

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

On the complexity of intersecting multiple
circles for graphical display

H.A. Kestler, J. Messner, A. Müller, R. Schuler

Ulmer Informatik-Berichte
Nr. 2008-01

Februar 2008

On the complexity of intersecting multiple circles for

graphical display∗

H.A. Kestler† J. Messner‡ A. Müller§ R. Schuler ¶

Abstract

Many experiments in the biomedical field generate vast amounts of data.
This is especially true for microarray experiments which measure the expres-
sion levels of thousands of genes simultaneously. In this context the display
of functional information attributed to the individual gene is important to
obtain an overview of the major processes involved. This set data can be
displayed as Euler/Venn diagrams in which the circle size corresponds to the
cardinality of the set. Efficient algorithms for the calculation of intersections
of circles and their resulting boundary have not been published so far. We
present two algorithms (one optimal) for intersecting these different sized
circles to display set relationships.

1 Introduction

Microarray technologies are increasingly being found in biological and medical
sciences for high-throughput analysis of genetic information on the genome, tran-
scriptome and proteome level. This type of analysis generates vast amounts of
data, usually hundreds or thousands of genes, leaving the researcher with the
task of identifying the functional relevance. Many functional attributes (terms)
may have been assigned to e.g. each gene. Getting an overview over these sets
of attributes is often a difficult task. Standard tree representations are in many
cases an improper choice for this issue, especially in representing intersections.
A Euler/Venn diagram representation of gene sets could reveal more valuable
information to the researcher (see Figure 1). Full containment of one set into
the other, partial intersection and disjunctness can be seen at a glance with Eu-
ler/Venn diagrams [7].

As the intersection area calculation together with its boundary is an important
step in constructing an Euler/Venn diagram (if that is possible for a certain con-
figuration in the plane), we present two algorithms (one optimal) for intersecting
these different sized circles to display set relationships.

∗All authors have contributed equally.
†Internal Medicine I and Institute of Neural Information Processing, hans.kestler@uni-ulm.de
‡Institute of Theoretical Computer Science, jochen.messner@uni-ulm.de, Ulm University,

Germany
§Cosateq GmbH & Co.KG, Wangen, Germany, andre.mueller@Cosateq.com
¶Logicline GmbH, Stuttgart-Sindelfingen, Germany, rschuler@logicline.de

1

A
B

C

Figure 1: An Euler diagram with three sets A, B and C and their intersections. The
different circle sizes represent the cardinality of the attribute sets.

2 Methods

2.1 Intersecting multiple circles

Given a family of intersecting circles Ci = {(x, y) | (x−ai)
2 +(y− bi)

2 = r2
i }, i =

1 . . . n with center (ai, bi) and radius ri > 0 find a description of the intersection set
U = D1∩D2∩. . . Dn of the corresponding disks Di = {(x, y) | (x−ai)

2+(x−bi)
2 ≤

r2
i } and compute the area A(U) =

∫

U
d(x, y).

The border ∂U should be described with a finite set R = {γ1, . . . γK} of
non-overlapping x-monotone (i.e. each vertical line has at most one intersection
point with the segment) circle segments γ ⊂ R

2, k = 1 . . . K defined with 6-
tuples (ak, bk, rk, xk0, xk1, uk) with center (ak, bk), radius rk > 0, start and stop
x-coordinate ak−rk ≤ xk0 < xk1 ≤ ak +kr, and a flag uk ∈ {+1,−1} determining
if γk is an upper (uk = +1) or a lower segment (uk = −1).

A segment is then defined as:

γk = {(x, y) ∈ R
2 | y = bk + uk

√

r2
k − (ak − x)2, x ∈ [xk0, xk1]} . (1)

For a nonempty intersection U the circles necessarily intersect each other (or are
fully contained in another circle - in this case the outer circle can be left away
without changing the result), resulting in a maximum of n(n − 1) intersection
points.

Algorithm I: A straightforward algorithm for this problem is: Intersect each
circle Ci, i = 1 . . . n iteratively with all other circles Cj, j 6= i and join the
resulting segments in the result set R. Hereto each circle Ci = (ai, bi, ri) is split
into two x-monotone segments (half-circles) γ2i−1 : (ai, bi, ri, ai − ri, ai + ri,+1)
and γ2i : (ai, bi, ri, ai − ri, ai + ri,−1) (so Ci = γ2i−1 ∪ γ2i). These segments are
restricted to all other disks to obtain the resulting (probably empty) segment set.

The complexity of the algorithm is O(n2K). Since the result set contains at
most K = 2n segments - each additional circle adds at most two segments to the
result - the algorithm runs in the worst case with Θ(n3) (although in practice for
non-degenerate problems the number of steps will be much smaller).

2

The result set can be written as union of set differences

∂U =
n⋃

i=1

(γ2i−1 ∪ γ2i) −
⋃

j 6=i

Dj

where each difference term is the contribution of circle Ci (i = 1 . . . n) to the
resulting set The intersection points of the corresponding circle Γ : (a, b, r) of
a segment γ with a circle C : (â, b̂, r̂) can be computed by subtracting the two
equalities

(x − a)2 + (y − b)2 = r2 (2)

(x − â)2 + (y − b̂)2 = r̂2 (3)

leading to the chordal line

H : 2(â − a)
︸ ︷︷ ︸

=A

x + 2(b̂ − b)
︸ ︷︷ ︸

=B

y + (a2 + b2 − r2) − (â2 + b̂2 − r̂2)
︸ ︷︷ ︸

=C

= 0 , (4)

see figure 2.

Figure 2: A circle segment γ is restricted with a circle C. The corresponding circle Γ of
γ must intersect C (or has to be fully contained in C). If the left and the right endpoints
A and B are on different sides of the chordal line H the segment contains one of the
intersection points (x1, y1) or (x2, y2).

Inserting (2) into (4) leads to

[A2 + B2]
︸ ︷︷ ︸

=Â

x2 + 2[AC + ABb − B2a]
︸ ︷︷ ︸

=B̂

x + [C2 + 2BCb + B2(a2 + b2 − r2)]
︸ ︷︷ ︸

Ĉ

= 0

with the solution

x1,2 = − B̂

2Â
∓

√
√
√
√

(

B̂

2Â

)2

− Ĉ

Â

y1,2 = −C + Ax1,2

B
.

3

For the case B = 0, A 6= 0 (vertical chordal line) the two solutions

x1,2 = −C

A

y1,2 = b ∓
√

r2 − (x1,2 − a)2

exist.
Case I: (|γ ∩ C| = 0) If there is no intersection of the circles Γ and C it can

be decided by testing if one of the endpoints of γ lies in C (in this case the whole
segment is contained in C) or not (in this case the empty set is returned).

Case II: (|γ ∩ C| = 1) If the two endpoints A and B of the segment γ lie on
different sides of the chordal line H (or alternatively one of the endpoints is inside
C and the other outside C) the segment has exactly one intersection with C and it
must be decided which of the two intersection points is contained in the segment.
For an upper segment γ choose the intersection point (x1, y1) if the left endpoint
A is below the chordal line (A <y H) and (x2, y2) if A is above H. The decision
is similar for lower segments. The predicate p <y H can be evaluated using the
parametrization (4) and is true iff |B|y < −(Ax+C) sign(B) with sign(v) = 1 for
v ≥ 0 and −1 otherwise (so for vertical lines the predicate evaluates true if the
point p is on the left of H). This predicate has algebraic degree 3 (compare [5]).

Case III: If both endpoints of the segment γ lie on the same side of the
chordal line [1] proposed predicates based on an orientation test for the decision
if there are two intersection points |γ ∩ C| = 2 or none (see figure 3).

Algorithm II: Split the n circles into two sets of x-monotone segments (half-
circles) ΓL (lower segments) and ΓU (upper segments). Each lower segment re-
stricts the result set U from the bottom and each upper segment from the top.
The intersection area U can therefore be found be intersecting the upper envelope
of the lower segments with the lower envelope of the upper segments.

The intersection area U is fully contained in the interval of interest I =
[x0, x1] = [maxi ai − ri,mini ai + ri]. If x0 > x1 no intersection is possible and
U = ∅. In the following we assume U 6= ∅. The lower and upper segments are
well defined continous, univariate functions f1 . . . fn : I 7→ R and g1 . . . gn : I 7→ R

with the property, that two functions fi and fj intersect in at most s = 2 points
for all i 6= j. The lower envelope of the upper segments G = {g1 . . . gn} is defined
as

EG(x) = min
1≤i≤n

gi(x) x ∈ I

and the upper envelope of the lower segments F = {f1 . . . fn} as

E∗
F (x) = max

1≤i≤n
fi(x) x ∈ I .

The complexity of the lower/upper envelope of a set of functions, which inter-
sect in at most s points, can be described with Davenport-Schinzel (DS) sequences.
A DS(n, s) sequence is defined as a sequence < u1 . . . um > of integers with the
following properties:

4

Figure 3: If C with center (â, b̂) and Γ build a non-empty intersection and the two
endpoints of the segment γ lie on one side of the chordal line H the four cases must be
distinguished: a) |γ ∩ D| = ∅ if (â, b̂) 6∈ ω(γ) ∪ ω(γ) and A, B 6∈ D, b) γ ∩ D = γ if

(â, b̂) 6∈ ω(γ) ∪ ω(γ) and A, B ∈ D, c) |γ ∩ C| = 2 and two segments result from γ ∩ D

if A, B ∈ D and (â, b̂) ∈ ω(γ), d) |γ ∩ C| = 2 and one segment results from γ ∩ D if

A, B 6∈ D and (â, b̂) ∈ ω(γ). The two wedges ω(γ) and ω(γ) divide the plane in four
regions. The test p ∈ ω(γ) and p ∈ ω(γ) can easily be solved with orientation tests.

1. 1 ≤ ui ≤ n for each i

2. ui 6= ui+1 for each i < m

3. There do not exist s + 2 indices 1 ≤ i1 < i2 < . . . < is+2 ≤ m such that
ui1 = ui3 = . . . = a and ui2 = ui4 = . . . = b for a 6= b

The maximum length of a DS(n, s) sequence is defined as λs(n).
Following [10] (chapter 6.2) the two envelopes can be computed in O(γs(n) log n)

steps via a divide-and-conquer algorithm where γs(n) is the maximum length of
a DS(s, n) sequence. For this F is partitioned into two sets F∞, F∈, each of at
most size ⌈n/2⌉. Upper evelopes E∗

F∞
and E∗

F∈
are constructed recursively. E∗

F

can be constructed from E∗
F∞

and E∗
F∈

in O(γs(n)) steps. The same holds for G.
It is required that two functions can be intersected in O(1) to achieve the given
complexity. In the case of circles s = 2 and therefore γs(n) = 2n − 1. Merging
the two envelopes EG and E∗

F to get the intersection region

ΠF ,G = {(x, y) | E∗
F (x) ≤ y ≤ EG(x), y ∈ I}

requires further O(γs(n)) = O(n) [2] steps via an iterative search. The region ΠF ,G

is identical to the intersection set U of all n circular disks. The total runtime of
the algorithm is O(n log n) if the intersection of two functions can be computed
in O(1).

5

2.2 Calculating the area

Let U ⊂ R
2 be a connected set with the boundary ∂U =

⋃K
i=1 γk consisting

of non-overlapping segments. Using the Gaussian integration theorem (see e.g.
[6]) and integrating along the border ∂U with the parametrization (1) the area
A(U) =

∫

U
d(x, y) can be reformulated to

1

2

K∑

k=1

[

2ukbkx + (x − ak)
√

r2
k − (x − ak)2 + r2

k arcsin

(
x − ak

rk

)]x=xk1

x=xk0

. (5)

3 Lower bounds

In this section we discuss the minimum number of operations needed to compute
the boundary ∂U of the intersection D1∩· · ·∩Dn of n disks Di. Actually our lower
bounds already apply to the special case where all disks have the same radius.
We demonstrate a linear time reduction from sorting and provide an Ω(n log n)
lower bound in the algebraic computation tree model (which is introduced in
Section 3.2).

Notice that Algorithm II above produces the segments in a certain order,
such that consecutive segments on ∂U are listed consecutively. This is however
not necessary for the computation of the area with Formula (5). Algorithm I just
guaranties the maximility of the segments. It is therefore sensible to consider two
problems taking into account these differences.

1. Computing the boundary of the intersection of discs (BID): The input is a
list of n centers (aj , bj) ∈ R

2, 1 ≤ j ≤ n and a radius r > 0, representing
n discs D1, . . . ,Dn of radius r. The output is a list (γ1, . . . , γK) with γi =
(aji

, bji
, xi, x

′
i, uji

), 1 ≤ i ≤ K, representing x-monotone circle segments
of the circles ∂Di that yield the boundary of U = D1 ∩ · · · ∩ Dn without
overlap.

For convinience, we further assume that lower and upper segments are listed
separately: for some J with 1 ≤ J < K we have ui = +1 for 1 ≤ i ≤ J and
ui = −1 for J + 1 ≤ i ≤ K.

2. Computing the ordered boundary of the intersection of discs (OBID): Addi-
tionally to the specification of BID it holds here that consecutive segments
are listed consecutively in the output, i. e. x′

ji
= xji+1

for i 6= J , 1 ≤ i ≤ K.

Notice that we do not require here that the output segments are maximal
(which is the case if (aji

, bji
, uji

) = (ajl
, bjl

, ul) implies x′
i 6= xl for i, l ∈ {1, . . . , J}).

In contrast, both algorithms above provide maximality since the endpoints of
the circle segments are determined by an intersection with one of the other
circles or as endpoint of the input half circles. In fact, for OBID we can ob-
tain maximality easily in linear time by joining all non-maximal consecutive
segments (aji

, bji
, xi, x

′
i, uji

), (aji+1
, bji+1

, xi+1, x
′
i+1, uji+1

) with x′
i = xi+1 and

(aji
, bji

) = (aji+1
, bji+1

) together to (aji
, bji

, xi, x
′
i+1, uji

).
Clearly OBID, as a special case of BID, reduces to BID in linear time. For a

reduction from BID to OBID notice that that any segment γ = (a, b, x, x′, u) in

6

some sense links the segment before and after it. I.e., let γ′ = (a′, b′, z, z′, u′) and
u = u′ then γ′ is connected with γ iff x′ = z or z′ = x. One can use this obser-
vation for ordering the segments bounding ∂U in linear time by storing segments
at adresses determined by their endpoints. This is possible on computational
models that allow indirect addressing with real numbers like some of the RAM-
models in [3] or just by using hashing (with high probability). However since the
known lower bounds for sorting do not allow the use of such techniques, and also
the algebraic computation tree model does not allow to use computed values as
adresses, we have to distinguish the two problems.

We will now first consider OBID and show that it is at least as hard as sorting.
Moreover, OBID reduces to the convex hull problem in linear time. Then we
consider BID and provide lower bounds in the algebraic computation tree model.

3.1 Computing the ordered list of boundary segments

We now provide a linear time reduction of the sorting problem to OBID.

Theorem 1 The task to sort n distinct real numbers can be reduced in O(n) time

to the task to compute the ordered boundary of the intersection of n disks.

Proof. The idea is to place the numbers which we want to sort on the upper
half of a circle as centers of the disks. The ordered list of the lower segments
bounding the intersection then gives the centers of the disks in counterclockwise
order which respresents the reversed sorting of the input. See Figure 4 for an
illustration.

Formally the reduction is done as follows: Let z1, . . . , zn ∈ R the numbers to
be sorted. First in O(n) steps determine c = max1≤i≤n |zi|. For i = 1, . . . , n let
Di be the disk with center (zi, bi) on the upper halfcircle C with center 0 and

radius c, i.e. bi :=
√

c2 − z2
i and let r > c be arbitrary.

Let now (γ′
1, . . . , γ

′
K) be an orderd list of segments bounding D1∩· · ·∩Dn. First

in O(K) steps join successive segments belonging to the same circle. We obtain an
ordered list of maximal segments (γ1, γ2, γ3, . . . , γn+2) with γi = (a′i, b

′
i, xi, x

′
i, ui)

for 1 ≤ i ≤ n + 2. Moreover γ1, γ2 are upper bounds (ui = 1) and γi for 2 ≤ i ≤
n + 2 is a lower bound (ui = −1). The sorted ordering of z1, . . . , zn is now given
by a′n+2, . . . , a

′
3.

To see that the reduction is valid the essential observation is that here the
clockwise ordering of the boundary of ∂U yields a clockwise ordering of the centers
of the discs on C. This follows from the results in Lemma 2 below. Notice that
here all centers are vertices of the convex hull of the centers, and that all the
input circles contribute to the boundary, i.e., using notation from Lemma 2 Hr

consists of all centers.

Due to the Ω(n log n) lower bound for sorting, we obtain an Ω(n log n) lower
bound for the problem to determine the ordered boundary of the intersection
of n disks in the same computational models, when the operations used in the
proof (jumps on comparisons, multiplication and square root) are possible in that
model.

7

104−2−8

Figure 4: Illustration for the reduction in the proof of Theorem 1. One obtains
the sorted permutation of {−8,−2, 4, 10} by a clockwise traversal of ∂U , starting
at the point with maximum x-value.

The reduction in the proof of the above theorem is quite similar to Shamos’
reduction from sorting to the ordered convex hull problem of a point set (cf. [9]).
This is no surprise, since, as we will see in the following Lemma, the convex
hull problem and the problem to determine the boundary of intersecting disks of
equal radius are closely related. Let in the following d(p1, p2) denote the Euclidian
distance.

Lemma 2 Let S be a point set and let H ⊆ S be the set of vertices of the convex

hull of S. Let r > 0 be a radius, and let Dp be the disk with radius r and center

p with corresponding circle ∂Dp. Let U =
⋂

p∈S Dp with boundary ∂U .

Let h+
pp′ for p, p′ ∈ S, p 6= p′, be the halfspace of points q ∈ R

2 with d(p, q) ≤
d(p′, q), and let hpp′ = ∂h+

pp′ = {p | d(p, q) = d(p′, q)}. Let Fp =
⋂

p′∈S\{p} h+
p′p be

the set of points q for which p is a farthest point in S. Let rp = min{d(p, q) | q ∈
Fp}, and let Hr = {p ∈ H | rp ≤ r}.

Then the following holds:

1. ∂Dp ∩ ∂U = ∂U ∩ Fp for p ∈ S.

2. ∂U =
⋃

p∈S Fp ∩ ∂Dp =
⋃

p∈H Fp ∩ ∂Dp =
⋃

p∈Hr
Fp ∩ ∂Dp

3. U =
⋂

p∈H Dp =
⋂

p∈Hr
Dp.

4. Let p0, . . . , pK−1 be a clockwise ordering of Hr. Then ∂Dp0
∩ Fp0

, . . . ,

∂DpK−1
∩ FpK−1

is ∂U in clockwise ordering.

Proof.

1. Assume q ∈ ∂Dp ∩ ∂U then d(q, p) = r and d(q, p′) ≤ r for p′ ∈ S, since
otherwise q /∈ U . Hence q ∈ Fp.

Assume now q ∈ ∂U ∩ Fp. By q ∈ U ∩ Fp we have d(q, p′) ≤ d(q, p) ≤ r.
Hence, since q is on the boundary of U , d(q, p) = r and q ∈ ∂Dp.

8

2. ∂U ⊆ ⋃p∈S Fp ∩ ∂Dp since every q ∈ ∂U must be on ∂Dp for some p ∈ S.
Hence d(p, q) = r and d(p′, q) ≤ r for p′ ∈ S, which shows q ∈ Fp.

On the other hand Fp ∩ ∂Dp ⊆ ∂U for p ∈ S since q ∈ Fp ∩ ∂Dp implies
d(q, p) = r and d(q, p′) ≤ r for p′ ∈ S. Hence q ∈ ∂U .
⋃

p∈S Fp ∩ ∂Dp =
⋃

p∈H Fp ∩ ∂Dp since Fp = ∅ for p ∈ S \ H.
⋃

p∈H Fp ∩ ∂Dp =
⋃

p∈Hr
Fp ∩ ∂Dp since Fp ∩ Dp = ∅ for p ∈ H \ Hr.

3. Clearly, U ⊆ ⋂p∈H Dp ⊆ ⋂p∈Hr
Dp.

⋂

p∈Hr
Dp ⊆ U : Observe that the boundary of

⋂

p∈Hr
Dp is obviously equal

to
⋃

p∈Hr
Fp ∩ ∂Dp. By 2, we have that the boundary of

⋂

p∈Hr
Dp is equal

to ∂U . This implies also that
⋂

p∈Hr
Dp = U

4. Consider three consecutive segments γa, γb, γc which are in clockwise or-
der on ∂U , and let Pa, Pb, Pc denote the centers of the according circles
Da,Db,Dc with radius r. We will show that 0 ≤ ∠PcPbPa ≤ π, so that
there is right turn when one passes in straight lines from Pa to Pb to Pc.
The statment then follows by induction. See Figure 5 for an illustration of
the notions used in the proof.

Let Iab (Ibc) be the common point of γa with γb (γb with γc, respectively),
and let Dab (Dbc) be a circle of radius r with center Iab (resp. Ibc). Since Iab

is in distance r of both points Pa and Pb, Pa and Pb are on ∂Dab. Further
we know that Pa is in Dbc, since Ibc is in U ⊆ Da, and we know that Pb is an
intersection point of ∂Dab with ∂Dbc. Let γab denote the segment of ∂Dab

that passes from Pa to Pb in clockwise direction. We now show that γab is
in Dbc, i. e. γab ⊆ ∂Dab ∩Dbc. First observe that the angle ∠PbIabPa is less
than π since U is convex. Further it is clear that the segment ∂Dab \ Dbc

stretches more than a halfcircle. Since Pb, Pa ∈ Dbc it follows γab ⊆ Dbc.
Similarly, let γbc denote the segment of ∂Dbc that passes from Pb to Pc in
clockwise direction. Here we obtain similarly γbc ⊆ Dab. So if one traverses
∂(Dab ∩ Dbc) from Pc to Pa counterclockwise, one encounters Pb along the
way, which shows that 0 ≤ ∠PcPbPa ≤ π since Dab ∩ Dbc is convex.

γab

Pb

Pc

Pa

γb

γc
γa

IabIbc

DabDbc

Figure 5: Illustration for the proof of Lemma 2 Item 4.

9

In the reduction in the proof of Theorem 1 we used the observation due to
Lemma 2 that in case all points in S are on a circle of radius c then rp = c for
any p ∈ S. Then choosing r > c implies Hr = S and that a sorted describtion of
∂U gives a clockwise ordering of S.

Since every segment of ∂U belongs to a circle whose center is a vertex of the
boundary of the convex hull of S (Lemma 2.3) one can use the output sensitive
algorithm from [8] for the convex hull problem to obtain an algorithm for the
computation of ∂U that is faster in case the convex hull is small. Using the algo-
rithm of [8] that produces the convex hull of a set of n points in time O(n log K ′)
where K ′ is the complexity of the convex hull one obtains an algorithm for the
intersection of equal sized disks with time bound O(n log K ′) + O(K ′ log K ′) =
O(n log K ′).

In fact, from Lemma 2 Item 4 one can derive a linear time reduction that
from the vertices of the convex hull (i.e. the set H) when given in clockwise order
computes the ordered boundary of U . To see this, assume first that we already
know Hr = {q0, . . . , qk−1} listed in clockwise order. Lemma 2 Item 4 then implies
that ∂Dqi

∩ ∂U = ∂Dqi
∩ h+

qi−1qi
∩ h+

qi+1qi
with i ∈ Zk (i.e. the operations are

modulo k). So if we know Hr the ordered boundary of U can be computed in
linear time.

Let now H = {p1, . . . , pn} listed in clockwise order. For i = 1 to n we

build a doubly linked list H
(i)
r by considering only the intersection of the discs

for p1, . . . , pi, such that Hr = H
(n)
r . Initially, H

(0)
r = ∅. For the ith step let

H
(i−1)
r = {q1, . . . , ql} ⊆ {p1, . . . , pi−1} be already computed, and listed in clock-

wise order. Now pi is eventually added in between q1 and ql. If ∂Dpi
∩h+

q1pi
∩h+

qlpi
=

∅ then H
(i)
r := H

(i−1)
r and pi is not added. Otherwise pi will be added but

some neighbouring points may be removed from H
(i−1)
r : let j = 1, 2, 3 . . . until

∂Dqj
∩h+

piqj
∩h+

qj+1qj
6= ∅, which means that the circles around q1, . . . , qj−1 do not

contribute to ∂U . Similarily let k = l, l−1, l−2, . . . until ∂Dqk
∩h+

piqk
∩h+

qk−1qk
= ∅.

Now set H
(i)
r := {qj , . . . , qk, pi}.

Clearly the update in the ith step needs linear time in the number of removed

or added elements when H
(i)
r is organized as a doubly linked list. Since every point

of H is added and removed at most once this give overall linear time complexity.

Theorem 3 OBID reduces in linear time to the ordered convex hull problem.

It is not clear whether a similar efficient reduction in the reverse direction is
possible. Though if the radius r is big enough then Hr = H and therefore the
centers of the circles involved in the boundary of U are exactly the vertices of the
convex hull of S, however the exact value when r is “big enough” will depend on
the input values.

3.2 Computing the set of boundary segments

We now prove a lower bound for BID in the algebraic computation tree model
using the approach of [4]. Let us briefly introduce the model. An algebraic
computation tree is a tree consisting of branching nodes, computation nodes and

10

leaf nodes. Each computation node v has only one child and is associated to a
variable fv and an operation

fv := y ◦ z or fv := c or fv :=
√

y

where y, z are either input variables from {x1, . . . , xn} or variables associated to
ancestors of v in the tree, the operation ◦ ∈ {+,−,×, /}, and c ∈ R is a constant.
A branching node v is associated to a test

y > 0 or y ≥ 0 or y = 0

where y is a variable associated to an ancestor of v. A leaf node specifies a list of
output variables (y1, . . . , yl) which are all associated to some ancestor node. In
case the computation tree is used for some decision problem it suffices to label
the leaves with yes or no.

A computation proceeds along a path in the tree. So the worst case time
complexity of an algorithm specified by a computation tree T is given by the
height h(T) of the tree. Observe that one can unroll Algorithm II to obtain
an algebraic computation tree Tn of height h(Tn) = O(n log n) that on input of
(a1, b1, r1, . . . , an, bn, rn) computes the boundary of the intersection of the associ-
ated disks.

The results in [4] apply to decision problems so it is necessary to define an
appropriate decision problem that easily reduces to the functional problem. Let
us consider the following problem.

regular-n-gon = {(s, a1, b1, . . . , an, bn) |(ai, bi) are the vertices of a regular n-gon

and a2
i + b2

i = s2 for 1 ≤ i ≤ n}

So (a1, b1, . . . , an, bn) ∈ regular-n-gon iff every pi := (ai, bi) lies on the circle
centered at the origin with radius s and for some permutation σ d(pσ(i), pσ(i+1)) =
2 sin π

n
for 1 ≤ i < n (σ puts the points in a clockwise or a counter-clockwise

ordering).
For some w = (r, a1, b1, . . . , an, bn) ∈ R

2n+1, n ≥ 2 with r > s > 0 let Di

be the disk of radius r with center (ai, bi) and let Uw = D1 ∩ . . . ∩ Dn. Observe
that (s, a1, b1, . . . , an, bn) ∈ regular-n-gon iff a2

i + b2
i = s2 for 1 ≤ i ≤ n and Uw is

contained in a disk D centered at the origin (0, 0) with radius

r′ = s

√

c2 +
r2

s2
− 1 − c where c = cos

π

n
.

In fact, as basic geometric considerations show, (s, p1, . . . , pn) forms a regular
n-gon iff all the vertices q of ∂Uw are at distance r′ from the origin.

A circle segment γk = (a′k, b
′
k, xk0, xk1, uk) has the endpoints qk0 = (xk0, yk0)

and qk1 = (x′
k1, y

′
k1) with yki = b′k + uk

√
r2 − (a′k − xki)2 for i = 0, 1. Hence, if

(γ1, . . . , γK) is a describtion of the boundary of Uw where γk = (a′k, b
′
k, xk0, x

′
k1, uk)

for 1 ≤ k ≤ K then (s, a1, b1, . . . , an, bn) ∈ regular-n-gon iff a2
i + b2

i = s2 for
1 ≤ i ≤ n, and the endpoints qk0, qk1 are at most at distance r′ from the origin
for 1 ≤ k ≤ K. This consideration shows that an algebraic computation tree for

11

the problem to determine the boundary of Uw can be transformed to an algebraic
computation tree for regular-n-gon such that the depth is increased by O(n).

Now we use the main result from [4] to prove a lower bound for regular-n-gon.
Let us first introduce the following notation. For some set W ∈ R

n let #W denote
the number of connected components W consists of.

Lemma 4 ([4]) Let W ∈ R
n and let T be an algebraic compution tree deciding

W with height h(T). Then

h(T) ≥ log6 #W − n log6 3 (6)

Observe that regular-n-gon consists of n! connected components: In fact, for
any permutation σ : {1, . . . n} → {1, . . . , n} there is a different connected compo-
nent Vσ given by all the rotations of the σ-permuted n-gons. I.e.

Vσ =

(s, a1, b1, . . . , an, bn)

∣
∣
∣
∣

(
ai

bi

)

=

(
s cos(π

n
σ(i) + β)

s sin(π
n
σ(i) + β)

)

for
1 ≤ i ≤ n,

0 ≤ β < 2π
n

,
s > 0.

.

This proves the lower bound.

Theorem 5 Let T be an algebraic computation tree of height h(T) deciding regular-

n-gon. Then h(T) ∈ Ω(n log n).

And due to the above reduction:

Theorem 6 Let T be an algebraic computation tree of height h(T) that on input

w = (r, a1, b1, . . . , an, bn) computes the boundary of Uw. Then h(T) ∈ Ω(n log n).

This allows us to state the optimality of Algorithm II.

4 Summary and Discussion

To visualize functional categories of interesting genes GoMiner [11] can be used to
annotate genes with functional terms. Due to the fact that one gene may belong
to multiple functional categories, this analysis usually reveales a complex pattern
of terms. To identify the major functional categories differentiating cell types,
Euler/Venn diagramms approximated by polygons proved to be useful [7].

Here, the Euler/Venn diagram application served as a motivation for inves-
tigating the complexity of finding the intersection of multiple circles. We have
described two algorithms (one trivial and one optimal) for this task. To find
the intersection of n circles a running time of O(n log n) is needed. If on the
other hand all combinations of circles are intersected the overall running time of
computing all areas would lead to

∑n
i=1

(
n
k

)
O(k log k) by directly applying our

optimal algorithm to every circle combination. This can further be reduced to
∑n

i=1

(
n
k

)
O(k) by reusing already intersected circle segments.

12

References

[1] P. K. Agarwal, M. Pellegrini, and M. Sharir. Counting circular arc intersec-
tions. SIAM Journal of Computing, 22(4):778–793, 1993.

[2] P. K. Agarwal and M. Sharir. Davenport-schinzel sequences and their geo-
metric applications. Technical report, Duke University, 1995.

[3] A. M. Ben-Amram and Z. Galil. Topological lower bounds on algebraic
random access machines. SIAM Journal on Computing, 31(3):722–761, 2001.

[4] M. Ben-Or. Lower bounds for algebraic computation trees (preliminary re-
port). In STOC ’83: Proceedings of the fifteenth annual ACM symposium on

Theory of computing, pages 80–86. ACM Press, 1983.

[5] T. M. Chan. Reporting curve segment intersections using restricted predi-
cates. Computational Geometry, 16(4):245–256, 2000.

[6] J. W. Harris and H. Stocker. Handbook of Mathematics and Computational

Science. Springer, 1998.

[7] H. A. Kestler, A. Müller, T. M. Gress, and M. Buchholz. Generalized venn
diagrams: a new method of visualizing complex genetic set relations. Bioin-

formatics, 21(8):1592–5, 2005.

[8] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm.
SIAM Journal on Computing, 15(1):287–299, 1986.

[9] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-
Verlag, 1985.

[10] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and their Geo-

metric Applications. Cambridge University Press, 1995.

[11] B. R. Zeeberg, W. Feng, G. Wang, M. D. Wang, A. T. Fojo, M. Sunshine,
S. Narasimhan, D. W. Kane, W. C. Reinhold, S. Lababidi, K. J. Bussey,
J. Riss, J. C. Barrett, and J. N. Weinstein. GoMiner: A Resource for Bi-
ological Interpretation of Genomic and Proteomic Data. Genome Biology,
4:R28, 2003.

13

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel

Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

