 Transformation of XML Documents

The transformation of XML documents is a perfect task for declarative programming.
The first success is to see how seamlessly an XML document converts into a gen-
uine PROLOG structure. Subsequently, we show how to strip off unnecessary graphical
markup and to transform layout markup which transports meaning into explicit XML
tagging. This transforms from the migration to the archive layer.

3.1 XML Documents in PROLOG

Essentially, an XML or HTML element can be represented as a nested term structure
containing the tag name, the attribute list, and the content (possibly also a list or empty).
There are some libraries available to support this sort of transformation in both direc-
tions. As far as we know the first was the HTML tool PiLLoW for CIAO PROLOG [4],
which also contains some CGI– and HTTP–support. A similar library for SGML exists
for SWI–PROLOG.

The tool FNQUERY [16], which was implemented in SWI–PROLOG, uses a slightly
abbreviated – but similar – term structure. E.g., an XML element

WCLP 2005 8 Ulmer Informatik-Berichte 2005-01

<p style="margin-top:0;margin-bottom:0;">

1, 18-19
Gehen bis
sind]
Dem folgenden Brief Vogels ...

</p>

is represented as

p:[style:’margin-top:0;margin-bottom:0;’]:[
font:[face:’Times New Roman’, size:3]:[

em:[’1,’], ’18-19’,
strong:[’Gehen ’], bis, strong:[’sind] ’],
’Dem folgenden Brief Vogels ...’]]

called FN triple, where the attribute list can be omitted, if it is empty. Here, a triple is
represented by means of operator definition in the form T:As:C, where As is an asso-
ciative list of attribute/value pairs in the form a:v. Text elements (such as ’18-19’)
are simply represented as PROLOG atoms. The PROLOG library FNQUERY goes be-
yond the pure transformation by providing additional means to select and handle sub-
structures, comparable to XQuery or F–logic. E.g., if Xml is the FN triple above, then
the call X := Xml^font@face selects the value ’Times New Roman’ of the
face–attribute of the nested font–element and assigns it to X. A detailed description
of the selection features of FNQUERY can be found in [16].

3.2 Complex Transformations by Traversal of Documents

The predicate transform_fn_item/2 transforms an FN triple Item_1 (e.g., from
the migration layer) into another FN triple Item_2 (e.g., from the archive layer) based
on facts for the predicate --->/2:

transform_fn_item(T:As:Es, Item) :-
maplist(transform_fn_item,

Es, Es_2),
(T:As:Es_2 ---> Item
; As = [],
T:Es_2 ---> Item).

transform_fn_item(declare(_X), ’’).
transform_fn_item(Item, Item).

This new subsitution formalism has been implemented within the subsystem FN-
TRANSFORM of FNQUERY. It generalizes XSLT style sheets, which can be seen as a
collection of transformation rules. These template rules in XSLT have the form of

WCLP 2005 9 Ulmer Informatik-Berichte 2005-01

<xsl:template match=Pattern>
Template</xsl:template>

Pattern is an XPATH expression, which matches with some nodes of the document
tree, and Template is the content which is to be inserted at this location. This content
may contain the possibly recursive application of the same or other template rules. For
doing this in PROLOG, we use substitution rules of the form

Item_1 ---> Item_2 :- Condition.

If a term matches the pattern Item_1 (and of course all capacities of the PROLOG
unification can be used to do this matching) and the call of Condition (which can be
a standard PROLOG goal) succeeds, then the pattern will be replaced by the template
Item_2.

3.3 From the Migration Layer to the Archive Layer

On the migration layer the text is represented as a flat sequence of paragraph elements,
as shown in the previous subsection. The following substitution rules transform this
sequence to a nested structure.

html:_:Es ---> Es.
head:_:_ ---> ’’ :- assert(commentHead).
body:_:Es_1 ---> comment:Es_2 :-

jean_paul_comment(comment:Es_2, Es_1, []).

p:As:Es ---> signedp:Es :-
right := As^align.

p:_:Es ---> notep:Es.

font:As:Es ---> lat:Es :-
’small-caps’ := As^’font-variant’.

font:_:[X] ---> X.
em:_:Es ---> commentHead:Es :- retract(commentHead).
em:_:Es ---> page:Es.

strong:_:Es ---> lemma:Es.
u:_:Es ---> spaced:Es.

T:As:Es ---> T:As:Es.

The body of the HTML document is transformed into a comment–element, and the
first em–element in the body becomes the header of this comment; this is acchieved by
the assertion of commentHead. Subsequent em–elements are transformed to page–
elements. The following text is the result of the transformation. It is archived, and it

WCLP 2005 10 Ulmer Informatik-Berichte 2005-01

serves as the basis for the production of different presentation layers. In the archive
layer the comment consists of a header, which is a commentHead–element, and two
blocks, which are given by ednote–elements with a type–attribute having the value
Überlieferung and Erläuterungen, respectively.

<comment>
<commentHead>1. Von Erhard Friedrich Vogel.

Rehau, 6. Mai 1781, Sonntag
</commentHead>
<ednote type="Überlieferung">

<notep>H: BL, Eg. 2008. 1 Bl. 2ř, 1/2 S.</notep>
...

</ednote>
<ednote type="Erläuterungen">

...
<notep>

<page>1,</page> 18-19
<lemma>Gehen</lemma> bis <lemma>sind]</lemma>
Dem folgenden Brief Vogels ist zu entnehmen, ...

</notep>
</ednote>

</comment>

The grouping of a comment into a header and two blocks – in the third substitution rule
above – has been acchieved using the predicate jean_paul_comment/3, which is
defined by the following DCG rules:

jean_paul_comment(comment:Es) -->
header(H),
block(’Überlieferung’, X),
block(’Erläuterungen’, Y),
{ append(H, [X, Y], Es) }.

header([notep:[]:[commentHead:Es_1]|Es_2]) -->
sequence_of_notep([notep:[]:[page:_:Es_1]|Es_2]).

block(Type, ednote:[type:Type]:Seq) -->
sequence_of_notep([notep:_:[Type]|Seq]).

sequence_of_notep([notep:As:Es]) -->
[notep:As:Es].

sequence_of_notep([notep:As:Es|Seq]) -->
[notep:As:Es],
sequence_of_notep(Seq).

According to the DCG rules, the header can consist of several notep–elements; the
first of these elements is derived from an FN triple notep:[]:[page:_:Es_1] that

WCLP 2005 11 Ulmer Informatik-Berichte 2005-01

is transformed to another FN triple of the formnotep:[]:[commentHead:Es_1].
Using furher DCG rules the notep–elements of the archive layer can be transformed
to note–elements, such as the following:

<note id="7">
<remark>

<position page="1" line="18-19"/>
<lemma>Gehen</lemma> <lemma>sind</lemma>

</remark>
Dem folgenden Brief Vogels ist zu entnehmen, ...

</note>

The archive layer preserves all information, which may be helpful in some case,
and omits all presentation specific features.

4 Update of XML Documents

In this section we investigate transformations that are applied to the archive layer for
producing a presentation layer or a presentation layer with navigation utilities, respec-
tively. The transformations are based on the XML update language FNUPDATE, which
we have implemented in PROLOG within FNQUERY.

4.1 Pruning of XML Documents

Using FNUPDATE we delete the remark–elements within the ednote–elements for
Erläuterungen, since they shall not be displayed at the presentation layer:

xml_extract_notes(Xml_1, Xml_2) :-
Xml_2 := Xml_1 <-> [

^ednote::[@type=’Erläuterungen’]
^note^remark].

In FNUPDATE an XML element given by an FN triple Xml_1 can be pruned by delet-
ing certain subelements. <-> is a binary operator, which indicates that within the fol-
lowing pair of brackets it will be specified by a path expression which subelements
should be deleted. In the example, certain remark–elements are deleted; the condi-
tion @type=’Erläuterungen’ assures that only ednote–elements with the value
Erläuterungen in their type–attribute are affected.

The PROLOG predicate xml_extract_notes/2 is applied to a comment–
element Xml_1, and thus we don’t have comment in the selection path. The result
Xml_2, which forms the presentation layer, is also a comment–element; compared to
Xml_1 the note–elements are simplified; in our example we obtain

WCLP 2005 12 Ulmer Informatik-Berichte 2005-01

<note id="7">
Dem folgenden Brief Vogels ist zu entnehmen, ...

</note>

as a simplified subelement of the presentation layer structure.

4.2 Topology and Navigation

The presentation layer is not meant as the graphical interface, which is primarily pro-
duced by the style sheet and the browser, but as an organisation of the content with
regard to different user interests.

A very important task in this context is navigation. We suggest to distinguish be-
tween topology and navigation with reference to a document. Topology refers to the
potential connections of document elements, whereas navigation means the realised
and used connection paths. In accordance with this convention, providing the topology
would be part of the archive layer, whereas the presentation has to care of the naviga-
tion. While topology is a matter of conceptual and structural relations, navigation has
also to take into account technical and aesthetic aspects of the realisation. Other user
interests demand different ways of access and navigation, but these should be generated
from the one archive layer, or better: the archive layer should be designed in a way that
multiple navigations can be produced with little effort.

The information from the document, even in its tagged archive format, may not be
enough to produce the navigation. In such case we need meta information, incorporated
into the document (e.g., as RDF) or kept in a separate file or database. Here again PRO-
LOG is a good choice to handle and inference these structures. The presentation layer
may be seen as a virtual layer on top of documents and meta information. Derived from
such meta information are both the navigation headlines of the letters and the differ-
ent directories of persons, years and places, which provide access to the content, cf.
Figure 2.

Another navigation task is the creation of indices, e.g. for persons mentioned in the
document. For this purpose we would insert a durable tag that marks the person names,
like <person>Name</person>, on the archive layer. This provides the basis for
the insertion of the appropriate linking structures on the presentation layer.

Creating an Index for an XML Document

The following predicate adds anchors to a given word within an FN term using FNUP-
DATE: If a given word Name occurs in the content list of a note–element, then the
word is replaced by an element <person>Name</person>:

xml_enrich_with_anchors(Name, Xml_1, Xml_2) :-
Xml_2 := Xml_1 <-+> [

WCLP 2005 13 Ulmer Informatik-Berichte 2005-01

Fig. 2. Navigation Utilities

^ednote^note^child::’*’::[
^self::’*’=N, name_contains(Name, N)]

^person:[N]].

This is initiated by the binary replacement operator <-+>/2 in the path expression.
E.g., if we want to enrich an XML document containing the element

<note id="7">
Dem folgenden Brief Vogels ...

</note>

with anchors to words containing Vogel, then we assume that the content of this ele-
ment is split into tokens, i.e., that we have the following FN triple:

note:[id:7]:[
’Dem’, folgenden, ’Brief’, ’Vogels’, ...].

Using the FNUPDATE statement above we obtain the following:

<note id="7">
Dem folgenden Brief <person>Vogels</person> ...

</note>

Finally, we create the index structure from the enriched document. For each in-
serted anchor, the following predicate extracts a corresponding reference of the form
Name from the updated document, where the ID N is gener-
ated using the call get_num(anchor_id, N):

WCLP 2005 14 Ulmer Informatik-Berichte 2005-01

xml_extract_references(Xml, index:Anchors) :-
findall(a:[href:R]:[Name],

([Name] := Xml^_^person^content::*,
get_num(anchor_id, N),
File := Xml@file,
concat([File, ’#’, N], R)),

Anchors).

Observe, that the selection Xml^_^person yields a complete person–element, such
as person:[]:[’Vogels’]. The subsequent expression ^content::* selects
its content list. Thus, in the rule above Name would be assigned to ’Vogels’.

Given a presentation layer file letter_17 containing the enrichednote–element
above, we obtain an index with a reference to letter_17:

<index>
’Vogels’
...

</index>

This index will be stored in a separate XML file.

5 Final Remarks

The introduction of the substitution predicate --->/2 extends the ideas of the DCG
operator -->/2, which is usually used for transformations on flat sequences of tokens,
to transformations on complex structures based on tree traversals. Using --->/2, we
have simplified the transformation formalism of [15].

We have used the sublanguage FNUPDATE of FNQUERY for a compact specifica-
tion of updates to the archive layer of the critical Jean Paul edition. This was used for
the construction of further navigation structures in addition to the hierarchical table of
contents, cf. Figure 2, which we had before. Now we have a word register as well. In
the future we want to base the creation of the whole navigation structure including the
hierarchical table of contents on FNUPDATE and FNTRANSFORM.

At the moment the handling of meta data is a rather modest matter in our project.
The next step will be to incorporate meta information in RDF and to get nearer to
the Semantic Web. Without doubt this is a very interesting and important development
for the future of critical editions. Examples of logic programming tools and libraries
for RDF are to be found for example within SWI–PROLOG and within the Mozilla
project [3]. As RDF is a format which must be supplemented by a separate means for
inference, PROLOG (and companions) will be our favourite also in this field.

WCLP 2005 15 Ulmer Informatik-Berichte 2005-01

References

1. S. Abiteboul, P. Bunemann, D. Suciu: Data on the Web – From Relations to Semi–Structured
Data and XML, Morgan Kaufmann, 2000.

2. G. Antoniou, F. van Harmelen: A Semantic Web Primer, MIT Press, 2004.
3. D. Brickley: Enabling Inference,

http://www.mozilla.org/rdf/doc/inference.html.
4. D. Cabeza, M. Hermenegildo: WWW Programming using Computational Logic Systems

(and the PiLLoW / CIAO Library), Proc. Workshop on Logic Programming and the WWW,
at WWW6, 1997.

5. S. Ceri, G. Gottlob, L. Tanca: Logic Programming and Databases, Springer, 1990.
6. M.A. Covington: Natural Language Processing for Prolog Programmers, Prentice Hall, 1993.
7. G. Gazdar, C. Mellish: Natural Language Processing in PROLOG: An Introduction to Com-

putational Linguistics, Addison–Wesley, 1989.
8. G. Gupta, E. Pontelli, D. Ranjan, et al.: Semantic Filtering: Logic Programming Killer Ap-

plication, Proc. Symposium on Practical Aspects of Declarative Languages PADL 2002,
Springer LNCS 2257.

9. M. Leventhal: XSL Considered Harmful,
www.xml.com/pub/a/1999/05/xsl/xslconsidered_1.html.

10. L.S. Levy: Taming the Tiger – Software Engineering and Software Economics, Springer,
1987.

11. R.A.O’Keefe: The Craft of Prolog, MIT Press, 1990.
12. C. Lehner: PROLOG und Linguistik, Oldenbourg Verlag, 1990.
13. B. Parsia: Long story about using SWI–PROLOG, RDF and HTML Infrastructure, especially

Chapter 6: DCGs Compared to XSLT,
http://www.xml.com/pub/a/2001/07/25/prologrdf.html.

14. F. Pereira, S. Sheiber: PROLOG and Natural–Language Analysis, Center for the Study of
Language and Information, 1987.

15. K. Prätor: Logic for Critical Editions, Proc. Intl. Conference on Applications of Declarative
Programming and Knowledge Management INAP 2004.

16. D. Seipel: Processing XML Documents in PROLOG, Proc. 17th Workshop on Logic Pro-
gramming WLP 2002.

17. M. Smith, C. Welty, D. McGuinness: OWL Web Ontology Language Guide, February 2004,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/.

18. J. Wielemaker, A. Anjewierden: Programming in XPCE/PROLOG

http://www.swi-prolog.org/

WCLP 2005 16 Ulmer Informatik-Berichte 2005-01

A PROLOG Tool for Slicing Source Code

Marbod Hopfner, Dietmar Seipel, and Joachim Baumeister

University of Würzburg, Institute for Computer Science
Am Hubland, D – 97074 Würzburg, Germany

{hopfner, seipel, baumeister}@informatik.uni-wuerzburg.de

Abstract. We describe a PROLOG tool for slicing source code. We assume that
there exists an XML representation of the parse tree of the code. Then, we can
perform an analysis of the extended call graph based on methods from the tool
VISUR/RAR to determine the relevant predicates for the slice.
User–defined policies reflecting the different styles of programming of different
users can be plugged into the system; they are formulated in a declarative way
using the XML query language FNQUERY.
We have implemented VISUR/RAR and FNQUERY as part of the DISLOG devel-
opers toolkit DDK. So far we have applied slicing to extract several subsystems
of the DDK.

Keywords. program extraction, comprehension, refactoring, visualization

1 Introduction

In a large software system it often becomes difficult to keep an overview of the entire
system, even if it consists of classes, modules, and methods. For debugging a system, or
for porting a subsystem to another language or dialect, it is important – but sometimes
very difficult – to extract the relevant entities. A slice for a certain target method consists
of all methods of the considered software system which are necessary to correctly run
the subsystem in focus [9, 10].

We have implemented a PROLOG slicing tool for extracting source code for a certain
functionality from a software system. Our approach is based on the extended predicate
dependency graph (call graph for predicates) of the source code, which can be handled
using the system VISUR/RAR [6], and on some further policies for handling special-
ities of the source language. We use an XML representation of the parse tree of the
considered source code.

So far we have developed an extensible collection of extraction policies for the
source language SWI PROLOG, cf. [11], which are specified declaratively as PROLOG
predicates using the library FNQUERY for XML [5], but we could also extract methods
from source code of other languages, provided that we have an XML representation of
the parse tree and corresponding slicing policies for it.

We have in mind several reasons for slicing a software system:

WCLP 2005 17 Ulmer Informatik-Berichte 2005-01

– We can use slicing for debugging and for extracting certain functionality of a large
software system to use it in a foreign application. One can obtain an overview of the
relevant methods much more easily, and one does not need to read and understand
unnecessary source code.

– Although in general it is very difficult to port PROLOG systems to other PROLOG
dialects, porting becomes much easier if we can focus on slices of the systems,
which could have only a small fraction of the size of the entire system.

– The integration of the slice into a foreign application becomes easier, since the
probability that some methods and global variables of the application conflict with
methods from the slice is reduced.

The rest of this paper is organized as follows: In Section 2 we give an overview
of the slicing tool. In Section 3 we present a collection of basic policies for slicing
PROLOG source code. User–defined slicing policies reflecting the programming styles
of further users can be added using the language FNQUERY, which we also describe
shortly. If slicing is done as a first step for porting a subsystem to another language or
dialect of the same language, then it often is accompanied by refactoring; in Section 4
we mention some types of refactorings that could be useful in this context. Finally, in
Section 5 we present two case studies applying the proposed slicing approach to the
toolkit DDK,

2 An Overview of the Slicing Tool

In this section we give an overview of the slicing tool, and we list some problems that
arise when we slice PROLOG source code. Moreover, we describe the XML represen-
tation of the source code and the XML query language called FNQUERY, on which the
slicing tool is based.

2.1 Slicing PROLOG Source Code

Usually, we slice at the granularity of predicates, but we can also slice at the granularity
of files. The result of the slicing process is the following:

– an archive, i.e., a directory with subdirectories containing the files with the selected
predicates in the same structure as in the file hierarchy of the source system, and

– an index file containing some settings and consult statements for the files in the
archive.

Consulting the index file from a foreign PROLOG application causes all necessary files
from the archive to be properly consulted.

The following problems arise during the slicing of PROLOG source code: Firstly, it
can be very complicated to determine the relevant predicates and files from the predicate
dependency graph, if there are meta–call predicates calling other predicates. Secondly,
we have to handle external libraries and dynamic loadings, and the consulting order

WCLP 2005 18 Ulmer Informatik-Berichte 2005-01

of the files in the slice needs to be the same as in the original source code. Thirdly,
some generic predicates might be defined in many files, and not all of their clauses are
relevant for the slice. Finally, the handling of predicate properties (such as dynamic or
multifile) and of global variables is difficult. In Section 3 we will discuss how we have
solved these problems based on the XML representation of the source code.

2.2 Source Code in Field Notation / XML

In the following we will briefly describe the used XML representation of PROLOG
source code, the corresponding PROLOG structure, which we call field notation, and
the XML query language FNQUERY; a more detailed introduction to the DDK library
FNQUERY can be found in [5]. E.g., we can parse a PROLOG file inc.pl consisting
of the single clause

increment(X, Y) :-
Y is 1 + X.

into the following XML representation:

<file path="inc.pl" module="user">
<rule operator=":-">

<head>
<atom module="user" predicate="increment" arity="2">

<var name="X"/> <var name="Y"/>
</atom>

</head>
<body>
<atom module="user" predicate="is" arity="2">

<var name="Y"/>
<term functor="+">
<term functor="1"/> <var name="X"/>

</term>
</atom>

</body>
</rule>

</file>

We represent an XML element as a PROLOG term structure T:As:C, which we call
FN triple: it consists of the tag T, an association list As for the attribute/value pairs, and
a list C containg the subelements. E.g., the PROLOG statement Y is 1 + X becomes
the term structure atom:As:C shown below. Our parser from XML to field notation is
based on the XML parser of SWI PROLOG, and we derive the field notation as a slightly
more compact variant of the XML data structure of SWI PROLOG.

For obtaining the representation Code of a PROLOG program in field notation we
use the predicate program_file_to_xml/2 – without converting to an XML file
first. From the FN triple Code we can select a body atom with the predicate symbol is
using the infix predicate :=/2 of FNQUERY:

WCLP 2005 19 Ulmer Informatik-Berichte 2005-01

?- program_file_to_xml(’inc.pl’, Code),
Atom := Code^rule^body^atom::[@predicate=is].

Code = ...,
Atom =

atom:[module:user, predicate:is, arity:2]:[
var:[name:’Y’]:[],
term:[functor:+]:[

term:[functor:1]:[], var:[name:’X’]:[]]]

Yes

Every component ^T of the used path expression selects a corresponding subelement
with the tag T, and the condition [@predicate=is] checks that the value of the
attribute predicate is equal to is.

3 Basic Policies for Slicing PROLOG Source Code

For slicing a PROLOG system w.r.t. to a target predicate we have to take into account
the special aspects of PROLOG. The set of potentially relevant files includes files that
are loaded using statements such as consult, use_module, or ensure_loaded.
Within this set of potentially relevant files we search for the transitive definition of the
target predicate. Here, we can use the well–known concept of the predicate dependency
graph, cf. Figure 1, but we have to pay special attention to meta–call predicates [1, 2].

Assume, e.g., that we would like to extract the predicate increment/2, which is
defined in the file my_arithmetic.pl:

:- use_module(arithmetic).
:- consult([portray_predicates, test_predicates]).

increment(X, Y) :-
call(add(1, X, Y)),
portray(increment(X, Y)).

test(my_arithmetic, increment) :-
increment(3, 4),
message(sucessful_test, increment(3, 4)).

Then, the following file arithmetic.pl, which exports the predicate add/3, is
potentially relevant, and it can be found due to the use_module–statement:

:- module(arithmetic, [add/3]).

add(U, V, W) :-
W is U + V.

WCLP 2005 20 Ulmer Informatik-Berichte 2005-01

Fig. 1. Extended Predicate Dependency Graph in VISUR/RAR

But, at first sight it is not clear that increment/2 transitively depends on add, which
can only be inferred since we know that call is a meta–call predicate. Moreover, due
to the consult–statements in my_arithmetic.pl, two further files are poten-
tially relevant. Since portray_predicates.pl defines the pretty–printing predi-
cate portray/1 on which increment/2 depends, this file needs to be in the slice.
For ensuring the correctness of the produced slice, the test clause needs to be in the
slice, i.e., we include the file test_predicates.pl containing the test suite, too.

3.1 The Potentially Relevant Files

The collection of potentially relevant files cannot be determined from the directory
structure. All files that are loaded using consult/1 from other potentially relevant
files are also potentially relevant. But, moreover, the files must be consulted in the
correct order. Sometimes, consulting a file calls a predicate that depends on other predi-
cates. Then, it must be ensured that these predicates are available, before the depending
predicates are called. We determine the order of the files using a call

code_to_sequence(Code, Sequence).

The predicate code_to_sequence/2 has to be defined for each style of program-
ming. For the DDK, it can be based on the file dislog_units.

All files that are consulted from other potentially relevant files are potentially rele-
vant for the slice. E.g., external libraries are frequently loaded using use_module/1,
and the further modules that they require are loaded using ensure_loaded/1.

WCLP 2005 21 Ulmer Informatik-Berichte 2005-01

3.2 Dependency Graphs with Meta–Call Predicates

The transitive definition of a predicate p consists of all predicates q, which are a member
of the definition of the predicate p together with the transitive definition of these pred-
icates q. In the previous example, the transitive definition of increment/2 consists
of the predicates call/1, portray/1, add/3, and is/2. The latter two predicates
are reached, since the meta–call predicate call/1 calls add/3.

Meta–Call Predicates We need to know which predicates are meta–call predicates and
are able to call other predicates in one or more of their arguments. This is important in
order to obtain the entire transitive definition of a predicate.

– In general it is impossible to automatically determine the predicates (and their ar-
ities) that are called from meta–call predicates. Then, such information has to be
provided by the user by specifying the meta–call predicates in a configuration file.
Otherwise, the slice will not be complete/correct. However, we can analyze many
calls to meta–call predicates using some heuristics.

– For user–defined meta–call predicates, we additionally have to determine the ar-
guments containing potential goals. In order to support the user in collecting the
user–defined meta–call predicates, the system is able to automatically generate a
list of possible meta–call predicates by searching for rules that call other already
known meta–call predicates, such that one of the arguments in the call is connected
to an argument of the head of the rule by a sequence of body atoms.

– For built–in meta–call predicates, we already know the arguments containing the
goals that will be called, and in many cases we can infer their predicate symbol
and arity. If the goal arguments are variables, then we track their bindings. E.g.,
if we can determine the predicate p and arity N of Goal, then we know that
checklist(Goal, Xs) calls p with the arity N + 1; similarly, maplist/3
adds 2 to the arity of the called goal.

Extended Dependency Graphs The call calls_pp(Code, P1/A1, P2/A2) de-
termines the predicates P2/A2 that are called by P1/A1 in the PROLOG code repre-
sented by the FN triple Code. If we implement our policies correctly as clauses for
calls_pp/3, then the transitive definition of the target predicate can be computed as
the transitive closure of calls_pp/3.

E.g., for an atom call(Goal), we try to determine the predicate and the arity of
Goal. If the goal is created at runtime, then this is not always possible. But often, Goal
is bound by statements such as Goal = add(1,X,Y) or Goal =.. [P,1,X,Y],
where Pwas assigned to add before. The following rule for the predicatecalls_pp/3
determines a rule Rule with the head predicate P1/A1, such that there exists a body
atom of the form call(Goal). In XML this atom is encoded as

<atom module="user" predicate="call" arity="1">
<var name="Goal"/>

</atom>

WCLP 2005 22 Ulmer Informatik-Berichte 2005-01

Rule and Goal are selected from the FN triple Code using suitable path expressions
in FNQUERY. Within Rule we search for the predicate P2/A2 of Goal using the
predicate goal_to_predicate/4:

calls_pp(Code, P1/A1, P2/A2) :-
Rule := Code^rule::[

^head@predicate=P1, ^head@arity=A1],
Goal := Rule

^body^atom::[
@module=user, @predicate=call, @arity=1]

^var@name,
goal_to_predicate(Rule, Goal, [], P2/A2).

goal_to_predicate(Rule, Goal, Goals, P/A) :-
Atom := Rule^body^_^atom::[^var@name=Goal],
[user, =, 2] := Atom@[module, predicate, arity],
([P, A] := Atom^term@[functor, arity]
; G := Atom^var@name,
not(member(G, Goals)),
goal_to_predicate(Rule, G, [Goal|Goals], P/A)).

It could happen that P2/A2 becomes the predicate of Goal by a sequence of assign-
ments. E.g., for the following rule for the predicate P1/A1=increment/2, the predi-
cate goal_to_predicate/4 determines P2/A2=add/3 by subsequently looking
at Goal and G, respectively:

increment(X, Y) :-
G = add(1, X, Y),
Goal = G,
call(Goal).

The second call to goal_to_predicate/2 determines the atom Atom representing
the equality G = add(1, X, Y), and then it selects the functor add and the arity 3
of the term argument of Atom.

3.3 Slicing of Individual Clauses

For some predicates the slice should only include individual clauses rather than all of
the defining clauses. E.g., the defining clauses of generic predicates might be spread
over many different files; examples from the DDK are dislog_help_index/0, the
pretty–printer portray/1, and the test predicate test/2. In a slice we only need
some of the clauses, and including all of them would be highly redundant.

We do not consider these generic predicates when we compute the set of potentially
relevant files. But, when we include individual clauses into the slice, then we have to
include the transitive definitions of all predicates that are called from them as well.

WCLP 2005 23 Ulmer Informatik-Berichte 2005-01

E.g., in the DDK many files contain some tests – which are usually located at the
end of the files. For ensuring that the slice works correctly, the slice should include all
clauses for test/2 calling sliced predicates; in practice, most of these clauses will be
contained in the potentially relevant files. In our example, for testing increment/2,
we obviously need to include the definition of message/2 in the slice.

3.4 Declarations of Predicate Properties

We have to detect the properties of all predicates in the slice, i.e., the corresponding dec-
larations of the types dynamic, multifile, or discontiguous. Some of these
declarations will be located in centralized files of the system, others are contained in
separate files for each unit. Since these files might not be reached by the file depen-
dency graph, the properties for these predicates have to be extracted using a special
policy, such that they can be included into the slice.

predicate_to_property(Code, Pred/Arity, Property) :-
Atom := Code^rule^body

^atom::[@predicate=Property],
(Term := Atom^term::[@functor=’/’]
; Term := Atom^_^term::[@functor=’/’]),
Pred := Term-nth(1)^term@functor,
Arity := Term-nth(2)^term@functor.

E.g., in the DDK the declaration :- multifile test/2. for the test predicate
can be found in the file test_predicates.pl.

3.5 Global Variables

In the DDK we have a generic concept of global variables, which are implemented using
assert and retract. The global variables are accessed using the calls

dislog_variable_get(+Variable, ?Value),
dislog_variable_set(+Variable, +Value).

It might happen that the value of a relevant global variable is set in a file – either at con-
sultation time or at runtime – that is not contained in the slice. Thus, the following pred-
icate determines – on backtracking – the assignments of all variables Variable that
are set in a file File using a call dislog_variable_set(Variable, Value):

file_to_assignment(Code, File, Variable:Value) :-
Variable := Code^rule::[@file=File]^body

^atom::[@predicate=dislog_variable_get]
-nth(1)^term@functor,

Atom := Code^rule^body
^atom::[@predicate=dislog_variable_set],

Variable := Atom-nth(1)^term@functor,
Value := Atom-nth(2)^term@functor.

WCLP 2005 24 Ulmer Informatik-Berichte 2005-01

In this rule, the path expression -nth(N)^term selects the N–th subelement (for
N=1,2) with the tag term of an FN triple.

In the DDK, there also exist further similar concepts for global variables of subsys-
tems, and we use the well–known predicate gensym/2, cf. [2].

4 Refactoring and Slicing

Refactoring methods [3] provide an effective tool in the context of slicing source code:
Such methods modify source code without changing its external behavior. Refactoring
methods have demonstrated their practical impact in numerous object–oriented soft-
ware projects. They are strongly connected with appropriate test methods that are ap-
plied before and after performing the refactoring; thus, the preservation of the external
behavior can be monitored.

Slicing is frequently accompanied or followed by refactoring. In order to adapt the
slice to the software system in which it will be integrated, sometimes it is necessary
to move or rename predicates, or to remove consult–statements. In the following,
we briefly discuss some refactoring methods that are suitable in the context of slicing
PROLOG code.

4.1 Predicate–Based Refactorings

– Move Predicate: A predicate is moved into a module. This refactoring may be
useful for test predicates which are located in distributed modules. It is reasonable
to apply this refactoring before performing the slicing procedure.

– Rename Predicate: This refactoring is usually performed after the slicing operation
in order to adapt the slice to the target language, which will usually be a different
PROLOG dialect. It is especially useful when slicing source code in order to allow
for a simpler porting to another language dialect.

– Extract Predicate: Similar to the previous refactoring, this method is also useful,
when we want to prepare the slice for the adaptation to another language dialect.
Then, we extract hostile predicate blocks from the slice. In a subsequent step, the
extracted blocks are replaced by suitable predicate calls from the target language.

– Remove Unused Predicates: If we slice at the granularity of files, then we may think
of removing unused predicates from the files in the slice.

4.2 Module–Based Refactorings

Schrijvers et al. [8] also discuss useful refactorings based on the granularity of modules:
merge modules, remove dead code intra–module, rename module, split module. In the
context of slicing source code at the granularity of files these refactorings can be useful,
if the sliced system does not need to allow for file–based updates.

WCLP 2005 25 Ulmer Informatik-Berichte 2005-01

5 Case Studies

We present two case studies applying the proposed slicing approach to the DISLOG De-
velopment Kit DDK, which we are developing using XPCE /SWI PROLOG [4]. The func-
tionality ranges from (non–monotonic) reasoning in disjunctive deductive databases to
various PROLOG applications, such as a PROLOG software engineering tool, and a tool
for the management and the visualization of stock information.

Currently, the DDK consists of about 14.000 clauses; they are located in 440 files
containing a total of about 100.000 LoC (lines of code). We have sliced out two subsys-
tems, Minesweeper and FNQUERY. Slicing at the granularity of files has reduced the
size of the system to subsystems of 16% (Minesweeper) and 4% (FNQUERY), respec-
tively, of the original size, and slicing at the granularity of predicates has further reduced
the size of the system to subsystems of 5% and 0.8%, respectively, of the original size.

The computation time is divided in a preprocessing time and the slicing time. The
preprocessing takes about 0.6 msec per LoC on an Intel Pentium 1.1 GHz, 512 MB
RAM. For the DDK the preprocessing took about 10 minutes. The preprocessing has to
be done only once; its result can be used for each slicing operation, and for further op-
erations like computing dependency graphs. The slicing operations took about 28.4 sec
for Minesweeper and about 6.6 sec for FNQUERY, respectively.

Tests were also extracted and did sucessfully pass after slicing.

5.1 The Game Minesweeper

The slice for the game Minesweeper, which is a part of the DDK, should contain all files
that are needed for a stand–alone version including the graphical user interface. Thus,
we have extracted the transitive definition of the target predicate create_board/0,
which creates the GUI of the game, cf. Figure 2.

In addition, we have included the transitive definition of all predicates called by
the buttons New Game, Show, Help, Help*, and Quit, of the GUI. Clicking on
these buttons calls a meta–call predicate, which calls another predicate, namely the
predicates new_game/0, show_board/0, clear_board/0, and twice the help
predicate mine_sweeper_decision_support/1, respectively. Since the syntax
for meta–calls is often used in different ways, every user can write his own policies
for obtaining the transitive definition of these calls, but one can also manually add
predicates to the list of relevant predicates.

The consult file index.pl for the slice – a fragment is shown below – declares the
predicate properties, sets all necessary global variables and consults the relevant files:

:- dynamic ...
:- multifile test/2, ...

:- dislog_variable_set(
smodels_in, ’results/smodels_in’).

WCLP 2005 26 Ulmer Informatik-Berichte 2005-01

Fig. 2. Minesweeper

:- consult([
’library/loops.pl’,
’library/ordsets.pl’, ...
’sources/basic_algebra/basics/operators’,
’sources/basic_algebra/basics/meta_predicates’,
...]).

test(minesweeper, create_board) :-
create_board.

5.2 The Field Notation and FNQUERY

In the second case study we have created a slice for the target predicate :=/2 of FN-
QUERY, which is defined in the DDK module xml/field_notation. This slice
consists only of about 800 LoC, which are extracted from 21 files of the DDK. 19 of
these files are from regular DDK modules, which are located in the directory sources,
and two of the files are library files from the directory library. The slice is derived
from

– 8, i.e. 50%, of the files of the module xml/field_notation,
– 7, i.e. 25%, of the files of the module basic_algebra/basics,
– 3 files from the unit development, e.g., the file
development/refactoring/extract_method,

– one file from the module basic_algebra/utilities, and
– the library files lists_sicstus.pl and loops.pl from the separate direc-

tory library.

WCLP 2005 27 Ulmer Informatik-Berichte 2005-01

6 Final Remarks

The slicing tool has been built based on two modules of the toolkit DDK: the sys-
tem VISUR/RAR for visualizing and reasoning about source code, and the XML query
and transformation language FNQUERY. It can be used for extracting slices from large
software packages, provided that we have an XML representation for the considered
language. So far we have applied it for extracting several subsystems of the DDK.

The tool can be extended by plugging in further user–defined slicing policies reflect-
ing different styles of programming. Since the source code is represented in XML, slic-
ing policies can be specified declaratively using the XML query language FNQUERY,
which is fully interleaved with PROLOG.

We have used XML representations of PROLOG or JAVA source code for other pur-
poses as well: for comprehending and visualising software with VISUR/RAR [6], for
refactoring PROLOG programs and knowledge bases [5, 7], and for clone detection in
PROLOG and JAVA source code.

References

1. I. Bratko: PROLOG– Programming for Artificial Intelligence, 3rd Edition, Addison–Wesley,
2001.

2. W.F. Clocksin, C.S. Mellish: Programming in PROLOG, 3nd Edition, Springer, 1987.
3. M. Fowler: Refactoring – Improving the Design of Existing Code, Addison–Wesley, 1999.
4. D. Seipel: DISLOG– A Disjunctive Deductive Database Prototype, Proc. 12th Workshop on

Logic Programming WLP 1997.
5. D. Seipel: Processing XML–Documents in PROLOG, Proc. 17th Workshop on Logic Pro-

gramming WLP 2002.
6. D. Seipel, M. Hopfner, B. Heumesser: Analyzing and Visualizing Prolog Programs based on

XML Representations. Proc. International Workshop on Logic Programming Environments
WLPE 2003.

7. D. Seipel, J. Baumeister, M. Hopfner: Declarative Querying and Visualizing Knowledge
Bases in XML, Proc. 15th International Conference on Applications of Declarative Program-
ming and Knowledge Management INAP 2004, pp. 140-151.

8. A. Serebrenik, B. Demoen: Refactoring Logic Programs, Proc. Intl. Conference on Logic
Programming ICLP 2003 (Poster Session).

9. M. Weiser: Programmers use Slices when Debugging, Communications of the ACM, vol. 25,
1982, pp. 446–452.

10. M. Weiser: Program Slicing, IEEE Transactions on Software Engineering, vol. 10 (4), 1984,
pp. 352–357.

11. J. Wielemaker: SWI–PROLOG 5.0 Reference Manual, http://www.swi-prolog.org/
J. Wielemaker, A. Anjewierden: Programming in XPCE/PROLOG

http://www.swi-prolog.org/

WCLP 2005 28 Ulmer Informatik-Berichte 2005-01

Combining Domain Splitting with
Network Decomposition

for Application in Model-Based Engineering

Rüdiger Lunde

R.O.S.E. Informatik GmbH, Schloßstr. 34, 89518 Heidenheim, Germany email: r.lunde@rose.de

Abstract. This paper discusses a new approach to combine the branch&prune
algorithm with constraint network decomposition methods. We present a version
of the well-known base algorithm which interleaves pruning, network decompo-
sition and branching and is especially suited for large constraint networks with
low connectivity. Special care is taken to support quantitative as well as qual-
itative and mixed domains. A sufficient criterion for the generation of decom-
positions called ‘independent solvability’ is defined, which guarantees maximal
domain reduction for finite domains. We present production rules to compute de-
compositions and give an account of the implementation of the algorithm within
a commercial model-based engineering tool.

1 Introduction

In current model-based engineering tools, constraint solving is used to predict the be-
havior of physical systems, based on component-oriented models. Constraints represent
physical laws, whereas variables are used to describe behavioral modes of components
as well as physical quantities or observable states of the system. Hybrid behavioral
models containing quantitative relations (equations, inequalities, interpolating splines)
as well as qualitative ones (tables or boolean formulas) give the modeler flexibility to
choose the abstraction level which is best suited to the analysis task at hand.

To support the engineering process, the constraint solver is embedded into a reason-
ing framework, which uses the behavior prediction as a means to perform its high-level
tasks. Typical tasks include predicting the expected behavior of a system over a period
of time, estimating the risk that a certain top event occurs, explaining an observed sit-
uation, or proposing appropriate test points for candidate discrimination in diagnosis.
Especially in diagnosis, models are often underdetermined. For complexity reasons, the
constraint solver is required to deliver a compact representation of the solution space
instead of point solutions of the network. Consequently, solvers used in this context
apply inference techniques rather than search techniques (for a classification, see [5]).

In our approach, domain reduction is used to generate compact representations of
solution spaces. The basic algorithm is a variant of the well-known branch&prune al-
gorithm [7], which is extended by a network decomposition step. The paper elaborates
on a decomposition strategy based on the so-called ‘independent solvability’ of subnet-
works, which is appropriate to the structure of the constraint networks in model-based
engineering.

WCLP 2005 29 Ulmer Informatik-Berichte 2005-01

The paper is organized as follows: We start with some preliminary definitions and
a formalization of the investigated constraint problem. In Section 3, our version of the
branch&prune algorithm is presented. Independent solvability of subnetworks as a suf-
ficient criterion for constraint network decompositions is discussed in Section 4. We
report briefly on the practical exploitation of the algorithm in Section 5, and conclude
with outlining related work and promising directions of further research.

2 Basic Definitions

We define a constraint network in accordance with the literature (see e.g. [5]), but take
special care to keep relation representations independent from variable domains and to
support various kinds of domains:

Definition 1 (constraint network). A constraint networkCN = 〈V,D, C〉 consists of
a finite set of variablesV = {v1, . . . , vn}, a domain composed of the corresponding
variable domainsD = D1 × . . . × Dn and a set of constraintsC = {c1, . . . , cm}.
All variable domainsDi are subset of a common universe domainU . Constraints are
relations defined on sets of variables which constrain legal combinations of values for
those variables. Each constraintc is represented by a pair〈Vc, Rc〉. Vc ⊆ V is called
the scope ofc and is accessed by the functionscope(c). The relationRc of c is a subset
of U |scope(c)| and is accessed byrel(c).

Discrete variable domains are supported as well as continuous variable domains.
If indices are not available, we writeDv to access the variable domain corresponding
to variablev. In the algorithms discussed below, domains are represented by vectors
of variable domains. If clear without ambiguity, those vectors are identified with the
denoted cross product.

The projection functionπi : 2D → 2Di is defined as usual. We writeπv instead of
πi where convenient. Obviously, for all domains and variablesπvD = Dv. The same
notation is used to project a subsetD′ of a domain onto a set of variables instead of a
single variable. For example,π{v3,v5}D = D3 ×D5.

Subnetworks ofCN are characterized by the following definition:

Definition 2 (subnetwork of a constraint network). Let CN = 〈V,D, C〉 be a con-
straint network andĈ ⊆ C a set of constraints. The subnetwork ofCN defined byĈ
is a constraint network〈V̂ , D̂, Ĉ〉 with the following properties:̂V =

⋃
c∈C scope(c),

andD̂ = πV̂ D. It is denoted bysn(Ĉ, CN).

An instantiatione of D is a set of value assignments, noted{〈v1, a1〉, . . . , 〈vn, an 〉}
with vi ∈ V andai ∈ Di. It is calledcomplete, if the set contains assignments for all
v ∈ V , andpartial otherwise. Thescopeof an instantiatione is defined by the set of
those variables which occur in an assignment ofe. Complete instantiations correspond
to elements ofD, whereas partial instantiations correspond to elements of projections
obtained fromD. For example, the instantiatione = {〈v1, a1〉, 〈v3, a3〉} corresponds
to the value vectore = 〈a1, a3〉, which is an element ofπ{v1,v3}D. Value vectors
corresponding to instantiations are indicated by overlining.

WCLP 2005 30 Ulmer Informatik-Berichte 2005-01

Fig. 1. Constraint net of two serial resistors. Nodes represent variables (dot-notation) and con-
straints

An instantiatione is said to satisfy a constraintc if scope(c) ⊆ scope(e) and
πscope(c){e} ⊆ rel(c). Each complete instantiatione of D, which satisfies all con-
straintsc ∈ C is called asolutionof CN . The set of all value vectors which corre-
spond to solutions ofCN form a subset ofD. It is called solution set ofCN and noted
sol(CN).

The space of all solutions of a given constraint network can be described by maxi-
mally reduced domains based on the following definition:

Definition 3 (maximally reduced domains).Let CN = 〈V, D,C〉 be a constraint
network andD̂ ⊆ D a domain.D̂ is called maximally reduced with respect toCN iff
∀v ∈ V : D̂v = πvsol(CN).

Our aim is to present efficient algorithms which compute maximally reduced do-
mainsD̂ for given constraint networks. The discussed algorithms try to reduce the range
of each variable as far as possible without losing any solution. If the given constraint
network has only one solution, a single value remains for each variable. In underde-
termined networks (which is common in model-based diagnosis, due to incomplete or
fuzzy information) a set of possible values is computed for each variable. For constraint
networks with discrete variable domains the domainD̂ can be computed exactly. How-
ever, when reasoning about continuous domains it is infeasible to compute more than
approximations of̂D.

3 The Branch and Prune Algorithm

Constraint networks which describe real systems on a physical level are in general hard
to solve because of cyclic dependencies, which occur in even the simplest aggregations
of components (see Fig. 1 for illustration). The branch&prune algorithm [7] solves
cycles by combining incomplete local constraint propagation [8] with recursive domain
splitting. Our version of that algorithm, which is shown in Fig. 2, follows the idea of
the original but adds a network decomposition step.

The algorithm starts with enforcing local consistency by means of the function
prune , which implements a local constraint propagation method. If local propagation
stops because one of the variable domains turns out to be empty, a domain composed of
empty variable domains is returned. Otherwise, the constraint network is checked with
regard to subnetworks with insufficiently reduced domains. The constraint sets which
represent those parts are computed by the functiondecomposeNetwork . It returns a
list of sets of constraints.

WCLP 2005 31 Ulmer Informatik-Berichte 2005-01

Domain branchAndPrune(〈V, D, C〉) {
D′ = prune(〈V, D, C〉)
if (¬empty(D′)) {

L = decomposeNetwork(〈V, D′, C〉)
for Ĉ across L {

〈V̂ , D̂, Ĉ〉 = sn(Ĉ, 〈V, D′, C〉)
〈D̂1, D̂2〉 = branch(〈V̂ , D̂, Ĉ〉)
if (D̂1 6= D̂2) {

D̂1′ = branchAndPrune(〈V̂ , D̂1, Ĉ〉)
D̂2′ = branchAndPrune(〈V̂ , D̂2, Ĉ〉)
for (v ∈ V̂)

D′
v = D̂1′

v ∪ D̂2′
v

if (empty(D′))
break

}
}

}
return(¬empty(D′)) ? D′ : 〈∅, . . . , ∅〉

}
Fig. 2. The branch&prune Algorithm

For each set of constraints, the corresponding subnetwork is determined and its
domain split into two parts by means of the functionbranch . If this operation was
successful, the algorithm branch&prune is applied recursively to both partitions, and
the set union of the returned variable domains is used to reduce the resulting domain.
The loop is aborted if the resulting domain is empty. In this case, a domain composed
of empty variable domains is returned.

The methodbranch can be implemented by selecting a so-called split variable
and splitting its domain. Important for the correctness of the algorithm is that it returns
either a pair of subdomains which partition the original domainD̂ or a pair of two equal
domains, and that the former is the case ifD̂ contains a discrete variable domain with
at least two elements.

We now discuss some basic features of the branch&prune algorithm. In the follow-
ing, we assume that the set of different variable domain representations is finite (but
not necessarily the domains themselves) and that the implementation ofdecompose-
Network terminates for all constraint networks.

It can easily be seen that the algorithm branch&prune terminates: Let<dom be
a well-founded ordering on domains which agrees with narrowing, partitioning and
subnetwork selection. One obvious realization for<dom compares the corresponding
variable domains with respect to set inclusion. Given such an ordering, in each recursive
call, domains become smaller with respect to<dom.

Let bp(〈V, D,C〉) = branchAndPrune(〈V, D,C〉). Obviously branch&prune is a
narrowing algorithm, which does not add new elements to the given domain at any
time:

Lemma 1. Let 〈V,D, C〉 be a constraint network.∀v ∈ V : bp(〈V,D, C〉)v ⊆ Dv.

As an important feature, the branch&prune algorithm does not remove any element
from any variable domain which occurs in a solution.

WCLP 2005 32 Ulmer Informatik-Berichte 2005-01

Lemma 2. LetCN be a constraint network.∀v ∈ V : bp(CN)v ⊇ πvsol(CN).

The quality of the domain reduction, which is obtained by our version of the branch&-
prune algorithm, strongly depends on the network decomposition strategy. In the next
section, we will introduce a sufficient decomposition criterion called ‘independent solv-
ability’, which guarantees maximally reduced domains for constraint networks over
finite domains. For decomposition algorithms based on this criterion, the computed do-
mains are identical to the domains which are computed by the original branch&prune
algorithm without network decomposition. The approximation accuracy for constraint
networks over continuous or mixed domains depends on the chosen interval bound rep-
resentation precision, the implementation of the methodbranch , and the used nar-
rowing operators. Let us assume that the methodbranch partitions a given domain
whenever possible with respect to the chosen interval bound representation, that all con-
straints describe continuous functions, and that the type of local consistency obtained
by the narrowing operators converges with decreasing variable domain diameters to
arc-consistency or a strong approximation like hull-consistency [1]. Then, the result-
ing domain converges with increasing bound representation precision to the maximally
reduced domain.

In practice, the required accuracy depends on the analysis task to solve. Often weak
approximations of maximally reduced domains suffice. If that is the case, the key to
scale the precision of the result with regard to necessary accuracy and available re-
sources lies in the splitting strategy used by the methodbranch . Our implementation
selects continuous variables as split-variables only if the absolute and the relative diam-
eters of their current domain bounds exceed specified thresholds.

Definition 4 (absolute and relative diameter).Let I = [a b] be an interval. The ab-
solute diameter ofI is defined bydiam(I) = b− a and the relative diameter is defined
by

diamRel(I) =

0 : a = 0 = b
∞ : a < 0 ≤ b ∨ a ≤ 0 < b

diam(I)
min(|a|,|b|) : otherwise.

(1)

Especially in underdetermined networks a careful selection of appropriate thresh-
olds is crucial for the success of the analysis.

4 Constraint Network Decomposition

When applying the branch&prune algorithm to possibly underdetermined constraint
networks of several thousand constraints, the main problem is efficiency. We address
this issue with a new structure-based approach.

In the field of continuous CSP solving, strong graph decomposition algorithms are
known [2] which are based on the Dulmage and Mendelsohn decomposition. The result
of this decomposition is a directed acyclic graph of blocks1. Unfortunately, those algo-
rithms cannot be applied here, due to the hybrid structure of our constraint networks.

1 Blocks correspond to subnetworks in our approach and generally include cycles. They are
connected by directed arcs which represent causal dependencies.

WCLP 2005 33 Ulmer Informatik-Berichte 2005-01

While conditions might be handled by a two step simulation approach, which separates
mode identification from continuous behavior prediction, inequalities are definitely not
covered by the Dulmage and Mendelsohn decomposition technique. Solvers based on
this decomposition techniques compute series of point-solutions, but fail to determine
complete ranges for variables in underdetermined networks.2

The decomposition criteria proposed here are much weaker, but do not impose re-
strictions on the type of relations used. Their aim is to identify parts of the constraint
network which can be solved sequentially, one after the other. Besides the graph in-
formation obtained from the constraint network structure, we integrate another source
of information, namely, the current value ranges of the variables. Since the ranges are
subject to change during the recursive constraint solving process, graph decomposition
is not applied as a preprocessing step, but is performed anew after each pruning step.3

4.1 Graph Notions

The static dependency structure of a constraint networkCN = 〈V,D, C〉 is represented
by an undirected bipartite graphG calledconstraint graph ofCN . The set of vertices
is defined by the union of all variables and all constraints inCN . Undirected edges
connect each constraint with the variables of its scope. We represent undirected edges
by sets. So we get

G = 〈V ∪ C, {{c, v} | c ∈ C ∧ v ∈ V ∧ v ∈ scope(c)}〉.

For the computation of maximally reduced domains, dependencies between vari-
ables whose domains are not uniquely restricted are of special interest. We call a vari-
ablev relevantiff |Dv| > 1. ReplacingV by the set of all relevant variablesVr ⊆ V
in the definition above, a subgraph ofG is obtained which we callrelevant subgraph of
CN .

Fig. 3. A relevant subgraph

The complexity of the task to compute maximally reduced domains for a given
constraint system strongly depends on the structure of its relevant subgraph. If the graph
is acyclic pure local propagation is sufficient, as the following theorem states.

2 One reason for this lies in hidden cycles between different blocks. While causality between
different blocks is cycle-free, dependencies are not. In general, the corresponding undirected
version of the block graph is cyclic.

3 Implementations can profit from the monotonic refinement of ranges by reusing graph analysis
results gained one recursion level up.

WCLP 2005 34 Ulmer Informatik-Berichte 2005-01

Theorem 1. Let CN = 〈V,D, C〉 be a constraint network with a non-empty domain.
If CN is arc-consistent and its relevant subgraph acyclic, thenD is maximally reduced
with respect toCN .

Proof. Let CN be arc-consistent and its relevant subgraphG be acyclic. Obviously
∀v ∈ V : Dv ⊇ πvsol(CN). We show that∀v ∈ V : Dv ⊆ πvsol(CN).

Let Cr ⊆ C be the set of all constraints, whose scope contains at least one relevant
variable. SinceCN is arc-consistent, each complete instantiation ofD which satisfies
all c ∈ Cr also satisfies allc ∈ C \ Cr. Hencesol(CN) = sol(〈V, D,Cr〉) and it
suffices to show that∀v ∈ V : Dv ⊆ πvsol(〈V, D,Cr〉).

By precondition, each variable domain contains at least one value. IfCr is empty,
all complete instantiations ofD are solutions of〈V, D,Cr〉 and there exists at least one.
Hence∀v ∈ V : Dv ⊆ πvsol(〈V, D, Cr〉).

Otherwise letv ∈ V and a ∈ Dv be chosen arbitrarily. We have to prove that
there exists a solution of〈V,D, Cr〉 which contains the assignment〈v, a〉. Let Gr be
the relevant subgraph ofsn(Cr, CN). Gr contains at least one constraint and a relevant
variable which is connected to it.

Case 1:v is a vertex ofGr. SinceG is acyclic,Gr is acyclic too. Hence, we can
arrange its nodes as a forest, in which one of the trees is rooted byv. Nodes with even
depth are variables and with odd depth constraints. Let<Cr be a total ordering on
the constraint vertices which agrees withdepth, and for each instantiatione let mc(e)
denote the minimal constraintc with respect to<Cr which is not satisfied.

Let us now assume that there is no solution of〈V, D,Cr〉 which contains the as-
signment〈v, a〉. Among the complete instantiations ofD which contain〈v, a〉, there
must be an instantiatione with the property thatc = mc(e) is maximal with respect
to <Cr . SinceCN is arc-consistent, regardless of the value assignment which is used
in e for the parent variablevp of c in Gr, there must exist value assignmentses for all
other variables inscope(c) such thatc is satisfied. By replacing ine the assignments
for all variables inscope(c) \ {vp} by es, we obtain a new instantiatione′ with differs
from e in some assignments for the child variables ofc in Gr. Since it satisfiesc and
(like e) all smaller constraints with respect to<Cr , we getmc(e′) >Cr mc(e), which
is a contradiction to our assumption. So there must be a solution of〈V,D, Cr〉 which
contains the assignment〈v, a〉.

Case 2:v is not a vertex ofGr. Let v′ be a variable vertex ofGr anda′ ∈ Dv′

chosen arbitrarily. As proved in case 1 there exists a solutione of 〈V,D, Cr〉 which
contains〈v′, a′〉. Sincev is irrelevant,Dv = {a}. We conclude thate must contain the
assignment〈v, a〉. 2

4.2 Independent Solvability

When searching for realizations ofdecomposeNetwork , the major motivation is the
reduction of computational costs to compute maximally reduced domains. The smaller
the resulting subnetworks, the better. But we have to be careful not to loose too much
narrowing quality, compared to the branch&prune variant without network decompo-
sition. We definitely want to guarantee maximally reduced domains for constraint net-
works over finite domains.

WCLP 2005 35 Ulmer Informatik-Berichte 2005-01

We start by defining a class of decompositions called independently solvable de-
compositions. Based on the definition, a sufficient but not necessary criterion for the re-
alization ofdecomposeNetwork is given. The problem of computing independently
solvable decompositions is addressed by providing a set of production rules.

Definition 5 (decomposition of a constraint network).Let CN = 〈V, D,C〉 be a
constraint network,L a set of mutually disjoint subsets ofC. The set of subnetworks
Λ =

⋃
Ĉ∈L{sn(Ĉ, CN)} is called a decomposition ofCN . Λv ⊆ Λ denotes the set of

all constraint networks inΛ which contain the variablev.

Definition 6 (independent solvability).LetCN = 〈V, D, C〉 be a constraint network,
Λ a decomposition ofCN . LetDis ⊆ D be a domain whose variable domains are com-
puted from the maximally reduced domains for the corresponding constraint networks
in Λ by intersection:∀v ∈ V : Dis

v =
⋂

cn∈Λv
πvsol(cn) ∩Dv

Λ is called independently solvable, iffDis is empty or maximally reduced with re-
spect toCN .

An implementation ofdecomposeNetwork can be based on independent solv-
ability. In this case, for any constraint networkCN over finite domains,decompose-
Network computes a vector〈C1, . . . , Cn〉with the property that

⋃
1≤i≤n{sn(Ci, CN)}

is an independently solvable decomposition ofCN . In the followingbpis(CN) denotes
the result of a variant of the branch&prune algorithm which uses an independent solv-
ability baseddecomposeNetwork implementation.

Theorem 2 (correctness of branchAndPrune).The branch&prune algorithm returns
maximally reduced domains for all constraint networks over finite domains if the im-
plementation ofdecomposeNetwork is based on independent solvability.

Proof. (Sketch) Thanks to Lemma 2, it suffices to show, that for all domainsD which
are composed of finite variable domains, the following proposition holds:

∀C ∀V ∀v ∈ V : bpis(〈V,D, C〉)v ⊆ πvsol(〈V,D, C〉). (2)

The proof is a strong induction over the domain size. The central loop invariant is

empty(D′) ∨ ∀v ∈ V : D′
v ⊆

⋂

cn∈Λi
v

πvsol(cn) ∩Dpr
v ,

wherei is the number of previously performed loop body evaluations,Dpr the contents
of the algorithm variableD′ after pruning,Λi =

⋃
j≤i{sn(Cj , 〈V,Dpr, C〉)}, andCj

the components of the vector which was returned bydecomposeNetwork . 2

Consequently, independent solvability is a sufficient criterion to guarantee maxi-
mally reduced domains for constraint networks over finite domains. We now face the
task how to compute such decompositions. The Lemmas 3 – 6 are called production
rules for independently solvable decompositions. They suggest to start with a trivial
decomposition, and to refine it subsequently by removing or splitting contained subnet-
works.

WCLP 2005 36 Ulmer Informatik-Berichte 2005-01

Fig. 4. Constraint removal and subnetwork removal

Lemma 3 (trivial decomposition). LetCN = 〈V, D, C〉 be a constraint network. The
set{sn(C, CN)} is an independently solvable decomposition ofCN .

Proof. (Sketch) IfD is empty,{sn(C, CN)} is an independently solvable decompo-
sition of CN . Otherwise let〈V̂ , D̂, C〉 = sn(C, CN). SinceDv is not empty for all
v ∈ V \ V̂ , every solution of〈V̂ , D̂, C〉 which contains the assignment〈v, a〉 can be
converted into a solution of〈V,D, C〉 with the same assignment and vice versa. So we
get for allv ∈ V̂ , πvsol(〈V̂ , D̂, C〉) = πvsol(〈V, D,C〉), which implies the lemma.2

Many interactions between different components depend on the current operational
or fault state of the system. An open switch disconnects two parts of a circuit, the same
is true for a closed valve in a hydraulic system or a broken belt in an engine. Using
conditional constraints to express state-dependent relations allows to disconnect parts
of the networks, which are not independent in general, but with respect to the currently
analyzed state.

Lemma 4 (constraint removal). Let CN = 〈V,D, C〉 be a constraint network,Λ]
{sn(Ĉ, CN)} an independently solvable decomposition ofCN andc ∈ Ĉ a constraint,
whose condition cannot be fulfilled by the instantiations ofD. ThenΛ ∪ {sn(Ĉ \
{c}, CN)} is an independently solvable decomposition ofCN .

Proof. Sincec is satisfied by any instantiatione with scope(e) ⊇ scope(c), we get
sol(sn(Ĉ \ {c}, CN)) = sol(sn(Ĉ, CN)) which implies the lemma. 2

As stated by Theorem 1, domains of arc-consistent acyclic networks are maximally
reduced. Therefore, such subnetworks can be removed from an independently solvable
decomposition. Since the branch&prune algorithm performs local propagation before
splitting the network, it can provide arc-consistency for certain subnetworks (e.g. sub-
networks over finite domains).

Lemma 5 (subnetwork removal).LetCN be a constraint network andΛ] {ĈN} an
independently solvable decomposition ofCN . If ĈN is arc-consistent and its relevant
subgraph acyclic, thenΛ is an independently solvable decomposition ofCN .

Finally, subnetworks whose relevant subgraphs do not overlap can be split, as stated in
the last production rule.

Lemma 6 (subnetwork splitting). LetCN be a constraint network,̂CN = sn(Ĉ, CN)
a subnetwork ofCN andΛ] {ĈN} an independently solvable decomposition ofCN .
Let furtherC1]C2 = Ĉ be a partitioning ofĈ andCN i = sn(Ci, CN) (1 ≤ i ≤ 2) the

WCLP 2005 37 Ulmer Informatik-Berichte 2005-01

Fig. 5. Subnetwork splitting

corresponding subnetworks. If the relevant subgraphs ofCN1 andCN2 do not overlap,
thenΛ ∪ {CN1, CN2} is an independently solvable decomposition ofCN .

Proof. (Sketch) Let〈V,D, C〉 = CN and〈V i, Di, Ci〉 = CN i for 1 ≤ i ≤ 2. Since
Di

v = Dv for all variablesv ∈ V i, and|Dv| = 1 for all common variablesv ∈ V 1∩V 2,
the union of all value assignments contained in any pair of solutionsei ∈ sol(CN i)
(1 ≤ i ≤ 2) forms a solutione of ĈN .

The rest of the proof instantiates the definition of independent solvability forΛ ∪
{CN1, CN2} andΛ] {ĈN} and makes a case differentiation about whethersol(ĈN)
is empty or not. 2

5 Experimental Results

We have integrated a Java implementation of the presented concepts into the commer-
cial model-based engineering tool RODON.

To demonstrate the usage of the branch and prune approach in our application focus,
we have chosen a diagnostic problem. Given a model of a real system and a symptom
describing some abnormal state, the diagnostic module of RODON performs a conflict
directed search for diagnostic candidates. The results presented in Table 1 are based
on a quantitative model of an automotive exterior lighting system (see Fig. 6). It con-
sists of three electrical control units, 10 drivers providing 20 diagnostic trouble codes,
4 switches, 12 actuators and several connector blocks, wires, fuses, diodes, resistors
and relays. Altogether 86 physical components are included, defining 143 single faults
including unknown fault modes for all connector boxes. The behavior model is built out
of 1816 variables (most of them quantitative and unbounded) and 1565 constraints.

The first diagnosed symptom (4) describes the observation that two rear lights are
dimmed which can be explained for example by a disconnected ground node. RODON
checks 15 diagnostic candidates and returns five of them which are consistent with the
given symptom. The second symptom (3) represents a partial system state in which two
side marker fault codes indicate a short to ground failure. Here 18 diagnostic candidates
are checked and two returned, including a multiple fault. For both symptoms behavior

WCLP 2005 38 Ulmer Informatik-Berichte 2005-01

Fig. 6. The model-based engineering tool RODON

prediction based on pure local propagation fails due to a large number of algebraic
cycles.

Table 1 shows that while the number of successful network decompositions (#splits)
is limited in the presented example runs, the impact on the number of recursive solver
calls (#propagations) as well as the overall time to compute the diagnosis (t, measured
on a Pentium 4 with 1.1GHz) is significant. We have tested the algorithm in different
analysis tasks with various models including much larger ones. As one would expect,
the performance gains differ from case to case, but the presented results seem to be typ-
ical for the average case. Network decomposition has shown to reduce execution time
significantly when underconstraint states are investigated. The smaller the diameters
used to select split variables are, the more computation time can be saved.

Task Characterization Without Decomposition With Decomposition
Symptomdiam diamRel #propagations t [sec] #splits#propagationst [sec]

4 1 5 100 5.4 7 80 1.9
4 0.01 1 954 11 7 204 3
4 0.01 0.1 99056 1209 7 4768 34
3 1 5 8453 66 5 261 3.5
3 0.01 1 > 55000 > 1000 5 21821 190

Table 1.Performance gained by network decomposition during diagnostic runs

6 Conclusion and Related Work

Reducing domains in large cyclic constraint structures is generally a hard task, espe-
cially if the system includes continuous variables. The currently known inference meth-
ods can be divided into algebraic and numeric methods.

Several contributions have addressed the problem of solving cyclic constraint struc-
tures by algebraic transformation algorithms (see e. g. [6] for a survey). By linearization,

WCLP 2005 39 Ulmer Informatik-Berichte 2005-01

a linear system of equations is obtained which can be solved by the Gauss-Seidel itera-
tive method. Polynomial systems can be transformed by Gröbner basis computation. A
common framework for transformations based on variable elimination called “Bucket
Elimination” is presented in [4].

Numeric methods reduce variable domains by combining local consistency criteria
with some kind of recursive trial-and-error strategy. The branch&prune algorithm dis-
cussed in this paper splits domains and tests local consistency of the resulting boxes.
Other numeric methods shift the bounds of variable domains until inconsistency is de-
tected (see e.g. [3]).

While algebraic methods can only be applied to more or less restricted types of
constraints, numeric methods suffer from their worst-case complexity, especially when
applied to large underconstraint networks. In this paper, we have presented a structure-
based approach to improve the performance of the branch&prune algorithm by defining
a class of state dependent network decompositions called ‘independently solvable de-
compositions’ and providing production rules to compute instances of it. The decompo-
sitions allow to solve independent parts sequentially instead of recursively, and thereby
reduce recursion depth significantly. Parts which are already maximally reduced are
identified by cycle analysis and removed from the network. These optimizations in-
crease significantly the size of models whose solution is feasible in practice.

The class of independently solvable decompositions is very general and can improve
other numeric domain reduction methods as well. Nevertheless, one obvious limitation
of all decompositions which can be derived by the provided production rules is, that
the contained subnetworks do not share any common relevant variable. That is partly
because the production rules do not span the complete class of independently solv-
able decompositions. But the required notion of independence also limits the available
decompositions more than necessary. We are currently working on relaxations of this
criterion.

References

1. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited. InProceedings
Int. Logic Programming Symposium, 1994.

2. Christian Bliek, Bertrand Neveu, and Gilles Trombettoni. Using graph decomposition for
solving continuous CSPs.Lecture Notes in Computer Science, 1520:102+, 1998.

3. Lucas Bordeaux, Eric Monfroy, and Frederic Benhamou. Improved bounds on the complexity
of kB-consistency. InIJCAI, pages 303–308, 2001.

4. Rina Dechter. Bucket elimination: A unifying framework for reasoning.Artificial Intelligence,
113(1-2):41–85, 1999.

5. Rina Dechter.Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence.
Morgan Kaufmann, May 2003.

6. L. Granvilliers, E. Monfroy, and F. Benhamou. Symbolic-interval cooperation in constraint
programming. InProceedings of the 2001 international symposium on Symbolic and algebraic
computation, pages 150–166, 2001.

7. P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a branch
and prune approach.SIAM Journal on Numerical Analysis, 34(2):797–827, April 1997.

8. A. K. Mackworth and E. C. Freuder. The complexity of some polynomial network consistency
algorithms for constraint satisfaction problems.Artificial Intelligence, 25, 1985.

WCLP 2005 40 Ulmer Informatik-Berichte 2005-01

Towards an Object-Oriented Modeling of

Constraint Problems?

Armin Wolf, Henry Müller, and Matthias Hoche

Fraunhofer FIRST, Kekuléstraße 7, D-12489 Berlin, Germany
{Armin.Wolf|Henry.Mueller|Matthias.Hoche}@first.fraunhofer.de

Abstract. In this paper we present a first version of a ”model and run”
paradigm for Constraint Programming (CP) following J.F. Puget’s ideas
of the next challenge in CP: simplicity of use. To obtain an easy to use
modelling of problems we suggest a combination of the Unified Modelling
Language UML and the Object Constraint Language OCL as a standard
file format. We mainly concentrate in this paper on a way to achieve au-
tomatic data driven generation of complex constraint networks by the
use of constraint network schemata. Therefore we define what a con-
straint network schema formally means, how it is modelled correctly and
when some information about a concrete network is compatible. Due to
the aspect of data driven constraint network generation, we further give
an instruction on how constraint network schemata (CNS) can be used
to fill possible gaps in the problem’s data and automatically complete
constraint networks.

1 Introduction

The interpretation of real problems and formulation as a constraint satisfaction
problem requires experience and expertise of a constraint programmer. We know
from our own experience with our constraint solver firstcs [2] that business
partners are not in the position to model their problems on their own. The only
chance to include such non-constraint-experts in the modelling is to simplify
the whole process (see figure 1). Making sufficient abstract instruments without
loosing the expressiveness is a challenge.

In [4] J.-F. Puget argues for a modelling language for CP like MPS for MP
to allow a simple use of CP - a ”model-and-run” paradigm. Following him, for a
further success of CP in industrial applications these items should be developed:

– A standard file format for expressing CP models,
– a library of CP algorithms that can get models as input and produces solu-

tions as output without requiring additional inputs,
– books that focus on modelling,
– and software improvement that do not require model rewriting.

? The work presented in this paper is funded by the European Union (EFRE) and the
state Berlin within the research project “inubit MRP”, grant no. 10023515.

WCLP 2005 41 Ulmer Informatik-Berichte 2005-01

Fig. 1. Towards simplicity

Following this proposal, we will suggest a standard file format to express CP
models in the first part. The second and main part will show how to transform
the developed file format into adequate constraint networks. The aim of this pa-
per is to provide a programming system independent, object-oriented modelling
technique for constraint problems. Model transformation to improve efficiency
like symmetry breaking, implied constraints, auxiliary variables, dual models
etc. (cf. [6]) are not in the scope of this paper.

Our approach works out the common structures of constraint problems, the
so called constraint network schemata. In contrast to constraint patterns [6] these
are formal specifications of some constraint problem classes in a object-oriented
sense.

Example 1. All job-shop-scheduling problems have a common structure: They
consists of a set of n machines and m jobs. These jobs consist in turn of n tasks.
The tasks of any job have to be processed one after the other using a different
machine.

In the following, we propose a process for a data-driven generation of con-
straint networks by the use of such schemata. Further, we define some necessary
properties for this generation process.

2 Choosing the standard file format

We argue that the standard file format of our choice must provide the following
characteristics:

– widely used and accepted in software engineering,
– object-oriented modelling for well-structuring and information re-use,
– well-known and used in industry and science,
– plenty of available tools to support the modelling process.

With respect to these demands, we decided to use a combination of the
Unified Modelling Language (UML) and the Object Constraint Language (OCL).

WCLP 2005 42 Ulmer Informatik-Berichte 2005-01

UML not only standardizes object-oriented modelling but also the file format
XMI, which enables platform independent model processing and exchange.

It should be mentioned, that our focus on object-oriented modelling will
not restrict the used CP systems to this programming paradigm. A lot of work
was already done in the community to make modelling transparent to the used
system, see [5] for example.

3 Generating Constraint Networks using UML and OCL

Beyond checking given constraint network objects against formally specified
structural and semantical aspects the main focus of our work lies on an auto-
matic, data-driven generation of a “complete” constraint network from partially
available data, i.e. given some values or variables the interrelating constraints
are generated automatically by the use of a given formal schema. We propose
the Unified Modelling Language UML [3] and its extension the Object Constraint
Language OCL [7] for the formal specification of constraint network schemata. In
our approach we are using some UML class diagrams to describe different types
of constraints and the values as well as the variables constrained by them. The
idea is to allow the user to build up constraint networks schemata iteratively:

– At the bottom level the “atomic” constraint network schemata are the avail-
able/supported constraints types, value and variable types.

– At a higher level the “complex” constraint network schemata consist of con-
straint networks, values and variables already defined on a lower level.

Example 2. In a resource allocation environment the atomic constraint network
schemata are “single resource”, “task”, “weighted sum”, “before”, and other
types of constraints. Complex constraint network schemata like “jobs” consists
of “task” and “before” constraints.

However, in “pure” UML there are only limited possibilities to describe the
interrelations between the classes’ instances. Hence, we have chosen OCL to fill
this gap. In detail, the construction of complex constraint network schemata
works as follows:

1. Existing atomic or complex constraint networks are either aggregated as
members into a new complex constraint network schema (i.e. in a new UML
class) or are associated with them.

2. The aggregated or associated constraint network schemata are connected via
invariant object equations formulated in OCL.

Here, the introduction of OCL enriches the expressiveness of the UML model.
What is needed in the first place to generate a constraint network is:

– the formulation of equations within constraint network schemata. E.g. if a
new complex schema is created, we most likely want to express variable
identities to connect already defined constraint network schemata.

WCLP 2005 43 Ulmer Informatik-Berichte 2005-01

– the formulation of sequences of instances of constraint network schemata
which avoids ambiguity and enables “generic” constraint schemata like the
sum of a variable number of addends.1

Later, the formulation of restrictions on basic data types, e.g. min ≥ 0 where
min is a number, have to be added, too.

3.1 Constraint Network Schemata (CNS)

Definition 1 (constraint network schema). A constraint network schema
(CNS) consists of

– a non-empty finite set UML class diagrams having the structure

Class1

field11
: [sequence of] FieldClass11

...
...

fieldn1
: [sequence of] FieldClassn1

· · ·

Classk

field1k
: [sequence of] FieldClass1k

...
...

fieldnk
: [sequence of] FieldClassnk

– and of finitely many OCL equations

f1i
.fui

= f ′
1i

.f ′
vi

(1k ≤ i ≤ mk)

which are the invariants of the class diagrams Class j (1 ≤ j ≤ k)

where Class1 , . . . ,Classk are pairwise different class identifiers which are dif-
ferent from OCL basic types, i.e Integer, Real, etc. and for each j = 1, . . . , k

the identifiers field1j
, . . . ,fieldnj

are pairwise different, too. Furthermore, for
each ij = 11, . . . , n1, . . . , 1k, . . . , nk the field class identifiers FieldClass ij are
either in the set {Class1 , . . . ,Classk} or OCL basic types and the identi-
fiers f1i

, . . . , fui
as well as f ′

1i
.f ′

vi
are field identifiers, i.e. in the set

{field11
, . . . ,fieldn1

, . . . ,field1k
, . . . ,fieldnk

}. ut

In the previous definition, the non-UML, optional construct “sequence of”
represents an “ordered” association with default multiplicity “0..*” in UML, e.g.

UnitSum

sum: ConstraintVariable

addends: sequence of ConstraintVariable

stands for

UnitSum

sum: ConstraintVariable

0..*
addends

{ordered}

ConstraintVariable

min: Integer

max: Integer

In the following and for simplicity we use the compact textual representation

Class j :: field ij
: FieldClass ij and Class j :: field ij

: sequence of FieldClass ij

instead of the class diagrams

1 This will be realized via the UML annotation ordered.

WCLP 2005 44 Ulmer Informatik-Berichte 2005-01

Class j

...
...

field ij
: FieldClass ij

...
...

respective

Class j

...
...

field ij
: sequence of FieldClass ij

...
...

.

The following example shows an application of these modelling techniques
for a constraint satisfaction problem (CSP):

Example 3 (UML using OCL equations). Let be given a simple CSP consisting
of the UnitSum constraint presented before and the well-known AllDifferent con-
straint. The AllDifferent constraint is represented as a UML class diagram as
follows:

AllDifferent
0..*

values

{ordered}

ConstraintVariable

min: Integer

max: Integer

To model the CSP as UML we can now simply aggregate constraints to another
class representing the CSP.

CSP

sum: UnitSum

alldiff: AllDifferent

Inv: sum.addends = alldiff.values

This small example already demonstrates the need for OCL expressions as well as
showing how easily these expressions can be used. The problem is that the UML
aggregation says nothing about the relations between both constraint. Therefore
the OCL equation sum.addends = alldiff.values is added, expressing that sum and
alldiff share the same constraint variables.

3.2 Model Restriction — Well-Defined CNS

To reflect the iterative process of the definition of complex constraint network
schemata and to avoid non-termination in the definition process of their seman-
tics, recursion is not allowed. Therefore we define an order relation on CNS:

Definition 2. For a CNS with UML class diagrams named Class1 , . . . ,Classk

(cf. Definition 1), let ‘>’ be the binary relation on these diagrams such that

A > B holds if and only if A = Class j for an j ∈ 1, . . . , k and B =
FieldClass ij for an ij ∈ {1j . . . , nj}.

Obviously, a CNS is iteratively defined, if the transitive closure of this relation
is irreflexive and the smallest elements with respect to this closure are the basic
types. Both is important for the well-definition of a CNS:

Definition 3 (well-defined CNS). A CNS is well-defined if exactly one of its
UML class diagrams is the schema of a constraint variable:

WCLP 2005 45 Ulmer Informatik-Berichte 2005-01

ConstraintVariable

min: Integer

max: Integer

and the transitive closure ‘>+’ of the relation ‘>’ (cf. Definition 2)

– is irreflexive, i.e. C 6>+ C holds for any class diagram C in the CNS.
– the OCL basic types are the smallest elements; i.e for any class C in the

CNS it holds C >+ Integer or C >+ Real, etc.

Furthermore, for the finitely many OCL equations

f1i
.fui

= f ′
1i

.f ′
vi

(1k ≤ i ≤ mk)

which are the invariants of the class diagrams Class j (1 ≤ j ≤ k) it holds that

– the field identifiers f1i
and f ′

1i
are in the class diagram Class j , or in detail

f1i
= fieldpj

and f ′
1i

= fieldqj
for some pj , qj ∈ {1j, . . . , nj},

– for any pair fl.fl+1 (l = 1i, . . . , u − 1i) where fl = fieldpj
in the class di-

agram Class j , the identifier fl+1 is a field identifier in the class diagram
FieldClasspj

; the same holds for any pair f ′
l .f

′
l+1

(l = 1i, . . . , v − 1i),
– the field identifiers fui

and f ′
vi

refer to the same data-type: if fui
= fieldpj

and f ′
vi

= fieldql
holds then their field classes in the class diagrams Class j

respective Class l will be the same, i.e. FieldClasspj
= FieldClassql

and it
either holds

Class j :: fieldpj
: sequence of FieldClasspj

and

Class l :: fieldql
: sequence of FieldClassql

or

Class j :: fieldpj
: FieldClasspj

and Class l :: fieldql
: FieldClassql

Example 4. The CNS presented in Example 3 is already a well defined CNS:

– there are no recursions in the model,
– the binary relation >+ is irreflexive, the class diagram CSP is the greatest

element and the OCL basic type Integer is the smallest element,
– the OCL field identifiers are in the same class diagram, and
– sum.addends and alldiff.values refer to a sequence of ConstraintVariables.

3.3 Compatibility with a CNS

For the generation of a concrete constraint network out of some partial informa-
tion, some given CNS requires a common semantics. Therefore, we have chosen
the Herbrand algebra and a constraint system consisting of syntactical equations.

We assume that the partial information is a term which is compatible with
a given well-defined CNS.

WCLP 2005 46 Ulmer Informatik-Berichte 2005-01

Definition 4 (Compatibility with a CNS).
Let a well-defined CNS be given where Classk is the greatest element with

respect to the order relation ‘>+’. Then, every class identifier Class j represents
an nj-ary function symbol, every field identifier field ij

as well as every OCL
basic type Integer, Real, etc. an unary function symbol and there are the usual
integer, real, etc. constants.

We define the compatibility condition C for any given term t with respect to
any class diagram named Class j (1 ≤ j ≤ k) in the following way:

C(t,Classj) holds for 1 ≤ j ≤ k if and only if t is a variable or a structure

t := ′Class j (field1j
(t1), . . . ,fieldnj

(tn))

and for each term ti with 1 ≤ i ≤ n

– either the class diagram Class j has the structure

Class j :: field ij
: FieldClass ij and C(ti,FieldClass ij) holds,

– or the class diagram Class j has the structure

Class j :: field ij
: sequence of FieldClass ij and the term ti is

• either the empty list, i.e. ti := []
• or a non-empty list of terms, i.e. ti := [s1, . . . , sm] (m > 0) and the com-

patibility condition holds for its sub-terms and their field class diagrams:
C(s1,FieldClass ij), . . . , C(sm ,FieldClass ij).

A term t is compatible with the given well-defined CNS if and only if the
compatibility condition C(t,Classk) holds.

Example 5. Let the well-defined CNS presented in Example 3 be given. Then,
the term t := ’CSP(sum(’UnitSum(sum(X), addends([U, V, W]))), alldiff(Z)) with
the variables X, U, V, W, Z is compatible to this CNS: Following Definition 4,
this term is compatible because the compatibility condition holds for all its sub-
terms:

– C(’UnitSum(sum(X), addends([U, V, W]), UnitSum) holds because X is a vari-
able and [U, V, W] is a list of variables and the class diagram UnitSum has

the structure UnitSum :: addends : sequence of ConstraintVariable .

– C(Z, AllDifferent) holds because Z is a variable.

Proposition 1. For any well-defined CNS and any term t the compatibility con-
dition C is well-defined.

Proof. By induction over the term’s depth. ut

3.4 Term Extension

Now, given term t which is compatible with a well-defined CNS, we are able to
extend this term with respect to this CNS such that all variables representing
field objects are substituted by a corresponding term. Therefore we define the
function extend:

WCLP 2005 47 Ulmer Informatik-Berichte 2005-01

Definition 5 (Term Extension). Let a well-defined CNS be given. Then for
any term t which is compatible to this CNS and any two class diagrams C and
D in this CNS we define extend(t, C, D) as follows:

extend(′Classj (field1j
(t1), . . . ,fieldnj

(tnj
),Class j ,D)

:= ′Class j (field1j
(extend(t1 ,FieldClass1j

,Class j), . . . ,

fieldnj
(extend(tnj

,FieldClassnj
,Class j))

for any sub-terms t1, . . . , tnj
.

extend(X,FieldClass ij ,Class j)

:= ′FieldClass ij (field11j
(extend(Y1 , ′FieldClass1ij

, ′FieldClass ij), . . . ,

fieldnij
(extend(Ynij

, ′FieldClassnij
, ′FieldClass ij))

for any variable X if the class diagram Class j has the structure

Class j :: field ij
: FieldClass ij . Here Y1, . . . Ynij

are new pairwise different vari-

ables.

extend(X,FieldClass ij ,Class j) := X

for any variable X if the class diagram Class j has the structure

Class j :: field ij
: sequence of FieldClass ij .

In all other cases the value of extend(t, C, D) is undefined.

Proposition 2. Let a well-defined CNS be given where Classk is the great-
est element with respect to the order relation ‘>+’ and a compatible term t.
Then, the extended term extend(t,Classk ,Classk) is well-defined and compat-
ible to the given CNS. Further, all variables in this term are in sub-terms
representing lists or OCL basic types, i.e. any variable X is in a sub-term
′Class j (. . . ,field ij

(X), . . .) and the class diagram Class j) has the structure

Class j :: field ij
: sequence of FieldClass ij or it is in a sub-term ’Integer(X) or

’Real(X), etc.

Proof. by induction over the term’s depth using the properties of a well-defined
CNS and the compatibility condition. ut

Example 6. Considering the well-defined CNS presented in Example 3 and the
term t presented in Example 5 which compatible to this CNS. Then, the extended
term

extend(t, CSP, CSP)

:= ’CSP(sum(’UnitSum(sum(’ConstraintVariable(min(X1), max(X2))),

addends([’ConstraintVariable(min(U1), max(U2)),

’ConstraintVariable(min(V1), max(V2)),

’ConstraintVariable(min(W1), max(W2))]))),

alldiff(’AllDifferent(values(Z1))))

WCLP 2005 48 Ulmer Informatik-Berichte 2005-01

is well-defined and compatible to the CNS, too. Further, the new variables
X1, X2, U1, U2, V1, V2, W1, W2 represent values of the OCL basic type Integer

and the new variable Z1 represents a list.

3.5 Dissolving OCL equations

Considering the extension of a term which is compatible to a well-defined CNS,
we are not yet able to derive the intended constraint network because the inter-
relations between the constraints and the constraint variables, esp. the sharing
of variables, are not reflected. The reason is that the OCL equations in the CNS
are not dissolved. Therefore, we define the semantics of a CNS’s OCL equations,
i.e. we transform them into a set of syntactical equations. Their satisfiability and
solutions are effectively computable via unification and the determination of a
possible most general unifier (mgu). The necessary transformation is performed
in two steps:

1. the two sub-terms in the term t which are referred to by both sides an OCL
equation are determined by the use of a function dissolve,

2. then, the determined sub-terms are syntactically equated.

In the following we define the function dissolve:

Definition 6 (Dissolving). Let a well-defined CNS be given. Then for any
term t which is compatible to this CNS, any sequence of field identifiers F in
this CNS we define dissolve(t, F) as follows:

dissolve(X, f) := X

for any variable X and any field identifier f .

dissolve(′Classj (field1j
(t1), . . . ,fieldnj

(tnj
)),field ij

) := tij

for any term ′Classj (field1j
(t1), . . . ,fieldnj

(tnj
)) and any field identifier f .

dissolve([], f) := []

dissolve([s1, . . . , sm], f) := flatten([dissolve(s1, f), . . . , dissolve(sm, f)])

for any terms s1, . . . , sm and any field identifier f . Here, flatten flattens possibly
nested lists such that the lists’ elements are the elements of one common list
keeping their order, e.g. flatten([[a, [b]], [[c, d]], e]) = [a, b, c, d, e].

dissolve(t,field ij
.f2fn) := dissolve(dissolve(t,field ij

), f2fn)

for any term t and any non-empty sequence of field identifiers f2.fn.
In all other cases the value of dissolve(t, F) is undefined.

Proposition 3. Let a well-defined CNS and a term t be given that satisfies the
compatibility condition C(t,Class j) for a class diagram Class j in this CNS. Then
for any OCL invariant f1.fu = f ′

1.f
′
v in this class diagram

dissolve(t, f1.fu) and dissolve(t, f ′
1.f

′
v)

are well-defined.

WCLP 2005 49 Ulmer Informatik-Berichte 2005-01

Proof. by induction over the term’s depth using the properties of a well-defined
CNS and the compatibility condition. ut

Example 7. Considering the well-defined CNS presented in Example 3 and the
extended term t′ := extend(t, CSP, CSP) determined in Example 6. If we fur-
ther consider the invariant of the class diagram CSP, i.e. the OCL equation
sum.addends = alldiff.values then it will hold

dissolve(t′, sum.addends) = [’ConstraintVariable(min(U1), max(U2)),

’ConstraintVariable(min(V1), max(V2)),

’ConstraintVariable(min(W1), max(W2))]

dissolve(t′, alldiff.values) = Z1

Based on this important property, we are now able to consider the OCL
equations adequately. Therefore we “extract” all syntactical equations from the
constraint network’s term representation. Then, after the determination of a
possible, most general solution it is only a small step to a concrete constraint
network.

Definition 7 (OCL Extensions). Let a well-defined CNS be given where
Classk is the greatest element with respect to the order relation ‘>+’. Fur-
ther, let a term t be given which is compatible to this CNS. Then, the extension
t′ := extend(t,Classk ,Classk) has the structure

t′ := ′Classk (field1k
(s1), . . . ,fieldnk

(snk
))

where s1, . . . , snk
are sub-terms.

Now, for all OCL equations f1i
.fui

= f ′
1i

.f ′
vi

(1k ≤ i ≤ mk) which
are the invariants of the class diagram Classk we compute the pairs of terms

pi := dissolve(t′, f1i
.fui

)

qi := dissolve(t′, f ′
1i

.f ′
vi

)

Then, for the set of syntactical equations
⋃

1k≤i≤mk

{pi
.
= qi}

we compute a mgu λ, if it exists; otherwise there is no OCL extension of the
term t – respective of its extension t′ – which is compatible to the given CNS. If
λ exists, we will apply this process recursively to all the sub-terms

λ(s1), . . . , λ(snk
)

and for all OCL equations which are the invariants of the field class diagrams
FieldClass1k

, . . . ,FieldClassnk
.

If this process terminates without returning the information that no OCL
extension exists, there will be a sequence of substitutions; let their combination
be the substitution θ. In this case, the extension θ(t′) of the term t′ and of the
term t will be called an OCL extension of t with respect to the given CNS.

WCLP 2005 50 Ulmer Informatik-Berichte 2005-01

The generation process in Definition 7 terminates, because the functors of
the generated sub-terms are smaller than the functor of the aggregating term
with respect to the order relation >+. Furthermore, the extension θ(t) of t is by
construction compatible to the given well-defined CNS.

Example 8. Considering the well-defined CNS presented in Example 3 and the
extended term t′ := extend(t, CSP, CSP) determined in Example 6. Then, from
Example 7 we know that

Z1

.
= [’ConstraintVariable(min(U1), max(U2)),

’ConstraintVariable(min(V1), max(V2)),

’ConstraintVariable(min(W1), max(W2))]

is the only syntactical equation to be solved which results from the OCL equation
sum.addends = alldiff.values. Its solution is quite simple, the mgu is

λ := {Z1 7→ [’ConstraintVariable(min(U1), max(U2)),

’ConstraintVariable(min(V1), max(V2)),

’ConstraintVariable(min(W1), max(W2))]} .

Thus, the term

λ(t′) := ’CSP(sum(’UnitSum(sum(’ConstraintVariable(min(X1), max(X2))),

addends([’ConstraintVariable(min(U1), max(U2)),

’ConstraintVariable(min(V1), max(V2)),

’ConstraintVariable(min(W1), max(W2))]))),

alldiff(’AllDifferent(values([’ConstraintVariable(min(U1), max(U2)),

’ConstraintVariable(min(V1), max(V2)),

’ConstraintVariable(min(W1), max(W2))]))))

is an OCL extension of the term t with respect to the considered CNS.

Concluding, the presented examples show the extension of some partial in-
formation about a constraint network using a formally specified schema such
that in a further step a concrete constraint network is constructible. Therefore,
only the variables in the OCL extension have to be replaced by default values,
e.g. the min’s and max’s in the ConstraintVariables. Then, the ConstraintVariables

as well as the basic constraints AllDifferent and UnitSum have to be generated,
respecting the sharing of common objects defined by the most general unifier(s).

4 Future work

At this point we have described how to represent constraint networks using UML
and OCL. We showed how missing parts of data-driven models can be added

WCLP 2005 51 Ulmer Informatik-Berichte 2005-01

by the use of a given schema and how data-driven constraint network creation
can be achieved. Future work focuses on the solution of these networks. We
plan to present a first implementation of a constraint network parser that is
able to interpret CNS, to automatically generate a CSP and to solve it. Then,
after performing the possibility of generating and solving a constraint network
automatically, we will focus our work on “model optimizations”. We believe that
the symmetry breaking and other optimization can be either performed explicitly
in the formal model or later automatically via model transformation. Another
challenge is the integration of adequate search and propagation strategies into
the formal model. Or even better, to define analysis processes which choose a
good strategy automatically.

On the long term we are willing to make CNS available in information sys-
tems. The development of a web service interface, cf. [1], will be the natural
extension of constraint network schemata. In doing so, we will most likely stick
again to standard techniques like WSDL and SOAP. High level modelling ac-
commodates not only the end-user but makes it also an appropriate foundation
for automatic interaction between information systems.

Last but not least, we have to add some well-founded extensions to the formal
definitions presented here, e.g. domain restrictions like min > 0.

References

1. D. Seipel B. Heumesser, A. Ludwig. Web services based on prolog and xml. In Pro-
ceedings of the 15th International Conference on Applications of Declarative Pro-
gramming and Knowledge Management – INAP 2004, pages 369–378, March 4 -
March 6 2004.

2. Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf. firstcs - A Pure
Java Constraint Programming Engine. In Michael Hanus, Petra Hofstedt, and
Armin Wolf, editors, 2nd International Workshop on Multiparadigm Constraint Pro-
gramming Languages – MultiCPL’03, 29th September 2003.

3. Object Management Group, Inc. OMG Unified Modelling Language Specification,
March 2003.

4. Jean-Francois Puget. Constraint programming next challenge: Simplicity of use.
In Marc Wallace, editor, Principles and Practice of Constraint Programming – CP
2004, 10th International Conference, Proceedings, number 3258 in Lecture Notes in
Computer Science, pages 5–8, Toronto, Canada, September/October 2004. Springer-
Verlag.

5. Hans Schlenker and Georg Ringwelski. Pooc - a platform for object-oriented con-
straint programming. In B. O’Sullivan, editor, Recent Advances in Constraints –
Selected Papers of the Joint ERCIM/CoLogNET International Workshop on Con-
straint Solving and Constraint Logic Programming, CSCLP 2002, number 2627 in
Lecture Notes in Artificial Intelligence, pages 159–170. Springer Verlag, 2003.

6. Toby Walsh. Constraint patterns. In Francesca Rossi, editor, Principles and Practice
of Constraint Programming – CP 2003, 9th International Conference, Proceedings,
number 2833 in Lecture Notes in Computer Science, pages 53–64, Kinsale, Ireland,
September/October 2003. Springer-Verlag.

7. Jos B. Warmer and Anneke Kleppe. The Object Constraint Language, Second Edi-
tion. Object Technology Series. Addision-Wesley, 2003.

WCLP 2005 52 Ulmer Informatik-Berichte 2005-01

Expressing Interaction in Combinatorial Auction

through Social Integrity Constraints ⋆

Marco Alberti1, Federico Chesani2, Marco Gavanelli1, Alessio Guerri2, Evelina
Lamma1, Michela Milano2, and Paolo Torroni2

1 ENDIF - Università di Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy.
{malberti|m gavanelli|elamma}@ing.unife.it

2 DEIS - Università di Bologna - Viale Risorgimento, 2 - 40136 Bologna, Italy.
{fchesani|aguerri|mmilano|ptorroni}@deis.unibo.it

Abstract. Combinatorial auctions are an interesting application of in-
telligent agents. They let the user express complementarity relations
among the items for sale, and let the seller obtain higher revenues. On
the other hand, the solving process, the so-called Winner Determina-
tion Problem (WDP) is NP-hard. This restricted the practical use of the
framework, because of the fear to be, in some WDP instances, unable to
meet reasonable deadlines. Recently, however, efficient solvers have been
proposed, so the framework starts to be viable.
A second issue, common to many agent systems, is trust: in order for an
agent system to be used, the users must trust both their representative
and the other agents inhabiting the society. The SOCS project addresses
such issues, and provided a language, the social integrity constraints, for
defining the allowed interaction moves, and a proof-procedure able to
detect violations.
In this paper we show how to write a protocol for combinatorial auc-
tions by using social integrity constraints. In the devised protocol, the
auctioneer interacts with an external solver for the winner determination
problem. We also suggest extensions of the scenario, with more auctions
in a same society, and suggest to verify whether two auctions interact.
We also apply the NetBill protocol for the payment and delivery scheme.

1 Introduction

Auctions have been practically used for centuries in human commerce, and their
properties have been studied in detail from economic, social and computer sci-
ence viewpoints. The raising of electronic commerce has pushed auctions as one

⋆ A preliminary version of this paper appeared in [1]. This work is partially funded
by the Information Society Technologies programme of the European Commission
under the IST-2001-32530 project in the context of the Global Computing initiative
of the FET (Future Emerging Technology) initiative and by the MIUR COFIN 2003
projects La Gestione e la negoziazione automatica dei diritti sulle opere dell’ingegno

digitali: aspetti giuridici e informatici and Sviluppo e verifica di sistemi multiagente

basati sulla logica.

WCLP 2005 53 Ulmer Informatik-Berichte 2005-01

of the favourite dealing protocols in the Internet. Now, the software agent tech-
nology seems an attractive paradigm to support auctions [2]: agents acting on
behalf of end-users could reduce the effort required to complete auction activities.
Agents are intrinsically autonomous and can be easily personalised to embody
end-user preferences. As the rise of the Internet and electronic commerce con-
tinues, dynamic automated markets will be an increasingly important domain
for agents.

Combinatorial auctions are types of auctions that give more expressiveness
to the bidders: in fact, bidders can place bids on sets of items, expressing comple-
mentarity and, in some cases, also substitutability among the items [3,4]. The
main drawback is that determining the winners is an NP-hard problem. This
delayed the practical applications of combinatorial auctions, mainly for fear not
to meet the given deadlines. Recently, however, solvers able to solve the winner
determination problem in reasonable time have been developed.

Of course, another issue common to many e-commerce applications is trust
[5]. Amongst the various aspects of trust in MASs (often related to credibility
levels between agents), we find utterly important that human users trust their
representatives: in order for the system to be used at all, each user must trust
its representative agent in the auction. The agent must be well specified, and a
formal proof of a correspondence between specification and implementation is,
at least, desirable. Also, even if the agents are compliant to their specifications,
the compliance to the social rules and protocols must be provable, in order to
avoid, or, at least, detect malicious behaviours.

A typical answer to such issues is to model-check the agents with respect
to both their specifications and requirements coming from the society. However,
this is not always possible in open environments: agents could join the society at
all times and their specifications could be unavailable to the society. Thus, the
correct behaviour of agents can be checked only from the external in an open
environment: by monitoring the communicative actions of the agents.

The SOCS project addresses these issues by providing formal definitions both
for the agents, that are based on Computational Logics, and are thus called
Computees, and for the society in an open environment.

In this paper, we focus on the societal aspects, and on the compliance of the
computees (or, in general, agents) to protocols and social rules. These can be
easily expressed in a logic language, the Social Integrity Constraints (icS) that
are an extension of the integrity constraints widely used in Abductive Logic
Programming, and, in particular, extend those of the IFF proof-procedure [6].

We implemented an abductive proof-procedure, called SCIFF (extending the
IFF), that is able to check the compliance to protocols and social rules given
a history of communicative actions. Besides a posteriori check of compliance,
SCIFF also accepts dynamically incoming events, so it can check compliance
during the evolution of the societal interaction, and raise violations as soon
as possible. SCIFF extends the IFF in a number of directions: it provides a
richer syntax, it caters for interactive event assimilation, it supports fulfillment
check and violation detection, and it embodies CLP-like constraints [7] in the

WCLP 2005 54 Ulmer Informatik-Berichte 2005-01

icS . SCIFF is sound [8] with respect to the declarative semantics of the society
model, in its abductive interpretation. The SCIFF has been implemented and
integrated into a Java-Prolog-CHR based tool [9].

In this paper, we show a definition of the combinatorial auction protocol in
Social Integrity Constraints. Since the solving process is NP-hard, we exploit an
efficient solver for the Winner Determination Problem. Finally, we propose to
extend the framework to check the compliance of two interacting auctions, in a
double auction scheme.

The paper is the extended version of a previous informal publication [1].
In Section 2 we recall the SOCS social model. We describe the combinatorial
auction scenario in Section 3). We present new work on extensions of the given
scenario (Section 4.1), and on experimentation (Section 5). We cite some related
work and, finally, we conclude.

2 SOCS social model

We sketch, for the sake of readability, the SOCS social model; the reader is
referred to previous publications for more details on the syntax and semantics
of the language [10,11]. More details can also be found in another paper in this
same volume [12].

The society knowledge is physically memorised in a device, called the Society
Infrastructure, that has reasoning capabilities and can use the society knowledge
to infer new information. We assume that the society infrastructure is time by
time aware of social events that dynamically happen in the environment (hap-
pened events). They are represented as ground atoms H(Description[,Time]).

The knowledge in a society is given by:

– a Social Organisation Knowledge Base (SOKB): an abductive logic program
with constraints;

– a set ICS of Social Integrity Constraints (icS): implications that can relate
dynamic elements, CLP constraints and predicates defined in the SOKB.

The “normative elements” are encoded in the icS . Based on the available
history of events, and on the icS-based specification, the society can define what
the “expected social events” are, i.e., what events are expected (not) to happen.
The expected events, called social expectations, reflect the “ideal” behaviour of
the agents. Social expectations are represented as atoms E(Description[, T ime])
for events that are expected to happen and as EN(Description[, T ime]) for
events expected not to happen. Explicit negation can be applied to expectations,
letting the user express concepts like possibility (¬EN) and optionality (¬E).

While H atoms are always ground, the arguments of expectations can con-
tain variables. Intuitively, an E(X) atom indicates a wish about an event H(Y)
which unifies with it: X/Y . CLP constraints [7] can be imposed on the variables
occurring in expectations, in order to refine the meaning of the expectation, and
to improve the propagation. For instance, in an auction context the atom:

E(tell(Bidder,Auctioneer, bid(ItemList, Price),D), Tbid), Tbid < 10

WCLP 2005 55 Ulmer Informatik-Berichte 2005-01

stands for an expectation about a communicative act tell made by a computee
Bidder, addressed to another computee Auctioneer, at a time Tbid, with subject
bid(ItemList, Price). The expectation is fulfilled if a matching event actually
happens, satisfying the imposed constraints (i.e., the deadline Tbid < 10). D is
a dialogue identifier, that can be useful to distinguish different instances of the
same interaction scheme.

Negative expectations, instead, suggest actions that should not happen, in
order for the protocol to be fulfilled. For this reason, their variables are quantified
universally (if they do not occur in positive expectations as well). Constraints can
be imposed also on universally quantified variables, through a solver we imple-
mented. For example, EN(Bidder,Auctioneer, bid(ItemList, Price),D), Tbid),
Tbid > 10 means that no bidder is supposed to send any bid to any auctioneer
after time 10. Another paper in this book [12] describes the implementation of
the proof-procedure that gets happened events and raises such expectations.

3 The Combinatorial Auctions scenario

There exist different kinds of combinatorial auctions. In this paper, we consider
single unit reverse auctions. In a single unit auction, the auctioneer wants to sell
a set M of goods/tasks maximising the profit. Goods are distinguishable. Each
bidder j posts a bid Bj where a set Sj of goods/tasks Sj ⊆ M is proposed to be
bought at the price pj , i.e., Bj = (Sj , pj). In a reverse auction, the auctioneer
tries to buy a set of goods minimising the total cost.

3.1 The Auction Solver

Besides the usual constraints of a combinatorial auction (i.e., two winning bids
cannot have elements in common), some real-life auction scenarios also have
the so called side constraints: other constraints that should be satisfied by the
winning bids. One typical example is when the auctioneer needs to allocate tasks,
that have precedence relations. Bidders propose to execute (bunches of) tasks,
each with an associated time window, at a given price. The auctioneer will try
to find a set of tasks that will cover the whole manufacturing process satisfying
the time precedence constraints and minimising the cost.

The Winner Determination Problem in combinatorial auctions is NP-hard
[13], so it cannot be addressed naively, but we need to exploit smart solving
techniques. While the pure WDP is best solved with an Integer Programming
(IP) solver [14], adding side constraints makes a Constraint Programming (CP)
solver more appealing.

We address the problem by exploiting a module called Auction solver [15]
that embeds two different algorithms both able to solve efficiently the WDP: one
is a pure IP-based approach, and the other is an Hybrid approach based on a CP
model with a variable selection heuristic based on the variables reduced costs
deriving from the Linear Relaxation of the IP model. For a complete description
of the IP and CP models, see [16].

WCLP 2005 56 Ulmer Informatik-Berichte 2005-01

The results obtained using the two algorithms strongly depend on the in-
stance structure. The module embeds an automatic Machine Learning based
portfolio selection algorithm, able to select the best algorithm on the basis of
few structural features of the problem instance. Guerri and Milano [16] show
that the method is able to select the best algorithm in the 90% of the cases, and
that the time spent to decide which of the available algorithms fits best with the
current instance is always orders of magnitude lower with respect to the search
time difference between the two algorithms. This is a fundamental assumption;
in fact, if the sum of the times used to extract the features and to solve the
problem with the best algorithm was greater than the time used by the worst
algorithm to solve the same problem, the selection tool would be useless.

We now give the general auction protocol in terms of icS in Section 3.2.

3.2 Auction Protocol

We first describe the auction protocol, then we give its implementation with
social integrity constraints. The auction is declared open by

H(tell(Auc,Bidders, openauction(ItemList, Tend, Tdeadline),D), Topen),

containing, as parameters, the deadlines for sending valid bids (Tend), and for
the winners declaration (Tdeadline). In an open society, bidders can come without
registration, so the addressee of the openauction is not fundamental (bidders
could join even if not explicitly invited with an openauction).

After the openauction, each bidder can place bids, i.e., declare the subset of
the items it is interested in (ItemList), and the price (P) it is willing to pay:

H(tell(Bidder, Auc, bid(ItemList, P),D), Tbid).

Finally, the auctioneer replies to each of the bidders either win or lose:

H(tell(Auc,Bidder, answer(win/lose,Bidder, ItemList, P),D), Tanswer).

The auction protocol in Social Integrity Constraints. Each time a bid-
ding event happens, the auctioneer should have sent an openauction event:

H(tell(Bidder, Auc, bid(,),D), Tbid) →
E(tell(Auc, , openauction(, Tend,),D), Topen) ∧ Topen < Tbid ≤ Tend

(1)

Incorrect bids always lose; e.g., a bid for items not for sale must lose.

H(tell(Auc, , openauction(Items, ,),D),)∧
H(tell(Bidder, Auc, bid(ItemBids, P),D),)∧
not included(ItemBids, Items)
→ E(tell(Auc,Bidder, answer(lose,Bidder, ItemBids, P),D),)

(2)

included([],).
included([H|T], L) : −member(H,L), included(T,L).

WCLP 2005 57 Ulmer Informatik-Berichte 2005-01

The auctioneer should answer to each bid within the deadline Tdeadline.

H(tell(Bidder, Auc, bid(ItemList, P),D),)∧
H(tell(Auc, , openauction(, Tend, Tdeadline),D),)
→ E(tell(Auc,Bidder, answer(Ans,Bidder, ItemList, P),D), Tanswer)

∧Tanswer > Tend ∧ Tanswer < Tdeadline ∧ Ans :: [win, lose]

(3)

A bidder should not receive for the same bid two conflicting answers:

H(tell(Auc,Bidder, answer(Ans1,Bidder, ItemList, P),D),)
→ EN(tell(Auc,Bidder, answer(Ans2,Bidder, ItemList, P),D),)

∧ Ans1 6= Ans2

(4)

Two different winning bids cannot contain the same item:

H(tell(Auc,Bidder1, answer(win,Bidder1, ItemList1,),D),)
∧H(tell(Bidder2, Auc, bid(ItemList2, P2),D),)
∧Bidder1 6= Bidder2 ∧ intersect(ItemList1, ItemList2)
→ EN(tell(Auc,Bidder2, answer(win,Bidder2, ItemList2, P2),D),)

intersect([X|], L) : −member(X,L).
intersect([|Tx], L) : −intersect(Tx,L).

(5)

4 Extensions

4.1 Double combinatorial auction

We extended the scenario to allow for multiple auctions in a same society. We
assume that all the items are labelled with a unique name. Clearly, in such a
situation, we must ensure that a computee will not bid (i.e., try to sell) the same
item in two different auctions, as he will be able to provide only one. We add to
the previous icS (1) to (5), the following:

H(tell(B,A1, bid(ItemList1, P1),D1),)∧
H(tell(B,A2, bid(ItemList2, P2),D2),)∧
D1 6= D2 ∧ intersect(ItemList1, ItemList2) →
false.

(6)

This allows for interesting bidding strategies and behaviours of the com-
putees, such as the double combinatorial auction. Suppose, for example, that
a computee opens an auction for a set of items. Another computee, that owns
most of the requested goods but not all of them, could try to make its bid more
appealing, by trying to get all of the requested items, and sell them all together.
Think, for example, to a collection of items, like comics: the price that a bidder
can be able to obtain is much higher if he sells a complete collection, so he will
try to buy the missing issues. Then, the bidder may become auctioneer of a sec-
ond auction. Possible bidders know that the second auction is more appealing,

WCLP 2005 58 Ulmer Informatik-Berichte 2005-01

because the bidder that misses only a few issues will probably be prepared to
pay more for the few missing issues than the first auctioneer.

In such a scenario, the society must ensure that a bidder will not try to sell
an item he still does not own, so the end of the second auction should not be
later than the time allowed in the first auction for placing bids; i.e.:

H(tell(A,B, openauction(Items1, Tend1, Tdeadline1),),)∧
H(tell(B,C, openauction(Items2, Tend2, Tdeadline2),),)∧
intersect(Items1, Items2) ∧ Tdeadline2 ≥ Tend1 →
false.

(7)

4.2 Combinatorial auction with Netbill

This protocol extends the tradition auction protocol with the payment at the
end. NetBill [17] is a security and transaction protocol for the sale and delivery of
low-priced information goods, such as software or journal articles. The protocol
rules transactions between two actors: merchant and customer. Accounts for
merchants and customers, linked to traditional financial accounts (like credit
cards), are maintained by a NetBill server. The implementation of the NetBill
protocol in Social Integrity Constraints can be found in [18].

In our case, it was possible to simply add the icS defining the NetBill protocol
to the auction integrity constraints (1) to (5).

5 Experiments

We performed different types of experiments in the combinatorial auction sce-
nario. First, we have tested the Auction Solver implemented in ILOG to test its
efficiency for increasing number of bidders. Then, we experimented the proof-
procedure with the protocols defined in Sections 3 and 4.

All the experiments have been performed on a Pentium 4, 2.4 GHz, 512 MB.

5.1 Experiments on the Auction Solver

In the Combinatorial Auction scenario we have to cope with a complex com-
binatorial optimisation problem: the Winner Determination Problem. Having
an efficient, scalable and flexible tool that solves this problem is crucial for the
efficiency of the overall system.

In this experiment, we exploit an Auction Solver implemented in ILOG solver
[19] suitably wrapped in to Java. The auction solver is able to solve both winner
evaluation problems with and without temporal side constraints.

Although the focus of this paper is more on showing the feasibility of such
an implementation than comparing with existing platforms, we have some com-
parisons (shown in Figure 5.1) of the Auction Solver with Magnet [20], both
with respect to the Simulated Annealing (SA) and with the Integer Program-
ming (IP) models of Magnet. In [15] more extensive experimentation is reported,

WCLP 2005 59 Ulmer Informatik-Berichte 2005-01

1

10

100

1000

10000

5 Tasks 15
Bids

10 Tasks 35
Bids

10 Tasks 100
Bids

20 Tasks 400
Bids

m
se

c
(l

o
g

) M-IP

SA

DFS

LDS

Fig. 1. Comparison with Magnet

Fig. 2. Test of the Auction Solver performance

showing that the Auction Solver module outperforms, both in search time and in
anytime solution quality, any other commercial solver in a WDP with temporal
precedence constraints.

The Auction Solver is so efficient that it gives the possibility of scaling the
auction size, and test the performances of the SOCS social infrastructure. Results
are reported in Figure 2. We can see that auctions with 1000 bidders can be
solved in less then 2 seconds. In the graph, we report the number of bids and
the average number of tasks per bid. The results refer to the time for finding the
optimal solution plus the proof of optimality.

5.2 Experiments on the SCIFF proof-procedure

We have arranged a set of experiments where the proof-procedure performances
are tested for an increasing number of bidders. Bidders in fact send messages

WCLP 2005 60 Ulmer Informatik-Berichte 2005-01

(a) conformant protocol (b) non conformant protocol

Fig. 3. SCIFF performance on a combinatorial auction

(a) conformant protocol (b) non conformant protocol

Fig. 4. SCIFF performance on a double auction

which should be checked for conformance by the society and the more the number
of bidders the more the number of messages to control. We have tested the two
protocols described previously, plus an implementation that also considers the
actual selling of the goods, through the NetBill protocol.

Concerning the single auction, we can see in Figure 3 that the tests provide
an idea on how the proof scales for an increasing number of bidders and conse-
quently of messages. We can see that results are good, since the prototype we
implemented works well up to 50 bidders answering in half a minute.

As far as the double auction is concerned, it is intuitive that the number of
exchanged messages is almost doubled with respect to a traditional combinatorial
auction. We can see from the Figure 4 that the proof scales very well, being the
time for testing conformance almost doubled with respect to a single auction.

WCLP 2005 61 Ulmer Informatik-Berichte 2005-01

(a) conformant protocol (b) non conformant protocol

Fig. 5. SCIFF performance on an auction plus NetBill

As far as the auction plus the NetBill protocol, results are very good (Figure
5). In fact, the time for checking conformance is similar to that of the combina-
torial auction.

As we can see from Figure 2 the Auction Solver is far more efficient since
it scales up to 1000 bids within 2 seconds. Slower performances are achieved
by the conformance checking of the society protocol (around 30 seconds for
checking messages exchanged in auctions with 50 bidders). However, even if the
components have different performances, from the testing, we can conclude that
both components can be used in a real combinatorial auction scenario since time
limits required for answering are much larger than sum of the answer times of
the components.

Note that the implementation of the protocol currently considers only the
combinatorial auction without temporal constraints. The full implementation
with temporal constraints is left for future work.

6 Related Work

Different systems and methods have been proposed to solve a combinatorial
auction in an efficient way, including dynamic programming techniques [13],
approximate methods that look for a reasonably good allocation of bids [21,22],
integer programming techniques [20,3], search algorithms [4].

Various works are related to the SCIFF proof-procedure and the checking of
compliance to protocols; a full discussion can be found in previous publications
[10,11]. We will cite here ISLANDER [23], a tool to specify protocols in a sys-
tem ruled by electronic institutions that has been applied to a Dutch auction
(and other scenarios). Their formalism is multi-levelled: agents have roles, agents
playing a role are constrained to follow protocols when they belong to a scene;
agents can move from a scene to another by means of transitions. Protocols are
defined by means of transition graphs, in a finite state machine. Our definition

WCLP 2005 62 Ulmer Informatik-Berichte 2005-01

of protocols is wider than finite state machines, and leaves more freedom degrees
to the agents. In our model, an event could be expected to happen, expected not
to happen or have no expectations upon, thus there can be three possible values,
while in finite state machines there are only two. Also, we focused on combina-
torial auctions; this provides nice features, widely documented in the literature,
but also makes the solving problem NP-hard. For this reason, a general purpose
proof-procedure that checks the compliance to the protocol could be inefficient.
We proposed a specialised solver and integrated it in our system.

7 Conclusions

Combinatorial auctions are recently starting to withdraw from the set of practi-
cally unusable applications as more efficient solvers are being produced for the
winner determination problem. One of their natural applications involve intel-
ligent agents as both bidders and auctioneers, but this raises the problem of
humans trusting their representatives, and the other agents in the society.

Through the tools provided by the SOCS project, we give means for the user
to specify the fair and trusty behaviour, and a proof-procedure for detecting the
unworthy and fallacious one. We defined the combinatorial auctions protocol
through social integrity constraints, also exploiting an efficient solver for the
winner determination problem.

In future work, we will try other interaction schemes between the auction
solver and the auctioneer agent; e.g., by having a centralised auction solver
that serves more auctioneers. We are also interested in performing an extensive
experimentation, to find how many auctioneers an auction solver can serve.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Guerri, A., Lamma, E., Mello, P., Torroni,
P.: Expressing interaction in combinatorial auction through social integrity con-
straints. In: Atti del Nono Convegno dell’Associazione Italiana per l’Intelligenza
Artificiale, Perugia, Italia (2004)

2. Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: Proc. of the 1st International Conference on the Practical Application of Intel-
ligent Agents and Multi-Agent Technology (PAAM-96), London (1996) 75–90

3. Nisan, N.: Bidding and allocation in combinatorial auctions. [24] 1–12

4. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auc-
tion. Artificial Intelligence 135 (2002) 1–54

5. Marsh, S.: Trust in distributed artificial intelligence. In Castelfranchi, C., Werner,
E., eds.: Artificial Social Societies. Number 830 in LNAI, Springer-Verlag (1994)

6. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151–165

7. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20 (1994) 503–582

WCLP 2005 63 Ulmer Informatik-Berichte 2005-01

8. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of interaction protocols: a computational logic approach based on ab-
duction. Technical Report CS-2003-03, Dipartimento di Ingegneria di Ferrara,
Ferrara, Italy (2003) Available at http://www.ing.unife.it/informatica/tr/.

9. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compli-
ance verification of agent interaction: a logic-based tool. In Trappl, R., ed.: Proc.
of the 17th European Meeting on Cybernetics and Systems Research, Austrian
Society for Cybernetic Studies (2004) 570–575

10. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An Abductive
Interpretation for Open Societies. In Cappelli, A., Turini, F., eds.: AI*IA 2003:
Advances in Artificial Intelligence. Volume 2829 of LNAI, Springer-Verlag (2003)
287–299

11. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Modeling interac-
tions using Social Integrity Constraints: A resource sharing case study. In Leite,
J.A., Omicini, A., Sterling, L., Torroni, P., eds.: Declarative Agent Languages and
Technologies. Volume 2990 of LNAI. Springer-Verlag (2004) 243–262

12. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.: The CHR-based implementa-
tion of a system for generation and confirmation of hypotheses. In Wolf, A., ed.:
19th Workshop on (Constraint) Logic Programming. (2005) This volume.

13. Rothkopf, M., Pekec, A., R.M.Harstad: Computationally manageable combina-
tional auctions. Management Science 44 (1998) 1131–1147

14. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Cabob: A fast optimal algorithm for
combinatorial auctions. In Nebel, B., ed.: Proc. of IJCAI 01, (Morgan Kaufmann)

15. Guerri, A., Milano, M.: Exploring CP-IP based techniques for the bid evaluation
in combinatorial auctions. In Rossi, F., ed.: Principles and Practice of Constraint
Programming. Volume 2833 of LNCS, Springer Verlag (2003) 863–867

16. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio
selection. In Lopez de Mantaras, R., Saitta, L., eds.: Proc. of ECAI. (2004)

17. Cox, B., Tygar, J., Sirbu, M.: NetBill security and transaction protocol. In: Proc.
of the 1st USENIX Workshop on Electronic Commerce, New York (1995)

18. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85 (2003)

19. ILOG S.A. France: ILOG Solver. 5.0 edn. (2003)
20. Collins, J., Gini, M.: An integer programming formulation of the bid evaluation

problem for coordinated tasks. In Dietrich, B., Vohra, R.V., eds.: Mathematics of
the Internet: E-Auction and Markets. Volume 127 of IMA Volumes in Mathematics
and its Applications. Springer-Verlag, New York (2001) 59–74

21. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In Dean,
T., ed.: Proc. of IJCAI 99, (Morgan Kaufmann) 548–553

22. Sakurai, Y., Yokoo, M., Kamei, K.: An efficient approximate algorithm for winner
determination in combinatorial auctions. [24] 30–37

23. Sierra, C., Noriega, P.: Agent-mediated interaction. From auctions to negotiation
and argumentation. In d’Inverno, M., Luck, M., Fisher, M., Preist, C., eds.: Foun-
dations and Applications of Multi-Agent Systems, UKMAS Workshop 1996-2000.
Volume 2403 of LNCS, Springer Verlag (2002) 27–48

24. Jhingran, A., ed.: Proc. of the 2nd ACM Conference on Electronic Commerce
(EC-00), October 17-20, 2000, Minneapolis, MN, USA. ACM Press (2000)

WCLP 2005 64 Ulmer Informatik-Berichte 2005-01

Level Mapping Characterizations of Selector
Generated Models for Logic Programs

Pascal Hitzler1? and Sibylle Schwarz2

1 AIFB, Universität Karlsruhe (TH)
email: hitzler@aifb.uni-karlsruhe.de

2 Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg
email: schwarzs@informatik.uni-halle.de

Abstract. Assigning semantics to logic programs via selector generated
models (Schwarz 2002/2003) extends several semantics, like the stable,
the inflationary, and the stable generated semantics, to programs with
arbitrary formulae in rule heads and bodies. We study this approach by
means of a unifying framework for characterizing different logic program-
ming semantics using level mappings (Hitzler and Wendt 200x, Hitzler
2003), thereby supporting the claim that this framework is very flexible
and applicable to very diversely defined semantics.

1 Introduction

Hitzler and Wendt [8, 10, 11] have recently proposed a unifying framework for
different logic programming semantics. This approach is very flexible and allows
to cast semantics of very different origin and style into uniform characterizations
using level mappings, i.e. mappings from atoms to ordinals, in the spirit of
the definition of acceptable programs [2], the use of stratification [1, 14] and
a characterization of stable models by Fages [3]. These characterizations display
syntactic and semantic dependencies between language elements by means of
the preorders on ground atoms induced by the level mappings, and thus allow
inspection of and comparison between different semantics, as exhibited in [8, 10,
11].

For the syntactically restricted class of normal logic programs, the most im-
portant semantics — and some others — have already been characterized and
compared, and this was spelled out in [8, 10, 11]. Due to the inherent flexibility
of the framework, it is clear that studies of extended syntax are also possible,
but have so far not been carried out. In this paper, we will present a non-trivial
technical result which provides a first step towards a comprehensive comparative
study of different semantics for logic programs under extended syntax.
? The first named author acknowledges support by the German Federal Ministry of

Education and Research under the SmartWeb project, and by the European Union
under the KnowledgeWeb Network of Excellende. He also acknowledges the hospi-
tality of the Graduiertenkolleg Wissensrepräsentation at the University of Leipzig,
Germany, while working on a first draft of this paper.

WCLP 2005 65 Ulmer Informatik-Berichte 2005-01

Table 1. Notions of specific types of rules.

rule is called set condition

definite LP body(r) ∈ Lg ({∧, t}, A) and head(r) ∈ A
normal NLP body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ A
head-atomic HALP body(r) ∈ Lg

(
Σcl, A

)
and head(r) ∈ A

pos. head disj. DLP+ body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ Lg ({∨}, A)
disjunctive DLP body(r) ∈ Lg ({∧, t}, Lit (A)), head(r) ∈ Lg ({∨, f}, Lit (A))

head-disjunctive HDLP body(r) ∈ Lg
(
Σcl, A

)
, head(r) ∈ Lg ({∨, f}, Lit (A))

generalized GLP no condition

More precisely, among the many proposals for semantics for logic programs
under extended syntax we will study a very general approach due to Schwarz
[15, 16]. In this framework, arbitrary formulae are allowed in rule heads and
bodies, and it encompasses the inflationary semantics [12], the stable semantics
for normal and disjunctive programs [5, 13], and the stable generated semantics
[7]. It can itself be understood as a unifying framework for different semantics.

In this paper, we will provide a single theorem — and some corollaries thereof
— which gives a characterization of general selector generated models by means
of level mappings. It thus provides a link between these two frameworks, and
implicitly yields level mapping characterizations of the semantics encompassed
by the selector generated approach.

The plan of the paper is as follows. In Section 2 we will fix preliminaries and
notation. In Section 3 we will review selector generated models as introduced
in [15, 16]. In Section 4, we present our main result, Theorem 4, which gives a
level-mapping characterization of general selector generated models in the style
of [8, 10, 11]. In Section 5 we study corollaries from Theorem 4 concerning specific
cases of interest encompassed by the result. We eventually conclude and discuss
further work in Section 6.

2 Preliminaries

Throughout the paper, we will consider a language L of propositional logic
over some set of propositional variables, or atoms, A, and connectives Σcl =
{¬,∨,∧, t, f}, as usual. A rule r is a pair of formulae from L denoted by ϕ⇒ ψ.
ϕ is called the body of the rule, denoted by body(r), and ψ is called the head of
the rule, denoted by head(r). A program is a set of rules. A literal is an atom
or a negated atom, and Lit (A) denotes the set of all literals in L. For a set of
connectives C ⊆ Σcl we denote by Lg (C,A) the set of all formulae over L in
which only connectives from C occur.

Further terminology is introduced in Table 1. The abbreviations in the second
column denote the sets of all rules with the corresponding property. A program
containing only definite (normal, etc.) rules is called definite (normal, etc.).
Programs not containing the negation symbol ¬ are called positive. Facts are
rules r where body(r) = t, denoted by ⇒ head(r).

WCLP 2005 66 Ulmer Informatik-Berichte 2005-01

The base BP is the set of all atoms occurring in a program P . A two-valued
interpretation of a program P is represented by a subset of BP , as usual. By IP
we denote the set of all interpretations of P . It is a complete lattice with respect
to the subset ordering ⊆. For an interpretation I ∈ IP , we define ↑ I = {J ∈
IP | I ⊆ J} and ↓ I = {J ∈ IP | J ⊆ I}. [I, J] = ↑ I ∩ ↓ J is called an interval
of interpretations.

The model relation M |= ϕ for an interpretation M and a propositional
formula ϕ is defined as usual in propositional logic, and Mod(ϕ) denotes the set
of all models of ϕ. Two formulae ϕ and ψ are logically equivalent, written ϕ ≡ ψ,
iff Mod(ϕ) = Mod(ψ).

A formula ϕ is satisfied by a set J ⊆ IP of interpretations if each interpre-
tation J ∈ J is a model of ϕ. For a program P , a set J ⊆ IP of interpretations
determines the set of all rules which fire under J, formally fire(P,J) = {r ∈ P |
∀J ∈ J : J |= body(r)}. An interpretation M is called a model of a rule r (or
satisfies r) if M is a model of the formula ¬body(r)∨ head(r). An interpretation
M is a model of a program P if it satisfies each rule in P .

For conjunctions or disjunctions ϕ of literals, ϕ+ denotes the set of all atoms
occurring positively in ϕ, and ϕ− contains all atoms that occur negated in ϕ. For
instance, for the formula ϕ = (a ∧ ¬b ∧ ¬a) we have ϕ+ = {a} and ϕ− = {a, b}.
In heads ϕ consisting only of disjunctions of literals, we always assume without
loss of generality that ϕ+ ∩ ϕ− = ∅.

If ϕ is a conjunction of literals, we abbreviate M |=
∧
a∈ϕ+ a (i.e. ϕ+ ⊆ M)

by M |= ϕ+ and M |=
∧
a∈ϕ− ¬a (i.e. ϕ− ∩ M = ∅) by M |= ϕ−, abusing

notation. If ϕ is a disjunction of literals, we write M |= ϕ+ for M |=
∨
a∈ϕ+ a

(i.e. M ∩ ϕ+ 6= ∅) and M |= ϕ− for M |=
∨
a∈ϕ− ¬a (i.e. ϕ− 6⊆M).

By iterative application of rules from a program P ⊆ GLP starting in the
least interpretation ∅ ∈ IP , we can create monotonically increasing (transfinite)
sequences of interpretations of the program P , as follows.

Definition 1. A (transfinite) sequence C of length α of interpretations of a
program P ⊆ GLP is called a P -chain iff

(C0) C0 = ∅,
(Cβ) Cβ+1 ∈ Min(↑Cβ ∩Mod(head(Qβ))) for some set of rules Qβ ⊆ P and

for all β with β + 1 < α, and
(Cλ) Cλ =

⋃
{Cβ | β < λ} for all limit ordinals λ < α.

CP denotes the collection of all P -chains.

Note that all P -chains increase monotonically with respect to ⊆.

3 Selector generated models

In [15, 16], a framework for defining declarative semantics of generalized logic
programs was introduced, which encompasses several other semantics, as already
mentioned in the introduction. Parametrization within this framework is done
via so-called selector functions, defined as follows.

WCLP 2005 67 Ulmer Informatik-Berichte 2005-01

Definition 2. A selector is a function Sel : CP × IP → 2IP , satisfying ∅ 6=
Sel(C, I) ⊆ [I, sup(C)] for all P -chains C and each interpretation I ∈ ↓ sup(C).

We use selectors Sel to define nondeterministic successor functions ΩP on
IP , as follows.

Definition 3. Given a selector Sel : CP × IP → 2IP and a program P , the
function ΩP : (CP × IP → 2IP)×CP × IP → 2IP is defined by

ΩP (Sel, C, I) = Min ([I, sup (C)] ∩Mod (head (fire (P,Sel (C, I))))) .

Example 1. In this paper, we will have a closer look at the following selectors.

lower bound selector Sell(C, I) = {I}
lower and upper bound selector Sellu(C, I) = {I, sup(C)}
interval selector Seli(C, I) = [I, sup(C)]
chain selector Selc(C, I) = [I, sup(C)] ∩ C

With the first two arguments (the selector Sel and the chain C) fixed, the
function ΩP (Sel, C, I) can be understood as a nondeterministic consequence op-
erator. Iteration of the function ΩP (Sel, C, ·) from the least interpretation ∅
creates sequences of interpretations. This leads to the following definition of
(P,M,Sel)-chains.

Definition 4. A (P,M,Sel)-chain is a P -chain satisfying

(C sup) M = sup(C) and
(CβSel) Cβ+1 ∈ ΩP (Sel, C, Cβ) for all β, where β+ 1 < κ and κ is the length of

the transfinite sequence C.

Thus, (P,M,Sel)-chains are monotonically increasing sequences C of inter-
pretations of P , that reproduce themselves by iterating ΩP . Note that this def-
inition is non-constructive.

The main concept of the selector semantics is fixed in the following definition.

Definition 5. A model M of a program P ⊆ GLP is Sel-generated if and only
if there exists a (P,M,Sel)-chain C. The Sel-semantics of the program P is the
set ModSel(P) of all Sel-generated models of P .

Example 2. The program P = {⇒ a, a ⇒ b, (a ∨ ¬c) ∧ (c ∨ ¬a) ⇒ c} has the
only Sell-generated model {a, b, c}, namely via the chain C1 = (∅ 1,3→ {a, c} 2→
{a, b, c})), where the rules applied in each step are denoted above the arrows.
{a, b} and {a, b, c} are Sellu-generated (and Selc-generated) models, namlely via
the chains C2 = (∅ 1→ {a} 2→ {a, b}) and C1). {a, b} is the only Seli-generated
model of P , namely via C2.

Some properties of semantics generated by the selectors in Example 1 were
studied in [15]. In Section 5, we will make use of the following results from [15].

WCLP 2005 68 Ulmer Informatik-Berichte 2005-01

Theorem 1 ([16]).

1. For definite programs P ⊆ DLP, the unique element contained in Modl(P) =
Modlu(P) = Modc(P) = Modi(P) is the least model of P .

2. For normal programs P ⊆ NLP, the unique element of Modl(P) is the infla-
tionary model of P (as introduced in [12]).

3. For normal programs P ⊆ NLP, the set Modlu(P) = Modc(P) = Modi(P)
contains exactly all stable models of P (as defined in [5]).

4. For disjunctive programs P ⊆ DLP+, the minimal elements in Modlu(P) =
Modc(P) = Modi(P) are exactly all stable models of P (as defined in [13]),
but for generalized programs P ⊆ GLP, the sets Modlu(P), Modc(P), and
Modi(P) may differ.

5. For generalized programs P ⊆ GLP, Modi(P) is the set of stable generated
models of P (as defined in [7]). ut

This shows that the framework of selector semantics covers some of the most
important declarative semantics for normal logic programs. Selector generated
models provide a natural extension of these semantics to generalized logic pro-
grams and allow systematic comparisons of many new and well-known semantics.

4 Selector generated models via level mappings

In [8, 10, 11], a uniform approach to different semantics for logic programs was
given, using the notion of level mapping, as follows.

Definition 6. A level mapping for a logic program P ⊆ GLP is a function
l : BP → α, where α is an ordinal.

In order to display the style of level-mapping characterizations for semantics,
we cite two examples which we will further discuss later on.

Theorem 2 ([11]). Every definite program P ⊆ LP has exactly one model M ,
such that there exists a level mapping l : BP → α satisfying

(Fd) for every atom a ∈ M there exists a rule
∧
b∈B b ⇒ a ∈ P such that

B ⊆M and max {l(b) | b ∈ B} < l(a).

Furthermore, M coincides with the least model of P . ut

Theorem 3 ([4]). Let P be a normal program and M be an interpretation for
P . Then M is a stable model of P iff there exists a level mapping l : BP → α
satisfying

(Fs) for each atom a ∈M there exists a rule r ∈ P with head(r) = a, body(r)+ ⊆
M , body(r)− ∩M = ∅, and max {l(b) | b ∈ body(r)+} < l(a). ut

It is evident, that among the level mappings satisfying the respective condi-
tions in Theorems 2 and 3, there exist pointwise minimal ones.

We set out to prove a general theorem which characterizes selector generated
models by means of level mappings, in the style of the results displayed above.
The following notion will ease notation considerably.

WCLP 2005 69 Ulmer Informatik-Berichte 2005-01

Definition 7. For a level mapping l : BP → α for a program P ⊆ GLP and an
interpretation M ⊆ BP , the elements of the (transfinite) sequence Cl,M consist-
ing of interpretations of P are for all β < α defined by

Cl,Mβ = {a ∈M | l(a) < β} = M ∩
⋃
γ<β

l−1(γ).

Remark 1. Definition 7 implies that

1. the (transfinite) sequence Cl,M is monotonically increasing,
2. Cl,M0 = ∅, and
3. M =

⋃
β<α Cl,Mβ = sup Cl,M .

The following Theorem provides a mutual translation between the definition
of selector semantics and a level mapping characterization.

Theorem 4. Let P ⊆ HDLP be a head disjunctive program and M ∈ IP . Then
M is a Sel-generated model of P iff there exists a level mapping l : BP → α
satisfying the following properties.

(L1) M = sup
(
Cl,M

)
∈ Mod (P).

(L2) For all β with β + 1 < α we have

Cl,Mβ+1 \ Cl,Mβ ∈ Min
{
J ∈ IP

∣∣∣∣J |= head
(
R
(

Cl,Mβ , J
))+

}
, where

R
(

Cl,Mβ , J
)

=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,Mβ

)) ∣∣∣∣∣Cl,Mβ 6|= head (r)+ and
J ∪ Cl,Mβ 6|= head (r)−

}
.

(L3) For all limit ordinals λ < α we have Cl,Mλ =
⋃
β<λ Cl,Mβ .

The proof of Theorem 4 is omitted for space limitations. It is rather involved
and technical, and can be found in detail in [9]

Remark 2. As P is a head disjunctive program, we have Cl,Mβ 6|= head (r)+ iff
head (r)+ ∩ Cl,Mβ = ∅, and J ∪ Cl,Mβ 6|= head (r)− iff head (r)− ⊆ J ∪ Cl,Mβ , thus

R
(

Cl,Mβ , J
)

=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,Mβ

)) ∣∣∣∣∣head (r)+ ∩ Cl,Mβ = ∅ and
head (r)− ⊆ J ∪ Cl,Mβ

}
.

Also note that for every rule r ∈ fire
(
P,Sel

(
Cl,M ,Cl,Mβ

))
\ R

(
Cl,Mβ , J

)
, we

have ↓
(

Cl,Mβ ∪ J
)
⊆ Mod

(
head (r)−

)
or ↑Cl,Mβ ⊆ Mod

(
head (r)+

)
. Thus all

of these rules are satisfied in the interval
[
Cl,Mβ ,Cl,Mβ ∪ J

]
.

For all selectors Sel, it was shown in [15] that the Sel-semantics of programs in
GLP is invariant with respect to the following transformations: the replacement
(→eq) of the body and the head of a rule by logically equivalent formulae and the

WCLP 2005 70 Ulmer Informatik-Berichte 2005-01

splitting (→hs) of conjunctive heads, more precisely the replacement P ∪ {ϕ ⇒
ψ ∧ ψ′} →hs P ∪ {ϕ⇒ ψ,ϕ⇒ ψ′}.

Since every formula head(r) is logically equivalent to a formula in conjunc-
tive normal form, each selector sematics ModSel of a generalized program P is
equivalent to the selector semantics ModSel of all head disjunctive programs Q
where P →∗eq,hs Q. Note that in the transformation →∗eq,hs, no shifting of subfor-
mulas between the body and the head of a rule is involved. Therefore, Theorem 4
immediately generalizes to our main result.

Corollary 1. Let P be a generalized program and M an interpretation of P .
Then M is a Sel-generated model of P iff for any head disjunctive program Q
with P →∗eq,hs Q there exists a level mapping l : BQ → α satisfying (L1), (L2)
and (L3) of Theorem 4. ut

5 Corollaries

We can now apply Theorem 4 in order to obtain level mapping characterizations
for every semantics generated by a selector, in particular for those semantics
generated by the selectors defined in Example 1 and listed in Theorem 1. For
syntactically restricted programs, we can furthermore simplify the properties
(L1),(L2) and (L3) in Theorem 4. Alternative level mapping characterizations
for some of these semantics were already obtained directly in [11].

Programs with positive disjunctions in all heads

For rules r ∈ HDLP, where head(r) is a disjunction of atoms, we have head(r)− =
∅. Hence we have head(r)− ⊆ I, i.e. I 6|= head(r)−, for all interpretations I ∈ IP .
Thus the set R

(
Cl,Mβ , J

)
from (L2) in Theorem 4 can be specified by

R
(

Cl,Mβ , J
)

=
{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,Mβ

))
| Cl,Mβ 6|= head(r)+

}
.

We furthermore observe that the set R
(

Cl,Mβ , J
)

does not depend on the inter-
pretation J , so we obtain

R′
(

Cl,Mβ

)
=
{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,Mβ

))
| Cl,Mβ ∩ head(r)+ = ∅

}
and hence

Min
{
J ∈ IP

∣∣∣∣J |= head
(
R
(

Cl,Mβ , J
))+

}
= Min

(
Mod

(
head

(
R′
(

Cl,Mβ

))))
.

Thus for programs containing only rules whose heads are disjunctions of
atoms we can rewrite condition (L2) in Theorem 4, as follows:

(L2d) for every β with β + 1 < α:

Cl,Mβ+1 \ Cl,Mβ ∈ Min
(

Mod
(

head
(
R′
(

Cl,Mβ

))))
,where

R′
(

Cl,Mβ

)
=
{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,Mβ

)) ∣∣∣Cl,Mβ ∩ head(r)+ = ∅
}
.

WCLP 2005 71 Ulmer Informatik-Berichte 2005-01

Programs with atomic heads

Single atoms are a specific kind of disjunctions of atoms. Hence for programs
with atomic heads we can replace condition (L2) in Theorem 4 by (L2d), and
further simplify it as follows.

For rules with atomic heads we have head ({r ∈ P | head(r) 6∈ I}) = head(P)\
I and therefore

head
(
R′
(

Cl,Mβ

))
= head

({
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,Mβ

))
| head(r) ∩ Cl,Mβ = ∅

})
= head

({
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,Mβ

))
| head(r) 6∈ Cl,Mβ

})
= head

(
fire
(
P,Sel

(
Cl,M ,Cl,Mβ

)))
\ Cl,Mβ .

Because all formulae in head(P) are atoms we obtain

Min
(

Mod
(

head
(
R′
(

Cl,Mβ

))))
= Min

(
↑
(

head
(
R′
(

Cl,Mβ

))))
=
{

head
(
R′
(

Cl,Mβ

))}
and this allows us to simplify (L2) in Theorem 4 to the following:

(L2a) for each β with β + 1 < α:

Cl,Mβ+1 \ Cl,Mβ = head
(

fire
(
P,Sel

(
Cl,M ,Cl,Mβ

)))
\ Cl,Mβ .

Inflationary models From Section 3 we know that for normal programs P
the selector Sell generates exactly the inflationary model of P as defined in [12].
The generalizations of the definition of inflationary models and this result to
head atomic programs are immediate. From [16] we also know that every Sell-
generated model is generated by a (P,M,Sell)-chain of length ω. Thus level
mappings l : BP → ω are sufficient to characterize inflationary models of head
atomic programs. In this case, condition (L3) applies only to the limit ordinal
0 < ω. But by remark 1, all level mappings satisfy this property. Therefore we
do not need condition (L3) in the characterization of inflationary models.

Using Theorem 4 and the considerations above, we obtain the following char-
acterization of inflationary models.

Corollary 2. Let P ⊆ HALP be a head atomic program and M be an inter-
pretation for P . Then M is the inflationary model of P iff there exists a level
mapping l : BP → ω with the following properties.

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2i) for all n < ω: Cl,Mn+1 \ Cl,Mn = head
(
fire
(
P,Cl,Mn

))
\ Cl,Mn . ut

WCLP 2005 72 Ulmer Informatik-Berichte 2005-01

Normal programs

For normal programs, the heads of all rules are single atoms. Hence the simpli-
fication (L2a) of condition (L2) in Theorem 4 applies for all selector generated
semantics for normal programs.

The special structure of the bodies of all rules in normal programs allows an
alternative formulation of (L2a). In every normal rule, the body is a conjunc-
tion of literals. Thus for any set of interpretations J we have J |= body(r) iff
body(r)+ ⊆ J and body(r)− ∩ J = ∅ for all interpretations J ∈ J.

Stable models We develop next a characterization for stable models of normal
programs, as introduced in [5]. The selector Sellu generates exactly all stable
models for normal programs. In [16], it was also shown that all Sellu-generated
models M of a program P are generated by a (P,M,Sel)-chain of length ≤ ω. So
for the same reasons as discussed for inflationary models, level mappings with
range ω are sufficient to characterize stable models and condition (L3) can be
neglected.

For a normal rule r and two interpretations I,M ∈ IP with I ⊆ M we
have {I,M} |= body(r), i.e. I |= body(r) and M |= body(r), iff body(r)+ ⊆ I
and body(r)− ∩ M = ∅. Combining this with (L2a) we obtain the following
characterization of stable models for normal programs.

Corollary 3. Let P ⊆ NLP be a normal program and M an interpretation for
P . Then M is a stable model of P iff there exists a level mapping l : BP → ω
satisfying the following properties:

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2s) for all n < ω:

Cl,Mn+1 \ Cl,Mn = head
({
r ∈ P | body(r)+ ⊆ Cl,Mn , body(r)− ∩M = ∅

})
\ Cl,Mn . ut

Comparing this with Theorem 3, we note that both theorems characterize
the same set of models. Thus for a model M of P there exists a level mapping
l : BP → ω satisfying (L1) and (L2s) iff there exists a level mapping l : BP → α
satisfying (Fs). The condition imposed on the level mapping in Theorem 3,
however, is weaker than the condition in Corollary 3, because level mappings
defined by (P,M,Sel)-chains are always pointwise minimal.

Definite programs

In order to characterize the least model of definite programs, we can further
simplify condition (L2) in Theorem 4. Definite programs are a particular kind
of head atomic programs. For definite programs, the inflationary and the least
model coincide. We can replace condition (L2) in Theorem 4 by (L2i) in Corol-
lary 2. Since the body of every definite rule is a conjunction of atoms we obtain

fire(P, I) =
{
r ∈ P | body(r)+ ⊆ I

}
for every interpretation I ∈ IP . Thus we get the following result.

WCLP 2005 73 Ulmer Informatik-Berichte 2005-01

Corollary 4. Let P ⊆ LP be a definite program and let M be an interpretation
for P . Then M is the least model of P iff there exists a level mapping l : BP → ω
satisfying the following conditions.

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2l) for all n < ω: Cl,Mn+1 \Cl,Mn = head
({
r ∈ P | body(r)+ ⊆ Cl,Mn

})
\Cl,Mn ut

Comparing this to Theorem 2, we note that the relation between the condi-
tions (L2l) and (Fd) are similar to those of the conditions (Fs) und (L2s).

6 Conclusions and Further Work

Our main result, Corollary 1 respectively Theorem 4 in Section 4, provides a
characterization of selector generated models — in general form — by means of
level mappings in accordance with the uniform approach proposed in [8, 10, 11].
As corollaries from this theorem, we have also achieved level mapping charac-
terizations of several semantics encompassed by the selector generated approach
due to [15, 16].

Our contribution is technical, and provides a first step towards a comprehen-
sive comparative study of different semantics of logic programs under extended
syntax by means of level mapping characterizations. Indeed, a very large num-
ber of syntactic extensions for logic programs are currently being investigated in
the community, and even for some of the less fancy proposals there is often no
agreement on the preferable way of assigning semantics to these constructs.

A particularly interesting case in point is provided by disjunctive and ex-
tended disjunctive programs, as studied in [6]. While there is more or less gen-
eral agreement on an appropriate notion of stable model, as given by the notion
of answer set in [6], there exist various different proposals for a corresponding
well-founded semantics, see e.g. [17]. We expect that recasting them by means
of level-mappings will provide a clearer picture on the specific ways of modelling
knowledge underlying these semantics.

Eventually, we expect that the study of level mapping characterizations of
different semantics will lead to methods for extracting other, e.g. procedural,
semantic properties from the characterizations, like complexity or decidability
results.

References

1. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of deductive databases
and logic programs. Morgan Kaufmann, Los Altos, US, 1988.

2. Krzysztof R. Apt and Dino Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1), September 1993.

3. François Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

WCLP 2005 74 Ulmer Informatik-Berichte 2005-01

4. François Fages. A new fixpoint semantics for general logic programs compared with
the well-founded and the stable model semantics. In Peter Szeredi and David H.D.
Warren, editors, Proceedings of the 7th International Conference on Logic Pro-
gramming (ICLP ’90), Jerusalem, June 1990. MIT Press.

5. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the
Fifth International Conference on Logic Programming, Cambridge, Massachusetts,
1988. The MIT Press.

6. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3/4), 1991.

7. Heinrich Herre and Gerd Wagner. Stable models are generated by a stable chain.
Journal of Logic Programming, 30(2), February 1997.

8. Pascal Hitzler. Towards a systematic account of different logic programming se-
mantics. In Andreas Günter, Rudolf Kruse, and Bernd Neumann, editors, KI2003:
Advances in Artificial Intelligence. Proceedings of the 26th Annual German Con-
ference on Artificial Intelligence, KI2003, Hamburg, Germany, September 2003,
volume 2821 of Lecture Notes in Artificial Intelligence, pages 355–369. Springer,
Berlin, 2003.

9. Pascal Hitzler and Sibylle Schwarz. Level mapping characterizations of selector gen-
erated models for logic programs. Technical Report WV-04-04, Technische Univer-
sität Dresden, 2004. Available from www.aifb.uni-karlsruhe.de/WBS/phi/pub/wv-
04-04.ps.gz.

10. Pascal Hitzler and Matthias Wendt. The well-founded semantics is a stratified
Fitting semantics. In Matthias Jarke, Jana Koehler, and Gerhard Lakemeyer,
editors, Proceedings of the 25th Annual German Conference on Artificial Intelli-
gence, KI2002, Aachen, Germany, September 2002, volume 2479 of Lecture Notes
in Artificial Intelligence, pages 205–221. Springer, Berlin, 2002.

11. Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming
semantics. Theory and Practice of Logic Programming, 5(1-2):123–159, 2005. To
appear.

12. Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint?
In PODS ’88. Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems: March 21–23, 1988, Austin, Texas, New
York, NY 10036, USA, 1988. ACM Press.

13. Teodor Przymusinski. Stable Semantics for Disjunctive Programs. New Generation
Computing Journal, 9, 1991.

14. Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann, Los Altos, CA, 1988.

15. Sibylle Schwarz. Answer sets generated by selector functions. In Proceedings of
the Workshop on Nonmonotonic Reasoning’2002, pages 247–253, Toulouse, 2002.
http://www.tcs.hut.fi/∼ini/nmr2002/schwarz.ps.

16. Sibylle Schwarz. Selektor-erzeugte Modelle verallgemeinerter logischer Pro-
gramme. PhD thesis, Universität Leipzig, 2004. http://www.informatik.uni-
leipzig.de/∼schwarz/ps/thes.ps.gz.

17. Kewen Wang. A comparative study of well-founded semantics for disjunctive logic
programs. In Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczynski, editors,
Logic Programming and Nonmonotonic Reasoning, 6th International Conference,
LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173
of Lecture Notes in Artificial Intelligence, pages 133–146. Springer, 2001.

WCLP 2005 75 Ulmer Informatik-Berichte 2005-01

Truth and knowledge fixpoint semantics for
many-valued logic programming

Zoran Majkić

Dept. of Computer Science,UMIACS, University of Maryland, College Park, MD 20742
zoran@cs.umd.edu

Abstract. The variety of semantical approaches that have been invented for logic
programs for reasoning about inconsistent databases is quite broad. Especially,
we are interested in an ontological encapsulation of a many-valued logics with
negation, based on bilattices, into a 2-valued logic: this new approach is a min-
imilistic one based on the concept of the semantic reflection. We define a Model
theoretic approach for Herbrand interpretations of an encapsulated logic program
and the new semantics for implication of their clauses. We introduce a trilattice
of Herbrand interpretations, with the third truth dimension for this ’meta’ logic
(over a bilattice of the many-valued logic), where is possible to apply the Knaster-
Tarski theorem for a truth-monotonic ’immediate consequence operator’ instead
of knowledge-monotonic Fitting’s operator for a many-valued logic programs.
We extend the Fitting’s fixpoint semantics for 3-valued logic programs and show
the strong connection with the fixpoint semantics of ’meta’ logic programs ob-
tained by encapsulation of many-valued programs.

1 Introduction

Generally, three-valued, or partial model semantics has had an extensive development
for logic programs. So far, research in many-valued logic programming has proceeded
along different directions; one of them is Bilattice-based logics, [1,2]. One of the key
insights behind bilattices was the interplay between the truth values assigned to sen-
tences and the (non classic) notion of implication. The problem was to study how truth
values should be propagated ”across” implications.
In [3], Belnap introduced a logic intended to deal in a useful way with inconsistent
or incomplete information. It is the simplest example of a non-trivial bilattice and it
illustrates many of the basic ideas concerning them. We denote the four values as
{t, f,ᵀ,⊥}, where t is true, f is false, ᵀ is inconsistent (both true and false) or pos-
sible, and ⊥ is unknown. As Belnap observed, these values can be given two natural
orders: truth order, ≤t, and knowledge order, ≤k, such that f ≤t ᵀ ≤t t, f ≤t⊥≤t t,
and ⊥≤k f ≤k ᵀ, ⊥≤k t ≤k ᵀ. These two orderings define corresponding equiva-
lences =t and =k. Thus any two members α, β in a bilattice are equal, α = β, if and
only if (shortly ’iff’) α =t β and α =k β.
Meet and join operators under ≤t are denoted ∧ and ∨; they are natural generalizations
of the usual conjunction and disjunction notions. Meet and join under ≤k are denoted
⊗ (consensus, because it produces the most information that two truth values can agree
on) and⊕ (gullibility, it accepts anything it is told), such that hold: f⊗t =⊥, f⊕t = ᵀ,

WCLP 2005 76 Ulmer Informatik-Berichte 2005-01

ᵀ∧ ⊥= f and ᵀ∨ ⊥= t.
There is a natural notion of truth negation, denoted ∼, (reverses the ≤t ordering, while
preserving the ≤k ordering): switching f and t, leaving ⊥ and ᵀ, and corresponding
knowledge negation, denoted −, (reverses the ≤k ordering, while preserving the ≤t

ordering), switching ⊥ and ᵀ, leaving f and t. These two kinds of negation commute:
− ∼ x =∼ −x for every member x of a bilattice.
It turns out that the operations ∧,∨ and ∼, restricted to {f, t,⊥} are exactly those of
Kleene’s strong 3-valued logic. Any bilattice 〈B,≤t,≤k〉 is:
1. Interlaced, if each of the operations ∧,∨,⊗ and ⊕ is monotone with respect to both
orderings (for instance, x ≤t y implies x⊗z ≤t y⊗z , x ≤k y implies x∧z ≤k y∧z).
2. Infinitarily interlaced, if it is complete and four infinitary meet and join operations
are monotone with respect to both orderings.
3. Distributive, if all 12 distributive laws connecting ∧,∨,⊗ and ⊕ are valid.
4. Infinitarily distributive, if it is complete and infinitary, as well as finitary, distributive
laws are valid. (Note that a bilattice is complete if all meets and joins exist, w.r.t. both
orderings.
We denote infinitary meet and join w.r.t. ≤t by

∧
and

∨
, and by

∏
and

∑
for the ≤k

ordering. A more general information about bilattice may be found in [2]. The Belnap’s
4-valued bilattice is infinitary distributive. In the rest of this paper we denote by B4 (or
simply B) the Belnap’s bilattice.
In this paper we will consider only consistent (without constraints) logic programming.
We introduce the ontological encapsulation (program transformation) of the many-
valued logic programs into the 2-valued ’meta’ logic programs, and use it in order to
define the notion of model for the many-valued programming.
The resulting ontological 2-valued logic [4], which encapsulates the semantics of
many-valued logics is not an issue ”per se”: it is considered as a minimal logic tool
useful to define many-valued entailment and inference. But, recently, it is used also in
order to define the coalgebraic semantics for logic programs [5], and in the future, con-
sidering the fact that for any predicate at ’object’ many-valued level, by encapsulation
we obtain a new predicate, with one logic-attribute extension (for the epistemic logic
value), we will consider the possibility to use the ordinary relational database schemas
with such extended predicates in global schemas of data integration systems [6,7], for
query answering from their unique minimal many-valued Herbrand model.
This paper is the direct continuation of the work [4], with the aim to provide the fix-
point semantics for such ontologically encapsulated 4-valued logic programs, analog to
the knowledge ordered fixpoint semantics, given by Fitting [8], for a 3-valued strong
Kleene’s logic.
It is well known that the semantics of many-valued logic programs with negations can
be defined as a least fixpoint w.r.t. the knowledge ordering in the bilattice of Herbrand
interpretations (for positive logic programs it can be defined as least fixpoint w.r.t. the
truth ordering also). What we have now to investigate is which kind of ordering, in the
functional space of Herbrand interpretations of encapsulated logic programs, we need
to define in order to obtain the least fixpoint as the semantics for encapsulated logic
programs. As we will see, the answer comes directly from the fact that the encapsulated
logic programs, with negation also, are a positive logic programs (with only modified

WCLP 2005 77 Ulmer Informatik-Berichte 2005-01

semantics for logic implication).
The obtained syntax for transformed original many-valued logic programs, that is, en-
capsulated programs, is equal to the standard syntax of logic programs: thus, predicates
in such logic programs can directly represent the relational database models, differ-
ently from other approaches as in Signed [9,10,11] or Annotated logic programming
[12,13,14].
Let’s call meta-truth ordering, the truth ordering for encapsulated programs (to distin-
guish it from the truth ordering at many-valued logic programming level): from the fact
that the encapsulated programs are syntactically positive logic programs we conclude
that their semantics can be defined as a least fixpoint w.r.t. the meta-truth ordering. Be-
cause of that we need to enrich the original many-valued level bilattice also with this
3-th meta-truth ordering in order to obtain a trilattice, and to define the fixpoint se-
mantics of encapsulated programs w.r.t. this meta-truth ordering. Moreover, we need to
prove that such least fixpoint, for a minimal Herbrand model of the encapsulated logic
program, corresponds to the least (Fitting’s-like) fixpoint of the original 4-valued logic
program.
We argue that such logic will be a good framework for supporting also the data in-
tegration systems with key and foreign key integrity constraints with incomplete and
inconsistent source databases, with more simple query-answering algorithms [15,7].
The plan of this paper is the following: Section 2 is a short overview of the work in
[4] which introduces the syntax and the model theoretic Herbrand semantics for the
encapsulated many-valued (EMV) logic programs. Section 3 presents the theory of a
trilattice, BA, of interpretations for an encapsulated ’meta’ logic program PA, which
generalizes the bilattice structure of a functional space of Herbrand interpretations for
multi-valued logic programs. Finally in Section 4 is developed the fixpoint semantics
for encapsulated logic programs and it is shown that it corresponds to the minimal stable
many-valued models of Fitting’s fixpoint semantics.

2 Encapsulation of many-valued logic

We assume that the Herbrand universe is ΓU = Γ
⋃
Ω, where Γ is ordinary domain

of database constants, and Ω is an infinite enumerable set of marked null values, Ω =
{ω0, ω1,}, and for a given logic program P composed by a set of predicate and
function symbols, PS , FS respectively, we define a set of all terms, TS , and its subset
of ground terms T0. Then the atoms are defined as:
AS = {p(c1, .., cn) | p ∈ PS , n = arity(p) and ci ∈ TS}.
The Herbrand base, HP , is the set of all ground (i.e., variable free) atoms. A (ordinary)
Herbrand interpretation is a many-valued mapping I : HP → B. If P is a many-valued
logic program with the Herbrand baseHP , then the ordering relations and operations in
a bilattice B4 are propagated to the function space BHP

4 , that is the set of all Herbrand
interpretations (functions), I = vB : HP → B4. It is straightforward [16] that this
makes a function space BHP

4 itself a complete infinitary distributive bilattice.
One of the key insights behind bilattices [1,2] was the interplay between the truth
values assigned to sentences and the (non classic) notion of implication. The problem
was to study how truth values should be propagated ”across” implications. We proposed

WCLP 2005 78 Ulmer Informatik-Berichte 2005-01

[17] the implication based approach, which extends the definition in [18] based on the
following intuitionistic many valued implication (a relative pseudo complement w.r.t.
the truth ordering):

→ t ⊥ f ᵀ

t t ⊥ f ᵀ

⊥ t t ᵀ ᵀ

f t t t t
ᵀ t ⊥ ⊥ t

We introduce [4] the program encapsulation transformation E :

Definition 1. Let P be a many-valued logic program with the set of predicate symbols
PS , and for any predicate p inPS we introduce a mapping κp : T

arity(p)
0 → B. The

translation E in the encapsulated syntax version PA is as follows:
1. Each positive literal in P , we introduce a new predicate pA as follows
E(p(x1, .., xn)) = pA(x1, .., xn, κp(x1, .., xn));
2. Each negative literal in P , we introduce a new predicate pA as follows
E(∼ p(x1, .., xn)) = pA(x1, .., xn,∼ κp(x1, .., xn));
3. E(φ ∧ ϕ) = E(φ) ∧ E(ϕ); E(φ ∨ ϕ) = E(φ) ∨ E(ϕ) ;
4. E(φ ← ϕ) = E(φ) ←A E(ϕ) , where ←A is a symbol for the implication at
the encapsulated 2-valued ’meta’ level. Thus, the obtained ’meta’ program is equal
to PA = {E(φ) | φ is a clause in P}, with the 2-valued Herbrand base
HA

P = { pA(c1, .., cn, α) | p(c1, .., cn) ∈ HP and α ∈ B}.

This embedding of the many-valued logic program P into a 2-valued ’meta’ logic
program PA is an ontological embedding: views formulae of P as beliefs and inter-
prets negation ∼ p(x1, .., xn) in rather restricted sense - as belief in the falsehood of
p(x1, .., xn), rather as not believing that p(x1, .., xn) is true (like in an ontological
embedding for classical negation). Like for Moore’s autoepistemic operator, for the en-
capsulation operator E (restricted to atoms), Eφ is intended to capture the notion of, ”I
know that φ has a value vB(φ) ”, for a given valuation vB of the many-valued logic
program.
Notice, that with the transformation of the original many-valued logic program P into
its encapsulated ’meta’ version program PA we obtain a positive logic program.
We denote by Fr the restriction function from the set of all encapsulated logical pro-
grams into the set of (usual) logical programs, such that for any ’meta’ program PA

the P = Fr(P
A) is its reduction where all encapsulations of κp in clauses of PA are

eliminated.
An encapsulated Herbrand interpretation (en-interpretation) of PA is a 2-valued map-
ping IA : HA

P → 2, where 2 = {t, f}. We denote by 2HA

P the set of all en-interpretations
from HA

P into 2, and by BHP the set of all consistent Herbrand many-valued interpre-
tations, from HP to the bilattice B.
Let L be the set of all ground well-formed formulae defined by this Herbrand base HP

and bilattice operations (included many-valued implication← also), with B ⊆ L, then
the set of all well-formed encapsulated formulae is:
LA =def {E(ψ) | ψ ∈ L}, so that HA

P ⊆ L
A.

The meaning of the encapsulation of a many-valued logic program P into this ’meta’

WCLP 2005 79 Ulmer Informatik-Berichte 2005-01

logic program PA is fixed into the kind of interpretation to give to such new introduced
functional symbols κp: in fact we want that they represent (encapsulate) the semantics
of the many-valued logic program P (shortly, ” ontological semantic-reflection ≡
epistemic semantics”, [4]).

Definition 2. (Satisfaction) The encapsulation of an epistemic many-valued logic pro-
gram P into a ’meta’ program PA means that, for any consistent many-valued Her-
brand interpretation I ∈ BHP and its extension vB : L → B , the function symbols
κp, p ∈ PS reflect this semantics, i.e. for any tuple c ∈ T arity(p)

0 , κp(c) = I(p(c)).
So, we obtain a mapping, Θ : BHP → 2HA

P , such that IA = Θ(I) ∈ 2HA

P , with:
for any ground atom p(c) , IA(E(p(c))) = t , if κp(c) = I(p(c)); f otherwise.
The subset, ImΘ ⊆ {t, f}H

A

P , is denominated encapsulated (en-interpretations).
Let g be a variable assignment which assigns values from T0 to object variables. We
extent it to atoms with variables, so that g(E(p(x1, .., xn))) = E(p(g(x1), .., g(xn))),
and to all formulas in the usual way: ψ/g denotes a ground formula obtained from ψ
by assignment g, then
1. IA �g E(p(x1, .., xn)) iff κp((g(x1), .., g(xn))) = I(p(g(x1), .., g(xn))) .
IA �g E(∼ p(x1, .., xn)) iff ∼ κp((g(x1), .., g(xn))) = I(p(g(x1), .., g(xn))) .
2. IA �g E(φ ∧ ψ) iff IA �g E(φ) and IA �g E(ψ).
3. IA �g E(φ ∨ ψ) iff IA �g E(φ) or IA �g E(ψ).
4. IA �g E(φ ← ψ) iff vB(φ/g ← ψ/g) = t , i.e., vB(φ/g) ≥t vB(ψ/g).

Notice that in this semantics the ’meta’ implication←A (the point 4 above), in
E(φ) ←A E(ψ) = E(φ ← ψ) , is based on the ’object’ epistemic many-valued
implication← (which is not classical, i.e., φ← ψ 6= φ∨ ∼ ψ) and determines how the
logical value of a body of clause ”propagates” to its head.

Definition 3. The Herbrand instantiation P ∗, of PA, is constructed as follows: first,
put in P ∗ all ground instances, substituting terms in the Herbrand universe for vari-
ables in every possible way, of clauses of PA; second (let α = κp(c)), if a clause
pA(c, α) ←A, with empty body, occurs in P ∗, replace it with pA(c, α) ←A t. Next, if
there are several clauses in the resulting set having the same head (only for non built-in
predicates), pA(c, α) ←A C1, pA(c, α) ←A C2, ..., replace them with pA(c, α) ←A

C1∨C2∨ ...; Finally, if the ground atom pA(c, α) is not the head of any member of P ∗,
add pA(c, α)← f .
P ∗ will generally be infinite but in P ∗ a ground atom, pA(c, α), of a non built-in pred-
icate, turns up as the head of exactly one member.

Proposition 1 If PA is an encapsulated logic program, then its Herbrand instantiation,
P ∗,is positive. That is, all literals in its instantiated clauses are (positive) encapsulated
ground atoms. Thus we can consider P ∗ as positive logic program w.r.t. replaced pred-
icates (only the semantics for ’meta’ implication of these logic programs is modified).

For multi-valued logic programs we apply the standard satisfaction rule for implication,
where the logic value of the body of some clause is directly assigned (propagated) to the
head of a clause by the ’immediate consequence operator’: thus, for encapsulated logic
programs, which are always positive, we obtain the unique minimal Herbrand model.

WCLP 2005 80 Ulmer Informatik-Berichte 2005-01

3 The trilattice of interpretations

What is the reason for introducing a trilattice? Well, it is well known that the semantics
of many-valued logic programs with negations can be defined as a least fixpoint w.r.t.
the knowledge ordering in the billatice of Herbrand interpretations (for positive logic
programs it can be defined as least fixpoint w.r.t. the truth ordering also). What we have
now to consider is in which kind of ordering, in the functional space of Herbrand inter-
pretations of encapsulated logic programs, we have to define the least fixpoint as its se-
mantics. The answer comes directly from the fact that the encapsulated logic programs,
obtained from a many-valued programs with negation also, are positive programs: thus,
their semantics can be defined as a least fixpoint w.r.t. the meta-truth ordering, which is
a new third trilattice’s dimension.
Any interpretation IA : HA

P → 2 of an encapsulated logical program PA may be equiv-
alently represented by the set of true, ontologically encapsulated, ground atoms,
mA =def { p

A(c, α) | IA(pA(c, α)) = t} ∈ P(HA
P), where P(HA

P) is the set of all
subsets ofHA

P . In order to give an intuitive understanding of the definition of a trilattice
let us consider anymA as a quadruple of sets [T, P, U, F], with true, possible, unknown
and false atoms in HP respectively. Then, given two en-interpretations mA,mA

1 , repre-
sented by [T, P, U, F] and [T1, P1, U1F1] respectively, we can introduce the following
three preorders:
1. Set inclusion lattice preorder (truth preorder at ’meta’ level), mA ⊆ mA

1 .
2. Truth lattice preorder, mA ≤t mA

1 iff T ⊆ T1 and F ⊇ F1.
3. Knowledge lattice preorder, mA ≤k mA

1 iff T ⊆ T1, P ⊆ P1 and F ⊆ F1.
Now we can introduce the following lattice operators (meet, join and negation):
1. Set intersection, set union and set complement, for the inclusion lattice preorder.
The strong equivalence ′ =′, is the set equivalence, empty set, mA

⊥, is its bottom ele-
ment, and mA

ᵀ
= HA

P is its top element.
2. For the truth preorder (many-valued level) lattice:
[T, P, U, F] ∧ [T1, P1, U1, F1] =def [T

⋂
T1, P

⋂
P1, {}, F

⋃
F1]

[T, P, U, F] ∨ [T1, P1, U1, F1] =def [T
⋃
T1, P

⋂
P1, {}, F

⋂
F1]

∼ [T, P, U, F] =def [F, P, {}, T], false atoms become true and viceversa.
Each mA = [T, P, U, F] such that F = HP and T = {} is its bottom element; each
mA such that T = HP and F = {} is its top element.
3. For the knowledge preorder (many-valued level) lattice:
[T, P, U, F]⊗ [T1, P1, U1, F1] =def [T

⋂
T1, P

⋂
P1, {}, F

⋂
F1]

[T, P, U, F]⊕ [T1, P1, U1, F1] =def [T
⋃
T1, P

⋃
P1, {}, F

⋃
F1]

−[T, P, U, F] =def [F , P , {}, T], where S denotes set complement, S = HP − S .
Empty set, mA

⊥, is its bottom element, and each mA, such that ∼∼ HA
P ⊆ mA ⊆ HA

P

is its top element.
The unary operations, nt (change the truth in possibility), and pt (change the falsehood
in possibility), nt, pt : P(HA

P)→ P(HA
P), are defined as follows:

nt([T, P, U, F]) =def [{}, T, {}, F], pt([T, P, U, F]) =def [T, F, {}, {}],
with their bilattice corresponding, nt, pt : B → B
nt(t) = nt(⊥) =⊥, nt(f) = nt(ᵀ) = f , pt(t) = pt(ᵀ) = t, pt(f) = pt(⊥) =⊥.
There is also another weak equivalence in a trilattice BA, generated by two introduced
many-valued orderings.

WCLP 2005 81 Ulmer Informatik-Berichte 2005-01

Definition 4. Let BA =def 〈P(HA
P),⊆,≤A

t ,≤
A
k 〉 be a trilattice of en-interpretations

for an encapsulated program PA. Then the weak equivalence relation ”≈” of a trilat-
tice is defined by: mA

1 ≈ m
A
2 iff mA

1 =t m
A
2 and mA

1 =k m
A
2 . This equivalence

determines equivalence classes of members in BA. In each equivalence class of mem-
bers {mA

1 , ..,m
A
n }, with mA

i ≈ mA
j for any 1 ≤ i, j ≤ n, the subset of ground atoms

encapsulated by ⊥ of each member mA
i is left to be free.

1. We define a representative member, of any equivalence class, a member mA =
[T, P, U, F] with U = HP − (T

⋃
P

⋃
F). We also introduce the function fR which

for any mA = [T, P, U, F] returns with its representative:
mA ≈ fR(mA) =def [T, P,HP − (T

⋃
P

⋃
F), F].

2. We define minimal members mA = [T, P, U, F] ∈ BA, such that U = {}; it is
easy to see that each trilattice operator, different from

⋂
and

⋃
, returns with a minimal

member.
3. We define minimal consistent members mA ∈ BA, such that they are minimal and⋃

α6=β, α,β∈[T,P,U,F](α
⋂
β) = {}.

We denote by mA
bin the minimal consistent member which represents the prefixed set of

ground atoms for built-in predicates; it remains equal for all consistent interpretations
of a given program PA,
mA

bin = {pA(c, t) |p(c) ∈ HP is a true ground atom of the built-in predicate p}
⋃

{pA(c, f) | p(c) ∈ HP is a false ground atom of built-in predicate p}.
If a program PA does not contain built-in predicates then mA

bin = mA
⊥ .

Proposition 2 For any mA,mA
1 ,m

A
2 ∈ B

A hold:
1. if mA

1 = mA
2 then mA

1 ≈ mA
2 , but not viceversa: only if mA

1 ,m
A
2 are minimal then

mA
1 ≈ m

A
2 implies mA

1 = mA
2

2. mA ⊇ ∼∼ mA = −−mA ≈ mA, ∼ −mA = − ∼ mA.
3. −(mA

1

⋂
mA

2) = −mA
1

⋃
−mA

2 , −(mA
1

⋃
mA

2) = −mA
1

⋂
−mA

2 .
4. ∼ (mA

1 ∧m
A
2) =∼ mA

1 ∨ ∼ m
A
2 , ∼ (mA

1 ∨m
A
2) =∼ mA

1 ∧ ∼ m
A
2 .

5. −(mA
1 ⊗m

A
2) = −mA

1 ⊕−m
A
2 , −(mA

1 ⊕m
A
2) = −mA

1 ⊗−m
A
2 .

6. ∼ (mA
1

⋂
mA

2) =∼ mA
1

⋂
∼ mA

2 , ∼ (mA
1

⋃
mA

2) =∼ mA
1

⋃
∼ mA

2 .
7. ∼ (mA

1 ⊗m
A
2) =∼ mA

1 ⊗ ∼ m
A
2 , ∼ (mA

1 ⊕m
A
2) =∼ mA

1 ⊕ ∼ m
A
2 .

8. −(mA
1 ∧m

A
2) =t −m

A
1 ∧ −m

A
2 , while −(mA

1 ∧m
A
2) ≥A

k −m
A
1 ∧ −m

A
2 .

9. −(mA
1 ∨m

A
2) =t −m

A
1 ∨ −m

A
2 , while −(mA

1 ∨m
A
2) ≥A

k −m
A
1 ∨ −m

A
2 .

It is easy to verify that a representative fR(mA), of any minimal consistent mA, is an
en-interpretation such that mA ⊆ fR(mA).

Proposition 3 〈P(HA
P),≤A

t ,≤
A
k 〉 is a complete infinitarily distributive bilattice: its

knowledge negation,−, coincides with the truth negation of the truth ordering⊆. Thus,
∼ reverses the ≤t ordering, while preserving the ≤k and ⊆ orderings; − reverses the
≤k and ⊆, while preserving the ≤t ordering.
There is a bijection, δ : 2HA

P ' BA , such that for any mA ∈ BA, IA =
δ−1(mA) : HA

P → 2 is an en-interpretation, where, for any ground atom pA(c, α),
IA(pA(c, α)) = t, if pA(c, α) ∈ mA; f , otherwise;
and for any IA ∈ 2HA

P , mA = δ(IA) =def {p
A(c, α) | IA(pA(c, α)) = t}.

Proposition 4 (Consistency) If PA is an encapsulated logic program based on a 4-
valued bilattice B4, and BA =def 〈P(HA

P),⊆,≤A
t ,≤

A
k 〉 is the trilattice of all its en-

WCLP 2005 82 Ulmer Informatik-Berichte 2005-01

interpretations, with HP = {p(c) | p(c, α) ∈ HA
P }, than for any mA ∈ BA

1. if mA =t −m
A then it is representative member and a 2-valued consistent (or

”exact”) Herbrand interpretation I : HP → {t, f}, (t, f are exact). For any mA the
member mA ∨ −mA is ”exact”.
2. if mA ≤A

k −m
A then its representative is a 3-valued consistent Herbrand interpre-

tation I : HP → {t, f,⊥}, (t, f,⊥ are 3-valued consistent).
3. if nt(m

A) ⊕ pt(m
A) ≤A

k −m
A then its representative is a 4-valued consistent

Herbrand interpretation I : HP → B4. All values in B4 are 4-valued consistent.
Proof. Easy to verify. From the points 5 and 6 of the Proposition 2 holds that each
2-valued consistent member is also 3- and 4-valued consistent, and that each 3-valued
consistent member is also 4-valued consistent.
Definition 5. A complete semilattice is a partially ordered set, that is closed under
arbitrary meets and under joins of directed subsets. A subset D is directed if for all
x, y ∈ D there is z ∈ D such that x ≤ z and y ≤ z.

Now we will define a sublattice of BA which corresponds to consistent many-valued
interpretations I : HP → B4 of a program P = Fr(P

A). Recall that each representa-
tive member mA is not partial w.r.t. the Herbrand base, and that such completeness is
obtained by assigning the default value unknown, ⊥, to all remaining ground atoms.

Proposition 5 The 4-valued consistent members inBA, i.e., c-interpretations, are closed
under∼, ⊗, and under∧, ∨ and their infinitary versions. The 4-valued consistent mem-
bers, or c-interpretations, constitute a complete semilattice under ≤A

k ,
BA

C =def { fR(mA) | nt(m
A) ⊕ pt(m

A) ≤A
k −m

A }, being closed under Π and
under directed Σ (applied to directed sets). The fR : (BA,⊆) → (BA,≤A

k) and
∼∼: (BA,≤A

k)→ (BA,⊆) are two homomorphisms which preserve orderings.
There is an isomorphism, (δΘ)−1 = Θ−1δ−1 : BA

C → B
HP

4 , where Θ−1 : 2HA

P →

BHP

4 is inverse of Θ, such that for any IA ∈ 2HA

P , vB = Θ−1(IA) and for every
annotated ground atom, if IA(pA(c, α)) = t then vB(p(c)) = α.

Proof. Let prove the closure for∼: ifmA is a c-interpretation, then nt(m
A)⊕pt(m

A) ≤A
k

−mA, and ∼ (nt(m
A) ⊕ pt(m

A)) ≤A
k∼ −m

A, and ∼ nt(m
A)⊕ ∼ pt(m

A)) ≤A
k

− ∼ mA; so we obtain pt(∼ mA) ⊕ nt(∼ mA)) ≤A
k − ∼ mA, thus ∼ mA is a

c-interpretation. For a 4-valued consistent members in BA hold:
(a) n2

t (m
A
1)⊗n2

t (m
A
1) ≤A

k −(mA
1 ∨m

A
2) , and p2

t (m
A
1)⊗p2

t (m
A
1) ≤A

k −(mA
1 ∧m

A
2).

From nt(m
A)⊕pt(m

A) ≤A
k −m

A we have (pt is monotonic) pt(nt(m
A)⊕pt(m

A)) ≤A
k

pt(−m
A) ≤A

k −m
A, i.e., ptnt(m

A) ⊕ p2
t (m

A)) ≤A
k −m

A, thus p2
t (m

A)) ≤A
k −m

A.
Analogously, (nt is monotonic), n2

t (m
A)) ≤A

k −m
A. Thus,

n2
t (m

A
1) ⊗ n2

t (m
A
2) = n2

t (m
A
1) ∨ n2

t (m
A
2) ≤A

k −m
A
1 ∨ −m

A
2 = −(mA

1 ∨m
A
2), and

p2
t (m

A
1)⊗ p2

t (m
A
2) = p2

t (m
A
1) ∧ p2

t (m
A
2) ≤A

k −m
A
1 ∧ −m

A
2 = −(mA

1 ∧m
A
2).

(b) ntp
2
t (m

A
1) ⊕ ntp

2
t (m

A
2) ⊕ ptn

2
t (m

A
1) ⊕ ptn

2
t (m

A
2) ≤A

k −(mA
1 � mA

2), where
� ∈ {∧,∨}.
(c) nt(m

A
1 ∧m

A
2) ≤A

k −(mA
1 ∧m

A
2). (d) pt(m

A
1 ∧m

A
2) ≤A

k −(mA
1 ∧m

A
2).

(e) nt(m
A
1 ∨m

A
2) ≤A

k −(mA
1 ∨m

A
2). (f) pt(m

A
1 ∨m

A
2) ≤A

k −(mA
1 ∨m

A
2).

Now, from (c) and (d), we conclude that nt(m
A
1 ∧m

A
2)⊕ pt(m

A
1 ∧m

A
2) ≤A

k −(mA
1 ∧

mA
2), and, from (e) and (f), we conclude nt(m

A
1 ∨m

A
2)⊕ pt(m

A
1 ∨m

A
2) ≤A

k −(mA
1 ∨

mA
2), i.e., the closure of r-interpretations under ∧ and ∨. For ⊗, instead, we have that

WCLP 2005 83 Ulmer Informatik-Berichte 2005-01

nt(m
A
1 ⊗m

A
2)⊕ pt(m

A
1 ⊗m

A
2) = (nt(m

A
1)⊕ pt(m

A
1)⊗ (nt(m

A
2 ⊕ pt(m

A
2))⊗ ,

by distributivity, ≤A
k (nt(m

A
1)⊕ pt(m

A
1)⊗ (nt(m

A
2 ⊕ pt(m

A
2))

≤A
k − (mA

1)⊕−(mA
2) = −(mA

1 ⊗m
A
2), by De Morgan.

Suppose S is a set of r-interpretations that also is directed by≤A
k . Let prove that

∑
S is

a r-interpretation. Since S is directed, for any two mA
1 ,m

A
2 ∈ S there is some mA ∈ S

with mA
1 ≤

A
k mA and mA

2 ≤
A
k mA. Thus,

nt(m
A
1)⊕ pt(m

A
1) ≤A

k nt(m
A)⊕ pt(m

A) ≤A
k −m

A, and
nt(m

A
2)⊕ pt(m

A
2) ≤A

k nt(m
A)⊕ pt(m

A) ≤A
k −m

A, so
(nt(m

A
1)⊕ pt(m

A
1))⊕ (nt(m

A
2)⊕ pt(m

A
2)) ≤A

k −m
A.

Consequently, (for brevity we denote
∑

m∈S by
∑

),
nt(

∑
(mA))⊕ pt(

∑
(mA)) =

∑
(nt(m

A)⊕ pt(m
A)) ≤A

k −
∑
mA.

It is easy to verify that for any two mA
1 ⊆ mA

2 in BA holds fR(mA
1) ≤A

k fR(mA
2), and

for any two mA
1 ≤

A
k mA

2 in BA holds ∼∼ (mA
1) ⊆∼∼ (mA

2), thus fR and ∼∼ are two
order preserving homomorphisms.
From definitions we have that ΘΘ−1 and Θ−1Θ are identities, thus Θ is an isomor-
phism, and having that also δ is an isomorphism, then also their composition is an
isomorphism.

The Knaster-Tarski like theorem for monotonic functions in a complete sublattice is
partially valid (the greatest fixpoints may not exist as in complete lattices): the least
fixpoint exists for each monotonic function (’truth revision’) w.r.t.≤A

k ordering. As con-
sequence of the isomorphism δΘ, and two order-preserving homomorphisms, fR, ∼∼,
all of Fitting’s fixpoint semantics definitions for a 4-valued stable models for a logic
programming [8], based on a monotonic ’truth revision’ operators w.r.t. ≤A

k ordering
over a Function space bilattice BHP

4 , are directly translated into the complete semilat-
tice w.r.t. ≤A

k of c-interpretations BA
C , and, successively, into the complete semilattice

w.r.t. ⊆ of the minimal consistent interpretations.

4 Fixpoint semantics of encapsulated logic programs

All encapsulated logic programs have a nice property: their Herbrand instantiations are
positive logic programs w.r.t. c-interpretations; such c-interpretations define a complete
semilattice, BA under ⊆.
Such property, analogously as for positive logic programs, induces that the monotonic
’immediate consequence operator’ , TP , of a program PA has the least fixpoint (the
least fixpoint corresponds to the least Herbrand model of PA). In [5] is given also the
coalgebraic semantics for such logic programs.
Now we can introduce the suitable transcription, taking the particular rule of built-in
predicates, of the Fitting’s definition (Def 18 in [8]) of a 4-valued single-step truth re-
vision operator over a Function space BHP

4 (of 4-valued Herbrand interpretations) for
many-valued logic programming, ΦP : BHP

4 → BHP

4 .
We have to remark that the incompleteness of database defined by ordinary 3-valued
logic programs is expressed by existentially quantified heads of clauses; that is, some
of the attributes of the head-predicate are not defined by a program (consider for exam-
ple the foreign key integrity constraints in a global schema of data integration systems
for incomplete data sources [15,7]) and for such attributes are introduced Skolem func-

WCLP 2005 84 Ulmer Informatik-Berichte 2005-01

tions. Consequently, to any ground atom which contains the Skolem terms, the unknown
logic value ⊥ is associated.
Definition 6. (Fitting’s like 4-valued operator [8]) Let P ∗ be a Herbrand instantiation
of an encapsulated logic program PA. Then Fr(P

∗) is a Herbrand instantiation of the
(standard) logic program P =def Fr(P

A). We define the Fitting’s 4-valued operator
ΦP : BHP

4 → BHP

4 , such that for any 4-valued interpretation v ∈ BHP

4 , ΦP (v) = w ,
where w : HP → B4 is the unique interpretation determined as follows:
1. if the pure ground atom A ∈ HP is not the head of any member of Fr(P

∗), then
w(A) = f .
2. If A ← B occurs in Fr(P

∗), then w(A) = vB(B), where vB is the valuation
extension to all ground formulae.
Fitting showed that ΦP is monotonic w.r.t. ≤k ordering and that the usual Knaster-
Tarski theorem gives smallest fixed points, which correspond to the 4-valued stable
models of a logic program P .

Definition 7. Let PA be an encapsulated logic program, obtained from the many-
valued program P . An associated ’encapsulated immediate consequence’ operator,
TA

P : BA → BA, is defined as follows: let mA
0 = mA

bin, and mA
k ∈ B

A be deter-
mined in the k-th step (k ≥ 0). Then
TA

P,σ(mA
k) = mA

k+1, where mA
k+1 is the unique valuation determined by the following:

for a ground atom pA(c, α),
1. pA(c, α) ∈ mA

k+1, if there is a ground clause pA(c, α)← pA
1 (c1, α1), ..., p

A
n (cn, αn)

such that pA
i (ci, αi) ∈ m

A
k for all 1 ≤ i ≤ n, and α = α1 ∧ ∧ αn.

2. pA(c, α) /∈ mA
k+1, otherwise.

Proposition 6 (Well-founded semantics) If PA is an encapsulated logic program then
the ’encapsulated immediate consequence’, TA

P : BA → BA, is monotonic, i.e., mA ⊆
nA implies TA

P (mA) ⊆ TA
P (nA), and holds mA ⊆ TA

P (mA).
The set of all minimal consistent members in BA is closed under the ontological opera-
tor TP , that is, ifmA is a minimal consistent then also TA

P (mA) is a minimal consistent.
Let the smallest fixed point of TA

P be mA ∈ BA, and the well-founded model of P be
the interpretation I : HP → B, then for any ground atom pA(c, α) ∈ HA

P holds
δ−1(mA)(pA(c, α)) = t, if I(pA(c)) = α; f otherwise.

Thus, the well-founded semantics for general logic programs, obtained by the Fitting’s
fixpoint operator ΦP , monotonic with respect to the knowledge bilattice ordering, cor-
responds to the minimal model of the encapsulated logic programs, obtained from the
truth-monotonic operator TA

P , as consequence of the semantics of the encapsulation.
In fact the following homomorphism between many-valued functional space of inter-
pretations and 2-valued ontological interpretations holds:

Theorem 1 (Truth-knowledge correspondence)
Let TA

P : BA → BA be an immediate consequence operator of an encapsulated pro-
gram PA, then
ΦP = (δΘ)−1fRT

A
P ∼∼ δΘ is the correspondent Fitting’s 4-valued operator of a

program P = Fr(P
A), where ∼∼ δΘ : (BHP

4 ,≤k) → (BA,⊆) and (δΘ)−1 :
(BA

C ,⊆)→ (BHP

4 ,≤k) are two homomorphisms which preserve orderings.

WCLP 2005 85 Ulmer Informatik-Berichte 2005-01

And viceversa, if ΦP : BHP

4 → BHP

4 is an immediate Fitting’s consequence operator,
then TA

P =∼∼ δΘ ΦP (δΘ)−1fR is the correspondent encapsulated immediate con-
sequence operator.
Consequently, if mA is the smallest fixed point of the encapsulated logic program op-
erator TA

P , then (δΘ)−1fR(mA) is the smallest fixed point of the Fitting’s operator
ΦP , i.e., it is a 4-valued stable model of a program P =def Fr(P

A).

Proof. Let verify the order preserving property of these two homomorphisms. Letw, v ∈
BHP

4 , such that w ≥k v, i.e., that for every α ∈ {t, f,ᵀ}, {w(p(c)) | w(p(c)) = α} ⊇
{v(p(c)) | v(p(c)) = α}. We obtain that ∼∼ δΘ(w) = {p(c, α) | w(p(c)) = α and
α 6=⊥}, thus ∼∼ δΘ(w) ⊇∼∼ δΘ(v).
Let a minimal consistent mA is a smallest fixpoint for TA

P , i.e., mA = TA
P (mA), then

v = (δΘ)−1fR(mA) is the smallest fixpoint of ΦP . In fact,
ΦP (v) = ΦP (δΘ)−1fR(mA)
= (δΘ)−1fRT

A
P ∼∼ δΘ(δΘ)−1fR(mA)

= (δΘ)−1fRT
A
P ∼∼ fR(mA), from the isomorphism δΘ

= (δΘ)−1fRT
A
P (mA), from ∼∼ fR(mA) = mA

= (δΘ)−1fR(mA), by hypothesis mA is a fixpoint
= v
Suppose that v is not the smallest fixpoint, i.e., that there is an other fixpoint v′ < v.
Let prove that mA

1 =∼∼ δΘ(v′) is a fixpoint for TA
P :

TA
P (mA

1) =∼∼ δΘ ΦP (δΘ)−1fR(mA
1)

=∼∼ δΘ ΦP (δΘ)−1fR ∼∼ δΘ(v′)
=∼∼ δΘ ΦP (δΘ)−1δΘ(v′), from identity fR ∼∼
=∼∼ δΘ ΦP (v′), from the isomorphism δΘ
=∼∼ δΘ(v′), by hypothesis v′ is a fixpoint
= mA

1 .
From v′ < v holds that ∃p(c, α), α ∈ {t, f,ᵀ} such that p(c, α) ∈ v and p(c, α) /∈ v′,
thus mA

1 =∼∼ δΘ(v′) ⊂ ∼∼ δΘ(v) = mA, i.e., that mA is not the smallest fix-
point of TA

P which is in contradiction with hypothesis: thus we conclude that v =
(δΘ)−1fR(mA) is really the smallest fixpoint of ΦP .

Note that two homomorphisms, (δΘ)−1fR, ∼∼ δΘ, are key facts for the truth-knowledge
ordering correspondence in encapsulated (’meta’) and classical many-valued logic pro-
gramming levels. In fact, an increase in a many-valued knowledge order ≤k, loosely
means more literals acquire truth values from a truth space B4, and that is just an in-
crease in a ’meta’ 2-valued truth order ⊆, in which an increase means ’more encapsu-
lated ground atoms are true’.

5 Conclusion

We have presented a programming logic capable of handling inconsistent beliefs, based
on the 4-valued Belnap’s bilattice, which has clear model theory and fixed point se-
mantics. In the process of the encapsulation we distinguish two levels: the many-valued
level of ordinary logic programs with epistemic negation based on a bilattice operators,
and the ’meta’ level of encapsulated logic programs. In such an abstraction we obtained

WCLP 2005 86 Ulmer Informatik-Berichte 2005-01

a kind of an ontological Predicate Logic where fixpoint ’immediate consequence’ oper-
ator is always continuous, and which is computationally equivalent to standard Fitting’s
fixpoint semantics.
A contribution from the theoretical point of view is given in understanding why (when
we pass from a 2-valued to many-valued logic programming) we pass from truth to
knowledge ordering. The knowledge ordering at many-valued epistemic level is homo-
morphic to the truth ordering at ontological ’meta’ level of logic programming.

References

1. M.Ginsberg, “Multivalued logics: A uniform approach to reasoning in artificial intelligence,”
Computational Intelligence, vol.4, pp. 265–316, 1988.

2. M.C.Fitting, “Billatices and the semantics of logic programming,” Journal of Logic Pro-
gramming,11, pp. 91–116, 1991.

3. N.D.Belnap, “A useful four-valued logic,” In J-M.Dunn and G.Epstein, editors, Modern
Uses of Multiple-Valued Logic. D.Reidel, 1977.

4. Z. Majkić, “Ontological encapsulation of many-valued logic,” 19th Italian Symposium of
Computational Logic (CILC04),June 16-17, Parma, Italy, 2004.

5. Z. Majkić, “Coalgebraic semantics for logic programming,” 18th Worshop on (Constraint)
Logic Programming, WLP 2004, March 04-06, Berlin, Germany, 2004.

6. Maurizio Lenzerini, “Data integration: A theoretical perspective.,” in Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), 2002,
pp. 233–246.

7. Z. Majkić, “Fixpoint semantic for query answering in data integration systems,” AGP03 -
8.th Joint Conference on Declarative Programming, Reggio Calabria, pp. 135–146, 2003.

8. M.C.Fitting, “Fixpoint semantics for logic programming: A survey,” Theoretical Computer
Science, 278, pp. 25–31, 2002.

9. G.Escalada Imaz and F.Manyá, “The satisfiability problem for multiple-valued horn formu-
lae,” In Proc. International Symposium on Multiple-Valued Logics (ISMVL), Boston, IEEE
Press, Los Alamitos, pp. 250–256, 1994.

10. R.Hahnle, “Automated deduction in multiple-valued logics,” Oxford University Press, 1994.
11. B.Beckert, R.Hanhle, and F.Manyá, “Transformations between signed and classical clause

logic,” In Proc. 29th Int.Symposium on Multiple-Valued Logics, Freiburg,Germany, pp. 248–
255, 1999.

12. H.A.Blair and V.S.Subrahmanian, “Paraconsistent logic programming,” Theoretical Com-
puter Science,68, pp. 135–154, 1989.

13. M.Kifer and E.L.Lozinskii, “A logic for reasoning with inconsistency,” Journal of Automated
reasoning 9(2), pp. 179–215, 1992.

14. M.Kifer and V.S.Subrahmanian, “Theory of generalized annotated logic programming and
its applications,” Journal of Logic Programming 12(4), pp. 335–368, 1992.

15. A.Calı̀, D.Calvanese, G.De Giacomo, and M.Lenzerini, “Data integration under integrity
constraints,” in Proc. of the 14th Conf. on Advanced Information Systems Engineering
(CAiSE 2002), 2002, pp. 262–279.

16. M.C.Fitting, “Billatices are nice things,” Proceedings of Conference on Self-Reference,
Copenhagen, 2002.

17. Z. Majkić, “Many-valued intuitionistic implication and inference closure in a bilattice based
logic,” Notes in http://www.dis.uniroma1.it/ ∼ majkic/, 2004.

18. T.Przymusinski, “Every logic program has a natural stratification and an iterated fixed point
model,” In Eighth ACM Symposium on Principles of Databases Systems, pp. 11–21, 1989.

WCLP 2005 87 Ulmer Informatik-Berichte 2005-01

Impact- and Cost-Oriented Propagator
Scheduling for Faster Constraint Propagation

Georg Ringwelski1 and Matthias Hoche2

1 4C, University College Cork, Ireland g.ringwelski@4c.ucc.ie
2 Fraunhofer FIRST, Kekuléstr.7, 12489 Berlin, Germany mathoc@first.fhg.de

Abstract. Constraint Propagation can be speeded up significantly by
choosing a good execution order for propagators. A propagator is an
implicit representation of a constraint which is widely used in todays
powerful constraint solvers. In this paper we evaluate different ways to
find good execution orders automatically during runtime. We extend
previous work in this area by two new techniques: fair-scheduling and
impact-oriented prioritization of propagators.

1 Introduction

Constraint Propagation is one of the key techniques of Constraint Programming.
In finite integer domains Propagation is often based on efficient filtering algo-
rithms of constraints in compiled form. These algorithms implement so-called
propagators. Thus, they represent the semantics of their associated constraint
in an implicit way and detect inconsistencies by inferring wipe-outs of variable
domains. Propagators are the basis of constraint propagation in the currently
fastest finite domain constraint solvers which include SICStus Prolog, ECLiPSe,
ILOG Solver, CHIP, Mozart, GNU Prolog and others.

The propagators are used by the constraint solver to compute a fixed point
of constraint propagation as a preprocessing step or during search. This fixed
point can be a bounds-consistent CSP but there are no general requirements
on the properties of that fixed point. However, given a set of propagators the
fixed point is uniquely determined. To compute this determined fixed point,
the propagators have to be re-executed until no further domain restrictions are
inferable. Naturally this can be done in arbitrary ways and there are many
different orders of execution which lead to different performance. Very little is
known (to the public) about the execution order in the mentioned commercial
solvers.

Related Work. It seems that most of the mentioned constraint solvers use
a priority queue in which the propagators are buffered for execution. CLP-based
languages, such as ECLiPSe or SCIStus use (2 – 13 different) static priority
values associated to each constraint respectively its propagator. The propaga-
tors with higher priority are executed earlier and thus more often. Little was
published about which priority-values are chosen for the constraints [7, 8, 11].
Most of the used priority values seem to be set according to the complexity

WCLP 2005 88 Ulmer Informatik-Berichte 2005-01

of the propagator which they are associated to: expensive computations are de-
layed until all the cheap things are finished. In ECLiPSe user-defined constraints
can be associated to priority values between 1 and 12, but we are not aware of
any guidelines on which numbers to choose. Similar mechanisms are available
in implementations of CHR [6], where the application of certain rules can be
prioritized. However, CHR does not provide any automatic mechanisms to find
appropriate values at all. Another way to prioritize was found in the context of
propagator learning for GNU Prolog [9]: propagators are prioritized regarding
the tightness of their respective constraints. Propagators of tight constraints are
executed earlier. In some CP systems also other data structures than priority
queues, such as stacks for example, can be used to buffer the propagators (e.g.
CHOCO). But again, the decision of which data structure to use is left to the
user and guidance on how to make this decision is missing. In early work on
CSP Wallace and Freuder [12] investigated several heuristics to choose the best
arc during Arc-consistency enforcement with AC-3. Many of their ideas can also
be found in work on propagator scheduling. They additionally proposed some
heuristics which we plan to apply to propagator based constraint propagation
such as learning good priority-values during execution.

Contribution. In this paper we investigate the correlation of execution or-
ders for propagators with the result and performance of constraint solving. In
order to ensure correct results we prove that the execution order can be safely
manipulated and that idempotent propagators can be omitted from being re-
inserted when they are already waiting for execution. Knowing this, we can
compare the performance of various execution orders which can be automati-
cally computed during runtime because the result is uniquely determined. The
order will be specified by various buffers to store propagators for their execu-
tion: FIFO, LIFO, a priority queue and a fair scheduling buffer known from
CPU scheduling in Operating Systems. Fairness was not considered in propaga-
tor scheduling before. These buffers are varied to become sets, i.e. not store any
idempotent propagator twice [10, 8, 11]. Furthermore, we consider two classes
of prioritization: cost-oriented [7, 11] and impact-oriented. The first prioritizes
computationally cheap propagators, the latter prioritizes propagators which may
have a large impact, i.e. which can be expected to prune large portions of the
search space. The latter is a new class of execution orders which was not consid-
ered before. Finally we compare the use of static priority-values to the dynamic
adaptation of the values during runtime.

Organization. In the next Section we describe the theoretical background
of constraint propagation with propagators and show that the execution order
can be safely varied. In Section 3 we specify more precisely the setting of this
investigation. We identify a (necessarily supplied) data structure with which
we can manipulate the execution order of propagators and propose and verify
several implementations of it. In Section 4 we evaluate these implementations
with different benchmark problems and conclude in Section 5.

WCLP 2005 89 Ulmer Informatik-Berichte 2005-01

2 Theoretical Background

A Constraint Satisfaction Problem (V,C,D) is given by a set of variables V =
{v1, v2..., vn}, a set of constraints C and a set of variable domains D = {D1, D2, ...Dn}
associated to the variables. Each constraint c ∈ C is specified by its scope which
is a vector of variables (vi, ..., vj) and its semantics, which describes the allowed
simultaneous assignments of the variables and is thus a subset of Di × ...×Dj .
In this paper we assume all domains to be finite sets of integers.

Constraint Propagation is generally formalized by the Chaotic Iteration (CI)
of propagators3 [4]. Given a CSP (V,C,D) a set of propagators prop(c) is deduced
from the semantics of any constraint c ∈ C . Each constraint can use more
than one propagator to implement its semantics (by sequentially executing all
of them) [10, 11]. Each propagator p uses input variables in(p) from which it
may infer reductions of the domains of its output-variables out(p) of which it
can change the domain. Propagators are monotonic functions (i.e. D @ D′ ⇔
p(D) @ p(D′)) in the Cartesian product of the powersets of all variable domains
P(D1)×...×P(Dn). Furthermore, propagators must ensure that for each variable
the domain can only be restricted but not extended: given a propagator p with
p((D1, ..., Dn)) = (D′

1, ..., D
′
n), then D′

i ⊆ Di must hold. Given this, the Chaotic
Iteration over all propagators induced by C (i.e.

⋃
c∈C

prop(c)) will reach a uniquely

determined fixed point [1]. This is a vector of variable domains for which no
further restrictions can be inferred with the used propagators. The starting point
for this approximation are the initial domains D.

However, Chaotic Iteration does not define how the fixed point is computed.
In theory, each propagator is executed infinitely often to reach the fixed point.
When we actually want to solve a CSP we naturally have to find ways to reach
this fixed point without infinite computations. A round-robin algorithm will have
poor performance, as most propagators that are executed will not be able to infer
any further domain reductions. Thus, a more sophisticated algorithm is used in
most solvers today. It is described in detail for clp(FD) (i.e. the predecessor of
GNU Prolog) in [3]. A more formal definition of this concept can be found in
[10, 11]. The idea is to store for each variable v all propagators p with v ∈ in(p)
and relate them to domain events on v after which they have to be triggered.
With this, only those propagators are re-executed that can possibly infer further
domain reductions.

Example 1. A propagator of a constraint v < w only needs to be re-executed
upon changes on the largest value of Dw and the smallest value of Dv, all other
changes of Dv or Dw may not lead to further domain reductions and can thus
be omitted.

3 Many different names for these procedures can be found in the literature. When
we restrict ourselves to finite integer domains, they are all practically the same:
propagators [11], domain reduction functions [1], closure-operators [5], constraint
frames [3] etc.

WCLP 2005 90 Ulmer Informatik-Berichte 2005-01

The generally desired result of Constraint Propagation in a CSP (V,C,D) is
generally considered the fixed point of the Chaotic Iteration of the propagators
which are induced by C. To start, each propagator will have to be executed at
least once. After that, new domain reductions may possibly be inferred (only)
from the newly reduced domains. Thus some propagators will have to be executed
again in order to approximate the desired fixed point and so on. We define Event-
based Propagation to use a simplified version of this execution model. Without
restricting generality, we consider only one sort of events, namely any change of
the domain of one variable. For any other kind of event, as they are listed in
[3] or [11] for example, we could define a further iteration rule in the following
definition.

Definition 1. In A CSP (V,C,D), Event-based Propagation (EBP) is defined
iteratively by

1. For each c ∈ C the propagators prop(c) are executed once
2. If Dv is reduced, then all propagators p ∈ prop(c) with v ∈ in(p) and c ∈ C

are executed.

We can show that EBP leads to the desired result. This is the fixed point
of the Chaotic Iteration of the propagators that are implied by the posted con-
straints.

Theorem 1. The Event-Based Propagation of a CSP
4(C, V,D) will lead to the same result as the Chaotic Iteration of

⋃
c∈C

prop(c)

starting at D.

Proof. Soundness : Since the same propagators are used, there cannot exist any
values that are pruned in EBP, but not in the Chaotic Iteration.

Completeness : If EBP was not complete, then there would have to be a value
that is pruned with CI, but not with EBP. This would imply that a propagator
which has the potential to prune that value is not executed in EBP. As every
propagator is defined to be executed at least once, this propagator would have
to be not re-executed after a domain reduction. However, this contradicts the
definition of EBP and can thus not have happened.

This theorem implies that the order in which the propagators are executed is ir-
relevant. The only crucial requirement for the correctness is that each propagator
is re-executed whenever a respective event has occurred.

Corollary 1. EBP is correct with any execution order of the propagators.

3 Propagator Scheduling

During propagation, the propagators are executed and re-executed when they
are triggered due to a domain reduction. Since many constraints can be triggered
by one reduction we need a buffer to store all the propagators which remain to

WCLP 2005 91 Ulmer Informatik-Berichte 2005-01

be executed. The basic version of such a buffer is a queue, i.e. a FIFO data
structure. However, there seems to be a lot of potential to speed up constraint
propagation by using more sophisticated buffers [10]. The desired effect of this
is to make the execution of certain propagators obsolete, because their effect has
already been achieved.

Example 2. Consider the CSP A < B,B < C. A propagator for each constraint
must be executed at least once such that the initial buffer will be 〈A < B, B <
C〉. After one execution we might obtain 〈B < C,B < C〉 which will lead to an
obsolete execution of B < C.

The question we want to answer in this paper is: how can we implement the
buffer in order to speed up EBP by omitting useless executions of propagators?
Schulte and Stuckey have already described three classes of optimizations in [11]:
EBP as described above; prevent the re-insertion of idempotent propagators;
execute preferably the propagators with low computational complexity. In this
paper we concentrate on EBP as this is most widely used and seems to be most
efficient. We investigate a wider set of possible buffers and consider also impact-
oriented prioritization and thus qualitatively extend the state-of-the-art.

The characterizing property of a buffer is its implementation of the methods
push and pop which add respectively delete values from the buffer. We consider
four basic data structures for the buffer:

FIFO a standard queue, pop will always return the item which was pushed first.
LIFO a standard stack, pop will always return the item which was pushed last.
Order-≺ a static priority queue, pop will always return the item which has the

highest priority wrt. ≺
Sched-≺ a fair priority queue, pop will usually return the item with the largest

wrt. ≺, this may differ when low-priority items are waiting too long.

Order-≺ will always return the highest priority item it stores. When two items
have the same priority, we schedule them in FIFO manner. To depend the
scheduling only on priorities can lead to “starvation” of items with low priority.
Starvation can be prevented by a fair scheduling algorithm as used in many areas
of computer science (e.g. CPU scheduling) today. For propagator scheduling we
can only use non-preemptive algorithms to prevent Reader-Writer-Problems on
the variable domains. The efficiency-results known from CPU scheduling for ex-
ample cannot be expected to hold in propagator scheduling, because the number
of future jobs depends on the prioritization4. We use a simple form of an “aging”
algorithm to implement Sched-≺. Aging prevents starvation by considering a
combination of the actual priority and the time a task is waiting for execution.
We implement this by setting the priority in Sched-≺ to the quotient of the
priority in Order-≺ over the solver lifetime when the propagator is added to the
buffer.

4 “shortest job first” will not necessarily be the best for our purposes although we
know the costs of the jobs, i.e. the propagator’s computational complexity.

WCLP 2005 92 Ulmer Informatik-Berichte 2005-01

In order to improve the basic buffers, we considered methods to prevent
the multiple storage of idempotent propagators [10, 8, 11]. This means, that any
propagator will only be stored, if it is not already in the buffer. As we thus
potentially execute less propagators than EBP, we need to show that Propagation
remains correct.

Theorem 2. EBP will remain correct, if idempotent propagators are not mul-
tiply stored in the propagator queue.

Proof. Because of Corollary 1 we do not restrict generality when we make the fol-
lowing assumption: whenever two identical propagators are stored in the buffer,
then they will be executed directly after each other. Since we assume propaga-
tors to be idempotent, the execution of the second will not have any effect and
can thus be omitted.

Knowing this, we can safely prevent the storage of idempotent propagators
which are already in the buffer. For this we propose a variant for all of the above
described basic data types:

X-set will not push an item, if it is already stored in buffer X.

What remains to specify are the possible orders ≺ we use for the Order-≺
and Sched-≺ buffers. We propose the following:

-comp the complexity of the propagator, as also described in [7, 11]
-bound a lower bound of the expected pruning achieved by the propagator (e.g.

the portion of bounds-consistent values of its variables)
-tight an estimation of the tightness of the constraint

The latter two orders were to our knowledge not (knowingly5) applied to
propagator scheduling before. With considering the expected pruning (bound)
and the estimated tightness (tight) we tackle the topic of the predicted impact
of a propagator. A tight constraint can be expected to have a larger impact than
a loose constraint, i.e. it can be expected to prune more values and thus make the
execution of other propagators obsolete. According to the fail-first-principle [2]
propagators of constraints with a high expected impact should thus be executed
first. They have the highest potential to prune the domains and will usually be
able to prune the most.

Finally all these prioritization-strategies can be applied statically and dynam-
ically. In the static version the respective values will be computed once, when
the constraint is first inserted. In the dynamic case, the priority is computed
whenever the propagator is (re-)inserted in the buffer.

X-Y-dyn will compute the priority Y dynamically before every insertion to the
buffer X.

5 Arnaud Lallout denied that this is done by their algorithm after the presentation of
[9] at the FLAIRS’04 conference.

WCLP 2005 93 Ulmer Informatik-Berichte 2005-01

4 Empirical Evaluation

All our methods target the reduction of the number of executed propagators dur-
ing constraint solving. However, they all yield extra computational costs which
have in our implementations constant or linear worst case complexity. Thus an
empirical evaluation is necessary to show the usefulness of the proposed methods.
We think that it does not make much sense to count the executed propagators for
evaluation purposes, since the propagators differ a lot in complexity. A more fine-
grained metric, which counts separately for propagators of different complexity
classes would make more sense but the results would be very hard to compare.
Instead we use good old runtime to check whether the extra effort used for smart
propagator scheduling pays. All experiments were run with the firstcs solver [7]
on a 1.8GHz Linux PC. In the following we use the abbreviations described in
the previous section to specify the used algorithm. For example Order-set-comp-
dyn will thus stand for experiments with an complexity-ordered dynamic queue
buffer where multiple insertions of idempotent propagators are prevented.

It can be seen in [11] that (in contrast to the counted propagation steps)
no single method can be expected to be always the best. Thus it is essential to
consider various benchmark problems, which use varying combinations of used
constraints:

queens The famous 27-queens problem implemented with primitive constraints
only

queens-a 27-queens implemented with three AllDifferent constraints
golomb The golomb ruler problem with 10 marks and the optimal length of 55

implemented with primitive constraints only
golomb-a The golomb ruler with global constraints
L10x5,L15x5,L10x10.1,L10x10.3,L10x10.5,FT10x10 Job-Shop-Scheduling

Problems from the OR library which can be found at
http://www.brunel.ac.uk/depts/ma/research/jeb/info.html.
These problems are implemented with global scheduling constraints and sim-
ple in-equations.

First we compare the basic buffer types. Figure 1 shows the respective results.
They can be summarized as follows:

– The effort to use the set-variant of LIFO almost always pays significantly.
Thus we used this variant for all further tests.

– FIFO is always better than LIFO.
– Order is better than non-prioritized buffers whenever some diversity in the

priority of the propagators exist. This applies to all investigated problems
but Order profits only when global constraints are used.

– The extra effort to ensure fairness (Sched vs. Order) during propagation
in priority queues does not pay. This may, however, result from a poor aging
algorithm. We plan to find better parameters for this in future work.

Next we evaluate the various priority-computations. The results are shown
in Figure 2. It can be seen that:

WCLP 2005 94 Ulmer Informatik-Berichte 2005-01

Queens-a

Queens

Golom
b-a

Golom
b

L10x5

L15x5

L10x10.1

L10x10.3

L10x10.5

FT10x10

1000

10000

100000

1000000

10000000

100000000
FIFO

FIFO-set

LIFO-set

Order-set-comp

Sched-set-comp

m
se
c

Fig. 1. Comparison basic buffer types.

– The estimation of the tightness seems to be a good measure to express the
expected impact of a constraint. The performance of bound and tight are
very similar in almost all tests.

– Whenever global constraints are involved, the complexity based prioritiza-
tion compl is better and otherwise the impact based tight/bound are. The
poor performance of impact-based methods with global constraints may re-
sult from bad estimations of the priority values. The impact of arithmetic
constraints can be predicted much more precisely.

Finally we check whether the evaluation of the priority before every insertion
of a propagator into the buffer pays. Thus we compare the dyn versions of the
buffers to the standard case where the priority is only computed once upon the
construction of the constraint. The results are presented in Figure 3, they can
be summarized as follows:

– It seems that only in problems without global constraints and in combination
with the comp-priority the dynamic versions perform better that the static
versions.

– The relatively complex computation of the expected impact seems to be far
to costly to be computed dynamically. The combination bound-dyn yields
poor results in all experiments.

WCLP 2005 95 Ulmer Informatik-Berichte 2005-01

Queens-a

Queens

Golom
b-a

Golom
b

L10x5

L15x5

L10x10.1

L10x10.3

L10x10.5

FT10x10

1000

10000

100000

1000000
Order-set-comp

Order-set-bound

Order-set-tight

m
se
c

Fig. 2. Comparison of priority orders in Order buffer.

Queens-a

Queens

Golom
b-a

Golom
b

L10x5

L15x5

L10x10.1

L10x10.3

L10x10.5

FT10x10

1000

10000

100000

1000000

10000000
Order-set-comp

Order-set-comp-dyn

Order-set-bound

Order-set-bound-dyn

m
se
c

Fig. 3. Comparison of dynamic and static prioritization.

WCLP 2005 96 Ulmer Informatik-Berichte 2005-01

5 Conclusion

We have shown that the execution order of propagators in event-based propaga-
tion can be varied while retaining correct propagation results. Furthermore we
showed that the re-insertion of idempotent propagators may be safely omitted
when they are already buffered for execution. These theoretical results allow to
safely implement arbitrary buffers for propagator scheduling.

We implemented such buffers which adapt the execution order of propaga-
tors dynamically during runtime in a standard constraint solver. Doing this, we
extended the state of the art with two new scheduling techniques: fair-scheduling
and impact-oriented prioritization. Ensuring fairness during propagator schedul-
ing does not show any positive effect in our experiments so far. Despite the low
computational complexity of our algorithm we could never achieve a runtime
improvement. Impact-oriented ordering seems to depend a lot on the used no-
tion of “impact”. Whenever good estimations of the impact are available, the
impact-oriented scheduling is better than cost-oriented propagator scheduling.
Preventing the multiple storage of propagators seems to be a good way to speed
up constraint solving in all our experiments. Computing the priority values dy-
namically as opposed to just once upon the creation of a constraint does not pay
in general. The computation of priority values of propagators should preferably
only be executed once.

6 Future Work

In future work we plan to make many more and larger scale experiments and to
evaluate more types of prioritization. These include combinations of the heuris-
tics presented here, such as a quotient of cost over impact or the application
of different methods in differing contexts (staged propagators [10, 11] or con-
straint specific metrics such as cost-oriented for global and impact-oriented for
primitive constraints). Furthermore we plan to follow up research on the impact
of fairness during propagator scheduling. We think results from CPU schedul-
ing can be exploited much more in order to find near to optimal orderings of
propagators. Finally we plan to apply learning techniques during scheduling.
Propagators that have had a large impact in earlier executions may want to be
preferably executed (or not, because their potential is already exhausted). We
hope that with all the results gained in these experiments we will be able to find
a generally efficient propagator scheduling heuristic which can be chosen as a
standard for constraint solvers.

References

1. Krzysztof R. Apt. The essence of constraint propagation. Theoretical Computer
Science, 221(1-2):179–210, 1998.

2. C.J. Beck, P. Prosser, and R.J. Wallace. Trying again to fail-first. In Proc.
ERCIM/CologNet workshop, 2004.

WCLP 2005 97 Ulmer Informatik-Berichte 2005-01

3. Philippe Codognet and Daniel Diaz. Compiling constraints in clp(fd). Journal of
Logic Programming, 1996.

4. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundations. SIGPLAN Notices, 12(8):1–12, 1977. ACM Symposium
on Artificial Intelligence and Programming Languages.

5. F. Fages, J. Fowler, and T. Sola. Experiments in reactive constraint logic program-
ming. Journal of Logic Programming, 37:1-3:185–212, Oct-Dec 1998.

6. Thom Frühwirth. Constraint handling rules. Constraint Programming: Basics and
Trends, LNCS 910, 1995.

7. M. Hoche, H. Müller, H. Schlenker, and A. Wolf. firstcs – a pure java constraint
programming engine. In Proc. 2nd International Workshop on Multiparadigm Con-
straint Programming Languages MultiCPL’03, 2003.

8. Matthias Hoche. Analyse und entwicklung unterschiedlicher scheduling-verfahren
zur laufzeit-optimierung der propagation eines java-basierten constraint-lösers.
Master’s thesis, TU Berlin, January 2004.

9. A. Legtchenko, A. Lallouet, and A. Ed-Dbali. Intermediate consistencies by delay-
ing expensive propagators. In Proc. FLAIRS 04, 2004.

10. Georg Ringwelski. Asynchrones Constraintlösen. PhD thesis, Technical University
Berlin, 2003.

11. C. Schulte and P. Stuckey. Speeding up constraint propagation. In Proc. CP04,
September 2004.

12. R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency algorithms.
In Proc. 9th Canadian Conf. on AI, pages 163–169, 1992.

WCLP 2005 98 Ulmer Informatik-Berichte 2005-01

Static and dynamic variable sorting strategies for

backtracking-based search algorithms

Henry Müller

Fraunhofer FIRST, Kekuléstr. 7, D-12489 Berlin, Germany
henry.mueller@first.fraunhofer.de

Abstract. This paper presents techniques for the improvement of back-
tracking based search algorithms in the context of constraint program-
ming. The main idea is to improve the efficiency of the search process by
manipulating the variable order within the search algorithm.
Two main strategies of sequence manipulation were developed: Static
variable ordering (SVO) analyses the problem structure a priori to set
the variables in a convenient sequence. This technique can be applied
to any backtracking algorithm. Dynamic variable ordering (DVO) is a
backjumping improvement. It reorders not yet labelled variables during
search in a way which could be regarded as "forward jumping".
Both static and dynamic variable ordering decrease the number of needed
backtracks for the tested problem classes often by several magnitudes.
Especially the dynamic reordering is lightweight and robust at the same
time. The combination of static and dynamic sorting brought the per-
formance even on par with state of the art SAT solvers, although no
SAT-specific adjustments were made.
Keywords. Constraint programming, search, backtracking, backjump-
ing, conflict-directed backjumping, static variable ordering, dynamic vari-
able ordering, AIM, SAT.

1 Introduction

Backtracking search algorithms [5,6,13,14] are prone to thrashing [11] – succes-
sive failure because of the same reason – and do initially a lot of needless work.
Conflict-directed backjumping (CBJ) [14,15] is an improved backtracking-based
search algorithm, which tries to avoid thrashing. CBJ calculates the cause of
an inconsistent assignment and jumps over the search tree skipping all the vari-
ables between the current inconsistent variable vi and the calculated cause vh.
Thereby the thrashing occurring on the way from vi back to vh is avoided.

In [13] the author improved the performance of conflict-directed backjumping
considerably with variable sorting strategies. Investigation led to the creation of
two kinds of sorting heuristics: a) Static variable ordering (SVO), which is geared
towards the problem structure and applied before the search process is started,
and b) dynamic variable ordering (DVO), which is applied during search and
optimises backjumping. SVO and DVO try to minimise thrashing even more by
reducing the number of visited nodes in the search tree. They are completely
orthogonal and can be combined without problems.

WCLP 2005 99 Ulmer Informatik-Berichte 2005-01

The two sorting strategies were tested comprehensively but only briefly de-
scribed. In this paper both are presented and studied in greater detail. Therefore
the discussion will neither go much into the basics of constraint programming,
which can be looked up in [3,12,13], nor into the details of the circumstances or
the interpretation of the experimental results, which [13] describes in detail.

Section 2 descibes the necessary basics and conventions. Section 3 presents
two variable sorting strategies. Section 4 shows a roundup of the experimental
results concerning the sorting strategies. Section 5 consideres related and future
work, and in section 6 some conclusions are drawn.

2 Basics and conventions

The methods presented in this paper regard either chronological backtracking
(BT) or conflict-directed backjumping (CBJ) [14]. Accurate knowledge of the
concrete design, implementation and testing details is not necessary for the un-
derstanding, but as a matter of completeness they should be outlined at least:

Among other problems AIM instances [2] and a collection of other SAT prob-
lems from the SAT-Ex platform [17] in cnf-form [1] were used for empirical
testing of static and dynamic variable ordering. SAT problems are satisfiability
problems in propositional logic, they are locic statements in conjunctive normal
form (conjunction of disjunctions). AIM instances, which are named after their
inventors Asahiro, Iwama and Miyano, are 3-SAT-problems consisting of three
variables per disjunction. The problems from the SAT-Ex platform are of differ-
ent structure and from different domains, they were chosen to enable a sound
comparison with other SAT solvers.

The processing of the problems required the implementation of the search
algorithms BT and CBJ, a justification system, a cnf-parser [1] and boolean
constraints. The test environment was embedded into firstcs [9,10,13]. As
this solver always delivers full look ahead for constraints of any arity, and the
boolean constraints create local consistency, local consistency is always assured
for the whole CSP. This consistency level is called Maintaining Local Consistency
(MLC), hence we get MLC-BT and MLC-CBJ.

Search situations often focus on the current variable, which is the one cur-
rently processed by the algorithm. Already assigned variables are called past

variables, not yet assigned variables are called future variables. If the assign-
ment of the current variable is inconsistent with an earlier assignment, a conflict

occurs. Because of MLC, only future variables may report a conflict. The cause
of such a conflict, which is an already assigned variable, is acquired via the
justification system.

The presented ideas are about variable orderings. When no ordering is espe-
cially mentioned, the default ordering is in effect. That is the ordering which is
established during the process of problem parsing.

Note 1. All AIM-instances with 50 and 100 variables were tested, problems with
200 variables were too hard for MLC-BT. The group of SAT-problems for the
comparison with the top ten SAT-solvers were: bf0432-007, ssa2670-141, ii16e1,

WCLP 2005 100 Ulmer Informatik-Berichte 2005-01

par16-1-c, sw100-49, ais12, pret60_60, hole9. These problems had to be solved
in a certain time, otherwise the attempt was considered invalid. For both the
AIM instances and the SAT-solver group the algorithms processed each problem
until one solution was found or the search tree was traversed.

3 Variable ordering

The idea of variable ordering is to acquire a "good" variable order, which hope-
fully results in a more efficient search process. What a good ordering is, depends
on the circumstances. But in the core it boils down to the character of the prob-
lem structure and the behaviour of the applied solution methods. Thus static
variable sorting deals with the problem character and dynamic variable sorting
refines search behaviour.

3.1 Static variable ordering

The idea of static variable ordering (SVO) is to arrange the variables of the
CSP into a convenient sequence, before the search algorithm begins to work.
But what is a good initial ordering? A rule of thumb concerning the solution of
constraint problems says: "Propagate as much as possible as early as possible."
Following this idea, a variable assignment resulting in a lot of propagation would
have to be favoured. An assignment causing less propagation would be deferred.
Therefore a good measurement for the anticipated amount of propagation for
every single variable - the propagation power - is needed.

It is reasonable to use a variable´s dependencies on other variables as the
propagation measurement. The term "dependency" is quite flexible and can be
interpreted differently depending on the problem space and level of abstraction:
Looking on a constraint satisfaction problem as a constraint graph, an intuitive
candidate for the dependency value is a variable´s number of edges. That is the
number of constraints the variable participates in. This general view holds for all
kinds of CSPs, but one surely also can find more domain-specific measures for
concrete problems. If for example a SAT-problem were to be transformed into a
CSP, one could increase a variable´s dependency value for every other variable
it relates to over a clause.

Implementation The intuitive data structure for dependency values is an adja-
cency matrix [18], which can hold any kind of graph. During the parsing process
or construction of a problem the matrix can be built up alongside. The result is
a matrix holding the dependencies between the variables of the CSP. Now the
propagation power of a certain variable can simply be obtained by adding all
its single dependencies up. With the propagation power determined for every
variable an ordering over all variables can be established.

Fortunately the choice of an adjacency matrix as the data structure al-
lows the use of plenty of available graph and matrix analysis algorithms. As a

WCLP 2005 101 Ulmer Informatik-Berichte 2005-01

prominent representative the Floyd-Warshall algorithm, which calculates short-
est paths between graph nodes, was implemented and tested as an SVO expan-
sion. The algorithm was not especially picked, the choice of the algorithm was
made by chance to monitor its influence. Static variable ordering combined with
the Floyd-Warshall algorithm will abbreviated SVO+F. Let us summarise the
whole process:

1. Interpretation of the variables´ dependencies into an adjacency matrix.
2. Application of useful transformations or analyses on the matrix.
3. Summation of single dependencies to a variable´s overall dependency value

- its propagation power.
4. Ordering of the variables according to their propagation power.

Examples Figure 1 shows the interpretation of a small example CSP. The
efficiency of the original sequence {v0, v1, v2, v3, v4} can´t be judged, as the or-
dering is accidental. With just SVO the sequence {v2, v3, v0, v1, v4} is calculated.
That is a good choice, because the assignment of v2 or v3 likely produces much
propagation. The appliance of the Floyd-Warshall algorithm before summation
seriously changes the outcome: Floyd-Warshall pushes isolated variables ahead,
because they have longer paths than well connected variables. Thus the resulting
sequence is {v4, v0, v1, v3, v2}. This turnaround shows the impact of the problem
analysis, which should be chosen wisely per application.

a) CSP Creation b) Matrix interpretation c) Extra analysis

v0 v1 v2 v3 v4

v0 0 0 1 0 0 = 1
v1 0 0 1 0 0 = 1
v2 1 1 0 1 0 = 3
v3 0 0 1 0 1 = 2
v4 0 0 0 1 0 = 1

v0 v1 v2 v3 v4

v0 2 2 1 2 3 = 10
v1 2 2 1 2 3 = 10
v2 1 1 2 1 2 = 7
v3 2 2 1 2 1 = 8
v4 3 3 2 1 2 = 11

Fig. 1. a) Creation of the constraint net, b) interpretation into an adjacency
matrix and c) appliance of extra analysis algorithms and summation.

Figure 2 shows the calculated propagation power values for an AIM-instance
with 50 variables. The problem´s synthetic origin reflects in the display of only
few dependency levels. A regular problem structure provokes a regular depen-
dency matrix. That is a problem, because an ordering will only be possible if a
distinction between the variables´ dependencies can be made.

If the Floyd-Warshall algorithm is applied on the dependency matrix before
summation, the propoagation power values in figure 3 will result. This algorithm
works more deeply than SVO alone, as it operates on paths of dependencies. The
dependency values in the figure are high, because direct dependencies between
neighbouring variables get added by the algorithm. Each variable´s dependency

WCLP 2005 102 Ulmer Informatik-Berichte 2005-01

Dependencies

Variables

Fig. 2. SVO acquires the dependencies of the AIM-instance aim-50-1_6-no-1.cnf
with 50 variables as shown.

value is the sum of direct dependencies on the shortest path to each each other
variable. A greater distinction is reached, which makes a meaningful ordering
possible.

Dependencies

Variables

Fig. 3. Appliance of the Floyd-Warshall algorithm breaks the synthetic character
of the adjacency matrix.

3.2 Dynamic variable ordering

Dynamic variable ordering (DVO) follows a completely different approach than
SVO. The technique enhances the jumping-phase of a backjumping algorithm.
If a backjump occurs, DVO will not just reassign and go on but reorder future
variables to check the conflict again immediately.

WCLP 2005 103 Ulmer Informatik-Berichte 2005-01

Let us examine the behaviour of the combination of MLC-CBJ and DVO. The
reordering hooks exactly in the moment of backjumping: The assignment of the
current variable vi just conflicted with past assignments. The search algorithm
detects the past variable vh as the deepest cause1 and thus as the backjumping
target. vi now gets sorted right after vh. After vh is reassigned, vi immediately is
the next variable in line and assigned in the next step. That means, a conflict is
checked right after its occurrence. This saves the propagation work on the way
from vh to vi and eventual thrashing between both variables. The bigger the
jumps are the more work is saved. Of course no reordering will happen if there
are no variables between vh and vi. The behaviour of DVO is summarised in
figure 4.

Fig. 4. a) An inconsistency causes a backjump, b) vi gets sorted right after the
cause vh and c) the search continues with a reassignment of vh.

The successive reordering as described has interesting effects. For most ex-
amined problems DVO causes the relevant variables to move up2. As conflicting
variables ascend in the search tree, bit by bit an overall "reasonable" sequence
is obtained. Thus further backjumping and reordering often will become need-
less when two variables still stand in succession from a previous reordering. The
effect of CBJ diminishes, but that is no misbehaviour but a sign of an efficient
variable order. A transition from a phase with numerous and far jumps to a
phase with only few and short jumps can be observed. DVO is always correct
and terminates, as only unassigned future variables get reordered. There cannot
emerge a situation with endless circular sorting, because the target variable of a
backjump always gets immediately reassigned another value.

1 In the context of MLC-CBJ the cause is a mix of assigned variables. Future variables
are not of interest in determining a target for backjumping. The deepest variable in
the search tree, which lies before the current variable, is the jump target.

2 One very synthetic problem caused some terminating circular variable movement.

WCLP 2005 104 Ulmer Informatik-Berichte 2005-01

Implementation There is an easy and efficient way to enhance backjumping
algorithms with the ability of dynamic ordering. To enable sorting, a reference
data structure can be included into the original algorithm. All access on the
variable holding data structure simply has now to be done indirectly over the
reference structure, whose entries finally point at the variables. Thus a permuta-
tion over the variables is possible without changing the original algorithm much.
E.g.: If there is a variable holding array variable[] and a reference array ref []
the redirection will simply be done with variable[ref [i]].

Of course the sorting can also be realised without redirection, but the author
found this approach to give some extra flexibility. Furthermore the reference
array can be reused for the implementation of static ordering, which is quite
convenient from an object oriented view. For example, the reference array can
simply be passed to a constructor of a search class, which does not have to know
about static ordering to benefit from it.

The actual sorting process consists of reassignment of references, which is fast
and lightweight in Java and should be in most other programming languages.
The realisation of the dynamic ordering is also quite easy. After the jump from
vi to vh and the backtracking step, the sequence {. . . , vh, w1, w2, . . . , vi, . . .} gets
arranged to {. . . , vh, vi, w1, w2, . . .} by sorting vi right after vh and shifting the
variables in between one to the right. The tested implementation uses Java int-
arrays and does simple reference shifting. The data structure has not been op-
timzed up to now, because the author did not expect a big gain: The shifting
itself consumes only a minor part of the search algorithm´s computing time.

Examples Figure 6 shows the behaviour of MLC-CBJ & DVO on an exemplary
unsolvable CSP. The problem is depicted in figure 5, it consists of five variables
A to E, which are all different and all have the domain {0..4}. The five variables
are associated pairwise with a NotEqual-constraint. Additionally there are two
rings of variables B1..n and C1..n, which are connected with the CSP but have no
influence on the main problem. Step by step the cause-oriented jumping creates
a good sequence in respect of the main problem. Thereby work is saved as the
variables B1..n and C1..n get deferred. As soon as the variables A to D stand in
a row, CBJ degenerates to BT until the tree is traversed.

4 Experimental evaluation

The experimental environment and the collected figures are relatively complex
and voluminous – several computers worked several weeks to collect the material.
Detailed information on the used methods and the acquired results can be found
in [13].

The hardest of the tested AIM-instances were unsolvable for MLC-BT, only
MLC-CBJ managed to solve all instances. The hardest set of instances, which
also could be solved by MLC-BT, was the group 100-2_0-no. It consist of four
insolvable problems with 100 variables and 200 clauses (clause-variable-quotient
of 2,0). Table 1 shows the needed backsteps and runtime concerning this problem

WCLP 2005 105 Ulmer Informatik-Berichte 2005-01

Fig. 5. The NotEqual-example: A to E have to be different, the rings are inde-
pendent subproblems.

Fig. 6. MLC-CBJ & DVO processing the NotEqual-example up to the point
where the "reasonable" sequence is achieved.

WCLP 2005 106 Ulmer Informatik-Berichte 2005-01

group. SVO is only shown in combination with the Floyd-Warshall algorithm,
because it performed better for AIM-instances than just SVO. Static ordering
has a positive effect on both MLC-BT and MLC-CBJ, that could be expected.
DVO is very effective and improves the performance of MLC-CBJ by several
magnitudes, and the combination of SVO and DVO is even a bit more effective.
Unfortunately not all runtimes were measured, but at least one can see that the
needed backsteps and the runtime is roughly proportional for the best variation
MLC-CBJ with SVO+F and DVO.

It is interesting to note that the combination of SVO and DVO produces
the best results. For most hard problems both complemented each other to a
more efficient processing. As a rule of thumb can be stated: If the current SVO
heuristic improves efficiency, then the combination of SVO and DVO will most
often perform better than DVO or SVO alone.

MLC-BT MLC-BT MLC-CBJ MLC-CBJ MLC-CBJ MLC-CBJ &

& SVO+F & SVO+F & DVO SVO+F & DVO

Backsteps 1, 8 · 1011 3, 19 · 107 3, 2 · 107 1275 3950 1043

[%] 100 1, 77 · 10−2 1, 78 · 10−2 7, 08 · 10−7 2, 19 · 10−6
5, 8 · 10

−7

Runtime 402,42 h - - - - 27,61 ms

[%] 100 - - - - 1, 91 · 10−6

Table 1. Comparison of the needed backsteps and runtime for the hard to solve
group of AIM-instances 100-2_0-no. MLC-BT is the base for the percent-values.

Table 2 shows a performance comparison between MLC-CBJ and the top ten
SAT solvers of the SAT-Ex platform [17]. DVO does again a strong performance:
Only combinations with DVO were able to solve all seven problems, which are
very different from each other. That recommends dynamic ordering as a flexible
technique. Another thing to notice is the huge performance difference of SVO
and SVO+F compared to the tests with AIM-instances. The Floyd-Warshall
algorithm improved performance greatly for AIM-instances compared to nor-
mal static ordering, but here SVO and SVO+F change places. Altogether the
strongest combination of MLC-CBJ & SVO & DVO brings the performance in
range of the top ten SAT-solvers. Based on the SAT-solvers´ average perfor-
mance on the problems, firstcs visits only a few more nodes. The runtime is
five times slower, but every result in the same magnitude is great. After all no
SAT-specific optimisations were done.

5 Related and future Work

There are numerous techniques and heuristics which try to improve search by
manipulating the variable order, and it would be quite pointless trying to list
them here. In the constraint world especially those heuristics enjoy great popu-
larity which minimise the search tree dynamically [5,16]. Static techniques are

WCLP 2005 107 Ulmer Informatik-Berichte 2005-01

all values no outliers
Solver

time nodes time nodes

588,75 2023262,50 193,64 502853,90
top ten avg

100% 100% 100% 100%

214,16 239624 214,16 526170
median

36% 12% 111% 105%

firstcs 1669,61 4488697

MLC-CBJ
- -

862% 893%

firstcs 10086,35 3495504

MLC-CBJ & DVO 1713% 173%
- -

firstcs 375,87 4171369

MLC-CBJ & SVO
- -

194% 829%

firstcs 2997,25 2360267

MLC-CBJ & SVO & DVO 509% 117%
- -

firstcs 18569,73 65469248

MLC-CBJ & SVO+F
- -

9590% 13019%

firstcs 4600,27 6612419

MLC-CBJ & SVO+F & DVO 781% 327%
- -

time Needed runtime in seconds
nodes Number of visited nodes
methods The percent value relates to top ten avg. If all problems

can be solved, the result will stand in the column "all
values", otherwise in the column "no outliers".

configuration Runtime is normalised to the SAT-Ex norm.

Table 2. MLC-CBJ versus top ten SAT-solver

probably rather neglected, because dynamic methods seem to outperform static
ones generally [16]. It is a common effort to analyse and use constrainedness in-
formation [15] to reduce the search space as much as possible. Especially the first

fail [8] heuristic, which chooses for the next assignment always the variable with
the smallest domain, and its variations are constraint programmers´ favourite.
Some heuristics even try to sort the values of a single variable [6,7].

Although dependency analysis for the static variable ordering (SVO) seems
to be obvious, the author could not find anything similar in recent publica-
tions. Nevertheless the technique works good and opens the door for other graph
analysing algorithms. Static ordering should not be disregarded, only because
dynamic ordering is a better performer. The best results were always achieved
with a combination of static and dynamic ordering. Just as one often propagates
a CSP before search, one should also have a look on the variable order. The right
static sorting strategy can make a difference.

The approach of dynamic variable ordering (DVO) seems to be new. In [4]
the existence of a "perfect" dynamic variable ordering is shown, which makes
CBJ redundant by choosing the right variable in every search step. The behav-
iour of DVO strongly accords with this fact, as both the generation of a certain
variable sequence and the diminishing of backjumps can be observed. The "per-

fect" dynamic variable ordering cannot be guessed, but occurring conflicts can
immediately be used to repair the sequence as DVO does. The technique has
proven to be very reliable and effective. The term "dynamic variable ordering"

WCLP 2005 108 Ulmer Informatik-Berichte 2005-01

is a little stressed in the constraint community: As DVO tries to spare work by
pulling a future variable up, it could be called "forward jumping" as well.

At the moment the author is working on an enhanced variant of DVO, which
moves not only the last conflicting variable vi but also all variables which previ-
ously conflicted with and initiated a jump to vi. E.g.: If variables {xo, x1, . . . , xn}
conflicted with vh previously, and vi just conflicted with vh, then the sequence
{vh, vi, xo, x1, . . . , xn} will be established. The hope is to create a "good" se-
quence in one step instead of with a series of jumps and reorderings. As this
behaviour demands maintenance of an additional data structure for variable
references, the approach is more costly.

Another interesting task would be to check the applicability of the sorting
techniques on different problem domains. Up to now the results were mainly
positive. SAT problems were chosen as the test domain for reasons which have
nothing to do with the sorting methods itself.

In the long run the various approaches of static and dynamic will be gen-
eralised, revised in respect of object orientation and integrated into firstcs
as optional modules. This fits in the author´s effort of the creation of a more
intelligent constraint solving system [13].

6 Conclusion

This paper presented two major strategies which increase the efficiency of back-
tracking search algorithms drastically, at least for the tested domain. The strat-
egy of static variable ordering (SVO) analyses the variables´ dependencies a
priori to create an initial sequence which is advantageous for any search algo-
rithm. The strategy of dynamic variable ordering (DVO) enhances backjumping
algorithms. It manipulates the variable ordering during search and improves
efficiency by immediately checking conflicts again after backjumping.

A meaningful problem analysis and the combination of static and dynamic
variable sorting procedures are an effective approach and improve the CSP so-
lution process often by magnitudes regarding the number of visited nodes. The
author sees many points for evolution of the developed methods and will pursue
them in the future.

References

1. Satisfiability Suggested Format. The document satformat.ps describes the
cnf-format, http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

Benchmarks/SAT/satformat.ps.
2. Y. Asahiro, K. Iwama, and E. Miyano. Random Generation of Test Instances with

Controlled Attributes. DIMACS Series in Discrete Mathematics and Theoreti-

cal Computer Science, 26:377–394, 1996. http://dimacs.rutgers.edu/Volumes/

Vol26.html.
3. Roman Barták. Online Guide To Constraint Programming, 1998. First Edition,

http://kti.ms.mff.cuni.cz/~bartak/constraints/index.html.

WCLP 2005 109 Ulmer Informatik-Berichte 2005-01

4. X. Chen and P. Beek. Conflict-directed backjumping revisited, 2001. http://

citeseer.ist.psu.edu/chen01conflictdirected.html.
5. Rina Dechter and Daniel Frost. Backjump-based Backtracking for Constraint Satis-

faction Problems. 2001. http://www.ics.uci.edu/~dechter/publications/r56.
html.

6. Daniel Frost. Algorithms and Heuristics for Constraint Satisfaction Problems.
PhD thesis, University of California, 1997. http://www.ics.uci.edu/~dechter/

publications/r69.html.
7. Daniel Frost and Rina Dechter. Look-ahead value ordering for constraint satisfac-

tion problems. In Proceedings of the International Joint Conference on Artificial

Intelligence, IJCAI’95, pages 572–578, Montreal, Canada, 1995. citeseer.ist.

psu.edu/frost95lookahead.html.
8. R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfac-

tion problems. In Artificial Intelligence 14, pages 263–313, 1980.
9. Matthias Hoche. Analyse und Entwicklung unterschiedlicher Scheduling-Verfahren

zur Laufzeit-Optimierung der Propagation eines Java-basierten Constraint-Lösers.
Diplomarbeit, Technische Universität Berlin, 2004.

10. Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf. firstcs - A
Pure Java Constraint Programming Engine. Juli 2003. submitted to the 2nd
International Workshop on Multiparadigm Constraint Programming Languages
(MultiCPL’03) at the 9th International Conference on Principles and Practice of
Constraint Programming, CP 2003. http://uebb.cs.tu-berlin.de/MultiCPL03/
Proceedings.MultiCPL03.RCoRP03.pdf.

11. A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8:99–118, 1977.

12. Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduc-

tion. MIT Press, 1998.
13. Henry Müller. Analyse und Entwicklung von intelligenten abhängigkeitsges-

teuerten Suchverfahren für einen Java-basierten Constraintlöser. Diplomarbeit,
Technische Universität Berlin, 2004.

14. Patrick Prosser. Hybrid Algorithms For The Constraint Satisfaction Problem.
Computational Intelligence, 9(3):268, 1993.

15. Patrick Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed
backjumping. Technical Report Research Report/95/177, Dept. of Com-
puter Science, University of Strathclyde, 1995. http://citeseer.nj.nec.com/

prosser95maccbj.html.
16. Patrick Prosser. The dynamics of dynamic variable ordering heuristics. Lecture

Notes in Computer Science, 1520:17–??, 1998. http://citeseer.ist.psu.edu/

prosser98dynamics.html.
17. Laurent Simon and Philippe Chatalic. SAT-Ex: a web-based framework for

SAT experimentation. http://citeseer.nj.nec.com/simon01satex.html,
The web-portal SatEX http://www.lri.fr/~simon/satex/, reference-computer
und scaling-benchmark dfmax http://www.lri.fr/ simon/satex/aim/satex-
aim.php3#machine.

18. Stephen Warshall. A Theorem on Boolean Matrices. J. ACM, 9(1):11–12, 1962.
http://doi.acm.org/10.1145/321105.321107.

WCLP 2005 110 Ulmer Informatik-Berichte 2005-01

The CHR-based Implementation of a System
for Generation and Confirmation of Hypotheses

Marco Alberti1, Federico Chesani2, Marco Gavanelli1, and
Evelina Lamma1

1 ENDIF - Università di Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy.
{malberti|mgavanelli|elamma}@ing.unife.it

2 DEIS - Università di Bologna - Viale Risorgimento, 2 - 40136 Bologna, Italy.
{fchesani}@deis.unibo.it

Abstract. Hypothetical reasoning makes it possible to reason with in-
complete information in a wide range of knowledge-based applications.
It is usually necessary to constrain the generation of hypotheses, so to
avoid inconsistent sets or to infer new hypotheses from already made
ones. These requirements are met by several abductive frameworks. In
order to tackle many practical cases, however, it would also be desirable
to support the dynamical acquisition of new facts, which can confirm
the hypotheses, or possibly disconfirm them, leading to the generation
of alternative sets of hypotheses.
In this paper, we present a system which supports the generation of
hypotheses, as well as their confirmation or disconfirmation. We also
describe the implementation of an abductive proof procedure, used as a
reasoning engine for the generation and (dis)confirmation of hypotheses.

1 Introduction

Human reasoning often has to face incomplete information. In such cases, mak-
ing hypotheses (i.e., assuming the truth of an assertion that cannot be proved)
allows the reasoning process to reach conclusions that would be impossible oth-
erwise. Sometimes, more than one hypothesis can be made; also, the truth of a
hypothesis may imply the truth of another; and some sets of hypotheses cannot
be made, because they are contradictory. While a person is reasoning, he/she
may become aware of new facts which confirm the hypotheses, or possibly dis-
confirm them: in this case, the person will revise the disconfirmed hypothesis,
together with its consequences.

Abduction is a reasoning paradigm that formalizes this kind of human rea-
soning. In particular, in the field of Abductive Logic Programming [1], many
frameworks have been proposed which support many aspects of hypothetical
reasoning: in many of them, it is possible to specify the class of predicates that
can be hypothesized (abducibles), and the relation that have to hold among
abducibles so that they can remain consistent (integrity constraints).

Most abductive frameworks assume a static knowledge, i.e., than no new facts
can be acquired during the reasoning process. Yet, in many cases it would be

WCLP 2005 111 Ulmer Informatik-Berichte 2005-01

Fig. 1. A functional view of the system

useful to support the dynamic acquisition of new facts, so to confirm or discon-
firm the generated hypotheses, and possibly lead to a revision of the generated
hypotheses, just like humans do.

In this paper, we present the implementation of a system for hypothetical
reasoning which, together with the features usually found in abductive systems,
also supports the dynamic acquisition of facts which can confirm or disconfirm
hypotheses, or cause the generation of new hypotheses.

We first describe the general architecture of the system and the abductive
framework used for hypothetical reasoning in Section 2; in Section 3 we present
the implementation of the abductive framework. Discussion of related work and
directions for future work conclude the paper.

2 A Hypothetical Reasoning System

In this section, we give a brief overview of the architecture of the system that
we have implemented (Sect. 2.1) and of the abductive framework used for hypo-
thetical reasoning (Sect. 2.2).

2.1 Architecture

The functional architecture of the system is shown in Figure 1. The system is
composed of two main components:

– An internal reasoning component (Hypothesis Engine in Fig. 1), which
generates the hypotheses and verifies their confirmation or disconfirmation
according to the information acquired during the reasoning process, revising
its hypotheses if necessary;

– An external component, providing an interface to the external world (ob-
serving the events, i.e., the pieces of information acquired during the com-
putation, Events Recorder in Fig. 1) and to the user (displaying the re-
sults of the computation, Graphical User Interface in Fig. 1). The Init

WCLP 2005 112 Ulmer Informatik-Berichte 2005-01

Fig. 2. A screenshot of the system

& Control and Event Buffer modules in Fig. 1 provide interfacing and
synchronization between the other modules.

The two components are meant to interleave their operation: each time new
events are acquired, they will be passed over to the Hypothesis Engine, which
will consequently update its current set of hypotheses (by adding new ones and
withdrawing disconfirmed ones) and return them for the external component to
display.

This separation makes the system modular, in that the hypothesis engine
used in this implementation (SCIFF, see Sects. 2.2 and 3) can be replaced by
another, to support a different schema of hypothetical reasoning.

The GUI displays to the user the following information:

– The current set of hypotheses, both confirmed/disconfirmed and pending
ones. It is also possible also to apply filters in order to select only subsets of
hypotheses.

– The set of the happened events, considering both preloaded static events
and dynamic events that have happened.

– The tree showing the state of the computation of the Hypothesis Engine.

The user can select the Hypothesis Engine to be used and the source of events.
The graphical user interface also lets the user inspect any node of the computa-
tion tree.

A screenshot of the system is shown in Figure 2.

WCLP 2005 113 Ulmer Informatik-Berichte 2005-01

2.2 An abductive framework

In the following, we informally recall the SCIFF abductive logic framework with
hypotheses confirmation, whose declarative and operational semantics are de-
scribed in [2]. SCIFF, originally developed for the verification of interaction in
multiagent systems [3, 4], is an extension of the IFF proof procedure by Fung and
Kowalski [5]; the extensions are mainly motivated by the need to support the
dynamic acquisition of facts and CLP [6] constraints over variables. This section
is aimed at pointing out the features of the SCIFF framework that we believe
more significant with respect to reasoning with hypotheses confirmation; the in-
terested reader can refer to [2] for a formal presentation of SCIFF’s declarative
and operational semantics, and for examples of its expressiveness.

In the SCIFF framework, the happened events are represented by a set
(called history) HAP. This set is composed of ground atoms of the form
H(Description,Time), which tell what event has happened at what time. For
instance, the atom H(temp(38), 10) can represent the fact that, at time 10, the
temperature of a patient was detected to be 38◦C. This set can grow dynamically,
during the computation, so implementing a dynamic acquisition of events.

Hypotheses are mapped to abducibles called expectations, gathered in
the set EXP. Expectations can be positive (E(Description,Time)) repre-
senting an event that is expected to happen, or negative (of the form
EN(Description,Time)), representing an event that is expected not to happen.
Differently from events, expectations will typically contain variables; in partic-
ular, the variables can be quantified existentially or universally (the latter case
can be used to express that an event is expected not to happen at any time),
and CLP [6] constraints can be imposed on them (which allows, for instance,
to express that an event is expected to happen in a given time interval). For
example, the atom E(temp(H), T), together with the CLP constraints H < 39,
T < 10, can express that a patient’s temperature is expected to be lower than
39◦C at some time point before 10. The explicit negations of expectations are,
also, abducibles, indicated by the functors ¬E and ¬EN.

Confirmation and disconfirmation of expectations are mapped very simply
in the SCIFF framework: a positive expectation that unifies with an event is
confirmed, a negative expectation that unifies with an event is disconfirmed. For
instance, the event H(temp(38), 10) confirms the expectation E(temp(H), T)
with the CLP constraints H < 39, T < 15, but not the same expectation with
the CLP constraints H < 37, T < 15, due to the violated constraint on H.

A positive (resp. negative) expectation may also be disconfirmed (resp. con-
firmed) by the fact that the CLP constraints on its variables are not satisfiable:
typically, this will happen when the deadline for a hypothesis passes without a
unifying event.

A skeptical reasoning attitude (i.e., all hypotheses that are not explicitly
confirmed are rejected) is implemented by closing the history, i.e., it is assumed
that no more events can happen, and the pending positive (resp. negative) ex-
pectations are disconfirmed (resp. confirmed). A credolous reasoning attitude

WCLP 2005 114 Ulmer Informatik-Berichte 2005-01

(i.e., a set hypotheses is acceptable even if some hypotheses are not explicitly
confirmed, as long as it is consistent) is implemented by not closing the history.

Expectations may be generated either because of a set G of goals (according
to the knowledge espressed by a logic program KB), or because of integrity con-
straints, whose set is called ICS . Integrity constraints are forward rules which,
basically, express that if in a state of the computation some events have (not)
happened and some expectations have (not) been generated, then some other
expectations will be generated (a simple example is H(p) ∧ E(q) → EN(r),
meaning that if p has happened and q has been hypothesized, then r should
be hypothesized not to hold). The set ICS always contains the consistency in-
tegrity constraints, which are needed to avoid inconsistent sets of expectations:
the E-consistency constraint (E(p)∧EN(p) → ⊥) expresses that the same event
cannot be expected both to happen and not to happen, and the ¬-consistency
constraints (E(p) ∧ ¬E(p) → ⊥ and EN(p) ∧ ¬EN(p) → ⊥) prevent an expec-
tation and its negation from being abduced in the same computation.

3 Implementation of the SCIFF proof procedure

In this section, we briefly introduce the CHR [7] language, which for its declar-
ative and operational semantics appeared as a natural choice to implement the
SCIFF rewriting proof procedure, and we describe the implementation.

3.1 A brief introduction to Constraint Handling Rules

In this brief introduction, we focus on the declarative and operational semantics
of CHR; implementation-specific details (we used the SICStus [8] implementation
of CHR) will be explained as they appear in Section 3.2.

Constraint Handling Rules [7] (CHR for brevity hereafter) are essentially a
committed-choice language consisting of guarded rules that rewrite constraints
in a store into simpler ones until they are solved. CHR define both simplification
(replacing constraints by simpler constraints while preserving logical equiva-
lence) and propagation (adding new, logically redundant but computationally
useful, constraints) over user-defined constraints.

The main intended use for CHR is to write constraint solvers, or to extend
existing ones. However, the computational model of CHR presents features that
make it a useful tool for the implementation of the SCIFF proof procedure.

There are three types of CHRs: simplification, propagation and simpagation.

Simplification CHRs. Simplification rules are of the form

H1, . . . , Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk (1)

with i > 0, j ≥ 0, k ≥ 0 and where the multi-head H1, . . . , Hi is a nonempty
sequence of CHR constraints, the guard G1, . . . , Gj is a sequence of built-in con-
straints, and the body B1, . . . , Bk is a sequence of built-in and CHR constraints.

WCLP 2005 115 Ulmer Informatik-Berichte 2005-01

Declaratively, a simplification rule is a logical equivalence, provided that the
guard is true. Operationally, when constraints H1, . . . , Hi in the head are in
the store and the guard G1, . . . , Gj is true, they are replaced by constraints
B1, . . . , Bk in the body.

Propagation CHRs. Propagation rules have the form

H1, . . . ,Hi =⇒ G1, . . . , Gj |B1, . . . , Bk (2)

where the symbols have the same meaning and constraints of those in the sim-
plification rules (1).

Declaratively, a propagation rule is an implication, provided that the guard
is true. Operationally, when the constraints in the head are in the store, and the
guard is true, the constraints in the body are added to the store.

Simpagation CHRs. Simpagation rules have the form

H1, . . . , Hl\Hl+1, . . . , Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk (3)

where l > 0 and the other symbols have the same meaning and constraints of
those of simplification CHRs (1).

Declaratively, the rule of Eq. (3) is equivalent to

H1, . . . , Hl,Hl+1, . . . ,Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk,H1, . . . ,Hl (4)

Operationally, when the constraints in the head are in the store and the
guard is true, H1, . . . , Hl remain in the store, and Hl+1, . . . , Hi are replaced
by B1, . . . , Bk.

3.2 SCIFF Implementation

In this section, we describe the implementation of the SCIFF proof procedure,
focusing on the features described in Section 2.2.

As the IFF, the SCIFF proof procedure starts from an initial node; to each
node transitions can be applied to generate new nodes, so building the proof
tree (such as the one depicted in Fig. 2).

The proof procedure is implemented in SICStus Prolog [8], and makes an
extensive use of its CHR library.

The proof tree is searched with a depth-first strategy, so to exploit the Prolog
stack for backtracking. Most of the data structures are implemented as CHR
constraints; in this way, it is quite straightforward to express the proof transitions
by means of CHR rules.

An ad-hoc CHR constraint (reif unify/3) implements reified unification
between variables: reif unify(A,B,V) means that A and B unify if and only if
V=1.

WCLP 2005 116 Ulmer Informatik-Berichte 2005-01

Data Structures Each node of the proof tree is represented by a tuple with the
following structure:

T ≡ 〈R, CS, PSIC,EXP,HAP,CONF,DISC〉

The data structures are implemented by means of Prolog built-in structures and
the CHR constraint store.

In the following, we describe the implementation of each element of the tuple.

Resolvent R. The resolvent of the proof is represented as the Prolog resolvent.
This allows us to exploit the Prolog stack for depth-first exploration of the tree
of states.

Constraint Store CS. The constraint store of the proof3 is represented as the
union of the CLP constraint stores. For the implementation of the proof, the
CLPFD and CLPB libraries of SICStus Prolog, a CHR-based solver on finite
and infinite domains, and an ad-hoc solver for reified unification have been used.
However, in principle, it should be possible to integrate with the proof any
constraint solver that works on top of SICStus Prolog.

Partially Solved Integrity Constraints PSIC. Each partially solved integrity
constraint is represented by means of a psic/2 CHR constraint, which has two
arguments, representing the body (condition) and the head (conclusion) of the
integrity constraint. For example, psic([h(p),e(q)],[[en(r)]]) would repre-
sent4 the partially solved integrity constraint H(p) ∧ E(q) → EN(r), explained
in Sect. 2.2.

History HAP. Each event is represented by means of a h/2 CHR constraint,
whose (ground) arguments are the content and the time of the event. An example
of event is:

h(temperature(38),10)

Expectations EXP. Expectations that are neither confirmed nor disconfirmed
are represented by means of a pending/1 CHR constraint, whose content is a
term (with functor e for E expectations and en for EN expectations) repre-
senting the pending expectations. The pending/1 constraint,obviously, does not
apply to ¬E or ¬EN. An example of pending expectation is:

pending(e(temperature(A),T))

3 This constraint store, which contains CLP constraints over variables, should not be
confused with the CHR constraint store, which is used for the implementation of the
other data structures.

4 Although the body of a partially solved integrity constraint is internally represented
as a list of lists for efficiency, here and in the remainder of the paper, for better
readability, we represent it as a flat list.

WCLP 2005 117 Ulmer Informatik-Berichte 2005-01

The reader should note that the representation of CLP constraints on variable
T, such as T#<39, are represented in the CLP constraint store, rather than in the
expectation itself.

Additionally, CHR constraints are used to represent all expectations, either
pending, confirmed or disconfirmed: this is needed because transitions apply to
pending, confirmed or disconfirmed expectations in the same way. These con-
straints are e/2, en/2, note/2 or noten/2, for E, EN, ¬E or ¬EN expectations,
respectively. The two arguments of these CHR constraints are the content and
the time of the expectation.

Confirmed Expectations CONF. Each confirmed expectation is represented by
a conf/1 CHR constraint, whose argument is a term representing the confirmed
expectation.

Disconfirmed Expectations DISC. Each disconfirmed expectation is represented
by a disc/1 CHR constraint, whose argument is a term representing the discon-
firmed expectation.

Transitions The implementation of transitions has been designed so to exploit
the built-in Prolog mechanisms whenever possible, both for simplicity and for
efficiency. This has been made possible by the choice of a depth-first strategy
for the exploration of the proof tree. The CHR representation of most data
structures allows to map the transitions to CHR rules.

For lack of space, in the following we only present the implementation of the
transitions that we find more significant in the context of this paper.

Propagation. Propagation is applied when two CHR constraints A and P that
respect the following conditons are in the CHR store:

1. A represents an event (h), a hypothesis (e, en) or the negation of a hypothesis
(note, noten): for example, A =e(q);

2. P represents a partially solved integrity constraint (psic/2) with,
in its body, an atom B that can unify with A: for example,
P =psic([h(p),e(q)],[[en(r)]]) and B =e(q).

In this case, two new nodes are generated:

– one where unification between A and B is imposed (in the example above,
reif unify(e(q),e(q),1) is imposed and immediately resolved to true,
and removed from the constraint store) and a new constraint P ′, represent-
ing the same as P but with B removed from its body (in our example,
psic([h(p)],[[en(r)]])), is added to the CHR store;

– one where disunification between A and B is imposed: in the example,
reif unify(e(q),e(q),0) is imposed and immediately resolved to false,
thus making the node one of failure.

WCLP 2005 118 Ulmer Informatik-Berichte 2005-01

Dynamically Growing History.

1. Happening
Happening of events is achieved by imposing (i.e., calling) a h/2 CHR con-
straint, whose (ground) arguments are the content and the time of the event.

2. Closure
Closure of the history of the society is achieved by imposing a
close_history/0 CHR constraint. The presence of this constraint in the
store will be checked by other transitions such as confirmation of EN expec-
tations.

Confirmation, Disconfirmation and Consistency.

1. E Confirmation and EN Disconfirmation
Confirmation of E and disconfirmation of EN can be detected while the
history is still open. The following CHR implements disconfirmation of EN
expectations:

disconfirmation @
h(HEvent,HTime),
pending(e(ENEvent,ENTime)) # _pending
==>
fn_ok(HEvent,ENEvent) |
ccopy(p(ENEvent,ENTime),p(ENEvent1,ENTime1)),
case_analysis_disconfirmation(HEvent,HTime,ENEvent,ENTime,

ENEvent1,ENTime1,_pending).

The rule is applied when an event and a pending EN expectation whose
content have the same functor and arity (this is checked by the fn_ok/2
predicate in the guard of the rule) are in the CHR store. In this case, a copy
is made of the expectation5 and the case_analysis_disconfirmation/7
predicate is called. The arguments of this predicate represent, respectively,
the content of the event, the time of the event, the content of the expecta-
tion, the time of the expectation, a copy of the content of the expectation,
a copy of the time of the expectation, and the internal index representing6

the pending/1 constraint for the expectation. Two nodes are created by
case_analysis_disconfirmation/7: one where unification is imposed be-
tween the expectation and the event, the pending/1 constraint for the ex-
pectation is removed and the disc/1 CHR constraint for the expectation
is imposed; and another one where non-unification between the expectation
and the event is imposed.

5 This allows for the universally quantified variables in the original expectation (such
as X in en(p(X))) to remain unbound after the unification: binding them to a value
would restrict their quantification.

6 In the SICStus [8] CHR implementation, writing the constraint
pending(e(ENEvent,ENTime)) # pending in the head of a rule will bind pending

to the internal index that represents the constraint in the CHR store when the
rule is activated, for future reference; in this case, the index is used to remove the
constraint from the store in the confirmation branch.

WCLP 2005 119 Ulmer Informatik-Berichte 2005-01

2. E Disconfirmation and EN Confirmation (closed history)
When the history of the society is closed (by means of a closure transitions),
all pending E are marked as disconfirmed and all pending EN are declared
confirmed. This is achieved by the following two rules:

closure_e @
(close_history) \ (pending(e(Event,Time)))
<=>
disc(e(Event,Time)).

An analogous rules implements closure-driven confirmation of negative ex-
pectations.
These rules implement the skeptical reasoning mentioned in Section 2.2. A
credolous attitude can be achieved by simply omitting these rules.

3. E-Consistency
E-consistency is implemented by imposing non-unification on the (Con-
tent,Time) pairs of E and EN expectations in the store:

e_consistency @
e(EEvent,ETime), en(ENEvent,ENTime)
==>
reif_unify(p(EEvent,ETime),p(ENEvent,ENTime),0).

4. ¬-Consistency
Analogously to E-Consistency, ¬-Consistency is implemented by imposing
non-unification on the (Content,Time) pairs of E and ¬E (or EN and ¬EN)
expectations in the store.

4 Related work

The SCIFF abductive framework is mostly related to the IFF proof procedure
[5], which it extends in several directions: dunamic update of the knowledge base
by happening events, confirmation and disconfirmation of hypotheses, hypothe-
ses with universally quantified variables, CLP constraints.

In [9], Sergot proposed a general framework, called query-the-user, in which
some of the predicates are labelled as “askable”; the truth of askable atoms can be
asked to the user. Our E predicates may in a sense be seen as asking information,
while H atoms may be considered as new information provided during search.
However, E atoms may also mean expected behavior, and the SCIFF can cope
with abducibles containing universally quantified variables.

The idea of hypotheses confirmation has been studied also by Kakas and
Evans [10], where hypotheses can be corroborated or refuted by matching them
with observable atoms: an explanation fails to be corroborated if some of its
logical consequences are not observed. The authors suggest that their framework
could be extended to take into account dynamic events, possibly queried to the
user.

WCLP 2005 120 Ulmer Informatik-Berichte 2005-01

In a sense, the SCIFF framework can be considered as an extension of these
works: it provides the concept of confirmation of hypotheses, as in corroboration,
and an operational semantics for dynamically incoming events. Moreover, we
extend the work by imposing integrity constraints to better define the feasible
combinations of hypotheses, and we let the program abduce non-ground atoms.

Christiansen and Dahl [11] propose to exploit the CHR language to
extend SICStus Prolog to support abduction more efficiently than with
metainterpretation-based solutions. They represent abducibles as CHR con-
straints as we do, but they represent integrity constraints directly as CHR
propagation rules, using the built-in CHR matching mechanism for propaga-
tion: this does not seem possible in our framework, which also needs to handle
universally quantified variables and CLP constraints. Other implementations
have been given of abductive proof procedures in Constraint Handling Rules
[12, 13]; as these works, our implementation exploits the uniform understand-
ing of constraints and abducibles noted by Kowalski et al. [14]. However, the
SCIFF framework also supports the dynamic confirmation, or disconfirmation,
of hypotheses.

5 Conclusions and future work

In this paper, we have presented the implementation of a system for hypothetical
reasoning which supports the confirmation and disconfirmation of hypotheses.

There are many possible extensions of this work, which we intend to pursue
in the future. For instance, it would be worthwhile to let the user impose the
failure of a branch of the reasoning tree, regardless of the confirmation or dis-
confirmation of the hypotheses made in the branch, in order to explore branches
that the user finds more promising. We also intend to support a breadth-first ex-
ploration of the computation tree, as an alternative to the depth-first exploration
of the current implementation. Besides, we believe that the formal framework
would benefit from the introduction of a formalism to express priorities among
the possible alternative hypotheses, in a given state of the computation.

Another direction of improvement could be towards better computational
performance, possibly exploiting alternative efficient CHR implementations, such
as the one proposed by Wolf [15].

Acknowledgments

This work has been supported by the European Commission within the SOCS
project (IST-2001-32530), funded within the Global Computing Programme and
by the MIUR COFIN 2003 projects La Gestione e la negoziazione automatica
dei diritti sulle opere dell’ingegno digitali: aspetti giuridici e informatici and
Sviluppo e verifica di sistemi multiagente basati sulla logica.

We wish to thank the anonymous reviewers for their detailed and useful
comments on a previous version of this paper.

WCLP 2005 121 Ulmer Informatik-Berichte 2005-01

References

1. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2 (1993) 719–770

2. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Abduction with
hypothesis confirmation. In Rossi, G., Panegai, E., eds.: Proceedings of CILC’04 -
Italian Conference on Computational Logic, Parma, 16-17 Giugno 2004. Number
390 in Quaderno del Dipartimento di Matematica, Research Report, Università di
Parma (2004)

3. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85 (2003)

4. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An Abductive In-
terpretation for Open Societies. In Cappelli, A., Turini, F., eds.: AI*IA 2003:
Advances in Artificial Intelligence, Proceedings of the 8th Congress of the Ital-
ian Association for Artificial Intelligence, Pisa. Volume 2829 of Lecture Notes in
Artificial Intelligence., Springer-Verlag (2003) 287–299

5. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151–165

6. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20 (1994) 503–582

7. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37 (1998) 95–138

8. : SICStus prolog user manual, release 3.11.0 (2003) http://www.sics.se/isl/

sicstus/.
9. Sergot, M.J.: A query-the-user facility of logic programming. In Degano, P.,

Sandwell, E., eds.: Integrated Interactive Computer Systems, North Holland (1983)
27–41

10. Evans, C., Kakas, A.: Hypotheticodeductive reasoning. In: Proc. International
Conference on Fifth Generation Computer Systems, Tokyo (1992) 546–554

11. Christiansen, H., Dahl, V.: Assumptions and abduction in prolog. In Muñoz-
Hernández, S., Gómez-Perez, J.M., Hofstedt, P., eds.: Workshop on Multiparadigm
Constraint Programming Languages (MultiCPL’04), Saint-Malo, France (2004)
Workshop notes.

12. Abdennadher, S., Christiansen, H.: An experimental CLP platform for integrity
constraints and abduction. In Larsen, H., Kacprzyk, J., Zadrozny, S., Andreasen,
T., Christiansen, H., eds.: FQAS, Flexible Query Answering Systems. LNCS, War-
saw, Poland, Springer-Verlag (2000) 141–152

13. Gavanelli, M., Lamma, E., Mello, P., Milano, M., Torroni, P.: Interpreting ab-
duction in CLP. In Buccafurri, F., ed.: APPIA-GULP-PRODE Joint Conference
on Declarative Programming, Reggio Calabria, Italy, Università Mediterranea di
Reggio Calabria (2003) 25–35

14. Kowalski, R., Toni, F., Wetzel, G.: Executing suspended logic programs. Funda-
menta Informaticae 34 (1998) 203–224

15. Wolf, A.: Adaptive constraint handling with chr in java. In Walsh, T., ed.: Prin-
ciples and Practice of Constraint Programming - CP 2001, 7th International Con-
ference. Volume 2239 of Lecture Notes in Computer Science., Paphos, Cyprus,
Springer Verlag (2001) 256–270

WCLP 2005 122 Ulmer Informatik-Berichte 2005-01

Guard Simplification in CHR programs

Jon Sneyers, Tom Schrijvers?, Bart Demoen

Dept. of Computer Science, K.U.Leuven, Belgium
{jon,toms,bmd}@cs.kuleuven.ac.be

Abstract. Constraint Handling Rules (CHR) is a high-level language
commonly used to write constraint solvers. Most CHR programs depend
on the refined operational semantics, obfuscating their logical reading
and causing different (termination) behavior under the theoretical op-
erational semantics. We introduce a source to source transformation
called guard simplification which allows CHR programmers to write self-
documented rules with a clear logical reading. Performance is improved
by removing guards entailed by the implicit “no earlier (sub)rule fired”
precondition and optional type and mode declarations. A formal descrip-
tion of the transformation is given, its implementation in the K.U.Leuven
CHR compiler is presented and experimental results are discussed.

1 Introduction

Constraint Handling Rules (CHR) is a high-level multi-headed rule-based
programming language extension commonly used to write constraint solv-
ers. We will assume the reader to be familiar with the syntax and se-
mantics of CHR, referring to [5] for an overview. Examples are given in
a Prolog context, although the results are valid in general.

The theoretical operational semantics ωt of CHRs, as defined in [5],
is relatively nondeterministic as the order in which rules are tried is not
specified. However, all implementations of CHR we know of use a more
specific operational semantics, called the refined operational semantics
ωr [4]. In ωr, the order in which rules are tried is the textual order in
which the rules occur in the CHR program. Usually, CHR programmers
take this refined operational semantics into account when they write CHR
programs. As a result, their CHR programs could be non-terminating or
could even produce incorrect results under ωt semantics.

The dilemma CHR programmers face is the following: either they
make sure their programs are valid under ωt semantics, or they write
programs that only work correctly under ωr semantics. Sticking to ωt se-
mantics has the advantage that it results in more declarative code with

? Research Assistant of the fund for Scientific Research - Flanders (Belgium) (F.W.O.-
Vlaanderen)

WCLP 2005 123 Ulmer Informatik-Berichte 2005-01

a clear logical reading, but it has the disadvantages that it is harder
to implement some programming idioms and that the compiled code is
less efficient. Using ωr semantics results in more efficient compiled code
and allows easier implementation of some programming idioms like key
lookup, but at a cost: it becomes much less obvious from the CHR pro-
gram what the preconditions for application of a rule really are. Indeed,
under ωt semantics, rules have to contain in their guards all the pre-
conditions needed, while under ωr semantics, the CHR programmer can
and does omit the preconditions that are implicitly entailed by the rule
order. Omitting these redundant preconditions may contribute to more
efficient compiled code, but at the same time it makes the program less
self-documented.

In this paper, we propose a compiler optimization that is a major step
towards allowing CHR programmers to write more readable and declarat-
ive programs while getting the same efficiency as programs written with
the specifics of the refined operational semantics in mind. This optimiza-
tion, called Guard Simplification, is a source-to-source transformation of
CHR programs, removing redundant guard conditions (and head match-
ings, an implicit part of the guard) based on reasoning about behavior
of the program under the refined operational semantics. The transformed
program is simpler, possibly allowing more optimization from other ana-
lyses. For example, guard simplification can reveal the never-stored prop-
erty [2], as we will show later. Thanks to guard simplification, the CHR
programmer can focus on writing a declarative specification and rely on
the compiler to produce efficient code.

The next section presents a short intuitive overview of guard simpli-
fication, illustrated with some examples. In section 3, a formal defini-
tion of the guard simplification transformation is given. Section 4 briefly
deals with the implementation of the guard simplification analysis in the
K.U.Leuven CHR compiler [8]. Then, in section 5, the results of several
benchmarks are discussed, in order to compare the efficiency of CHR pro-
grams before and after guard simplification. Finally, section 6 concludes
this paper, summarizing our contributions.

2 Overview

The source to source transformation discussed in this paper transforms a
CHR program P into another CHR program P ′ = GS(P) which is equi-
valent under the refined operational semantics ωr. Although the original
program might have been valid under any execution strategy covered by

WCLP 2005 124 Ulmer Informatik-Berichte 2005-01

the theoretical operational semantics ωt, the transformed program will in
general only exhibit identical behavior when ωr semantics is used. This
is not an issue, since all recent CHR implementations use ωr semantics.

Under the refined operational semantics of CHRs, the order in which
the rules are tried is the textual order of the rules in the CHR program.
We number the rules accordingly, so that for i < j, rule Ri appears before
rule Rj in the CHR program.

2.1 Guard simplification

When a simpagation rule or a simplification rule fires, some or all of its
head constraints are removed. As a result, for every rule Ri, we know that
when this rule is tried, any non-propagation rule Rj with j < i, where
the set of head constraints of rule Rj is a (multiset) subset of that of rule
Ri, did not fire for some reason. Either the heads did not match, or the
guard failed. Let us illustrate this with some simple examples.

Example 1: an entailed guard

pos @ sign(P,S) <=> P > 0 | S = positive.

zero @ sign(Z,S) <=> Z =:= 0 | S = zero.

neg @ sign(N,S) <=> N < 0 | S = negative.

If the third rule, neg, is tried, we know pos and zero did not fire,
because if they would have fired, the sign/2 constraint would have been
removed. Because the first rule, pos, did not fire, its guard must have
failed, so we know that N ≤ 0. The second rule, zero, did not fire either,
so we derive that N 6= 0. Now we can combine these results to get N < 0,
which is exactly the guard of the third rule. Because we know this guard
will always be true, we can safely remove it. This will result in slightly
more efficient generated code (because the redundant test is removed),
but – more importantly – this might also be useful for other analyses. In
this example, after the guard simplification, the never-stored analysis [2]
is able to detect that the constraint sign/2 is never-stored because now
the third rule is an unguarded single-head simplification rule, removing
all sign/2 constraints immediately.

Example 2: a rule that can never fire

neq @ p(A) \ q(B) <=> A \== B | ...

eq @ q(C) \ p(C) <=> true | ...

prop @ p(X), q(Y) ==> ...

WCLP 2005 125 Ulmer Informatik-Berichte 2005-01

In this case, we can detect that the third rule, prop, will never fire.
Indeed, because the first rule, neq, did not fire, we know that X and Y

are equal and because the second rule, eq, did not fire, we know X and
Y are not equal. This is of course a contradiction, so we know the third
rule can never fire. Most often such never firing rules are in fact bugs in
the CHR program – there is no reason to write rules that cannot fire –
so it seems appropriate for the CHR compiler to give a warning message
when it encounters such rules.

Generalizing from the previous examples, we can summarize guard
simplification as follows: If a (part of a) guard is entailed by knowledge
given by the negation of earlier guards, we can replace it by true, thus
removing it. However, if the negation of (part of a) guard is entailed by
that knowledge, we know the rule will never fire and we can remove the
entire rule.

2.2 Head matching simplification

Matchings in the arguments of head constraints can be seen as an im-
plicit guard condition that can also be simplified. Consider the following
example:

p(X,Y) <=> X \== Y | ...

p(X,X) <=> ...

Never-stored analysis as it is currently implemented in the K.U.Leuven
CHR system is not able to detect p/2 to be a never-stored constraint, be-
cause none of these two rules remove all p/2 constraints. We can rewrite
the second rule to p(X,Y) <=> ..., because the (implicit) condition X ==

Y is entailed by the negation of the guard of the first rule. In the refined
operational semantics, this does not change the behavior of the program.
Now we say the head matchings of the second rule are simplified, because
the head contains less matching conditions. As a result, never-stored ana-
lysis can now detect p/2 to be never-stored, and more efficient code can
be generated.

2.3 Type and mode declarations

Head matching simplification can be much more effective if some know-
ledge of the argument types of constraints is given. Consider this example:

sum([],S) <=> S = 0.

sum([X|Xs],S) <=> sum(Xs,S2), S is X + S2.

WCLP 2005 126 Ulmer Informatik-Berichte 2005-01

If we know the first argument of constraint sum/2 is a (ground) list,
these two rules cover all possible cases and thus the constraint is never-
stored. In [11], optional mode declarations were introduced to specify the
mode – ground (+) or unknown (?) – of constraint arguments. Inspired by
the Mercury type system [13], we have added optional type declarations
to define types and specify the type of constraint arguments. For the
above example, the CHR programmer would add the following lines:

option(type_definition,

type(list(X), [[], [X | list(X)]])).

option(type_declaration, sum(list(int),int)).

option(mode, sum(+,?)).

The first line is a recursive and generic type definition for lists of
some type X, a variable that can be instantiated with builtin types like
int, float, the general type any, or any user-defined type. The next line
says the first argument of constraint sum/2 is of type ‘list of integers’
and the second is an integer. In the last line, the first argument of sum/2
is declared to be ground on call while the second argument can be a
variable. Using this knowledge, we can rewrite the second rule of the ex-
ample program to “sum(A,S) <=> A = [X|Xs], sum(Xs,S2), S is X

+ S2.”, keeping its behavior intact while again helping never-stored ana-
lysis to detect sum/2 to be a never-stored constraint.

3 Formal description

We will now formalize the guard simplification transformation intuitively
described above. Constraints are either CHR constraints or builtin con-
straints in some constraint domain D. The former are manipulated by the
CHR execution mechanism while the latter are handled by an underlying
constraint solver. We will consider all three types of CHR rules to be
special cases of simpagation rules:

Definition 1 (CHR program). A CHR program P is a sequence of
CHR rules Ri of the form

Ri = Hk
i \ Hr

i ⇐⇒ gi | Bi

where Hk
i (kept head constraints) and Hr

i (removed head constraints) are
sequences of CHR constraints (not both empty), gi (guard) is a conjunc-
tion of builtin constraints, and Bi (body) is a conjunction of constraints.

WCLP 2005 127 Ulmer Informatik-Berichte 2005-01

We assume all arguments of the CHR constraints in the head to be
unique variables, making any head matchings explicit in the guard. This
head normalization procedure is explained in more detail in [3] and an
illustrating example can be found e.g. in section 2.1 of [10].

We will consider rules that must have been tried according to the
refined operational semantics before trying some rule Ri, calling them
earlier subrules of Ri.

Definition 2 (Earlier subrule). The rule Rj is an earlier subrule of
rule Ri (notation: Rj ≺ Ri) iff j < i and the (renamed) constraints
occurring in the head of Rj form a (multiset) subset of the head constraints
of Ri.

Now we can define a logical expression nesr(Ri) stating the implica-
tions of the fact that all constraint-removing earlier subrules of rule Ri

have been tried unsuccessfully.

Definition 3 (“No earlier subrule fired”). For every rule Ri, we
define:

nesr(Ri) =
∧

{

(¬(θj ∧ gj)) | Rj ≺ Ri and Hr
j is not empty

}

where θj is a matching substitution mapping the head constraints of
Rj to corresponding head constraints of Ri.

Consider a CHR program P with rules Ri which have guards gi =
∧

k gi,k. If we apply guard simplification to this program, we rewrite some
guards to true (or false) if they (or their negations) are entailed by the
“no earlier subrule fired” condition.

Definition 4 (Guard simplification). Applying guard simplification
to a CHR program P results in a new CHR program P ′ = GS(P) with
rules R′

i = Hk
i \ Hr

i ⇐⇒
∧

k g′i,k | Bi, where

g′i,k =

true if D |= nesr(Ri) → gi,k;
false if D |= nesr(Ri) → ¬gi,k;
gi,k otherwise.

Because of space limitations, we will simply formulate our correctness
result without a proof. A detailed, but rather straightforward proof of the
following theorem can be found in [12].

WCLP 2005 128 Ulmer Informatik-Berichte 2005-01

Theorem 1 (Guard simplification and applicability of transitions).
Given a CHR program P and its guard-simplified version P ′ = GS(P).
Given an execution state Si = 〈A, S, B, T 〉n occurring in some derivation
for the P program under ωr semantics, exactly the same transitions are
possible from Si for P and for P ′.

Corollary 1. Under the refined operational semantics, any CHR pro-
gram P and its guard-simplified version P ′ are operationally equivalent.

4 Implementation

We have implemented guard simplification as a new compilation phase in
the K.U.Leuven CHR compiler [8]. Essentially, the guard simplification
phase does the following: For every rule R, head matchings are made
explicit, nesr(R) is constructed (the conjunction of the the negations of
the guards of the earlier subrules Ri ≺ R) and type information is added
to this. Then any part of the guard entailed by this big conjunction is
replaced by true – if its negation is entailed, it is replaced by fail.
Finally, entailed head matchings are moved to the body if possible.

A separate entailment checking module has been written to test whether
some condition B (e.g. X < Z) is entailed by another condition A (e.g.
X < Y ∧ Y < Z), i.e. A → B. Since in general this problem is undecid-
able, the entailment checker will try to prove that B is entailed by A by
propagating the implications of (host language) builtin conditions in A,
like <, =:=, functor/3, == and unification, succeeding if B is found and
failing otherwise. Hence if the entailment checker succeeds, A → B must
hold, but if it fails, either A 6→ B holds or A → B holds but was not de-
tected. It does not try to discover implications of user-defined predicates,
which would require a complex analysis of the host-language program.
The core of this entailment checker is written in CHR. A detailed de-
scription of our implementation of both guard simplification itself and
the entailment checker can be found in [12].

In order to compare the generated code both with and without guard
simplification, we present the Prolog code the CHR compiler generates
for some example CHR program. In this fragment from a prime number
generating program (taken from the CHR web site [14]):

filter([X|In],P,Out) <=> 0 =\= X mod P |

Out=[X|Out1], filter(In,P,Out1).

filter([X|In],P,Out) <=> 0 =:= X mod P | filter(In,P,Out).

filter([],P,Out) <=> Out=[].

WCLP 2005 129 Ulmer Informatik-Berichte 2005-01

the CHR compiler (without guard simplification) generates the typical
general code (as in [7]) for the filter/3 constraint:

filter(List,P,Out) :- filter(List,P,Out, _) .

% first occurrence

filter(List,P,Out,C) :-

nonvar(List), List = [X|In], 0 =\= X mod P, !,

... % remove from constraint store if needed

Out = [E|Out1], filter(In,P,Out1) .

% second occurrence

filter(List,P,Out,C) :-

nonvar(List), List = [X|In], 0 =:= X mod P, !,

... % remove from constraint store if needed

filter(In,P,Out) .

% third occurrence

filter(List, _ ,Out,C) :-

List == [], !,

... % remove from constraint store if needed

Out = [] .

% insert into store in case none of the rules matched

filter(List,P,Out,C) :-

... % insert into constraint store

If we enable the guard simplification phase, the guard in the second
rule is removed, but this alone does not considerably improve efficiency.
However, we can add type and mode information and then use the guard
simplification analysis to transform the program to an equivalent and
more efficient form. In this example, the programmer intends to use the
filter/3 constraint with the first two arguments ground, while the third
one can have any instantiation. The first and the third argument are
lists of integers, while the second argument is an integer. So we add the
following type and mode declarations to the CHR program:

option(type_declaration, filter(list(int),int,list(int))).

option(mode, filter(+,+,?)).

Using this type and mode information, guard simplification now de-
tects that all possibilities are covered by the three rules. The guard in

WCLP 2005 130 Ulmer Informatik-Berichte 2005-01

the second rule can be removed, so the filter/3 constraint with the first
argument being a non-empty list is always removed after the second rule.
Thus in order to reach the third rule, the first argument has to be the
empty list – it cannot be a variable because it is ground and it cannot
be anything else because of its type. As a result, we can drop the head
matching in the third rule:

filter([X|In],P,Out) <=> 0 =\= X mod P |

Out=[X|Out1], filter(In,P,Out1).

filter([_|In],P,Out) <=> filter(In,P,Out).

filter(_,P,Out) <=> Out=[].

This transformed program is compiled to more efficient Prolog-code,
because never-stored analysis can detect filter/3 to be never-stored
after the third rule. Also no variable triggering needs to be considered
since the relevant arguments are known to be ground:

filter([X|In],P,Out) :- 0 =\= X mod P, !,

Out = [X|Out1], filter(In,P,Out1).

filter([_|In],P,Out) :- !, filter(In,P,Out).

filter(_,_,[]).

5 Experimental results

In order to get an idea of the efficiency gain obtained by guard simpli-
fication, we have measured the performance of several CHR benchmarks,
both with and without guard simplification. All benchmarks were per-
formed in hProlog 2.4.5-32 [1], on a Pentium 4 (1.7 GHz) machine run-
ning Debian GNU/Linux (kernel version 2.4.25) with a low load. Figure 1
gives an overview of our results. These benchmarks are available at [9].
For every benchmark, the results for a hand-written Prolog version are
included, representing the ideal target code.

Overall, for these benchmarks, the net effect of the guard simplific-
ation transformation – together with never-stored analysis and usage
of mode information to remove redundant variable triggering code – is
cleaner generated code which is much closer to what a Prolog programmer
would write. As a result, a major performance improvement is observed
in these benchmarks, which are CHR programs that basically implement
a deterministic algorithm.

Other CHR programs, like typical constraint solvers, where variable
triggering occurs and the constraints are typically not never-stored, will

WCLP 2005 131 Ulmer Informatik-Berichte 2005-01

Benchmark Language Guard
simpl.

Mode
decl.

Type
decl.

Clauses Lines Run time
(ms)

Relative
run time

sum yes/no no no 4 46 1,890 100.0%
(10000,500) CHR yes/no yes no 3 10 1,680 88.9%

yes yes yes 2 6 1,260 66.7%
handwritten Prolog code 2 5 1,250 66.1%

Takeuchi no no yes/no 4 50 15,060 100.0%
(1000) CHR no yes yes/no 3 17 9,910 65.8%

yes yes/no yes/no 2 12 9,190 61.0%
handwritten Prolog code 2 12 9,190 61.0%

nrev yes/no no no 8 92 4,480 100.0%
(30,50000) CHR yes/no yes no 6 20 2,820 62.9%

yes yes yes 4 11 1,030 23.0%
handwritten Prolog code 4 7 920 20.5%

cprimes no no yes/no 14 160 10,730 100.0%
(100000) no yes yes/no 11 42 6,230 58.1%

CHR yes no no 12 120 10,670 99.4%
yes yes no 10 35 6,140 57.2%
yes yes yes 8 25 5,990 55.8%

handwritten Prolog code 8 23 5,990 55.8%

dfsearch no no yes/no 5 67 20,290 100.0%
(16,500) no yes yes/no 4 16 17,130 84.4%

CHR yes no no 5 66 18,410 90.7%
yes yes no 4 15 16,120 79.4%
yes yes yes 3 11 12,080 59.5%

handwritten Prolog code 3 8 11,330 55.8%

Fig. 1. Benchmark results.

not benefit this much from guard simplification. Redundant guards will
of course be removed, but in most cases this will not result in a drastic
improvement in code size or performance since guards are usually relat-
ively cheap. The main advantage of guard simplification is that relying
on it, the CHR programmer is able to write programs that have a more
declarative reading and that are more self-documenting. All preconditions
needed for a rule to fire can be put in the guard – guard simplification
will eliminate all redundant conditions so this will not affect efficiency.

The only difference between the original program and the guard-
simplified transformed program is that some conditions (namely those
that can be proved to be entailed) are not evaluated in the transformed
program. This should only improve efficiency. Thus there are no cases in
which guard simplification transforms a program to a less efficient version.

In most cases, the additional compile time spent in the guard simpli-
fication phase is very reasonable. For relatively small CHR programs like

WCLP 2005 132 Ulmer Informatik-Berichte 2005-01

the benchmarks discussed above, the time cost of applying guard simpli-
fication is more or less insignificant, in the order of 50 milliseconds. For
larger CHR programs, the time complexity of the guard simplification
compilation phase depends heavily on the number of earlier subrules for
every rule. In extreme cases where this number is exceptionally large, the
guard simplification phase tends to dominate the compilation time.

For an extensive discussion of the experimental results we refer the
reader to [12].

6 Conclusion

We have presented a compiler analysis called guard simplification that al-
lows CHR programmers to write more declarative CHR programs that are
more self-documented. Indeed, all preconditions for rule application can
now be included in the guard, without efficiency loss. Earlier work intro-
duced mode declarations used for hash tabling and other optimizations.
In addition, we have provided a way for CHR programmers to add type
declarations to their programs. Using both mode and type declarations
we have realized further optimization of the generated code.

In order to achieve higher efficiency, CHR programmers often write
parts of their program in Prolog if they do not require the additional
power of CHR. Now they no longer need to write mixed-language pro-
grams for efficiency: they can simply write the entire program in CHR,
because thanks to guard simplification and other analyses like storage
analysis, the K.U.Leuven CHR compiler is able to generate efficient code
with the constraint store related overhead reduced to a minimum. While
guard simplification in itself does not reduce this overhead (although it
does remove the overhead of checking entailed guard conditions), it en-
ables other analyses to do so.

The guard simplification analysis is somewhat similar to switch de-
tection in Mercury [6]. Switch detection is used in determinism analysis
to check unifications involving variables that are bound on entry to a
disjunction and occurring in the different branches. In a sense, switch de-
tection is a special case of guard simplification. Similarities and differences
are elaborated in [12].

Possibilities for future work include: improving the scalability of our
implementation, adding support for declarations of certain properties of
guards and using information derived in the guard simplification phase to
enhance other analyses and to do program specialization on calls in the
rule body.

WCLP 2005 133 Ulmer Informatik-Berichte 2005-01

References

1. Bart Demoen. The hProlog home page, October 2004.
http://www.cs.kuleuven.ac.be/˜bmd/hProlog.

2. Gregory J. Duck, Tom Schrijvers, and Peter J. Stuckey. Abstract Interpretation for
Constraint Handling Rules. Technical Report CW 391, K.U.Leuven, Departement
of Computer Science, 2004.

3. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian
Holzbaur. Extending Arbitrary Solvers with Constraint Handling Rules. In
D. Miller, editor, Proceedings of the Fifth ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming. ACM Press, 2003.

4. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian
Holzbaur. The Refined Operational Semantics of Constraint Handling Rules.
In 20th International Conference on Logic Programming (ICLP’04), Saint-Malo,
France, September 2004.

5. T. Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey
and K. Marriot, editors, Special Issue on Constraint Logic Programming, Journal
of Logic Programming, volume 37 (1–3), October 1998.

6. Fergus Henderson, Zoltan Somogyi, and Thomas Conway. Determinism analysis
in the Mercury compiler. In Proceedings of the Australian Computer Science Con-
ference, pages 337–346, Melbourne, Australia, January 1996.

7. Christian Holzbaur and Thom Frühwirth. Compiling Constraint Handling Rules.
In ERCIM/COMPULOG Workshop on Constraints, CWI, Amsterdam, 1998.

8. T. Schrijvers and B. Demoen. The K.U.Leuven CHR system: implementation and
application. In Thom Frühwirth and Marc Meister, editors, First Workshop on
Constraint Handling Rules: Selected Contributions, number 2004-01, 2004. ISSN
0939-5091.

9. Tom Schrijvers. CHR benchmarks and programs, October 2004. Available at
http://www.cs.kuleuven.ac.be/˜toms/Research/CHR/.

10. Tom Schrijvers and Bart Demoen. Antimonotony-based Delay Avoidance for CHR.
Technical Report CW 385, K.U.Leuven, Department of Computer Science, July
2004.

11. Tom Schrijvers and Thom Früwirth. Implementing and Analysing Union-Find in
CHR. Technical Report CW 389, K.U.Leuven, Department of Computer Science,
July 2004.

12. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard Simplification in CHR pro-
grams. Technical Report CW 396, K.U.Leuven, Department of Computer Science,
November 2004.

13. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an efficient
purely declarative logic programming language. In Proceedings of the Australian
Computer Science Conference, pages 499–512, February 1995.

14. Various. 40 CHR Constraint Solvers Online, December 2004. Available at
http://www.pms.informatik.uni-muenchen.de/˜webchr/.

WCLP 2005 134 Ulmer Informatik-Berichte 2005-01

Analysing the CHR Implementation of
Union-Find

Tom Schrijvers? and Thom Frühwirth

1 Department of Computer Science, K.U.Leuven, Belgium
www.cs.kuleuven.ac.be/˜toms/

2 Faculty of Computer Science, University of Ulm, Germany
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract. CHR (Constraint Handling Rules) is a committed-choice rule-
based language that was originally intended for writing constraint solv-
ers. Over time, CHR is used more and more as a general-purpose pro-
gramming language. In companion paper [12] we show that it is possible
to write the classic union-find algorithm and variants in CHR with best-
known time complexity, which is believed impossible in Prolog. In this
paper, using CHR analysis techniques, we study logical correctness and
confluence of these programs. We observe the essential destructive up-
date of the algorithm which makes it non-logical.

1 Introduction

When a new programming language is introduced, sooner or later the question
arises whether classical algorithms can be implemented in an efficient and elegant
way. For example, one often hears the argument that in Prolog some graph
algorithms cannot be implemented with best known complexity because Prolog
lacks destructive assignment that is needed for efficient update of the graph
data structures. In particular, it is not clear if the union-find algorithm can be
implemented with best-known complexity in pure (i.e. side-effect-free) Prolog
[10].

We give a positive answer for the Constraint Handling Rule (CHR) program-
ming language. There is an CHR implementation with the optimal worst case
and amortized time complexity known for the classical union-find algorithm with
path compression for find and union-by-rank. This is particularly remarkable,
since originally, CHR was intended for implementing constraint solvers only.

CHR is a concurrent committed-choice constraint logic programming lan-
guage consisting of guarded rules that transform multi-sets of constraints (atomic
formulae) into simpler ones until they are solved. In CHR, one distinguishes
two main kinds of rules: Simplification rules replace constraints by simpler con-
straints while preserving logical equivalence, e.g. X≥Y ∧ Y≥X ⇔ X=Y. Propaga-
tion rules add new constraints, which are logically redundant, but may cause

? Research Assistant of the fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen). Part of this work was performed while visiting the University of Ulm
in November 2004.

WCLP 2005 135 Ulmer Informatik-Berichte 2005-01

further simplification, e.g. X≥Y∧Y≥Z ⇒ X≥Z. The combination of propagation
and multi-set transformation of logical formulae in a rule-based language that
is concurrent, guarded and constraint-based make CHR a rather unique and
powerful declarative programming language.

Closest to our work is the presentation of a logical algorithm for the union-
find problem in [10]. In a hypothetical bottom-up inference rule programming
system with permanent deletions and rule priorities, a set of rules for union-find
is given. The direct efficient implementation of these inference rule system seems
not feasible. It is also not clear if the rules given in [10] describe the standard
union-find algorithm as can be found in text books such as [4]. The authors
remark that giving a rule set with optimal amortized complexity is complicated.

In contrast, we give an executable and efficient implementation that dir-
ectly follows the pseudo-code presentations found in text books and that has
also optimal amortized time complexity. Moreover, we do not need to rely on
rule priorities. Here we analyse confluence and logical reading as well as logical
correctness of our union-find program.

This paper is an revised extract of our technical report [13]. A program-
ming pearl describing the implementation and giving a proof for the optimal
time complexity is under submission [12]. This paper is structured as follows.
In the next Section, we review the classical union-find algorithms. Constraint
Handling Rules (CHR) are briefly introduced in Section 3. Then, in Section 4
we present the first basic implementation of the classical union-find algorithm
in CHR. Relying on established analysis techniques for CHR, we investiagte the
logical meaning of the program. The logical reading shows that there is an in-
herent destructive update in the union-find algorithm. In Section 6, the detailed
confluence analysis helps to understand under which conditions the algorithm
works as expected. It also shows in which way the results of the algorithm de-
pend on the order of its operations. An improved version of the implementation,
featuring path compression and union-by-rank, is presented and analysed next
in Section 7. Finally, Section 8 concludes.

2 The Union-Find Algorithm

The classical union-find (also: disjoint set union) algorithm was introduced by
Tarjan in the seventies [14]. A classic survey on the topic is [9]. The algorithm
solves the problem of maintaining a collection of disjoint sets under the operation
of union. Each set is represented by a rooted tree, whose nodes are the elements
of the set. The root is called the representative of the set. The representative
may change when the tree is updated by a union operation. With the algorithm
come three operations on the sets:

– make(X): create a new set with the single element X.
– find(X): return the representative of the set in which X is contained.
– union(X,Y): join the two sets that contain X and Y, respectively (possibly

destroying the old sets and changing the representative).

WCLP 2005 136 Ulmer Informatik-Berichte 2005-01

In the naive algorithm, these three operations are implemented as follows.

– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree by repeatedly

going to the parent node of the current node until the root is reached. Return
the root as representative.

– union(X,Y): find the representatives of X and Y, respectively. To join the
two trees, it suffices to link them by making one root point to the other
root.

The naive algorithm requires O(N) time per find (and union) in the worst
case, where N is the number of elements (make operations). With two inde-
pendent optimizations that keep the tree shallow and balanced, one can achieve
quasi-constant (i.e. almost constant) amortized running time per operation.

The first optimization is path compression for find. It moves nodes closer
to the root after a find. After find(X) returned the root of the tree, we make
every node on the path from X to the root point directly to the root. The second
optimization is union-by-rank. It keeps the tree shallow by pointing the root of
the smaller tree to the root of the larger tree. Rank refers to an upper bound of
the tree depth. If the two trees have the same rank, either direction of pointing
is chosen but the rank is increased by one.

For each optimization alone and for using both of them together, the worst
case time complexity for a single find or union operation is O(log(N)). For
a sequence of M operations on N elements, the worst complexity is O(M +
Nlog(N)). When both optimizations are used, the amortized complexity is quasi-
linear, O(M + Nα(N)), where α(N) is an inverse of the Ackermann function
and is less than 5 for all practical N (see e.g. [4]).

The union-find algorithm has applications in graph theory (e.g. efficient com-
putation of spanning trees). We can also view the sets as equivalence classes with
the union operation as equivalence. When the union-find algorithm is extended to
deal with nested terms to perform congruence closure, the algorithm can be used
for term unification in theorem provers and in Prolog. The WAM [3], Prolog’s
traditional abstract machine, uses the basic version of union-find for variable
aliasing. While variable shunting, a limited form of path compression, is used in
some Prolog implementations [11], we do not know of any implementation of the
optimized union-find that keeps track of ranks or other weights.

3 Constraint Handling Rules (CHR)

In this section we give an overview of syntax and semantics for constraint hand-
ling rules (CHR) [6, 8, 5] and about termination and confluence analysis.

3.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of con-
straints: built-in (pre-defined) constraint symbols which are solved by a given

WCLP 2005 137 Ulmer Informatik-Berichte 2005-01

constraint solver, and CHR (user-defined) constraint symbols which are defined
by the rules in a CHR program. There are three kinds of rules:

Simplification rule: Name @ H ⇔ C B,

Propagation rule: Name @ H ⇒ C B,

Simpagation rule: Name @ H \ H ′ ⇔ C B,

where Name is an optional, unique identifier of a rule, the head H, H ′ is a
non-empty comma-separated conjunction of CHR constraints, the guard C is a
conjunction of built-in constraints, and the body B is a goal. A goal (query) is a
conjunction of built-in and CHR constraints. A trivial guard expression “true
|” can be omitted from a rule. Simpagation rules abbreviate a simplification
rules of the form Name @ H,H ′ ⇔ C H,B.

3.2 Operational Semantics of CHR

Given a query, the rules of the program are applied to exhaustion. A rule is
applicable, if its head constraints are matched by constraints in the current goal
one-by-one and if, under this matching, the guard of the rule is implied by the
built-in constraints in the goal. Any of the applicable rules can be applied, and
the application cannot be undone, it is committed-choice (in contrast to Prolog).
When a simplification rule is applied, the matched constraints in the current goal
are replaced by the body of the rule, when a propagation rule is applied, the
body of the rule is added to the goal without removing any constraints. When
a simpagation rule is applied, all constraints to the right of the backslash are
replaced by the body of the rule.

This high-level description of the operational semantics of CHR leaves two
main sources of non-determinism: the order in which constraints of a query are
processed and the order in which rules are applied. As in Prolog, almost all CHR
implementations execute queries from left to right and apply rules top-down in
the textual order of the program 3. This behavior has been formalized in the
so-called refined semantics that was also proven to be a concretization of the
standard operational semantics [5].

In this refined semantics of actual implementations, a CHR constraint in a
query can be understood as a procedure that goes efficiently through the rules
of the program in the order they are written, and when it matches a head
constraint of a rule, it will look for the other, partner constraints of the head
in the constraint store and check the guard until an applicable rule is found.
We consider such a constraint to be active. If the active constraint has not been
removed after trying all rules, it will be put into the constraint store. Constraints
from the store will be reconsidered (woken) if newly added built-in constraints
constrain variables of the constraint, because then rules may become applicable
since their guards are now implied. Obviously, ground constraints need never to
be considered for waking.

3 Nondeterminism due to wake-up order of delayed constraints and multiple matches
for a rule are not relevant for our union-find programs [12].

WCLP 2005 138 Ulmer Informatik-Berichte 2005-01

3.3 Well-Behavedness: Termination and Confluence

For many existing CHR programs simple well-founded orderings are sufficient
to prove termination [7]. Problems arise with non-trivial interactions between
simplification and propagation rules.

Confluence of a CHR program guarantees that the result of a terminating
computation for a given query is independent from the order in which rules
are applied. This also implies that the order of constraints in a goal does not
matter. The papers [1, 2] give a decidable, sufficient and necessary condition
for confluence for terminating CHR programs. (It is also shown that confluent
CHR programs have a consistent logical reading.) The condition can be readily
implemented by an algorithm that is described informally in the following.

For checking confluence, one takes copies (with fresh variables) of two rules
(not necessarily different) from a terminating CHR program. The heads of the
rules are overlapped by equating at least one head constraint from each rule. For
each overlap, we consider the two states resulting from applying one or the other
rule. These two states form a so-called critical pair. One tries to join the states
in the critical pair by finding two computations starting from the states that
reach a common state. If the critical pair is not joinable, we have found a non-
confluence. In any consistent state that contains the overlap of a non-joinable
critical pair, the application of the two rules to the overlap will usually lead to
different results.

4 Implementing Union-Find in CHR

The following CHR program in concrete ASCII syntax implements the operations
and data structures of the basic union-find algorithm without optimizations.

ufd basic

make @ make(A) <=> root(A).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).

findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.

link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

The constraints make/1, union/2, find/2 and link/2 define the operations.
link/2 is an auxiliary relation for performing union. The constraints root/2

and ~>/2 represent the tree data structure.
Remark. The use of the built-in constraint = in the rule findRoot is restric-

ted to returning the element A in the parameter X, in particular no full unification
is ever performed (that could rely on union-find itself).

WCLP 2005 139 Ulmer Informatik-Berichte 2005-01

Remark. The rule link can be interpreted as performing abduction. If the
the nodes A and B are not equivalent, introduce the minimal assumption B ~> A

so that they are equivalent (i.e. performing union afterwards leads to application
of rule linkEq).

As usual in union-find, we will allow the following queries:

– An allowed query consists of make/1, union/2 and find/2 constraints only.
We call these the external operations (constraints). The other constraints
(including those for the data structure) are generated and used internally by
the program only.

– The elements we use are constants. A new constant must be introduced
exactly once with make/1 before being subject to union/2 and find/2.

– The arguments of all constraints are constants, with exception of the second
argument of find/2 that must be a variable that will be bound to a constant,
and the second argument of root/2, that must be an integer.

5 Logical Properties

The logical reading of our ufd basic union-find CHR program is as follows:

make make(A) ⇔ root(A)

union union(A,B) ⇔ ∃XY (find(A,X) ∧ find(B, Y) ∧ link(X,Y))

findNode find(A,X) ∧ A→B ⇔ find(B,X) ∧ A→B

findRoot root(A) ∧ find(A,X) ⇔ root(A) ∧ X=A

linkEq link(A,A) ⇔ true

link link(A,B) ∧ root(A) ∧ root(B) ⇔ B→A ∧ root(A)

From the logical reading of the rule link it follows that B→A ∧ root(A) ⇒
root(B), i.e. root holds for every node in the tree, not only for root nodes. Indeed,
we cannot adequately model the update from a root node to a non-root node in
first order logic, since first order logic is monotonic, formulas that hold cannot
cease to hold. In other words, the link step is where the union-find algorithm is
non-logical since it requires an update which is destructive in order to make the
algorithm efficient.

In the union-find algorithm, by definition of set operations, a union operator
working on representatives of sets is an equivalence relation observing the usual
axioms:

reflexivity union(A,A) ⇔ true

symmetry union(A,B) ⇔ union(B,A)
transitivity union(A,B) ∧ union(B,C) ⇒ union(A,C)

To show that these axioms hold for the logical reading of the program, we
can use the following obervations: Since the unary constraints make and root

WCLP 2005 140 Ulmer Informatik-Berichte 2005-01

must hold for any node in the logical reading, we can drop them. By the rule
findRoot, the constraint find must be an equivalence. Hence its occurrences
can be replaced by =. Now union is defined in terms of link, which is reflexive
by rule linkEq and logically equivalent to ~> by rule link. But ~> must be
syntactic equivalence like find because of rule findNode. Hence all binary con-
straints define syntactic equivalence. After renaming the constraints accordingly,
we arrive at the following theory:

union A=B ⇔ ∃XY (A=X ∧ B=Y ∧ X=Y)

findNode A=X ∧ A=B ⇔ B=X ∧ A=B

findRoot A=X ⇔ X=A

linkEq A=A ⇔ true

link A=B ⇔ B=A

It is easy to see that these formulas are logically equivalent to the axioms for
equality, hence the program is logically correct.

6 Confluence

We have analysed confluence of the union-find implementation with a small con-
fluence checker written in Prolog and CHR. For the union-find implementation
ufd basic, we have found 8 non-joinable critical pairs. Two non-joinable critical
pairs stem from overlapping the rules for find. Four non-joinable critical pairs
stem from overlapping the rules for link. The remaining two critical pairs are
overlaps between find and link.

We found one non-joinable critical pair that is unavoidable (and inherent
in the union-find algorithm), three critical pairs that feature incompatible tree
constraints (that cannot occur when computing allowed queries), and four crit-
ical pairs that feature pending link constraints (that cannot occur for allowed
queries in the standard left-to-right execution order). In the technical report [13]
associated with this paper, we also add rules by completion and by hand to make
the critical pairs joinable.

The Unavoidable Non-Joinable Critical Pair The non-joinable critical pair
between the rule findRoot and link exhibits that the relative order of find and
link operations matters.

Overlap find(B,A),root(B),root(C),link(C,B)

findRoot root(C),B~>C,A=B

link root(C),B~>C,A=C

It is not surprising that a find after a link operation has a different outcome
if linking updated the root. As remarked in Section 5, this update is unavoidable
and inherent in the union-find algorithm.

WCLP 2005 141 Ulmer Informatik-Berichte 2005-01

Incompatible Tree Constraints Cannot Occur The two non-joinable crit-
ical pairs for find correspond to queries where a find operation is confronted
with two tree constraints to which it could apply. Also the non-joinable critical
pair involving the rule linkEq features incompatible tree constraints.

Overlap A~>B,A~>D,find(A,C)

findNode A~>B,A~>D,find(B,C)

findNode A~>B,A~>D,find(D,C)

Overlap root(A),A~>B,find(A,C)

findNode root(A),A~>B,find(B,C)

findRoot root(A),A~>B,A=C

Overlap root(A),root(A),link(A,A)

linkEq root(A),root(A)

link root(A),A~>A

The conjunctions (A~>B, A~>D), (root(A), A~>B), (root(A), A~>A) and
(root(A), root(A)) that can be found in the overlaps (and non-joinable critical
pairs) correspond to the cases that violate the definition of a tree: a node with
two parents, a root with a parent, a root node that is its own parent, and a tree
with two identical roots, respectively. Clearly, these four conjunctions should
never occur during a run of the program.

We show now that the four dangerous conjunctions indeed cannot occur as
the result of running the program for an allowed query. We observe that the rule
make is the only one that produces a root, and the rule link is the only one
that produces a ~>. The rule link needs root(A) and root(B) to produce A ~>

B, and it will absorb root(A).

In order to produce one of the first three dangerous conjunctions, the link op-
eration(s) need duplicate root constraints (as in the fourth conjunction) to start
from. But only a query containing identical copies of make (e.g. make(A),make(A))
can produce the fourth dangerous conjunction. Since duplicate make operations
are not an allowed query, we cannot produce any of the dangerous conjunctions
(and non-joinable critical pairs) for allowed queries.

Pending Links Cannot Occur The remaining four non-joinable critical pairs
stem from overlapping the rule for link with itself. They correspond to queries
where two link operations have at least one node in common such that when
one link is performed, at least one node in the other link operation is not a root
anymore. When we analyse these non-joinable critical pairs we see that the two
conjunctions (A~>C,link(A,B)) and (A~>C,link(B,A)) are dangerous.

WCLP 2005 142 Ulmer Informatik-Berichte 2005-01

Overlap root(A),root(B),link(B,A),link(A,B)

link root(B),A~>B,link(A,B)

link root(A),link(B,A),B~>A

Overlap root(A),root(B),root(C),link(B,A),link(C,B)

link root(C),A~>B,B~>C

link root(A),root(C),link(B,A),B~>C

Overlap root(A),root(B),root(C),link(B,A),link(A,C)

link root(B),root(C),A~>B,link(A,C)

link root(B),C~>A,A~>B

Overlap root(A),root(B),root(C),link(B,A),link(C,A)

link root(B),root(C),A~>B,link(C,A)

link root(B),root(C),link(B,A),A~>C

Once again, we argue now that the critical pairs can never arise in practice
in an allowed query. link is an internal operation, it can only be the result
of a union, which is an external operation. In the union, the link constraint
gets its arguments from find. In the standard left-to-right execution order of
most sequential CHR implementations [5], first the two find constraints will be
executed and when they have finished, the link constraint will be processed. In
addition, no other operations will be performed inbetween these operations. Then
the results from the find constraints will still be roots when the link constraint
receives them. Note that such an execution order is always possible, provided
make has been performed for the nodes that are subject to union (as is requiered
for allowed queries).

7 Optimized Union-Find

The following CHR program implements the optimized classical Union-Find Al-
gorithm, derived from the basic version by adding path compression for find and
union-by-rank [14].

ufd rank

make @ make(A) <=> root(A,0).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B, find(A,X) <=> find(B,X), A ~> X.

findRoot @ root(A,_) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.

linkLeft @ link(A,B), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).

linkRight @ link(B,A), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).

WCLP 2005 143 Ulmer Informatik-Berichte 2005-01

When compared to the basic version ufd basic, we see that root has been
extended with a second argument that holds the rank of the root node. The rule
findNode has been extended for path compression already during the first pass
along the path to the root of the tree. This is achieved by the help of the logical
variable X that serves as a place holder for the result of the find operation. The
link rule has been split into two rules linkLeft and linkRight to reflect the
optimization of union-by-rank: The smaller ranked tree is added to the larger
ranked tree without changing its rank. When the ranks are the same, either tree
is chosen (both rules are applicable) and the rank is incremented by one.

Remark. Path compression (cf. rule findNode) can be interpreted as memo-
ization or tabling of all the (intermediate) results of the recursive find operation,
where the memoized find(A,X) is stored as A ~> X.

The results for logical reading and logical correctness of the optimized union-
find are analogous to the ones for ufd basic.

Confluence Revisited The non-joinable critical pairs (CPs) are in principle
analogous to the ones discussed for ufd basic in Section 6, but their numbers
significantly increases due to the optimizations of path compression and union-
by-rank that complicate the rules for the find and link operations.

Our confluence checker found 73 non-joinable critical pairs. The number of
critical pairs is dominated by those 68 of the link rules. Not surprisingly, each
critical pair involving linkLeft has a corresponding analogous critical pair in-
volving linkRight.

The CPs between findRoot and a link rule are the unavoidable critical pairs
as in ufd basic. These show the expected behavior that the result of find will
differ if its executed before or after a link operation, for example:

Overlap find(B,A),root(B,C),link(E,B),root(E,D),D>=C

findRoot A=B,D>=C,N is max(D,C+1),root(E,N),B~>E

linkLeft A=E,D>=C,N is max(D,C+1),root(E,N),B~>E

Two findNode rule applications on the same node will interact, because one
will compress, and then the other cannot proceed until the first find operation
has finished:

Overlap find(B,A),B~>C,find(B,D)

findNode find(A,D),find(C,A),B~>D

findNode find(D,A),find(C,D),B~>A

We see that A and D are interchanged in the states of the critical pair. In the
first state, since the result of find(C,A) is A, the find(A,D) can eventually
only reduce to A=D. Analogously for the second state. But under A=D the two
states of the critical pair are identical. The other two critical pairs involving a
findNode rule correspond to impossible queries B~>C,B~>D and root(B,N),B~>C

as discussed for the confluence of ufd basic.
All critical pairs between link rules only, except those for linkEq, consist of

pairs of states that have the same constraints and variables, but that differ in

WCLP 2005 144 Ulmer Informatik-Berichte 2005-01

the tree that is represented. Just as in the case of ufd basic the problem of
pending links occurs without a left-to-right execution order. For more details
see [13].

8 Conclusion

We have analysed in this paper basic and optimal implementations of classical
union-find algorithms. We have used and adapted established reasoning tech-
niques for CHR to investigate the logical properties and confluence (rule applic-
ation order independence). The logical reading and the confluence check showed
the essential destructive update of the algorithm when trees are linked. Non-
confluence can be caused by incompatible tree constraints (that cannot occur
when computing with allowed queries), and due to competing link operations
(that cannot occur with allowed queries in the standard left-to-right execution
order).

Clearly, inspecting dozens of critical pairs is cumbersome and error-prone,
so a refined notion of confluence should be developed that takes into account
allowed queries and syntactical variations in the resulting answer.

At http://www.cs.kuleuven.ac.be/~toms/Research/CHR/UnionFind/ all
presented programs as well as related material are available for download. The
programs can be run with the proper time complexity in the latest release of
SWI-Prolog.

In future work we intend to investigate implementations for other variants
of the union-find algorithm. For a parallel version of the union-find algorithm
parallel operational semantics of CHR have to be investigated (confluence may
be helpful here). A dynamic version of the algorithm, e.g. where unions can be
undone, would presumably benefit from dynamic CHR constraints as defined in
[15].

Acknowledgements. We would like to thank the participants of the first
workshop on CHR for raising our interest in the subject. Marc Meister and
the students of the constraint programming course at the University of Ulm
in 2004 helped by implementing and discussing their versions of the union-find
algorithm.

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Third International Conference on Principles and Practice of Constraint
Programming, CP97, LNCS 1330. Springer, 1997.

2. S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and semantics of con-
straint simplification rules. Constraints Journal, 4(2), 1999.

3. H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
1991.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

WCLP 2005 145 Ulmer Informatik-Berichte 2005-01

5. G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. The refined
operational semantics of constraint handling rules. In B. Demoen and V. Lifschitz,
editors, Proceedings of the 20th International Conference on Logic Programming,
2004.

6. T. Frühwirth. Theory and practice of constraint handling rules, special issue on
constraint logic programming. Journal of Logic Programming, pages 95–138, Oc-
tober 1998.

7. T. Frühwirth. As time goes by: Automatic complexity analysis of simplification
rules. In 8th International Conference on Principles of Knowledge Representation
and Reasoning, Toulouse, France, 2002.

8. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

9. Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set union
problems. ACM Comp. Surveys, 23(3):319ff, 1991.

10. H. Ganzinger and D. McAllester. A new meta-complexity theorem for bottom-up
logic programs. In International Joint Conference on Automated Reasoning, LNCS
2083, pages 514–528. Springer, 2001.

11. D. Sahlin and M. Carlsson. Variable Shunting for the WAM. Technical Report
SICS/R-91/9107, SICS, 1991.

12. T. Schrijvers and T. Fruehwirth. Optimal union-find in constraint handling rules.
Technical report, November 2004.

13. T. Schrijvers and T. Fruehwirth. Union-find in chr. Technical Report CW389,
Department of Computer Science, K.U.Leuven, Belgium, July 2004.

14. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984.

15. A. Wolf. Adaptive constraint handling with chr in java. In 7th International
Conference on Principles and Practice of Constraint Programming (CP 2001),
LNCS 2239. Springer, 2001.

WCLP 2005 146 Ulmer Informatik-Berichte 2005-01

'%B&63��$�)UDPHZRUN�DQG�$OJRULWKPV�IRU�$SSO\LQJ�&RQVWUDLQW�6ROYLQJ�ZLWKLQ�5HODWLRQDO�'DWDEDVHV&KXDQJ�/LX���,DQ�)RVWHU����8QLYHUVLW\�RI�&KLFDJR�������(����WK VWUHHW&KLFDJR��,/���������86$FKOLX#FV�XFKLFDJR�HGX�0DWKHPDWLFV�DQG�&RPSXWHU�6FLHQFH�'LYLVLRQ��$UJRQQH�1DWLRQDO�/DERUDWRU\��$UJRQQH��,/��������86$
$EVWUDFW��:H�SURSRVH�DQ�DSSURDFK�WR�DGGUHVV�FRPELQDWRULDO�VHDUFK�SUREOHPV�LQ�UHODWLRQDO� GDWDEDVH� V\VWHP� ZLWK� FRQVWUDLQW� VROYLQJ� WHFKQRORJ\��)LUVW�� ZH�IRUPDOL]H� FRPELQDWRULDO� TXHULHV� LQ� GDWDEDVHV� DV� D� QHZ W\SH� RI� FRQVWUDLQW�VDWLVIDFWLRQ� SUREOHP��ZKDW�ZH� FDOO� 'DWDEDVH� &RQVWUDLQW� 6DWLVIDFWLRQ� 3UREOHPV��'%B&63V���7KHQ��ZH�GHYHORS�DOJRULWKPV�IRU�VROYLQJ�'%B&63V� WKDW� LQWHJUDWH�GDWDEDVH� GDWD� PDQDJHPHQW� WHFKQRORJ\� ZLWK� FRQYHQWLRQDO� &63� VROYLQJ�WHFKQLTXHV��2XU�DOJRULWKPV�HQDEOH�HIILFLHQW�GRPDLQ�UHILQHPHQW�IRU�WXSOH�YDOXHG�GDWD�DQG�PLQLPL]H�,�2�RSHUDWLRQV�ZKHQ�UHODWLRQV�DUH�VWRUHG�RQ�GLVN��)LQDOO\��ZH�SUHVHQW�H[SHULPHQWDO�VWXGLHV�WKDW�ERWK�TXDQWLI\�WKH�SHUIRUPDQFH�RI�RXU�DSSURDFK�DQG�SHUPLW�FRPSDULVRQ�ZLWK�D�FRQYHQWLRQDO�GDWDEDVH�V\VWHP��:H�VKRZ�WKDW�RXU�DSSURDFK�LV�VXSHULRU�IRU�VROYLQJ�FRPSOH[�FRPELQDWRULDO�TXHULHV���

� ,QWURGXFWLRQ7KH� UHODWLRQDO� GDWD� PRGHO� DQG� UHODWLRQDO� GDWDEDVH� WHFKQRORJ\� KDYH� DFKLHYHG� JUHDW�VXFFHVV�DV�D�PHDQV�RI�PDQDJLQJ��DQG�LPSOHPHQWLQJ�TXHULHV RQ��ODUJH�DPRXQWV�RI�GDWD��+RZHYHU�� QHZ� DSSOLFDWLRQ� GRPDLQV� DQG� GHFLVLRQ� SURFHGXUHV� OHDG� WR� QHZ� FODVVHV� RI�TXHU\� WKDW� DUH� QRW� KDQGOHG� HIILFLHQWO\� E\� WRGD\¶V� GDWDEDVH� V\VWHPV�� ,Q� WKH�FRPELQDWRULDO� TXHULHV WKDW� ZH� FRQVLGHU� LQ� WKLV� SDSHU�� D� UHTXHVW� IRU� WXSOHV� IURP�PXOWLSOH� UHODWLRQV� WKDW� VDWLVI\� D� FRQMXQFWLRQ� RI� FRQVWUDLQWV� RQ� WXSOH� DWWULEXWH� YDOXHV�OHDGV�WR�D�FRPELQDWRULDO�VHDUFK�SUREOHP�7R�LOOXVWUDWH�KRZ�FRPELQDWRULDO�VHDUFK�SUREOHPV�FDQ�DULVH��ZH�FRQVLGHU�DQ�,QWHUQHW�LQIRUPDWLRQ� V\VWHP� WKDW� PDLQWDLQV� D� UHODWLRQ� &� VWRULQJ� GHVFULSWLRQV� RI� FRPSXWH�UHVRXUFHV�� D� UHODWLRQ� 1� VWRULQJ� GHVFULSWLRQV� RI� QHWZRUN� UHVRXUFHV�� DQG� D� UHODWLRQ� 6�VWRULQJ� GHVFULSWLRQV� RI� VWRUDJH� UHVRXUFHV��5HODWLRQ�&� KDV� DWWULEXWHV FSX6SHHG��SULFH�DQG RV��1�KDV�DWWULEXWHV�EDQGZLGWK DQG�SULFH� DQG�6�KDV�DWWULEXWHV LR6SHHG DQG�SULFH��,Q�WKH�FRPELQDWRULDO�TXHU\�VKRZQ�LQ�)LJXUH����D�XVHU�UHTXHVWV�D�FRPSXWH��QHWZRUN��DQG�VWRUDJH� UHVRXUFH� WKDW� FROOHFWLYHO\� VDWLVI\� GHDGOLQH� ���� PLQXWHV�� DQG� EXGJHW� �����FRQVWUDLQWV� IRU� DQ� DSSOLFDWLRQ� WKDW� ILUVW� FDOFXODWHV� RQ� D� FRPSXWH� UHVRXUFH� �WLPH����FSX6SHHG��� WKHQ� WUDQVPLWV� UHVXOWV� RYHU� D� QHWZRUN� UHVRXUFH� ����EDQGZLGWK��� DQG�ILQDOO\�VWRUHV�UHVXOWV�RQ�D�VWRUDJH�UHVRXUFH����LR6SHHG���1RWH�WKDW�WKH�TXHU\�FRQGLWLRQ�LV�D�FRQMXQFWLRQ�RI�WZR�DULWKPHWLF�FRQVWUDLQWV�RQ�DWWULEXWHV�IURP�WKUHH�UHODWLRQV�'DWDEDVH�V\VWHPV�LPSOHPHQW�VXFK�FRPELQDWRULDO�TXHULHV�E\�D�VHW�RI�SDLU�ZLVH�MRLQ�RSHUDWRUV�� +RZHYHU�� RSWLPL]DWLRQ� WHFKQLTXHV� IRU� SDLU�ZLVH� MRLQV�� VXFK� DV� VRUWHG�MRLQ�DQG� KDVK�MRLQ�� GHDO� RQO\� ZLWK� VLPSOH� FRQVWUDLQWV� VXFK� DV� HTXDOLW\� RU� LQHTXDOLW\�

WCLP 2005 147 Ulmer Informatik-Berichte 2005-01

FRPSDULVRQV� EHWZHHQ� WZR� DWWULEXWHV�� DQG� FDQQRW�� LQ� JHQHUDO�� SURFHVV� FRPELQDWRULDO�TXHULHV�HIILFLHQWO\��7KXV��HYDOXDWLRQ�LQYROYHV�D�FRPSOHWH�WUDYHUVDO�RI�WKH�VHDUFK�VSDFH�

6(/(&7���)520�&���1���'�:+(5(�����&�SULFH���1�SULFH���'�SULFH�� �� �������$1'��������&�FSX6SHHG�������1�EDQGZLGWK�������'�LR6SHHG������

��������

��������

��������

WXSOH� SULFHFSX6SHHG&
OLQX[XQL[ZLQGRZVXQL[OLQX[XQL[ZLQGRZVOLQX[

RV �����
�����

�����

WXSOH� SULFHLR6SHHG'1
����

����
EDQGZLGWK SULFH����

WXSOH�

)LJXUH����$Q�H[DPSOH�FRPELQDWRULDO�TXHU\��VKRZLQJ�WKH�WKUHH�UHODWLRQV�DQG�TXHU\�&RPELQDWRULDO� VHDUFK� KDV� RI� FRXUVH� EHHQ� WKRURXJKO\� VWXGLHG� E\� UHVHDUFKHUV� LQ�FRQVWUDLQW� SURJUDPPLQJ� >�������@�� ZKR� KDYH� GHYHORSHG� HIILFLHQW� VHDUFK� DOJRULWKPV�WKDW� DYRLG� HYDOXDWLQJ� DOO� SRVVLEOH� VWDWHV� E\� SUXQLQJ� XQVDWLVILDEOH� UHVXOWV� IURP� WKH�VHDUFK� VSDFH�� 7KXV�� WKH� TXHVWLRQ� WKDW� ZH� DVN� LQ� WKLV� SDSHU�� FDQ� ZH� H[SORLW�FRPELQDWRULDO� VHDUFK� DOJRULWKPV� IURP� FRQVWUDLQW� SURJUDPPLQJ� WR� RSWLPL]H� WKH�H[HFXWLRQ�RI�FRPELQDWRULDO�TXHULHV�LQ�UHODWLRQDO�GDWDEDVHV"�$Q� LQYHVWLJDWLRQ�RI� WKLV�TXHVWLRQ� LV�QRW�VWUDLJKWIRUZDUG��$OJRULWKPV�GHYHORSHG�IRU�FRQVWUDLQW� SURJUDPPLQJ� DSSO\� RQO\� WR� VLPSOH� GDWD� W\SHV� DQG� DVVXPH� WKDW� DOO� GDWD� LV�VWRUHG� LQ�PHPRU\�� ,Q�FRQWUDVW��FRPELQDWRULDO�TXHULHV� LQYROYH�VHDUFKHV� IRU� WXSOHV� WKDW�PD\� EH� VWRUHG� RQ� GLVN��)XUWKHUPRUH�� LW� LV� LPSRUWDQW� WKDW� QHZ� LPSOHPHQWDWLRQ�WHFKQLTXHV� FDQ� EH� LQFRUSRUDWHG� HDVLO\� LQWR� H[LVWLQJ� GDWDEDVH� V\VWHPV�� 1HYHUWKHOHVV��ZH�VKRZ�WKDW�LW�LV�LQGHHG�IHDVLEOH�WR�RYHUFRPH�WKHVH�FKDOOHQJHV�DQG�WR�LQWHJUDWH�KLJKO\�RSWLPL]HG�GDWD�PDQDJHPHQW�PHFKDQLVPV�IURP�GDWDEDVHV�ZLWK�HIILFLHQW�FRPELQDWRULDO�VHDUFK�DOJRULWKPV�IURP�FRQVWUDLQW�SURJUDPPLQJ��2XU�DSSURDFK�WR�WKLV�SUREOHP�SURFHHGV�LQ�WKUHH�VWDJHV��)LUVW��LQ�6HFWLRQ����ZH�VKRZ�KRZ� FRPELQDWRULDO� TXHULHV� FDQ� EH�PRGHOHG� DV� D� QHZ� FODVV� RI FRQVWUDLQW� VDWLVIDFWLRQ�SUREOHP�� ZKDW� ZH� FDOO� 'DWDEDVH� &RQVWUDLQW� 6DWLVIDFWLRQ� 3UREOHPV� �'%B&63V���&RQVWUDLQW�VDWLVIDFWLRQ�SUREOHPV��&63��DUH�RIWHQ�XVHG�WR�PRGHO�FRPELQDWRULDO�VHDUFK�SUREOHPV�� DQG� QXPHURXV� VHDUFK� DOJRULWKPV� DUH� DYDLODEOH�� +RZHYHU�� VHDUFKLQJ� ODUJH�GDWDEDVHV�LQWURGXFHV�QHZ�FKDOOHQJHV��:H�GHILQH�'%B&63�WR�PRGHO�WKHVH�FKDOOHQJHV�,Q� 6HFWLRQ� ��� ZH� SURSRVH� DQ� DOJRULWKP� IRU� VROYLQJ� '%B&63V�� :H� DGGUHVV� WKH�GLIILFXOWLHV� LQWURGXFHG� E\� WKH� ODUJH� YDOXH� GRPDLQV� HQFRXQWHUHG� LQ� '%B&63V� E\�GHVLJQLQJ� D� YDOXH� GRPDLQ� UHSUHVHQWDWLRQ� DQG� D� FRQVWUDLQW�VROYLQJ� DOJRULWKP� WKDW�WRJHWKHU� HQDEOH� ERWK� FRPSDFW� VWRUDJH� DQG� HIILFLHQW� H[HFXWLRQ�� :H� XVH� FRQVWUDLQW�VROYLQJ�WHFKQRORJ\�WR�FRQWURO�WKH�VHDUFK�SURFHVV��DQG�GDWDEDVH�LQGH[LQJ�WHFKQRORJ\�WR�LPSOHPHQW�GDWD�PDQLSXODWLRQ�RSHUDWLRQV�VXFK�DV�GRPDLQ�UHILQHPHQW�,Q�6HFWLRQ����ZH� UHSRUW�RQ�H[SHULPHQWV� WKDW� DOORZ�XV� WR�TXDQWLI\� WKH�SHUIRUPDQFH�FKDUDFWHULVWLFV� RI� RXU� DSSURDFK�� DQG� WR� FRPSDUH� WKLV� SHUIRUPDQFH� ZLWK� WKDW� RI� D�FRQYHQWLRQDO� GDWDEDVH� V\VWHP�� :H� ILQG� WKDW� RXU� DSSURDFK� LV� VLJQLILFDQWO\� PRUH�HIILFLHQW� WKDQ� FRQYHQWLRQDO� GDWDEDVH� MRLQ� DOJRULWKPV� ZKHQ� KDQGOLQJ� TXHULHV� ZLWK�FRPSOH[�MRLQ�FRQGLWLRQV�DQG�VPDOO�VHOHFWLYLW\�

WCLP 2005 148 Ulmer Informatik-Berichte 2005-01

� 5HODWHG�:RUN&RPELQDWRULDO�VHDUFK�SUREOHPV�DULVH�LQ�PDQ\�FRQWH[WV��DQG�ZH�ILQG�D�ZLGH�YDULHW\�RI�DSSURDFKHV�WR�WKHLU�VROXWLRQ��+HUH�ZH�UHYLHZ�WKH�PRVW�UHOHYDQW�SUHYLRXV�ZRUN��,Q� UHODWLRQDO� GDWDEDVH�PDQDJHPHQW� V\VWHPV�� FRPELQDWRULDO� VHDUFK� LV� LPSOHPHQWHG�E\� D� PXOWL�MRLQ� RSHUDWLRQ�� ZKLFK� FRPELQHV� LQIRUPDWLRQ� IURP� PXOWLSOH� UHODWLRQV� WR�GHWHUPLQH�LI�DQ�DJJUHJDWLRQ�RI� WXSOHV�IURP�WKHVH�UHODWLRQV�VDWLVILHV�VHDUFK�FRQGLWLRQV��+RZHYHU��H[LVWLQJ�MRLQ�DOJRULWKPV��VXFK�DV�QHVWHG�ORRS��VRUWHG�MRLQ��DQG�KDVK�MRLQ�>�@��DSSO\� RQO\� WR� VLPSOH� FRQVWUDLQWV�� +HXULVWLF� FRPELQDWRULDO� VHDUFK� DOJRULWKPV� >����@KDYH�EHHQ�GHYHORSHG��EXW�DSSO\�RQO\�WR�SDUWLFXODU�W\SHV�RI�FRQVWUDLQWV��&RQVWUDLQW�SURJUDPPLQJ�>�������@ KDV�EHHQ�XVHG�WR�IRUPXODWH�FRPELQDWRULDO�VHDUFK�SUREOHPV� LQ�DUHDV�VXFK�DV�VFKHGXOLQJ�� URXWLQJ��DQG� WLPHWDEOLQJ�WKDW� LQYROYH�FKRRVLQJ�IURP� DPRQJ� D� ILQLWH� QXPEHU� RI� SRVVLELOLWLHV�� &RUUHVSRQGLQJO\�� FRQVWUDLQW�VROYLQJ�DOJRULWKPV�KDYH�EHHQ�GHYHORSHG�LQ�VHYHUDO�UHVHDUFK�FRPPXQLWLHV��LQFOXGLQJ�QRGH�DQG�DUF� FRQVLVWHQF\� WHFKQLTXHV� >����@ LQ� DUWLILFLDO� LQWHOOLJHQFH�� ERXQGV� SURSDJDWLRQ�WHFKQLTXHV�>��@ LQ�FRQVWUDLQW�SURJUDPPLQJ��DQG�LQWHJHU�SURJUDPPLQJ�WHFKQLTXHV�>��@LQ� RSHUDWLRQV� UHVHDUFK�� +RZHYHU�� DOWKRXJK� WKHVH� DOJRULWKPV� VROYH� FRPELQDWRULDO�VHDUFK� SUREOHPV� HIILFLHQWO\�� LPSOHPHQWDWLRQV� KDYH� EHHQ� ZLWKLQ� PRGHOLQJ� ODQJXDJHV�>��������@ DQG�KDYH�QRW�EHHQ�XVHG�WR�PDQDJH�TXHULHV�RQ�ODUJH�GDWD�VHWV��DV�D�GDWDEDVH�V\VWHP�GRHV��&RQVWUDLQW� GDWDEDVHV� >�����@ H[WHQG� WKH� H[SUHVVLYHQHVV� RI� FRQYHQWLRQDO� UHODWLRQDO�GDWDEDVHV�E\�XVLQJ�FRQVWUDLQWV� WR�PRGHO� UHODWLRQV�ZLWK�DQ� LQILQLWH�QXPEHU�RI�GDWD�� ,Q�FRQWUDVW��ZH� XVH� FRQVWUDLQWV� WR�PRGHO� WKH� VHDUFK� SURFHVV� RQ� FRQYHQWLRQDO� GDWDEDVHV��ZLWK�D�YLHZ� WR� LPSURYLQJ� WKH�SHUIRUPDQFH�RI�FRPELQDWRULDO�TXHULHV�E\�LQFRUSRUDWLQJ�FRQVWUDLQW�VROYLQJ�DOJRULWKPV�LQWR�D�GDWDEDVH�V\VWHP�� 'DWDEDVH�&RQVWUDLQW�6DWLVIDFWLRQ�3UREOHPV7KH� HVVHQFH� RI� RXU� DSSURDFK� LV� WR� WUHDW� FRPELQDWRULDO� VHDUFK� RQ� GDWDEDVHV� DV� D�FRQVWUDLQW� VDWLVIDFWLRQ� SUREOHP� DQG� DSSO\� FRQVWUDLQW�VROYLQJ� WHFKQRORJLHV� WR�LPSOHPHQW�VHDUFK�DQG�VHOHFWLRQ�IXQFWLRQV�$� FRPELQDWRULDO� VHDUFK� RQ� D� GDWDEDVH� LV� WULJJHUHG� E\� D� FRPELQDWRULDO� TXHU\�� D�TXHU\� WKDW� VSHFLILHV� VHOHFWLRQ� FRQGLWLRQV� IRU� PXOWLSOH� WXSOHV� IURP� RQH� RU� VHYHUDO�UHODWLRQV�� ([LVWLQJ� FRQVWUDLQW� SURJUDPPLQJ� ODQJXDJHV� >���@ XVXDOO\� IRUPDOL]H� D�FRPELQDWRULDO� TXHU\� DV� D� FRQVWUDLQW� VDWLVIDFWLRQ� SUREOHP� �&63�� E\� PDSSLQJ� HDFK�GDWDEDVH�UHODWLRQ�WR�D�FRQVWUDLQW��DQG�DVVRFLDWLQJ�D�YDULDEOH�WR�HDFK�DWWULEXWH�DSSHDUHG�LQ�WKH�TXHU\�FRQGLWLRQ��)RU�H[DPSOH��ZH�FDQ�H[SUHVV�WKH�VHDUFK�SUREOHP�LQ�)LJXUH���DV�WKH�IROORZLQJ�&63��LQ�ZKLFK�WKH�FRQVWUDLQW�F��Q��DQG�G GHQRWH�WKH�UHODWLRQV�&BSULFH���1BSULFH���'BSULFH���������&BFSX6SHHG�����1BEDQGZLGWK�����'BLR6SHHG����� �&BSULFH�>����������������@ � &BFSX6SHHG��>�������������@«� 'BLR6SHHG��>«@ �F�B��&BSULFH��&BFSX6SHHG� � Q�B��1BEDQGZLGWK��1BSULFH� � G�B��'BLR6SHHG��'BSULFH��:H� DUJXH� WKDW� WKLV� PHWKRG� PD\� KDYH� IROORZLQJ� OLPLWDWLRQV� ZKHQ� GHDOLQJ� ZLWK�TXHULHV�RQ�ODUJH�VL]H�GDWDEDVH��x 7KH� FRQVWUDLQW� VROYHU� XVXDOO\� QHHGV� WR� UHDG� LQ� WXSOHV� LQ� GDWDEDVH� UHODWLRQV� DQG�WUDQVIRUP� WKHP� WR� D� FRQVWUDLQW� LQ�PHPRU\�EHIRUH� VROYLQJ� D� TXHU\�� ,W�PD\� FDXVH�XQQHFHVVDU\� ,�2� RSHUDWLRQV� EHFDXVH� D� ORW� RI� WXSOHV� LQ� D� GDWDEDVH� UHODWLRQ�ZRQ¶W�OHDG�WR�DQ\�VROXWLRQ��

WCLP 2005 149 Ulmer Informatik-Berichte 2005-01

x 7KH�YDOXH� GRPDLQV� RI� YDULDEOHV� DUH� RIWHQ� WRR� ODUJH� WR�PDLQWDLQ� LQ�PHPRU\�� DQG�WKXV� GRPDLQ� UHILQHPHQW� PD\� FDXVH� H[SHQVLYH� ,�2� RSHUDWLRQV�� 'DWDEDVH� V\VWHP�PD\�SURFHVV�PXOWLSOHV�FRPELQDWRULDO�TXHULHV�FRQFXUUHQWO\�WKDW�PDNHV�WKH�PHPRU\�HIILFLHQF\�RI�FRQVWUDLQW�VROYLQJ�PRUH�LPSRUWDQW��x 8VLQJ� YDULDEOHV� WR� UHSUHVHQW� DWWULEXWHV� RI� D� WXSOH� PD\� FDXVH� H[WUD� FRQVWUDLQW�FKHFNV� LQ� FRQVWUDLQW� SURSDJDWLRQ��)RU� WKH� FRQVWUDLQW� F�&BWXSOH��� &B3ULFH��&BFSX6SHHG� LQ� SUHYLRXV� H[DPSOH�� LI� VHYHUDO� YDOXHV� DUH� UHPRYHG� IURP� WKH�GRPDLQ�RI�&B3ULFH��ZH�QHHG�WR�FKHFN�WKH�FRQVWUDLQW�F� LQ�RUGHU�WR�UHPRYH�YDOXHV�IURP�WKH�GRPDLQ�RI�&BFSX6SHHG����%DVHG�RQ�WKHVH�FRQVLGHUDWLRQV��ZH�SURSRVH�WR�IRUPDOL]H�D�FRPELQDWRULDO�TXHU\�DV�D�FRQVWUDLQW� VDWLVIDFWLRQ� SUREOHP� �&63�� E\� DVVRFLDWLQJ� D� YDULDEOH� ZLWK� HYHU\� UHTXLUHG�WXSOH�� 7KH� GRPDLQ� RI� HDFK� YDULDEOH� FRPSULVHV� DOO� WXSOHV� LQ� WKH� DVVRFLDWHG� UHODWLRQ��&RQVWUDLQWV� RQ� YDULDEOHV� GHVFULEH� VHOHFWLRQ� FRQGLWLRQV�� :H� FDOO� VXFK� D� &63� D�'%B&63��)RU� H[DPSOH�� ZH� FDQ� H[SUHVV� WKH� VHDUFK� SUREOHP� LQ�)LJXUH� �� DV� WKH�IROORZLQJ�&63��LQ�ZKLFK�WKH�YDULDEOHV�F��Q��DQG�G GHQRWH�WKH�UHTXLUHG�WXSOHV�F�SULFH���Q�SULFH���G�SULFH���������F�FSX6SHHG�����Q�EDQGZLGWK�����G�LR6SHHG����� �F�&� � Q�1��� G�''HILQLWLRQ�,��$�GDWDEDVH�FRQVWUDLQW�VDWLVIDFWLRQ�SUREOHP��'%B&63��LV�D�&63�LQ�ZKLFK�YDULDEOH�GRPDLQV�DUH�GDWDEDVH�UHODWLRQV�� v$Q\� YDOLG FRPELQDWRULDO� GDWDEDVH� TXHU\� FDQ� EH� H[SUHVVHG� DV� D� '%B&63� DV� MXVW�VKRZQ��'%B&63V�VKDUH�VRPH�FRPPRQ�IHDWXUHV�GLIIHUHQW�IURP�FRQYHQWLRQDO�&63V��DV�IROORZV�x 7KH�YDOXHV�RI�YDULDEOHV�DUH�WXSOHV�ZLWK�PXOWLSOH�DWWULEXWHV�x &RQVWUDLQWV� RQ� YDULDEOHV� DUH� H[SUHVVHG� DV� FRQVWUDLQWV� RQ� DWWULEXWHV� RI� WKRVH�YDULDEOHV�x 7KH� QXPEHU� RI� YDULDEOHV� LV� W\SLFDOO\� QRW� ODUJH�� EXW� WKH� GRPDLQ�RI� HDFK�YDULDEOH�PD\�EH�H[WUHPHO\�ODUJH�7KHVH� IHDWXUHV� OHDG�XV� LQVWHDG� WR� SXUVXH� DQ� DSSURDFK� WR� WKH� VROXWLRQ�RI�'%B&63�SUREOHPV�WKDW�IRFXVHV�RQ�WKHLU�XQLTXH�FKDUDFWHULVWLFV�� 6ROYLQJ�'%B&63�3UREOHPV+DYLQJ� PRGHOLQJ� FRPELQDWRULDO� TXHULHV� DV� '%B&63V�� ZH� QRZ� LQYHVWLJDWH� KRZ�FRQVWUDLQW�VROYLQJ� DOJRULWKPV� FDQ� EH� LQWHJUDWHG� ZLWK� GDWDEDVH� WHFKQRORJLHV� WR�LPSOHPHQW� WKH� UHTXLUHG� FRPELQDWRULDO� VHDUFK�� ,Q� FRQVLGHULQJ� WKLV� TXHVWLRQ��ZH�PXVW�UHFRJQL]H� WKDW� GDWDEDVH� V\VWHPV� LQFRUSRUDWH� KLJKO\� RSWLPL]HG� PHFKDQLVPV� IRU�PDQDJLQJ�ODUJH�QXPEHUV�RI�UHFRUG�OLNH�GDWD��:H�XVH�D�FRQVWUDLQW�VROYLQJ�DOJRULWKP�WR�FRQWURO� WKH� VHDUFK� SURFHVV� DQG� GDWDEDVH� LQGH[� WHFKQRORJ\� WR� LPSOHPHQW� GDWD�PDQLSXODWLRQ� RSHUDWLRQV� VXFK� DV� GRPDLQ� UHILQHPHQW�� ZKLFK� UHPRYHV� YDOXHV� IURP�YDULDEOH�GRPDLQV��&RQVLGHULQJ� WKH� ODUJH� VL]H�RI�YDULDEOH�GRPDLQV�RI� D�'%B&63��ZH� UHTXLUH�D�YDOXH�GRPDLQ� UHSUHVHQWDWLRQ� DQG� FRQVWUDLQW�VROYLQJ� DOJRULWKP� WKDW� WRJHWKHU� HQDEOHV� ERWK�FRPSDFW� VWRUDJH� DQG� HIILFLHQW� H[HFXWLRQ� IRU� PXOWLSOH� FRQFXUUHQW� RU� VXFFHVVLYH�'%B&63V�� VR� WKDW� ZH� FDQ� SHUIRUP� GRPDLQ� UHILQHPHQW� HIILFLHQWO\� ZLWKRXW� UHTXLULQJ�QXPHURXV�,�2�RSHUDWLRQV�DQG�KLJK�PHPRU\�FRVWV��

WCLP 2005 150 Ulmer Informatik-Berichte 2005-01

��� 5HSUHVHQWDWLRQ�RI�9DULDEOH�'RPDLQV:H UHSUHVHQW� D� YDULDEOH� GRPDLQ� LQ� WHUPV�RI� �D�� WKH� UHODWLRQ� WKDW� VWRUHV� WXSOHV� LQ� WKH�YDULDEOH�GRPDLQ�DQG��E��D�VHW�RI�VLPSOH�FRQVWUDLQWV�RQ�YDULDEOHV�WKDW�ZH�WHUP�WKH�ILOWHU��7KH�YDULDEOH�GRPDLQ�WKHQ�FRUUHVSRQGV�WR�DOO�WXSOHV�IURP�WKH�UHODWLRQ�WKDW�VDWLVILHV�WKH�FRQVWUDLQWV�LQ�WKH�ILOWHU��$OO�'%B&63V�RQ�D�GDWDEDVH�VKDUH�WKH�VDPH�UHODWLRQV��EXW�HDFK�KDV�LWV�RZQ�ILOWHU��7KH�FRQVWUDLQW�VROYLQJ�DOJRULWKP�UHILQHV�WKH�GRPDLQV�RI�YDULDEOHV�E\�DGGLQJ� FRQVWUDLQWV� WR� WKH� ILOWHU�� 7KXV�� UHODWLRQV� GR� QRW� FKDQJH� GXULQJ� FRQVWUDLQW�VROYLQJ��HQVXULQJ�WKDW�GLIIHUHQW�'%B&63V�GR�QRW�LQWHUIHUH�ZLWK�HDFK�RWKHU��
SULFH ! ���� �EDQGZLGWK ! ���� �
Q GSULFH ! ���� �LR6SHHG ! ���� �SULFH

F
! ���� �FSXVSHHG ! ���� �

)LJXUH����5HSUHVHQWDWLRQ�RI�WKH�ILOWHU�IRU�WKH�H[DPSOH�LQ�)LJXUH�����:H�LPSOHPHQW�WKH�ILOWHU�DV�D�VHW�RI�V\PERO�WDEOHV��RQH�SHU�YDULDEOH�DSSHDULQJ�LQ�WKH�'%B&63��7KHVH�V\PERO�WDEOHV�PDLQWDLQ�LQIRUPDWLRQ�DERXW�WKH�DWWULEXWHV�DSSHDULQJ�LQ�WKH�'%B&63��(YHU\� V\PERO� WDEOH� HQWU\�FRQWDLQV�DQ�DWWULEXWH�QDPH�DQG�NQRZQ�EDVLF�FRQVWUDLQWV�RQ�WKLV�DWWULEXWH��:H�PDLQWDLQ�WZR�W\SHV�RI�EDVLF�FRQVWUDLQWV RQ�DWWULEXWHV�LQ� WKH� V\PERO� WDEOH�� DVVLJQPHQW FRQVWUDLQWV� VXFK� DV�DWWU� �1 DQG� UDQJH FRQVWUDLQWV�VXFK�DV�DWWU�!�1��:H�XVH�WKHVH�WZR�W\SHV�RI�FRQVWUDLQW�EHFDXVH�WKH\�FDQ�EH�HDVLO\�XVHG�E\� GDWDEDVH� LQGH[� WHFKQLTXHV� WR� ORFDWH� YDOXHV� EHORQJLQJ� WR� D� YDOXH� GRPDLQ� IURP D�UHODWLRQ�� ,QLWLDOO\�� DWWULEXWHV� DUH� GHVFULEHG� E\� UDQJH� FRQVWUDLQWV� UHSUHVHQWLQJ� DWWULEXWH�YDOXH�ERXQGV�GHULYHG�IURP�UHODWLRQV��)RU�H[DPSOH��WKH�YDOXH�GRPDLQ�IRU�F DV�VSHFLILHG�LQ�)LJXUH���SURYLGHV�WKH�FRQVWUDLQWV�F�FSX6SHHG���� DQG�F�FSX6SHHG�� ���)LJXUH����$�ILOWHU�UHTXLUHV�OLWWOH�VSDFH�DQG�WKXV�FDQ�EH�NHSW�LQ�PHPRU\��7KH�EDVLF�FRQVWUDLQWV�FRQWDLQHG�LQ�WKH�ILOWHU�FDQ�EH�VHHQ�DV�D�VXPPDU\�RI�WKH�YDULDEOH�GRPDLQV��$V�VKRZQ�LQ�6HFWLRQ������WKLV�LQIRUPDWLRQ�LV�ERWK�XVHG�WR�UHILQH�WKH�YDULDEOH�GRPDLQ�DQG�LV�XSGDWHG�E\�WKH�FRQVWUDLQW�VROYLQJ�DOJRULWKP�DV�WKH�YDULDEOH�GRPDLQ�LV�UHGXFHG��
�

��
��

��

��

���

�

&38�VSHHG SULFH
��������

��������

��������

WXSOH� SULFHFSX6SHHG&
OLQX[XQL[ZLQGRZVXQL[OLQX[XQL[ZLQGRZVOLQX[

RV

)LJXUH����0XOWLSOH�NH\�LQGH[HV�IRU�DWWULEXWHV�FSX6SHHG�DQG�SULFH�LQ�UHODWLRQ�&�RI�)LJXUH���9DOXHV� LQ� YDULDEOH� GRPDLQV� DUH� WXSOHV� VDWLVI\LQJ� WKH� FRQVWUDLQWV� LQ� WKH� ILOWHU�� $�QDLYH�ZD\�WR�SLFN�D�YDOXH�IURP�YDULDEOH�GRPDLQ�LV�WR�UHDG�WXSOHV�UHSHDWHGO\�IURP�WKH�UHODWLRQ� DQG� HYDOXDWH� WKH� FRQVWUDLQWV� LQ� WKH� ILOWHU� XQWLO� D� VDWLVI\LQJ� WXSOH� LV� IRXQG��$�PRUH�HIILFLHQW�DSSURDFK�LV�WR�EXLOG�LQGLFHV�RQ�UHODWLRQV�DQG�XVH�WKRVH�LQGH[HV�WR�ORFDWH�VDWLVI\LQJ�WXSOHV��$�ILOWHU�PD\�FRQWDLQ�PXOWLSOH�EDVLF�FRQVWUDLQWV�RQ�DWWULEXWHV�DQG�WKXV�ZH�XVH�PXOWL�GLPHQVLRQDO�LQGH[LQJ�WHFKQLTXHV�IURP�GDWDEDVH�V\VWHPV��'LIIHUHQW�W\SHV�RI�PXOWL�GLPHQVLRQDO�LQGH[�DUH�DYDLODEOH��H�J���JULG�ILOH��ELWPDS��ZLWK�HIILFLHQFLHV�WKDW�GHSHQG� RQ� WKH� GDWD� LQ� WKH� UHODWLRQV�� ,Q� WKLV� SDSHU�� ZH� XVH� PXOWL�NH\� LQGH[LQJ� WR�LOOXVWUDWH�WKH�XVH�RI�LQGLFHV�IRU�VROYLQJ�'%B&63V�����

WCLP 2005 151 Ulmer Informatik-Berichte 2005-01

)RU� HYHU\� YDULDEOH��ZH� EXLOG� D�PXOWL�NH\� LQGH[� >�@ RQ� WKRVH� RI� LWV� DWWULEXWHV� WKDW�DSSHDU�LQ�WKH�'%B&63��)LJXUH���SUHVHQWV�DQ�H[DPSOH�WKDW�LOOXVWUDWHV�WKH�DSSURDFK��7KH�URRW� RI� WKH� WUHH� LV� DQ� LQGH[� IRU� DWWULEXWH�FSX6SHHG�� 7KH� LQGH[� FRXOG� EH� DQ\� W\SH� RI�FRQYHQWLRQDO�LQGH[�WKDW�VXSSRUW�UDQJH�TXHULHV��VXFK�DV�D�%�WUHH��7KH�LQGH[�DVVRFLDWHG�ZLWK�HDFK�RI�LWV�YDOXHV�LV�D�SRLQWHU�WR�DQRWKHU�LQGH[�RQ�DWWULEXWH�SULFH��,I�9�LV�D�YDOXH�RI� DWWULEXWH� FSX6SHHG�� WKHQ� E\� IROORZLQJ� YDOXH�9� DQG� LWV� SRLQWHU�ZH� UHDFK� DQ� LQGH[�LQWR�WKH�VHW�RI�WXSOHV�WKDW�KDYH FSX6SHHG HTXDO�WR�9�DQG�DQ\�YDOXH�IRU�DWWULEXWH�SULFH��7KH�PXOWLSOH�NH\� LQGH[�ZRUNV�ZHOO� IRU� ORFDWLQJ� WXSOHV�ZLWK� UDQJH� FRQVWUDLQWV� DQG�DVVLJQPHQW� FRQVWUDLQWV�� DV� ORQJ� DV� WKH� LQGH[HV� WKHPVHOYHV� VXSSRUW� UDQJH� TXHULHV� RQ�WKHLU�DWWULEXWHV��7R�ORFDWH�WXSOHV�EDVHG�RQ�UDQJH�FRQVWUDLQWV��ZH�XVH�WKH�URRW�LQGH[�DQG�WKH�UDQJH�RI�WKH�ILUVW�DWWULEXWH�WR�ILQG�DOO�VXE�LQGH[HV�WKDW�PLJKW�FRQWDLQ�DQVZHU�SRLQWV��:H�WKHQ�VHDUFK�HDFK�VXE�LQGH[��XVLQJ�WKH�UDQJH�VSHFLILHG�IRU�WKH�VHFRQG�DWWULEXWH����� &OXVWHULQJ�9DOXH�'RPDLQV7KH�VHDUFK�VSDFH�RI�D�&63�LV�WKH�&DUWHVLDQ�SURGXFW�RI�WKH�VL]H�RI�LWV�YDULDEOH�GRPDLQV��9DULDEOH�GRPDLQV�PD\�EH�ODUJH�DQG�WKXV�HYHQ�DQ�HIILFLHQW�FRQVWUDLQW�VROYLQJ�DOJRULWKP�PD\�VWLOO�WDNH�D�ORW�RI�WLPH�WR�ILQG�UHVXOWV�:H� REVHUYH� WKDW� PDQ\� WXSOHV� KDYH� VLPLODU� DWWULEXWH� YDOXHV��)RU� D� '%B&63�ZLWK�FRQVWUDLQWV�RQ�D�VXEVHW�RI�WKH�DWWULEXWHV�RI�D�UHTXLUHG�WXSOH��WXSOHV�ZLWK�WKH�VDPH�YDOXH�RQ� WKRVH� DWWULEXWHV� FDQ�EH� YLHZHG� DV� LGHQWLFDO� HYHQ� LI� WKH\�KDYH�GLIIHUHQW� YDOXHV� IRU�RWKHU� DWWULEXWHV��)RU� FRQYHQLHQFH�� ZH� FDOO� WKHVH� WXSOHV� D� FOXVWHU�� ,I� RQH� WXSOH� LQ� D�FOXVWHU�ZLOO�QRW�OHDG�WR�D�VROXWLRQ��QR�WXSOH�LQ�WKH�FOXVWHU�ZLOO�GR�VR��2Q�WKH�RWKHU�KDQG��LI�ZH� ILQG� D� VROXWLRQ� FRQWDLQLQJ�RQH� WXSOH� LQ� D� FOXVWHU��ZH� FDQ�JHW� QHZ� VROXWLRQV� E\�VHOHFWLQJ�DQ\�RWKHU�WXSOH�LQ�WKH�FOXVWHU��%HFDXVH�ZH�QHHG�WR�FKHFN�RQO\�RQH�WXSOH�SHU�FOXVWHU� GXULQJ� WKH� VHDUFK� SURFHVV�� WKH� VL]H� RI� WKH� VHDUFK� VSDFH� LV� UHGXFHG� WR� WKH�&DUWHVLDQ�SURGXFW�RI�WKH�FOXVWHU�VL]HV��7KLV� DSSURDFK� RI� FOXVWHULQJ� YDOXH� GRPDLQV� PD\� UHGXFH� WKH� VHDUFK� VSDFH� RI� D�'%B&63� UHPDUNDEO\� LI� DWWULEXWHV� DSSHDULQJ� LQ� WKH� FRQVWUDLQW� KDYH� D� YDOXH� FKRVHQ�IURP� D� ILQLWH� GRPDLQ��)RU� H[DPSOH�� FRPSXWHUV� PLJKW� KDYH� DQ� DWWULEXWH� RSHUDWLQJ�V\VWHP��ZLWK�SHUPLWWHG�YDOXHV�RI�RQO\�/LQX[DQG�:LQGRZV��WKXV��RQO\�WZR�FOXVWHUV�DUH�IRUPHG�IRU�WKLV�DWWULEXWH�)RU�HYHU\�'%B&63��ZH�SUHSURFHVV�YDULDEOH�GRPDLQV�VXFK�WKDW�WXSOHV�DUH�RUJDQL]HG�LQWR� FOXVWHUV�� ,QGLFHV� RQ� YDULDEOH� GRPDLQV� �UHODWLRQV�� PDNH� LW� HDV\� WR� FOXVWHU� YDOXH�GRPDLQV��)RU� WKH� H[DPSOH� LQ�)LJXUH����ZH�FKHFN� WKH� ILYH� LQGH[HV�RQ�DWWULEXWH�SULFH�)RU� HYHU\� LQGH[�� WXSOHV� ZLWK� WKH� VDPH� YDOXH� RQ� DWWULEXWH� SULFH EHORQJ� WR� WKH� VDPH�FOXVWHU��7KXV��WXSOHV���DQG���LQ�)LJXUH���EHORQJV�WR�D�FOXVWHU����� 6ROYLQJ�$OJRULWKP7R�DOORZ�IRU�YDULDEOH�GRPDLQV�VWRUHG�RQ�GLVN��ZH�QHHG�D�FRQVWUDLQW�VROYLQJ�DOJRULWKP�ZLWK� ,�2� HIILFLHQF\� LQ� DGGLWLRQ� WR� FRPSXWDWLRQDO� HIILFLHQF\�� :H� RQO\� FRQVLGHU� D�FRPSOHWH�DOJRULWKP�LQ�WKLV�SDSHU�EHFDXVH��LQ�PDQ\�FDVHV��GDWDEDVH�TXHULHV�UHTXLUH�WKDW�WKH� VHDUFK� DOJRULWKP� HLWKHU� UHWXUQ� H[DFW� UHVXOWV� RU� GHWHUPLQH� WKDW� WKH� TXHU\� LV�XQVDWLVILDEOH� +RZHYHU��RXU�DSSURDFK�FDQ�EH�HDVLO\�DSSOLHG�WR�LQFRPSOHWH�DOJRULWKPV��%DVHG� RQ� WKHVH� FRQVLGHUDWLRQV�� ZH� GHYHORS� D� VROYLQJ� DOJRULWKP� WKDW� FRPELQHV�FRPSOHWH�EDFNWUDFNLQJ�VHDUFK�ZLWK�WKH�FRQVLVWHQF\�WHFKQLTXHV�VKRZQ�LQ�)LJXUH����7KH� IXQFWLRQ� 6HDUFKB$OJRULWKP LQ�)LJXUH� �� XVHV� EDFNWUDFNLQJ� WR� UHWXUQ� DOO�VROXWLRQV�IRU�D�FRQVWUDLQW�&��,I�DOO�YDULDEOHV�LQ�& DUH�LQVWDQWLDWHG��WKH�IXQFWLRQ�UHWXUQV�D�

WCLP 2005 152 Ulmer Informatik-Berichte 2005-01

VROXWLRQ� LI� & KROGV� �OLQHV� ������ 2WKHUZLVH�� WKH� IXQFWLRQ� DVVLJQV� D� YDOXH� WR� DQ�XQGHWHUPLQHG� YDULDEOH� ZLWK� PLQLPXP� GRPDLQ� VL]H� DQG� VHDUFKHV� IRU� VROXWLRQV�FRQVLVWHQW�ZLWK�WKLV�DVVLJQPHQW��OLQHV������������&�LV�D�FRQVWUDLQW�RI�IRUP�F� � «� FQ���'�LV�YDULDEOH�GRPDLQV���6HDUFKB$OJRULWKP�&��'�� ,I DOO�YDULDEOHV�LQ�&�DUH�ERXQG�WR�D�YDOXH�� ,I FRQVWUDLQW�&�KROGV� 2XWSXW D�VROXWLRQ� (OVH� 5HWXUQ��QR�VROXWLRQ�IRU�WKLV�FRQVWUDLQW� ,I���&RQVLVWHQF\B$OJRULWKP�&��'��� 5HWXUQ� ��QR�VROXWLRQ�IRU�WKLV�FRQVWUDLQW� &KRRVH YDULDEOH�Y�ZLWK�WKH�PLQLPDO�YDOXH�GRPDLQ��)RU HDFK�G��'�Y��������'�Y�LV�GRPDLQ�RI�YDULDEOH�Y�� $VVLJQ G�WR�Y�� 6HDUFKB$OJRULWKP�&� Y G��� 5HWXUQ
�� &RQVLVWHQF\B$OJRULWKP�&��'������:KLOH �&�LV�QRW�QRGH�RU�ERXQGV�FRQVLVWHQW���)RU�L� ���WR�Q�GR�� D� �1RGH&RQVLVWHQF\$OJRULWKP�FL��'��� E� �%RXQGV&RQVLVWHQF\$OJRULWKP�FL��'���� ,I��D�__��E��UHWXUQ�IDOVH�����5HWXUQ�WUXH)LJXUH����7KH�'%B&63�VROYLQJ�DOJRULWKP�:H�DOVR�XVH�WKH�QRGH�FRQVLVWHQF\�DOJRULWKP�DQG�WKH�ERXQGV�FRQVLVWHQF\�DOJRULWKPV�WR� UHILQH� YDULDEOH� GRPDLQV� �IXQFWLRQ� &RQVLVWHQF\B$OJRULWKP LQ�)LJXUH� ���� 7KHVH�DOJRULWKPV�FDQ�HDVLO\�EH�LQWHJUDWHG�ZLWK�GDWDEDVH�LQGH[�WHFKQLTXHV�WR�HIILFLHQWO\�UHILQH�YDOXH�GRPDLQV�WKDW�DUH�VWRUHG�LQ�GLVN����� &RQVLVWHQF\�$OJRULWKPV&RQVLVWHQF\�DOJRULWKPV�DUH�XVXDOO\�GHYHORSHG� IRU�EDVLF�GDWD� W\SHV��+HUH�ZH�SURSRVH�QHZ� FRQVLVWHQF\� DOJRULWKPV� IRU� VWUXFWXUHG� GDWD� WKDW� UHILQH� YDULDEOH� GRPDLQV�ZLWKRXW�DFFHVVLQJ� WXSOHV� LQ� WKH� UHODWLRQ��7KXV�� LI� WXSOHV�DUH�VWRUHG�LQ�GLVN��RXU�DOJRULWKPV�DUH�PRUH�,�2�HIILFLHQW�WKDQ�FRQYHQWLRQDO�QRGH�DQG�ERXQG�FRQVLVWHQF\�DOJRULWKPV�,Q� D� '%B&63�� YDULDEOHV� DUH� VWUXFWXUHG� GDWD�� DQG� FRQVWUDLQWV� RQ� YDULDEOHV� DUH�H[SUHVVHG� E\� D� VHW� RI� SULPLWLYH� FRQVWUDLQWV� RQ� WKH� DWWULEXWHV� RI� YDULDEOHV��:H�GHILQHDWWULEXWH�QRGH�FRQVLVWHQW DQG�DWWULEXWH�ERXQG�FRQVLVWHQW DV�IROORZV��'HILQLWLRQ� ��� $� SULPLWLYH� FRQVWUDLQW� F LV�DWWULEXWH QRGH� FRQVLVWHQW� >��@ LI� HLWKHU� WKH�FRQVWUDLQW� LQYROYHV�PXOWLSOH� YDULDEOH� DWWULEXWHV� RU� LI� DOO� YDOXHV� LQ� WKH� GRPDLQ� RI� WKH�VLQJOH� DWWULEXWH� DUH� D� VROXWLRQ� RI� F�� 7KH� GRPDLQ� RI� DQ� DWWULEXWH� LV� WKH� FROOHFWLRQ� RI�DWWULEXWH�YDOXHV DSSHDUHG�LQ�WKH�YDULDEOH�GRPDLQ�� v*LYHQ�D�SULPLWLYH�FRQVWUDLQW�F DQG�D�YDULDEOH�GRPDLQ��WKH�DWWULEXWH�QRGH�FRQVLVWHQF\�DOJRULWKP UHPRYHV� YDOXHV� IURP� WKH� YDULDEOH� GRPDLQ� XQWLO� F� LV� DWWULEXWH� QRGH�FRQVLVWHQW��$V�GLVFXVVHG� LQ�6HFWLRQ������ZH� UHSUHVHQW� WKH�YDULDEOH�GRPDLQ�E\�D� ILOWHU�DQG�D�UHODWLRQ��7KH�DWWULEXWH�QRGH�DOJRULWKP�UHGXFHV�WKH�YDULDEOH�GRPDLQ�E\�DGGLQJ�WKH�XQDU\�FRQVWUDLQW�RQ�RQH�DWWULEXWH� WR� WKH� ILOWHU��7KXV�� WKH� UHILQHPHQW�GRHV�QRW�QHHG� WR�DFFHVV� WKH� UHODWLRQ�� 7R� LOOXVWUDWH�� FRQVLGHU� WKH� H[DPSOH� LQ�)LJXUH� �� DQG� D� SULPLWLYH�FRQVWUDLQW F�SULFH� �� ��� 7KH� YDULDEOH� GRPDLQ� DIWHU� WKH� DWWULEXWH� QRGH� FRQVLVWHQF\�

WCLP 2005 153 Ulmer Informatik-Berichte 2005-01

DOJRULWKP�LV�VKRZQ�DV�)LJXUH����,Q�WKH�V\PERO�WDEOH�IRU�YDULDEOH�F��WKH�UDQJH�FRQVWUDLQW�RQ� WKH� DWWULEXWH�SULFH KDV� EHHQ� FKDQJHG� WR� ���� F�SULFH����� L�H��� WKH� FRPELQDWLRQ� RI�RULJLQDO�FRQVWUDLQW�����F�SULFH�����DQG F�SULFH�����
SULFH ! ���� �EDQGZLGWK ! ���� �
Q GSULFH ! ���� �LR6SHHG ! ���� �SULFH

F
! ���� �FSXVSHHG ! ���� �

)LJXUH����7KH�YDULDEOH�GRPDLQV�RI�)LJXUH���DIWHU�WKH�H[HFXWLRQ�RI�WKH�QRGH�FRQVLVWHQF\�DOJRULWKP�RQ�WKH�FRQVWUDLQW�F�SULFH�����'HILQLWLRQ����$Q�DULWKPHWLF�SULPLWLYH�FRQVWUDLQW�F� LV�DWWULEXWH ERXQGV�FRQVLVWHQW >��@LI�IRU�HDFK�YDULDEOH�DWWULEXWH�DWWU�WKDW DSSHDUV�LQ�WKLV�FRQVWUDLQW�WKHUH�LV�x $Q� DVVLJQPHQW� RI� YDOXHV� G��� G��«�� GN WR� WKH� UHPDLQLQJ� YDULDEOH� DWWULEXWHV� LQ� F��VXFK� WKDW�PLQ�DWWUL�� d GL d PD[�DWWUL�� IRU� HDFK�GL��DQG�^DWWU PD[�DWWU���DWWU� G���DWWU� G���«��DWWUN GN`�LV�D�VROXWLRQ�RI�F��DQG�x $Q�DVVLJQPHQW�RI�YDOXHV�G�¶��G�¶�«��GN¶�WR�WKH�UHPDLQLQJ�YDULDEOH�DWWULEXWHV�LQ�F��VXFK� WKDW�PLQ�DWWUL�� d GL� d PD[�DWWUL�� IRU� HDFK�GL DQG�^DWWU PLQ�DWWU���DWWU� G�¶��DWWU� G�¶��«��DWWUN GN¶�`�LV�D�VROXWLRQ�RI�F�:KHUH�PLQ�DWWU� �RU�PD[�DWWU� �� UHSUHVHQWV� WKH�PLQLPDO� �PD[LPDO�� YDOXH� RI� DWWULEXWH�DWWU LQ�WKH�GRPDLQ�RI�WKH�FRUUHVSRQGLQJ�YDULDEOH�� v*LYHQ�D�FRQVWUDLQW�F�SULFH���Q�SULFH���G�SULFH�����DQG�YDULDEOH�GRPDLQ�LQ�)LJXUH����ZH�FDQ�JHW�WKH�QHZ UDQJH�RI�DWWULEXWH�SULFH RI�YDULDEOH�F�E\F�SULFH����� Q�SULFH�� G�SULFH����0LQ��Q�SULFH��±0LQ��G�SULFH�� ��:H�FDQ�JHW�WKH�QHZ�UDQJH�RI�DWWULEXWH�SULFH RI�YDULDEOHV�G DQG�Q LQ�WKH�VDPH�ZD\��:H�UHILQH�WKH�YDULDEOH�GRPDLQ�XVLQJ�WKLV�QHZ�UDQJH�E\�DGGLQJ�LW�WR�WKH�ILOWHU��:H�VKRZ�WKH� YDULDEOH� GRPDLQV� WKDW� DUH� DWWULEXWH� ERXQGV� FRQVLVWHQW� IRU� FRQVWUDLQW� F�SULFH� ��Q�SULFH���G�SULFH����� LQ�)LJXUH����1RWH�WKDW� WKH�UDQJH�RI� WKH�DWWULEXWH�SULFH KDV�EHHQ�FKDQJHG�IRU�HDFK�RI�WKH�WKUHH�YDULDEOHV��
SULFH ! ���� �EDQGZLGWK ! ���� �
Q GSULFH ! ���� �LR6SHHG ! ���� �SULFH

F
! ���� �FSXVSHHG ! ���� �

)LJXUH����7KH�YDULDEOH�GRPDLQV�RI�)LJXUH���DIWHU�WKH�H[HFXWLRQ�RI�WKH�ERXQGV�FRQVLVWHQF\�DOJRULWKP�RQ�WKH�FRQVWUDLQW�F�SULFH���Q�SULFH���G�SULFH�����7KH�ERXQGV�FRQVLVWHQF\�DOJRULWKP�QHHGV�RQO\�UDQJH�LQIRUPDWLRQ�IRU�DWWULEXWHV�WKDW�DUH�PDLQWDLQHG�LQ�WKH�ILOWHU��%HFDXVH�ZH�FDQ�NHHS�WKH�ILOWHU�LQ�PHPRU\��WKH�DOJRULWKP�UHTXLUHV�QR�DGGLWLRQDO�,�2�RSHUDWLRQV�WR�UHDG�WXSOHV�LQ�WKH�UHODWLRQV����� $VVLJQPHQW�2SHUDWLRQ'XULQJ� EDFNWUDFNLQJ�� WKH� VROYHU� SLFNV� D� YDOXH� IURP� WKH� YDULDEOH� GRPDLQ� DQG� DVVLJQV�WKLV�YDOXH WR�WKH�YDULDEOH��OLQH������7KH�YDULDEOH�GRPDLQ�LV�UHSUHVHQWHG�DV�D�ILOWHU�DQG�UHODWLRQV��6HFWLRQ�������7KH�YDOXHV�RI�D�YDULDEOH�DUH�WXSOHV�LQ�UHODWLRQV�DQG�WKXV�ZH�XVH�WKH�EDVLF�FRQVWUDLQWV� LQ�WKH ILOWHU� WR�SLFN�D�YDOXH�WKDW�EHORQJV�WR�WKH�YDULDEOH�GRPDLQ��5HFDOO� WKDW�EDVLF�FRQVWUDLQWV� DUH� UDQJH�FRQVWUDLQWV�DQG�DVVLJQPHQW�FRQVWUDLQWV�RQ�RQH�DWWULEXWH�� WKXV� VHOHFWLRQ�RSHUDWLRQV�FDQ�EH� LPSOHPHQWHG�HIILFLHQWO\�E\�XVLQJ�GDWDEDVH�LQGH[� WHFKQLTXHV��)RU� H[DPSOH�� JLYHQ� WKH� ILOWHU� VKRZQ� LQ�)LJXUH� ��� ZKHQ� SLFNLQJ� D�YDOXH�IRU�YDULDEOH�F ZH�XVH�FRQVWUDLQWV�LQ�WKH�FRUUHVSRQGLQJ�V\PERO�WDEOH������SULFH���

WCLP 2005 154 Ulmer Informatik-Berichte 2005-01

� DQG�����FSX6SHHG������WR�TXHU\�WKH�UHODWLRQ�&��7KH�PXOWL�NH\�LQGH[�VKRZQ�LQ�)LJXUH���DOORZV�WKH�GDWDEDVH�WR�ORFDWH�WXSOHV�WKDW�VDWLVI\�WKLV�VHOHFWLRQ�FRQGLWLRQ�HIILFLHQWO\��� 3HUIRUPDQFH�(YDOXDWLRQ:H�QRZ�SUHVHQW� DQ�H[SHULPHQWDO� HYDOXDWLRQ�RI� WKH�FRPELQDWRULDO�TXHU\�SHUIRUPDQFH�RI�ERWK�RXU�'%B&63�VROYLQJ�DOJRULWKP�DQG�D�FRQYHQWLRQDO�GDWDEDVH�V\VWHP���� 7KH�%HQFKPDUN�4XHU\�4:H�ILUVW�GHILQH�D� VLPSOH�FRPELQDWRULDO�TXHU\�4�ZLWK�SDUDPHWHUV� WKDW� FDQ�EH�XVHG� WR�YDU\� LWV� H[HFXWLRQ� FRPSOH[LW\� DQG� VHOHFWLYLW\��7KLV� TXHU\�RSHUDWHV� RQ� WKUHH� UHODWLRQV�$�� %�� DQG� &�� GHILQHG� DFFRUGLQJ� WR� UHODWLRQV� 7(1.783� IURP� WKH� :LVFRQVLQ�%HQFKPDUN�>�@��,Q�RUGHU�WR�VLPXODWH�FRPSOH[�FRPELQDWRULDO�TXHULHV��4�FRPSULVHV�WZR�FRQVWUDLQWV��HDFK LQYROYLQJ�WKUHH�UHODWLRQV��4��6(/(&7��)520�$��%��&:+(5($�.�����%�.�����&�.�����1� $1'$�.������%�.������&�.����!�1�7KLV�TXHU\�VSHFLILHV�D�UHTXHVW�IRU�WKUHH�WXSOHV�IURP�UHODWLRQV�$��%��DQG�&�VXFK�WKDW�WKH�VXP�RI�WKHLU�DWWULEXWH�.�� LV�OHVV�WKDQ�D�FRQVWDQW�1� DQG�WKH�VXP�RI�WKHLU�DWWULEXWH�.��� LV�PRUH� WKDQ�D�FRQVWDQW�1���7KH�YDOXH�RI�DWWULEXWH�.�� LV�DQ� LQWHJHU�XQLIRUPO\�GLVWULEXWHG�EHWZHHQ���DQG�����DQG�WKH�YDOXH�RI�DWWULEXWH�.��� LV�DQ�LQWHJHU�XQLIRUPO\�GLVWULEXWHG�EHWZHHQ���DQG������1RWLFH�WKDW�YDU\LQJ�WKH�VL]HV�RI�$��%��DQG�&�FKDQJHV�WKH�VL]H�RI�WKH�SUREOHP�WR�EH�VROYHG�� ZKLOH� YDU\LQJ� WKH� SDUDPHWHU�V�� 1� DQG� 1� FKDQJHV� WKH� QXPEHU� RI� UHVXOWV�REWDLQHG�� L�H��� WKH� VHOHFWLYLW\� RI� 4�� :H� YDU\� ERWK� WKH� UHODWLRQ� VL]HV� DQG� 1� LQ� RXU�H[SHULPHQWV�WR�REWDLQ�TXHULHV�ZLWK�YDULRXV�SUREOHP�VL]HV�DQG�VHOHFWLYLW\���� ([SHULPHQWDO�6WXGLHV:H� XVH� WKUHH� SHUIRUPDQFH� PHWULFV� WR� HYDOXDWH� WKH� VHDUFK� HIILFLHQF\� RI� ERWK� RXU�DOJRULWKP� DQG� FRQYHQWLRQDO� GDWDEDVH� VHDUFK� DOJRULWKPV�� WKH� WRWDO� QXPEHU� RI� ,�2�RSHUDWLRQ� SHUIRUPHG�� WKH� QXPEHU� RI� FRQVWUDLQW� FKHFN� RSHUDWLRQV� SHU� UHVXOW�� DQG� WKH�HODSVHG�WLPH�UHTXLUHG�WR�REWDLQ�TXHU\�UHVXOWV�x ,�2� RSHUDWLRQV�� ,W� LV� ZLGHO\� XVHG� WR� PHDVXUH� WKH� SHUIRUPDQFH� RI� D� GDWDEDVH�VHDUFK��%HFDXVH� WKH�DOJRULWKP�RI�6HFWLRQ����� UHDGV�D� WXSOH�RQO\�ZKHQ� LW�H[WHQGV�DQ� LQWHUPHGLDWH� UHVXOW� DQG�ZH�SHUIRUP�D�FRQVWUDLQW� FKHFN�IRU�HYHU\� LQWHUPHGLDWH�UHVXOW�� WKH�QXPEHU�RI� UHDG�RSHUDWLRQV� LV�HTXDO� WR� WKH�QXPEHU�RI�FRQVWUDLQW�FKHFN�RSHUDWLRQV�� 7KXV�� ZH� XVH� WKH� QXPEHU� RI� FRQVWUDLQW� FKHFN� WR� PHDVXUH� ,�2�RSHUDWLRQV������x &RQVWUDLQW�FKHFN�RSHUDWLRQV�SHU�UHVXOW��7KH�QXPEHU�RI�TXHU\�UHVXOWV�UHWXUQHG�E\�D�VHDUFK� UHSUHVHQWV� D� ORZHU� ERXQG� RQ� WKH� QXPEHU� RI� FRQVWUDLQW� FKHFN� RSHUDWLRQV�WKDW� D� VHDUFK� DOJRULWKP� PXVW� SHUIRUP�� :H� XVH� WKH� UDWLR� RI� WKH� QXPEHU� RI�FRQVWUDLQW� FKHFNV� SHUIRUPHG� WR� WKH� QXPEHU� RI� UHVXOWV� REWDLQHG� DV� D� QRUPDOL]HG�PHDVXUH�RI�KRZ�FORVH�DQ�DOJRULWKP�LV�WR�WKLV�ERXQG��x (ODSVHG� WLPH�� 7KH� ILQDO� PHWULF� LV� WKH� WLPH� EHWZHHQ� TXHU\� VXEPLVVLRQ� DQG� WKH�UHWXUQ�RI�UHVXOWV��,Q� RXU� H[SHULPHQWV�� ZH� FRPSDUH� WKH� HODSVHG� WLPHV� RI� WKH� LPSOHPHQWDWLRQ� RI� RXU�'%B&63�DOJRULWKP�DQG�WKH�DOJRULWKP�LPSOHPHQWHG�LQ�WKH�3RVWJUHV�UHODWLRQDO�GDWDEDVH�V\VWHP� �9HUVLRQ� ������ZKLFK�ZH� FKRRVH� IRU� LWV� DFFHVVLELOLW\��3RVWJUHV� LPSOHPHQW� WKH�

WCLP 2005 155 Ulmer Informatik-Berichte 2005-01

VHDUFK�SURFHVV�E\�SDLU�ZLVH�MRLQ�RSHUDWLRQV��:H�UHFRJQL]H�WKDW�3RVWJUHV�PD\�SHUIRUP�OHVV� ZHOO� WKDQ� RWKHU� GDWDEDVH� V\VWHPV�� EXW� DUJXH� WKDW� EHFDXVH� GLIIHUHQW� GDWDEDVH�V\VWHPV�XVH�VLPLODU�H[HFXWLRQ�DOJRULWKPV��RXU�UHVXOWV�H[WHQG�EURDGO\�:H�FRQGXFWHG�DOO�H[SHULPHQWV�RQ�DQ�,%0�7���ZLWK�D�VLQJOH�3HQWLXP�,,,����0+]�SURFHVVRU�DQG�����0%�PHPRU\��UXQQLQJ�6XVH�/LQX[��������� &KDQJLQJ�5HODWLRQ�6L]H,Q�WKLV�ILUVW�VHW�RI�H[SHULPHQWV��ZH�YDU\�WKH�QXPEHU�RI� WXSOHV� LQ�HDFK�RI�WKH�UHODWLRQV�$��%��DQG�&�IURP�����WR��������ZKLOH�IL[LQJ�WKH�MRLQ�VHOHFWLYLW\�E\�VHWWLQJ�1� ��DQG�1� �����)LJXUH���VKRZV� WKH�HODSVHG� WLPH�PHDVXUHG�IRU�ERWK�RXU�'%B&63�DOJRULWKP�DQG� 3RVWJUHV�� 2XU� DOJRULWKP� LV� IDVWHU� WKDQ� 3RVWJUHV� E\� IURP� WZR� WR� IRXU� RUGHUV� RI�PDJQLWXGHV�ZLWK�WKH�GLIIHUHQFH�EHFRPLQJ�ODUJHU�DV�WKH�UHODWLRQ�VL]H�LQFUHDVHV�

�������
���

�������

���� ��� � � ��6L]H�RI��UHODWLRQ�$��%��DQG�&���;�������

(ODSV
H�7LP

H�V�

'%B&63 3RVWJUHV

)LJXUH����7LPH�WDNHQ�WR�HYDOXDWH�4��DV�D�IXQFWLRQ�RI�WKH�VL]H�RI�WKH�UHODWLRQV�$��%�DQG�&�

����(�������(�������(�������(�������(�������(�������(�������(�������(���

��� � � � � �� �� ��6L]H�RI�UHODWLRQ�$��%��DQG�&��;�����

1XPE
HU�RI�,

�2
'%B&63 3RVWJUHV

)LJXUH����1XPEHU�RI�,�2�RSHUDWLRQV�SHUIRUPHG�WR�HYDOXDWH�4��DV�D�IXQFWLRQ�RI�WKH�VL]H�RI�UHODWLRQV�$��%��DQG�&�7KH�UHDVRQ�IRU�WKLV�GLIIHUHQFH�LQ�H[HFXWLRQ�WLPHV�LV�PDGH�FOHDU�E\�)LJXUH����ZKLFK�VKRZV� WKH� QXPEHU� RI� ,�2� RSHUDWLRQV� SHUIRUPHG��:H� VHH� WKDW� 3RVWJUHV� SHUIRUPV� VL[�RUGHUV�RI�PDJQLWXGH�PRUH�FRQVWUDLQW�FKHFNV�WKDQ�RXU�DOJRULWKP��7KLV�GLIIHUHQFH�DULVHV�EHFDXVH� 3RVWJUHV� XVHV� DQ� H[HFXWLRQ� SODQ� WKDW� FUHDWHV� DOO� FRPELQDWLRQV� RI� WXSOHV� DQG�FKHFNV� WKHP�RQH�E\�RQH��)RU� D� TXHU\�ZLWK� ORZ� VHOHFWLYLW\�� WKLV� VWUDWHJ\�PD\� OHDG� WR�PDQ\� XQQHFHVVDU\� FRPSXWDWLRQV�� ,Q� FRQWUDVW�� RXU� '%B&63� DOJRULWKP� FDQ� XVH�FRQVWUDLQWV� LQ�4� WR� ILOWHU� LQWHUPHGLDWH� UHVXOWV� DQG� WKXV� SHUIRUPV� IDU� IHZHU� FRQVWUDLQW�FKHFNV��7KLV� LPSURYHPHQW� LQ� HIILFLHQF\� LV� DFKLHYHG�E\�XVLQJ� FRQVLVWHQF\� WHFKQLTXHV�WR�SUXQH�SDUWV�RI�WKH�VHDUFK�VSDFH�FRQWDLQLQJ�QR�VROXWLRQV�:H� DOVR� VHH� WKDW�� IRU� RXU� DOJRULWKP�� WKH� H[HFXWLRQ� WLPH� DQG� WKH QXPEHU� RI�FRQVWUDLQW� FKHFNV� ERWK� LQFUHDVH� OHVV� UDSLGO\� ZLWK� UHODWLRQ� VL]H� WKDQ� LQ� WKH� FDVH� RI�3RVWJUHV��)RU� H[DPSOH�� WKH� H[HFXWLRQ� WLPH� RI� 4� GRHV� QRW� FKDQJH� PXFK� ZKHQ� WKH�UHODWLRQ� VL]H� LQFUHDVHV� IURP�������� WR���������7KH� UHDVRQ� LV� WKDW�RXU�DOJRULWKP�XVHVFOXVWHULQJ� �6HFWLRQ������ WR�RUJDQL]H� WXSOHV� LQWR�FOXVWHUV�DQG�FRQVLGHUV�RQO\�RQH� WXSOH�SHU�FOXVWHU�GXULQJ� WKH�VHDUFK�SURFHVV��4XHU\�4�VSHFLILHV�FRQVWUDLQWV�RQ�DWWULEXWH�.��DQG�.��� WKDW� DUH� XVHG� WR� FOXVWHU� YDOXH� WXSOHV��.�� SLFNV� YDOXHV� IURP� �� WR� ��� DQG�.��� SLFNV�YDOXHV� IURP���WR������ WKXV�� WKH�QXPEHU�RI�SRVVLEOH�FRPELQDWLRQV�RI�.��DQG�.��� LV� ��������$IWHU� FOXVWHULQJ�� QR�PDWWHU�ZKDW� WKH� UHODWLRQ� VL]HV�� WKH�YDULDEOH�GRPDLQV� RI� WKH�'%B&63�DUH� VPDOOHU� WKDQ���������ZKLFK�SXW� DQ�XSSHU�ERXQG�RQ� WKH�H[HFXWLRQ WLPH�RI�TXHU\�4�

WCLP 2005 156 Ulmer Informatik-Berichte 2005-01

����(�������(�������(�������(�������(�������(�������(�������(���

��� � � � � �� ��6L]H�RI�WKH�UHODWLRQ�$��%�DQG�&��;�����

5DWLR
'%B&63 3RVWJUHV

)LJXUH� ��� 5DWLR� RI� FRQVWUDLQW� FKHFNV�SHUIRUPHG� WR� UHVXOWV� REWDLQHG� ZKHQ�HYDOXDWLQJ� 4�� DV� D� IXQFWLRQ� RI� VL]H� RI�UHODWLRQV�$��%��DQG�&�

������������
���

�������

��� ��� ��� ��� ��� ��� ��� ���1�

(ODSVH
�7LPH

�V�

'%B&63 3RVW*UHV

)LJXUH�����7LPH�WDNHQ�WR�HYDOXDWH�4�ZKHQ�WKH�UHODWLRQV�$��%��DQG�&�KDYH�VL]H������DV�D�IXQFWLRQ�RI�SDUDPHWHU�1��)LJXUH� �� VKRZV� WKH� UDWLR� RI� WKH� QXPEHU� RI� FRQVWUDLQWV� FKHFNHG� WR� WKH� QXPEHU� RI�TXHU\� UHVXOWV�� 3RVWJUHV� SHUIRUPV� DURXQG� ���������� FRQVWUDLQW� FKHFNV� SHU� UHVXOW�� ,Q�FRQWUDVW�� RXU� '%B&63� DOJRULWKP� SHUIRUPV� RQO\� D� IHZ� FRQVWUDLQW� FKHFNV� SHU� UHVXOW��,QGHHG�� IRU� ODUJH� UHODWLRQV� WKLV�QXPEHU�GHFOLQHV� WR� OLWWOH�PRUH� WKDQ�RQH��ZKLFK� LV� WKH�ORZHU�ERXQG�IRU�DQ\�VHDUFK�DOJRULWKP�,Q� VXPPDU\�� RXU� DOJRULWKP� LV�PRUH� HIILFLHQW� DW� HYDOXDWLQJ�TXHULHV�ZLWK�DULWKPHWLF�FRQVWUDLQWV� VXFK� DV� 4� EHFDXVH� LW� SHUIRUPV� PDQ\� IHZHU� FRQVWUDLQW� FKHFNV�� :H� DUH�FRQILGHQW�WKDW�VLPLODU�UHVXOWV�ZRXOG�EH�REWDLQHG�IRU�RWKHU�VLPLODU�TXHULHV����� &KDQJLQJ�6HOHFWLYLW\,Q�WKLV�VHFRQG�VHW�RI�H[SHULPHQWV��ZH�IL[�WKH�QXPEHU�RI�WXSOHV�LQ�UHODWLRQV�$��%��DQG�&�WR� ���� DQG� YDU\� WKH� MRLQ� VHOHFWLYLW\� E\� YDU\LQJ� WKH� FRQVWDQW� 1� LQ� WKH� VHOHFWLRQ�FRQGLWLRQ�RI�4��)LJXUH����FRPSDUHV�WKH�HODSVHG�WLPHV�WR�HYDOXDWH�WKH�TXHU\��:KHQ�TXHU\�VHOHFWLYLW\�LV� VPDOO�� RXU� '%B&63� DOJRULWKP� KDV� D� ODUJH� SHUIRUPDQFH� DGYDQWDJH� UHODWLYH� WR�3RVWJUHV��$V� VHOHFWLYLW\� LQFUHDVHV�� WKH�GLIIHUHQFH�EHWZHHQ� WKH� WZR�V\VWHPV�GHFUHDVHV��7KH�UHDVRQ�LV�WKDW�DV�WKH�QXPEHU�RI�UHVXOWV�LQFUHDVHV��WKH�VHDUFK�VSDFH�EHFRPHV�ILOOHG�ZLWK�PRUH�UHVXOWV��OHDYLQJ�IHZHU�RSSRUWXQLWLHV�IRU�D�PRUH�HIILFLHQW�VHDUFK�DOJRULWKP�WR�LPSURYH� VHDUFK� SHUIRUPDQFH�� ,Q� VXPPDU\�� RXU� UHVXOWV� VKRZ� WKDW� RXU� DOJRULWKP�SHUIRUPV� SDUWLFXODUO\� ZHOO� ZKHQ� FRPELQDWRULDO� TXHULHV� DUH� FRPSOH[� DQG� TXHU\�VHOHFWLYLW\�LV�VPDOO�� 6XPPDU\�DQG�)XWXUH�:RUN&RPELQDWRULDO�TXHULHV� LQ�GDWDEDVH�V\VWHPV�VHHN�WXSOHV�IURP�PXOWLSOH�UHODWLRQV�ZLWK�D�SDUWLFXODU�UHODWLRQVKLS��([LVWLQJ�UHODWLRQDO�GDWDEDVH�V\VWHPV�FDQ�H[SUHVV�FRPELQDWRULDO�TXHULHV� EXW� FDQQRW� H[HFXWH� WKHP� HIILFLHQWO\�� 7R� LPSURYH� RQ� WKLV� VLWXDWLRQ��ZH� VKRZ�KRZ�FRPELQDWRULDO�TXHULHV�FDQ�EH�PRGHOHG�DV�D�QHZ�W\SH�RI�&63�SUREOHP��'%B&63��DQG�GHVLJQ�DQG�LPSOHPHQW�D�FRPELQDWRULDO�VHDUFK�DOJRULWKP�WKDW�LQWHJUDWHV�FRQVWUDLQW�VROYLQJ� WHFKQLTXHV� ZLWK� GDWDEDVH� VHDUFK� WHFKQLTXHV�� ([SHULPHQWDO� UHVXOWV� VKRZ� WKDW�RXU�DOJRULWKP�KDV� VLJQLILFDQW�SHUIRUPDQFH�DGYDQWDJHV� UHODWLYH� WR� WUDGLWLRQDO�GDWDEDVH�WHFKQRORJ\� ZKHQ� VROYLQJ� FRPELQDWRULDO� TXHULHV� ZLWK� FRPSOH[� VHOHFWLRQ� FRQGLWLRQV��SDUWLFXODUO\� ZKHQ� TXHU\� VHOHFWLYLW\� LV� ORZ�� 2XU� DOJRULWKP� FDQ� DOVR� EH� LQFRUSRUDWHG�HDVLO\�LQWR�H[LVWLQJ�UHODWLRQDO�GDWDEDVH�V\VWHPV�

WCLP 2005 157 Ulmer Informatik-Berichte 2005-01

$FNQRZOHGJHPHQWV7KLV�ZRUN�ZDV� VXSSRUWHG�E\� WKH�*ULG�$SSOLFDWLRQ�'HYHORSPHQW�6RIWZDUH�SURMHFW�RI�WKH� 16)� 1H[W� *HQHUDWLRQ� 6RIWZDUH� SURJUDP�� XQGHU *UDQW� 1R�� ��������� :H� DUH�JUDWHIXO�WR�$OYDUR�)HUQDQGHV��0LNH�)UDQNOLQ��6YHWOR]DU�1HVWRURY��$QQH�5RJHUV��0DWHL�5LSHDQX��$ODLQ�5R\��DQG�/LQJ\XQ�<DQJ�IRU�FRPPHQWV�RQ�D�GUDIW�RI�WKLV�SDSHU�5HIHUHQFHV>�@ $JJRXQ��$��DQG�%HOGLFHDQX��1���2YHUYLHZ�RI�WKH�&+,3�FRPSLOHU�V\VWHP��,Q�)��%HQKDPRX�DQG�$��&ROPHUDXHU��(GV����&RQVWUDLQW�/RJLF�3URJUDPPLQJ��6HOHFWHG�5HVHDUFK��0,7�3UHVV��������SS����������>�@ &DUOVVRQ��0���2WWRVVRQ��*��DQG�&DUOVRQ��%���$Q�RSHQ�HQGHG�ILQLWH�GRPDLQ�FRQVWUDLQW�VROYHU��3URF��3URJUDPPLQJ�/DQJXDJHV��,PSOHPHQWDWLRQV��/RJLFV��DQG�3URJUDPV�������>�@ &KHDGOH��$���+DUYH\��:���6DGOHU��$���6FKLPSI��-���6KHQ��.��DQG�:DOODFH��0���(&/L36H��$Q�,QWURGXFWLRQ��,PSHULDO�&ROOHJH�/RQGRQ��,&�3DUF�������������>�@ 'LD]��'��DQG�&RGRJQHW��3���$�PLQLPDO�H[WHQVLRQ�RI�WKH�:$0�IRU�FOS�)'���,Q�'�6��:DUUHQ��(G����/RJLF�3URJUDPPLQJ��3URFHHGLQJV�RI�WKH���WK�,QWHUQDWLRQDO�&RQIHUHQFH��%XGDSHVW��+XQJDU\��������SS����������>�@)DJLQ��5���/RWHP��$��DQG�1DRU��0���2SWLPDO�DJJUHJDWLRQ�DOJRULWKPV�IRU�PLGGOHZDUH��-RXUQDO�RI�&RPSXWHU�DQG�6\VWHP�6FLHQFHV��������������������>�@ *DUFLD�0ROLQD��+���8OOPDQ��-�'��DQG�:LGRP��-���'DWDEDVH�6\VWHPV��WKH�&RPSOHWH�%RRN��3UHQWLFH�+DOO��8SSHU�6DGGOH�5LYHU��1-��������[[YLL�������SS�>�@ *UD\��-���7KH�%HQFKPDUN�+DQGERRN�IRU�'DWDEDVH�DQG�7UDQVDFWLRQ�6\VWHPV���QG�HGQ���0RUJDQ�.DXIPDQQ�������>�@ +HQWHQU\FN��3�9���&RQVWUDLQW�6DWLVIDFWLRQ�LQ�/RJLF�3URJUDPPLQJ��7KH�0,7�3UHVV�������>�@ +HQWHQU\FN��3�9���'HYLOOH��<��DQG�7HQJ��&��0���*HQHULF�DUF�FRQVLVWHQF\�DOJRULWKP�DQG�LWV�VSHFLDOL]DWLRQV��$UWLILFLDO�,QWHOOLJHQFH��������������������>��@ ,/2*��,/2*�2SWLPL]DWLRQ�6XLWH�:KLWH�3DSHU�������>��@ ,O\DV� ,�)���$UHI��:�*��DQG�(OPDJDUPLG��$�.���6XSSRUWLQJ�7RS�.�-RLQ�4XHULHV�LQ�5HODWLRQDO�'DWDEDVHV��9/'%�������0RUJDQ�.DXIPDQQ��%HUOLQ��*HUPDQ\�������>��@ .DQHOODNLV��3���.XSHU��*��DQG�5HYHV]��3���&RQVWUDLQW�TXHU\�ODQJXDJHV��3URF���WK�$&0�32'6��$&0�SUHVV��������SS����������>��@ 0DUULRWW��.��DQG�6WXFNH\��3�-���3URJUDPPLQJ�ZLWK�&RQVWUDLQWV��$Q�,QWURGXFWLRQ��7KH�0,7�3UHVV��&DPEULGJH��0DVVDFKXVHWWV�������>��@ 5HYHV]��3���,QWURGXFWLRQ�WR�&RQVWUDLQW�'DWDEDVHV��6SULQJHU��1HZ�<RUN�������>��@ 7VDQJ��(���)RXQGDWLRQV�RI�&RQVWUDLQW�6DWLVIDFWLRQ��$FDGHPLF�3UHVV��/RQGRQ�������>��@ :DOW]��'�/���8QGHUVWDQGLQJ�OLQH�GUDZLQJV�RI�VFHQHV�ZLWK�VKDGRZV��,Q�3�+��:LQVWRQ��(G����7KH�3V\FKRORJ\�RI�&RPSXWHU�9LVLRQ��0F*UDZ�+LOO��1HZ�<RUN��������SS��������>��@ :ROVH\��/�$��DQG�1HPKDXVHU��*�/���,QWHJHU�DQG�&RPELQDWRULDO�2SWLPL]DWLRQ��ILUVW�HGQ���:LOH\�,QWHUVFLHQFH�������

WCLP 2005 158 Ulmer Informatik-Berichte 2005-01

System Description: Meta-S – Combining Solver

Cooperation and Programming Languages

Stephan Frank, Petra Hofstedt, Dirk Reckmann

Berlin University of Technology, Germany
{sfrank,ph,dyrgh}@cs.tu-berlin.de

Abstract. Meta-S is a constraint solver cooperation system which al-
lows the dynamic integration of arbitrary external (stand-alone) solvers
and their combination with declarative languages. We sketch the main
aspects of Meta-S including solver and language integration as well as
its strategy definition framework for specifying solver cooperation and
language evaluation strategies by means of an example.

1 Motivation

Constraint solvers offer problem solving algorithms in an encapsulated way.
Many solvers have been designed and implemented, covering several different
constraint domains, for example finite domain problems, linear arithmetic or in-
terval arithmetic. However, many real world problems do not fit nicely into one of
these categories, but contain constraints of various domains. Writing specialized
solvers that can tackle particular multi-domain problems is a time consuming
and error prone task. A more promising approach is the integration of existing
constraint solvers into a more powerful overall system for solver cooperation.
Meta-S – our flexible and extendable constraint solver cooperation system with
support for integration of arbitrary declarative languages – implements this idea.

2 Meta-S

Constraint Solver Cooperation Figure 1 shows the general architecture of our
constraint solver cooperation framework [3]. The system consists of several con-
straint solvers, each maintaining its own store. The collaboration is coordinated
by the meta solver that establishes an exchange of information between the
connected solvers. This meta solver maintains a pool of constraints to be solved.

The communication between the meta solver and the individual solvers is
done solely through two interface functions (readily supported by many pre-
existing solvers). A propagation function adds a constraint from the constraint
pool into a solver’s store, hereby ensuring consistency of the resulting constraint
store. The second interface function handles projection, i.e. it infers knowledge
implied by a constraint store in form of constraints that are put into the pool
and passed to other solvers.

WCLP 2005 159 Ulmer Informatik-Berichte 2005-01

constraint pool

meta constraint solver

constraint
solver CS 1

. . . constraint
solver CSk

C1 Ck

control

Fig. 1. Architecture of Meta-S

1 (define-meta-solver *smm*

2 (meta-solver eager-propagation-reordering)

3 ((my-fd fd-rational) ; solver integration

4 (my-lin cllin)

5 (my-cll cll-solver :file "smm.cll"))

6

7 (((in S,E,N,D,M,O,R,Y #{0 1 2 3 4 5 6 7 8 9}) ; constraints

8 (alldifferent {S E N D M O R Y})
9 (= (+ SEND MORE) MONEY)

10 (word ([S,E,N,D] , SEND))

11 (word ([M,O,R,E] , MORE))

12 (word ([M,O,N,E,Y] , MONEY)))))

Fig. 2. The Send-More-Money problem specification

Example 1. To illustrate the usage of Meta-S, we consider the famous Send-
More-Money problem.1 Figure 2 shows the problem specification file. We use a
collaboration of three individual constraint solvers: a finite domain solver for
rational numbers (Line 3), a linear arithmetic solver (Line 4) and a constraint
solver for logic goals (Line 5) based on a logic language (to be discussed later).

The problem to solve is given by a set of constraints (Lines 7-12). The domain
constraint in Line 7 and the alldifferent-constraint in Line 8 are handled
by the finite domain solver. The equation in Line 9 is handled by the linear
arithmetic solver, and Lines 10-12 describe three goals for the logic language
solver. The word predicate combines a sequence of digits to a number.

Language Integration In [2, 4] we show how to integrate declarative languages
into Meta-S by treating the language evaluation mechanism as a constraint
solver. This easily enables to integrate multi-domain constraints into a language.

Integrating a logic language into Meta-S yields constraint logic programming.

Logic goals are evaluated by the constraint solver cll based on resolution.

1 As is well known the problem can be solved by a usual finite domain solver with
arithmetics. Nevertheless it is suitable here as a short and simple example.

WCLP 2005 160 Ulmer Informatik-Berichte 2005-01

1 (<- (word L X) (word L 0 X)) ; word(L,X) :- word(L,0,X).

2 (<- (word [] ACC ACC)) ; word([], ACC, ACC).

3 (<- (word [FT|RT] ACC SUM) ; word([FT|RT], ACC, SUM) :-

4 (word RT (+ (* 10 ACC) FT) SUM)) ; word(RT, 10*ACC+FT, SUM).

Fig. 3. Combination of letters to words (file smm.cll)

1 (== (word [] ACC) ACC) ; word [] ACC = ACC

2 (== (word [FT|RT] ACC) ; word [FT|RT] ACC =

3 (word RT (+ (* 10 ACC) FT))) ; word RT 10*ACC+FT

Fig. 4. Functional logic combination of letters to words (file smm.fcll)

Consider again our example in Fig.2. Here the logic language solver was
configured to read its rule definitions from the file smm.cll (cf. Fig.3). E.g.
the goal word([S,E,N,D],SEND) is solved using the first rule for initializing an
accumulator ACC with 0, calling thereafter the goal word([S,E,N,D],0,SEND).
The predicate word/3 finally computes the value of the variable SEND. To ease
the reading, the corresponding Prolog rules are given as comments.

Of course, Meta-S allows the integration of other declarative languages as
well. Consider for example the functional logic language solver fcll. Its integration
into Meta-S yields constraint functional logic programming. Our fcll solver is
based on narrowing using functional logic rules. Again the program must be given
by the user in an extra file. E.g. Fig.4 shows the definition of a function word/2

(equivalent to the predicate word/3 in Fig.3). For better understanding the rules
are given as comments in a Haskell-like syntax. If we would have used the fcll

solver to describe the Send-More-Money problem, the corresponding constraints
in the problem specification in Fig.2 would have been equality constraints like
(= (word [S,E,N,D]) SEND).

Problem descriptions may even freely mix logic predicates and functions, i.e.
it is possible to integrate both the cll and the fcll solvers.

The Strategy Framework Meta-S provides the user with strategy definition mech-
anisms at two levels (cf. [1]). The definition of generic strategies on the first level
mainly regulates the search tree traversal. On top of this, Meta-S’ strategy spec-
ification language allows the user to define strategy attributes which concern the
solver behaviour and their cooperation, like the order of propagation and projec-
tion, priorities of solvers within a cooperation or the usage of particular heuris-
tics. Within the scope of the description of the solver behaviour, the user is able
to specify and refine evaluation strategies for the language solvers, e.g. narrowing
strategies. In [2] we compare variations of the classical evaluation strategies for
logic languages (including residuation) as well as new advanced strategies in this
context. Meta-S already comes with a collection of predefined search and coop-
eration strategies, including typical ones like depth-/breadth-first-search, eager
and lazy narrowing and standard solver cooperation schemes.

WCLP 2005 161 Ulmer Informatik-Berichte 2005-01

1 (define-strategy eager-propagation-reordering (eager-strategy)

2 (:step (select ((eq-constr (= t t))

3 (in-constr (in t t))

4 (rest t))

5 (tell-all in-constr) (tell-all eq-constr) (tell-all rest)

6 (project-one linear-solver)

7 (tell-all) (project-all))))

Fig. 5. Reordering constraints for propagation

In the Send-More-Money example in Line 2 we state the usage of the strategy
eager-propagation-reordering. Its definition in Fig. 5 illustrates the usage of
the strategy definition language. This strategy is a refinement of the generic
strategy eager (Line 1), which has a depth-first-search behaviour. The idea for
the refinement is to classify the constraints according to their propagation cost
(Lines 2-4) and to redefine the order of propagations and projections accordingly
(Lines 5-7). This allows a distinct reduction of computation times (cf. [1]).

3 Conclusion

Besides solver cooperation systems with fixed solvers and fixed cooperation
strategies, like [7], there are systems which allow a more flexible strategy han-
dling, e.g. [5], up to the definition of problem specific solver cooperation strate-
gies and the integration of new solvers, like the approach in [6] or Meta-S. Our
system differs from others by its flexible coordination mechanism that is easily
extensible by further solvers and makes it possible for users to adopt the solver
cooperation strategy to the needs of the problem at hand. Meta-S furthermore
allows the integration of declarative languages and multi-domain constraints and
the definition and usage of new language evaluation strategies in an easy way.

References

1. St. Frank, P. Hofstedt, and P.R. Mai. Meta-S: A Strategy-oriented Meta-Solver
Framework. In Proc. of the 16th FLAIRS Conference. The AAAI Press, 2003.

2. St. Frank, P. Hofstedt, and D. Reckmann. Strategies for the Efficient Solution of
Hybrid Constraint Logic Programs. In MultiCPL Workshop, Saint-Malo, 2004.

3. P. Hofstedt. Cooperating Constraint Solvers. In Sixth Conference on Principles and

Practice of Constraint Programming - CP, volume 1894 of LNCS. Springer, 2000.
4. P. Hofstedt. A general Approach for Building Constraint Languages. In Advances

in Artificial Intelligence, volume 2557 of LNCS, pages 431–442. Springer, 2002.
5. E. Monfroy. Solver Collaboration for Constraint Logic Programming. PhD thesis,

Centre de Recherche en Informatique de Nancy. INRIA, 1996.
6. B. Pajot and E. Monfroy. Separating search and strategy in solver cooperations. In

Perspectives of Systems Informatics – PSI, volume 2890 of LNCS. Springer, 2003.
7. M. Rueher. An Architecture for Cooperating Constraint Solvers on Reals. In Con-

straint Programming: Basics and Trends, volume 910 of LNCS. Springer, 1995.

WCLP 2005 162 Ulmer Informatik-Berichte 2005-01

Cmodels for Tight Disjunctive Logic Programs?

Yuliya Lierler

AI, Erlangen-Nürnberg Universität,
yuliya.lierler@informatik.uni-erlangen.de

1 Introduction

Disjunctive logic programming under the stable model semantics [GL91] is a new
answer set programming (ASP) methodology for solving combinatorial search
problems. It is a form of declarative programming related to logic programming
languages, such as Prolog, where the solutions to a problem are represented by
answer sets, and not by answer substitutions produced in response to a query as
in convential logic programming. Instead of Prolog systems, this programming
method uses answer set solvers, such as smodels

1, smodelscc2, cmodels
3,

dlv
4, and gnt

1. These systems made it possible for ASP to be successfully
applied in such areas as planning, bounded model checking, and space shuttle
control. dlv and gnt are more general as they work with the class of disjunc-
tive logic programs, while other systems cover nondisjunctive programs. System
cmodels uses SAT solvers as search engines, which allows it to take advantage
of rapid progress in the area of SAT. cmodels proved to be an efficient sys-
tem in providing the solution to the wire-routing problem [EW04], and to the
problem of reconstructing probable phylogenies in the area of historical linguis-
tics [BEMR05]. In this work we extend cmodels [GLM04] to tight disjunctive
programs. Complexity of finding a solution for such programs is NP, as in the
case of nondisjunctive programs. Extending the syntax of the input language of
cmodels to tight disjunctive programs permits the knowledge engineer to be
more flexible with the encoding of the problems in the NP complexity class. Ex-
perimental analyses demonstrate that the approach is computationally promising
and may advance applications of disjunctive logic programming.

2 Theory, Implementation, Usage, Experiments

We base our work on the relationship between the completion [Cla78] and answer
set semantics for logic programs. For the large class of tight programs the answer

? I would like to thank V. Lifschitz for many valuable suggestions for the format of
this paper and E. Giunchiglia, G. Görz, J. Lee, and M. Maratea for the comments
related to the subject.

1 http://www.tcs.hut.fi/Software/ .
2 http://www.ececs.uc.edu/~ schlipf/ .
3 http://www.cs.utexas.edu/users/tag/cmodels .
4 http://www.dbai.tuwien.ac.at/proj/dlv/ .

WCLP 2005 163 Ulmer Informatik-Berichte 2005-01

% Sample graph encoding, i.e. graph contains 3 nodes, and 3 edges:

% edges between nodes 1 and 2, 2 and 3, 3 and 1.

node(1..3). edge(1,2).edge(2,3).edge(3,1).

% Declaration of three colors

col(red). col(green). col(blue).

% Disjunctive rule: stating that node has some color

colored(X,red) | colored(X,green) | colored(X,blue) :- node(X).

% Neighboring nodes should not have the same color

:- edge(X,Y), colored(X,C), colored(Y,C), col(C).

Fig. 1. Encoding of tight 3-colorability problem for grounder lparse: 3-col.lp

sets of the program are the same as the models of its completion, and hence SAT
solvers can play the role of answer set enumerators. [LL03] introduced the notion
of completion and tightness for disjunctive programs. A disjunctive program Π

is a set of disjunctive rules of the form A← B, F where A is the head of the rule,
and is either a disjunction of atoms or symbol ⊥, B is a conjunction of atoms,
and F is a formula of the form not a1, . . . , not am. We identify the disjunction of
atoms A with the set of the atoms occurring in A. The completion of Π [LL03]
is the set of propositional formulas that consists of the implication B ∧ F ⊃ A

for every rule in Π , and the implication a ⊃
∨

A←B,F∈Π; a∈A

(B ∧F ∧
∧

p∈A\{a}

¬p)

for each atom a ∈ Π . The positive dependency graph of Π is directed graph G

such that the vertices of G are the atoms occurring in Π , and for every rule in
Π , G has an edge from each atom in A to each atom in B. Program Π is tight
if its positive dependency graph is acyclic.
Theorem. [LL03] For any tight disjunctive program Π and any set X of atoms,
X is an answer set for Π iff X satisfies the completion of Π .

Figure 1 presents the tight disjunctive program 3-col.lp based on the encoding
of 3-colorabilty problem provided at the dlv web page.

We based our implementation on systems lparse --dlp and cmodels. lparse

--dlp takes a disjunctive logic program with variables as an input and grounds
the program. In order to use cmodels for solving disjunctive programs flag
-dlp should be used. In the process of its operation, cmodels -dlp first veri-
fies that the program is tight, by building the positive dependency graph and
using a depth first search algorithm to detect a cycle in it. This step may be
omitted from the execution sequence using flag -t. Second, cmodels -dlp forms
the program’s completion, and last it calls a SAT solver to find the models of
the completion. Flags number, -si, -rs, -mc are available, where number is an
integer that stands for a number of solutions to find (0 stands for all solutions,
1 is a default), and -mc (default), -si, -rs specify that SAT solver chaff, simo,
relsat, respectively, is invoked during the search. For example, command line

lparse --dlp 3-col.lp | cmodels -dlp

produces one answer set for the program in Figure 1:
Answer set: colored(1,red) colored(2,green) colored(3,blue)

WCLP 2005 164 Ulmer Informatik-Berichte 2005-01

It is worth noticing that 3-col.lp program is syntactically identical to the
3-colorability program with choice rules supported by systems smodels, smod-

elscc and cmodels. The disjunctive rule of program 3-col.lp is interpreted as
the choice rule by these systems. Semantically, the rules are nevertheless differ-
ent. The choice rule encodes the exclusive disjunction in the head of this rule.
In case of 3-colorabilty problem this is acceptable interpretation of a rule and
this allows us to find answer sets of the program also by means of nondisjunctive
answer set programming.

For experimental analyses we used the encoding of the 3-colorability problem
as in Figure 1. We compared the performance of cmodels –dlp with systems
dlv, gnt on disjunctive program and also smodels, smodelscc and cmodels

on choice rule encoding of a problem. All experiments were run on Pentium 4,
CPU 3.00GHz and presented in Figures 2 and 3.

In Figure 2 we show the results of running cmodels with simo and dlv

on the disjunctive programs, and smodels on the corresponding program with
choice rules. The instances of Ladder graphs presented in the table were taken
from the dlv web page. Columns lparse –dlp, cmodels, dlv and smodels

present the running times of the systems in seconds. dlv running time also
includes the time spent by the system on grounding the program. We can see that
cmodels outperforms two other systems by more than an order of magnitude.

In Figure 3 we present the experiments with harder instances of the graphs.
Letters L, S in the names of the graph instances stand for ladder and simplex,
while the number stands for the number of nodes divided by 1000 in the lad-
der graphs, and the number of levels in the simplex graphs. smodels, dlv and
gnt were not able to terminate on our test programs within the 30 minutes
cutoff time. Columns lparse, cmodels simo,cmodels chaff, and smodelscc
present the running times of the systems in seconds. The numbers before and
after ”\” stand for invocation of lparse --dlp, cmodels -dlp on disjunctive
programs, and lparse, cmodels on corresponding programs with choice rules,
respectively. The second and the third columns demonstrate that the ground dis-
junctive program is smaller than the corresponding ground program with choice
rules: lparse encodes disjunctive rules more economically than choice rules.
cmodels -dlp, in its turn, takes an advantage of a smaller ground program and
produces fewer clauses. For example, the performance of cmodels -dlp simo
on the disjunctive program saves 18 to 29% of running time in comparison
with cmodels simo performance on the program with choice rules. cmodels

-dlp simo also outperforms smodelscc on ladder graphs by an order of magni-
tude. In case of simplex graph instances cmodels -dlp chaff also outperforms
smodelscc. Capability of using different search engines may prove to be useful
in practical applications.

3 Conclusions and Future Work

The evaluation of cmodels -dlp shows that it is a promising approach that
might advance the use of the disjunctive answer set programming paradigm in

WCLP 2005 165 Ulmer Informatik-Berichte 2005-01

of nodes lparse -dlp cmodels simo smodels dlv

1080 0.06 0.10 2.42 4.00
1320 0.07 0.12 3.74 6.00
1680 0.10 0.17 5.94 9.53
1920 0.12 0.19 7.91 12.46
2400 0.14 0.25 11.97 19.98

Fig. 2. 3-colorability problem on Ladder graphs: cmodels -dlp with SAT solver simo

on disjunctive program vs. smodels on choice rule program and dlv

Pr. lparse # rules ∗10−4 # clauses ∗10−4
cmodels simo cmodels chaff smodelscc

disj\ch disj\ch disj\ch disj\ch disjunctive choice

L32 2\3 25\38 44\51 10\15 27 105
L64 4\6 51\76 89\102 36\51 157 417
L120 8\11 96\144 168\192 122\165 727 1460
L240 16\24 192\288 336\384 496\701 - -
S480 14\17 161\207 230\253 174\213 20 26
S600 21\27 251\323 359\395 378\490 35 46

Fig. 3. 3-colorability problem on large Ladder and Simplex graphs: cmodels -dlp

with SAT solvers simo and chaff on disjunctive programs vs. cmodels with simo

and smodelscc on choice rule programs

practice. [LZ02] provided the theoretical base for using SAT solvers for com-
puting answer sets for nontight nondisjunctive programs. Systems assat [LZ02]
and cmodels [GLM04] are the implementations that demonstrated promising
experimental results. [LL03] extended the theory used by the approach to the
case of nontight disjunctive programs. Future work is to add the capability to
cmodels to find answer sets for nontight disjunctive programs.

References

[BEMR05] D. R. Brooks, E. Erdem, J. W. Minett, and D. Ringe. Character-based
cladistics and answer set programming. In Proc. PADL’05, pages 37–51,
2005.

[Cla78] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors,
Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.

[EW04] E. Erdem and M.D.F. Wong. Rectilinear steiner tree construction using
answer set programming. In Proc. ICLP’04, pages 386–399, 2004.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365–385,
1991.

[GLM04] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. Sat-based answer
set programming. In Proc. AAAI-04, pages 61–66, 2004.

[LL03] Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic
programs. In Proc. ICLP-03, pages 451–465, 2003.

[LZ02] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic
program by SAT solvers. In Proc. AAAI-02, pages 112–117, 2002.

WCLP 2005 166 Ulmer Informatik-Berichte 2005-01

