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On the different notions of pseudorandomness

M. Maucher∗ U. Schöning† H.A. Kestler‡

Abstract

This article explains the various notions of pseudorandomness, like
Martin-Löf randomness, Kolmogorov complexity, Shannon entropy and
quasi-randomness. We describe interconnections between these notions
and describe how the non-computable notions among them are relaxed
and used in practice, for example in statistics or cryptography. We give
examples for pseudorandom generators relating to these notions and list
some dependancies between the quality of pseudorandom numbers and its
impact on some properties of randomized algorithms using them.

Keywords: pseudorandomness, algorithmic randomness, pseudoran-
dom number generation

1 Introduction

Random numbers play a vital role in many areas of computer science. In cryp-
tography, for example, pairs of public and private keys are chosen at random. In
simulation, only statistical facts about a physical phenomenon may be known.
In optimization, choices are frequently made at random when the best choice
cannot be calculated effectively. And often, probabilistic algorithms are faster
than any known deterministic algorithm for the same problem. But random
numbers are not an integral part of a computer system. Since computers are
purely deterministic systems, random behavior only occurs in the case of a sys-
tem error. The only way to obtain “real random numbers” in a computer is by
using random input from outside the system. Options include using the system
time, measuring times between a user’s keystrokes, or measuring other physi-
cal effects that are supposed to be random. Since input is usually processed
much slower than internal data and, depending on the source of randomness,
random numbers may only be available at a slow rate, a common approach
uses these random numbers as a so-called seed for a longer sequence of pseu-
dorandom numbers: From this seed, a much longer sequence is calculated in
a deterministic way, assuming that this new sequence leads to a similar result
as a sequence of real random numbers of the same length would. One of the
first methods of this kind was the linear congruential generator, short lcg. This
generator starts with a random number x (the seed) and successively applies a
linear function f(x) = ax + b mod m to the last value, generating a sequence
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(x, f(x), f2(x), f3(x), . . .), assuming that this sequence can be used instead of a
sequence of random numbers.

Randomness is used with different goals in mind: In cryptography, the main
goal is to provide numbers that cannot be guessed by an attacker; in simulation,
using the random numbers provided by the computer should lead to the same
result as in a real world process; in optimization, expected running times or
results should be similar to those when using random numbers. Pseudorandom
numbers have another property that is valuable in some cases: By saving the
seed, we can efficiently save the whole pseudorandom sequence. This allows
to reproduce simulation results, or to synchronize cryptographic processes that
need to share sequences of random numbers.

In this paper, we will sum up various methods to define randomness and
show the advantages and disadvantages of these notions as well as equivalences
between them. We give some examples where pseudorandom numbers are used,
how such numbers can be produced and where their quality affects the outcome
of algorithms.

Figure 1: Various notions of pseudorandomness

In Section 2, we will sum up Martin-Löf’s definition of algorithmic random-
ness, Kolmogorov’s notion of incompressibility, explain the basics of martingale
theory and predictability, and give some insight into Shannon’s information the-
oretic entropy. Additionally, the notion of quasi randomness will be explained.
In Section 3, we will list the most commonly used pseudorandom number gen-
erators, those used in practice as well as those found in some theoretical results.
In section 4, we will give an overview of connections between the quality of
pseudorandom generators and their influence on algorithms.
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2 Notions of pseudorandomness

In this section, we introduce various methods to measure the “randomness”
in a sequence of bits or numbers. After some mathematical preliminaries, we
will begin with the notion of Kolmogorov complexity. We will then move on
to statistical tests and Per Martin-Löf’s definition of algorithmic randomness,
describe the theory of martingales and their connection to predictability and
distinguishability and explain C.E. Shannon’s notion of information-theoretic
entropy.

2.1 Preliminaries

In this paper, N will denote the set of natural numbers, R the set of real numbers
and R≥0 the set of non-negative real numbers.

For any finite set Σ, let Σ∗ be the set of all finite sequences of elements from
Σ. E.g. {0, 1}∗ is the set of all finite bit strings. By Σ∞ we denote the set of
all infinite sequences over Σ. The empty sequence is denoted by ⊥.

For a finite sequence x = x0x1 . . . xn−1, l(x) denotes the length of x, in this
case l(x) = n.

Definition 1 A random experiment is defined by a sample space S and a proba-
bility distribution D : S → R. A random experiment assigns a random variable,
usually denoted by X, Y or Z, a value, drawn from S according to distribution
D. If X is D-distributed, short X ∼ D, then for any s ∈ S, X = s with proba-
bility D(s). We write PD[X = s] to express the probability of X = s under the
distribution D. If D is clear from the context, we simply write P [X = s].

Definition 2 A sequence of random numbers X1, X2, . . . is k-wise indepen-
dent if any subsequence Xi1 , . . . , Xik of length k is independent, i.e. for any
x1, . . . , xk

P [Xi1 = x1, . . . , Xik = xk] =
k∏
j=1

P [Xij = xj ] .

For k = 2 we call such a sequence pairwise independent.

When talking about computability and complexity, a standard model of
computation is needed – a model of a simple but powerful computing device.
It should be simple enough to allow elegant proofs about what it can or can’t
do; and it should be powerful enough so that it can compute the same functions
that a modern computer can compute. The Turing machine is the standard
model of computation that unites these properties.

Definition 3 A Turing machine M is a simplified model of a computer. It
consists of several (finitely many) states, where one of these states is the initial
state and one or more states are final states. The memory is represented by these
states and a one-dimensional tape that is infinitely large in both directions. Each
position of the tape may contain an element of the work alphabet Γ, which
contains a special symbol �, called “blank”. The configuration of the Turing
machine can be described by the actual state, the position on the tape, and the
content of the tape. At the start of a computation, the Turing machine is in the
inital state, the tape contains only the input, expressed in the input alphabet
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Σ ⊆ Γ − {�}, with all other positions on the tape equal to �, and the position
of the machine is at the leftmost symbol of the input. The behavior of a Turing
machine during a computation is determined by its transition rule. For each
state and symbol at the actual tape position, the transition rule specifies the
new symbol at that position, the new state and the new position at the next
time step. The new position may differ from the last one by −1, 0 or 1, i.e the
machine can move one position to the left or right, or stay at its current position.
The computation ends when the machine reaches a final state. The result of the
computation is defined as the content of the tape after the computation, excluding
� symbols. If the tape only consists of � symbols, the result is the empty string
⊥. If the machine does not stop in a final state (i.e. runs in an infinite loop of
non-final states), the result is undefined.

We say that a Turing machine M computes a function f : {0, 1}∗ → {0, 1}∗,
if for every input x ∈ {0, 1}∗, M computes f(x). M computes a function f :
N→ N, if for every x ∈ N, M computes the binary representation of f(x) if its
input is a binary representation of x. Computations of functions f : N→ {0, 1}∗
and f : {0, 1}∗ → N are defined analogously.

Now that we have defined our model of computation, we can talk about
computability:

Definition 4 A function f : {0, 1}∗ → {0, 1}∗ is computable (or recursive),
if there is a Turing machine M that computes f . We say a set S ⊆ {0, 1}∗ is
computable (or recursive), if its characteristic function cS is computable with

cS(x) :=
{

0 if x /∈ L
1 if x ∈ L

A set S ⊆ {0, 1}∗ is recursively enumerable if S is the range of a total
computable function f : {0, 1}∗ → {0, 1}∗, i.e. S = {f(1), f(2), f(3), . . .}.

A function f : N→ N is recursively enumerable, if its graph Gf is recursively
enumerable, with Gf := {(x, y) | y ≤ f(x)}.

Since any infinite bit sequence x ∈ {0, 1}∗ can be interpreted as a function
f : N → {0, 1} or set S ⊆ N, the definition of recursive enumerability can be
applied to sequences.

Even if we know that a function or set is computable, we might want to be
more precise about the difficulty of computing this set or function. To this end,
we need the definitions of some standard complexity classes.

Definition 5 For any Turing machine M , define timeM (x) as the number of
steps of M with input x until M reaches a terminal state.

A language L ⊆ {0, 1}∗ lies in the complexity class P if L is accepted by
a Turing machine M and there exists a polynomial p such that for every x ∈
{0, 1}∗, timeM (x) ≤ p(|x|). I.e. M ’s running time increases only polynomially
in the length of the input x.

A language L ⊆ {0, 1}∗ is in BPP if a Turing machine M and two polyno-
mials p and q exist with the following properties:

1. For every x ∈ {0, 1}∗ and every y ∈ {0, 1}q(x), timeM (x, y) ≤ p(|x|)
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2. If Y ∈ {0, 1}q(x) is a uniformly distributed random variable,

P [M(x, Y ) = cL(x)] ≥ 2
3

for every x ∈ {0, 1}∗ ,

i.e. M computes the characteristic function of L, and gives a correct
answer with probability at least 2/3.

A language L ⊆ {0, 1}∗ lies in the complexity class P/poly if there is a Turing
machine M and two polynomials p and q with the following properties:

1. For every x, y ∈ {0, 1}∗, timeM (x, y) ≤ p(|x|),

2. For every n ∈ N there exists a yn ∈ {0, 1}q(n) such that for every x ∈
{0, 1}n M(x, yn) = cL(x).

Essentially, the languages in all complexity classes in Definition 5 are ac-
cepted by some Turing machine M in polynomial time. However, M always
(except for the class P) may depend on a so called “advice string” y: For L to
be in BPP, a large partof all candidates for y must lead to the correct result;
for P/poly, there is only one advice string for every length of the input; for NP,
the existence of one advice string per input is sufficient.

2.2 Kolmogorov complexity and compressibility

Kolmogorov complexity was independently introduced by Solomonoff and Kol-
mogorov. It measures with how many bits an object, usually a binary string,
can be described, where every object has to be described in a given “language”.
A core principle of Kolmogorov complexity is non-compressibility: If we want
to find a short description for a bit string of length n, saving at least l bits, we
only have a very limited choice: There are only 2n+1−l strings of length up to
n − l, so we can compress at most a fraction of 2−l+1 of our strings. The rest
can’t be compressed by those l bits. Kolmogorov complexity uses this fact to
disqualify strings as non-random: The probability that a random string can be
compressed by l bits is about 2−l. So, if a string can be compressed a lot, it is
probably not random.

Definition 6 Let M1,M2,M3, . . . be a recursive enumeration of all Turing ma-
chines. By Mi(x) we denote the output of Mi when it’s run with input x. A
universal Turing machine is a Turing machine Mu with

Mu(i, x) = Mi(x) .

The Kolmogorov complexity C(x) of a string x is defined as

C(x) := min{l(i) |Mi(ε) = x} ,

where l(i) is the length of i’s binary representation. An infinite sequence s ∈
{0, 1}∞ is Kolmogorov-random, if for every prefix s1..n of s the condition C(s1..n) ≥
n− c holds for a constant c.

According to this definition, the Turing machine Mu acts as an interpreter
of other Turing machines: It is able to simulate any other Turing machine with
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any input. That way, every binary string x can be described by describing a
Turing machine that outputs x.

In the definition of Kolmogorov complexity, no concrete universal Turing
machine is given, so that we could use different universal Turing machines in the
definition. Actually, using a different Turing machine wouldn’t be a big change.
The invariance theorem states that using different universal Turing machines
only results in a constant difference between the Kolmogorov complexities of
any string x, where this constants only depends on the two universal Turing
machines, but not on x.

A major disadvantage of Kolmogorov complexity is its non-computability.
So it is not possible to exactly compute C(x) for all strings x. It is, however,
possible to give an approximation of C(x). Looking for the shortest description d
of a string x is equivalent to compressing x, where d can then be decompressed by
the universal machine Mu. We can approximate this compression with standard
compression algorithms, like zip or bzip2. For a fixed compression algorithm
Z we can then define a string to be (Z, k)-random if Z cannot compress the
string by more than k bits.

An interesting approach to describe a sequence of numbers is to assume that
the sequence was generated by a linear recursion of some degree k, i.e. for all
i > k,

Xi = a0 +
k∑
j=1

ajXi−j

for some coefficients a1, . . . , ak. In the case of a binary sequence, all these
numbers are 0 or 1 and the recursion corresponds to a linear feedback shift
register. A sequence can then be described by X1, . . . , Xk and a1, . . . , ak. For
any given sequence, the linear degree k of that sequence can be efficiently found
by the Berlekamp-Massey algorithm [1].

Figure 2: A linear feedback shift register with the recursion Xi = Xi−3 +Xi−7

Definition 7 For a finite sequence x = (x1, . . . , xn) the linear complexity of x,
short lc(x), is the smallest k such that for all i > k,

xi = a0 +
k∑
j=1

ajxi−j

for some parameters a0, a1, . . . , ak.
For an infinite sequence x, its linear complexity is a function lcx with

lcx(i) = lc(x1, . . . , xi) .

For example, the linear complexity of a linear congruential generator is 1. It
is easy to see that the linear complexity of every sequence x ∈ {0, . . . ,m− 1}2k
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is at most k: For every i > k, suppose xi is determined by the equation xi =
a0 +

∑k
j=1 ajxi−j . Then we can find a0, a1, . . . , ak by solving the system of all

these equations for xk+1, . . . , x2k.

2.3 Statistical tests and Martin-Löf randomness

In statistics, when sampling from a distribution D, a common method to test
if a sample X was really drawn from distribution D is to divide the sample
space S into two sets: the set S1 of “typical” outcomes and the set S0 of “non-
typical” outcomes such that P [X ∈ S0] = ε for some small ε. If X ∈ S0, that
variable could still be sampled according to D, but there is at least a reason to
be suspicious.

Definition 8 Let S be a sample space, D be a probability distribution on S and
X a random variable with X ∼ D.

A function f : S → {0, 1} with P [f(X) = 1] = 1 − ε is called a statistical
test for D with confidence level ε. We say a sample x passes the test f (or f
accepts x) if f(x) = 1. Otherwise x doesn’t pass f (or f rejects x).

For example, consider a uniform distribution on the set S = {0, 1}32 of all
32-bit strings. We could just look at the first 10 bits of a random string X
and reject X if each of these 10 bits is a zero. Only a fraction of 2−10 of all
strings in S start with 10 zeros, so we would reject a true random sample with
a probability lower than 0.1%. This confidence level could be easily changed by
choosing an appropriate number of bits to consider.

Note that in the definition above, f computes the characteristic function of
S1. It is not clear which elements of S should belong to S0: from a statistical
point of view, all sets S0 with P [X ∈ S0] = ε are equally well suited. In
practice, S1 often consists of those sequences that have desirable properties, like
equidistribution or pairwise independence, or simply properties that are easy
and fast to compute. Ideally, a good pseudorandom sequence would pass all
statistical tests, at least with probability of about 1−ε. However, pseudorandom
generators are usually designed to output exponentially many numbers from a
small seed, say 2n numbers from a seed of length n. So when outputting a
sequence of length l, only one out of 2n sequences can be output, while a true
random process would output one out of all possible 2l sequences. By putting all
those 2n sequences into S0, we can construct a statistical test where ε decreases
exponentially when the sequence length l is increased. So technically, for every
pseudorandom generator g and every confidence level ε, there is a statistical test
with that confidence level that rejects the output of g. It is not clear, however,
if this can be done by an efficient test. To be practically usable, a statistical
test’s running time should be a polynomial in 1/ε.

The following properties are commonly tested by statistical tests:

Frequencies of patterns The simplest of these tests just count the number
of zeros or ones in a sequence. These should not differ too much. More
sophisticated tests count frequencies of certain patterns, either overlapping
ones or non-overlapping ones. Instead of counting the frequencies of all
patterns up to a certain length, one can also restrict oneself to patterns of
special forms. Examples for this kind of test are the run test, which counts
the length of runs of zeros or ones (either in the whole sequence or in each
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k-bit block) or the poker test, which divides the set of all patterns into
classes known from the poker game (like one pair, two pairs, full house,
etc.).

Compressibility This kind of test tries to compress a given sequence. A
truly random sequence usually isn’t compressible (see section 2.2). Com-
pression can be measured by methods like the Lempel-Ziv algorithm, the
Burrows-Wheeler transform or the Berlekamp-Massey algorithm. Another
approach can be made via non-lossless compression: A cosinus or fourier
transform can show if a sequence can be approximated by few base vectors
of a given transform.

Random walks Tests from this class use the bits of a sequence to run a simple
randomized algorithm. The random excursion test, for example, simulates
a random walk on a line, walking in one direction each time a “0” comes
up, and walking in the other direction for every “1”. This random walk
shouldn’t wander too far away from the starting point, but it shouldn’t
stick to it, either. This test is generalized in the cumulative sum test, that
interprets bit blocks as integers and examines their cumulative sums.

More There exist many more tests. Actually any property of a sequence can be
used to design a statistical test, as long as that property can be measured
and something about its stochastic behavior when observed on a random
sequence is known. Depending on the distribution of such a property, there
are various tests that may be appropriate, like the χ2 test for testing the
variance of a value under a normal distribution.

For further insight into statistical tests, see [2].
A more formal approach concerning statistical tests and randomness has

been made by P. Martin-Löf in 1966 [3]. He formally defined algorithmically
random sequences of infinite length.

Definition 9 A recursively enumerable set T ⊆ N×{0, 1}∗ is a Martin-Löf test
if, with Tn := {t ∈ {0, 1}∗ | (n, t) ∈ T},∑

t∈Tn

2−|t| ≤ 2−n.

A sequence s in {0, 1}∞ passes the test T if

s /∈ ∩n ∪t∈Tn
{u ∈ {0, 1}∞ | t is a prefix of u} .

A sequence s is Martin-Löf random, if it passes all Martin-Löf tests.

For any n ∈ N, the set Tn specifies a set of prefixes such that a random
string in {0, 1}∗ begins with a prefix from Tn with probability at most 2−n.
For example, consider the test T = {(n, 0n+1), (n, 1n+1) | n ≥ 1}. Then Tn =
{0n+1, 1n+1}, i.e at “confidence level” n, the test would reject any string where
the first n + 1 bits are equal. According to the definition, this test would only
reject the infinite string that only consists of ones and the one that only consist
of zeros.

If s is a sequence drawn randomly under the uniform distribution from
{0, 1}∞ then for any fixed t ∈ {0, 1}∗, t is a prefix of s with probability 2−|t|.

8



Therefore, for any n, the set ∪t∈Tn
{u ∈ {0, 1}∞ | t is a prefix of u} is a set of

measure at most 2−n. Thus, the set ∩n ∪t∈Tn
{u ∈ {0, 1}∞ | t is a prefix of u}

is a set of measure 0. Since there are only countably many Martin-Löf tests,
and the union of countably many sets of measure 0 has itself measure 0, the set
of sequences that are not Martin-Löf random has measure 0. This means that
the set of Martin-Löf random sequences has measure 1, i.e any randomly drawn
sequence is Martin-Löf random with probability 1.

It has been shown that a universal Martin-Löf test U exists such that for
any Martin-Löf test T , T is included in U , i.e. there is some constant c such
that for all n

Tn+c ⊆ Un ,

where c may depend on T . In other words, this universal test on its own is able
to detect the non-randomness of any sequence, and a bit sequence x ∈ {0, 1}∞
is Martin-Löf random if and only if it passes the universal test U .

Every computable sequence x can be transformed into a Martin-Löf test Tx =
{(n, u) | u is a prefix of x with l(u) = n}. Now the sequence x will not pass
the test Tx. This shows that no computable sequence is Martin-Löw random,
analogously to the fact that such a sequence is not Kolmogorov random, since
it can be described by a Turing machine of some fixed length. Actually, it was
shown by Martin-Löf that the notions of Komogorov randomness and Martin-
Löf randomness are equivalent.

Note that there is no efficiency requirement for these statistical tests. Thus
only a very restricted version can be used in practice: Efficiently testing for
randomness would be limited to a certain number of tests, and only to efficiently
computable tests. With these restrictions sequences that are not Martin-Löf
random might still look random to a set of efficiently computable statistical
tests.

2.4 Martingales and predictability

Another method to look at randomness is the point of view of a gambler: Sup-
pose a betting game where coins are thrown one after the other. A player starts
with a capital of c and before each coin is thrown will bet some amount c′ on
the outcome of “heads” and c − c′ on the outcome of “tails”. The player’s bet
on the correct outcome will be doubled, the other is lost. With a perfectly
random coin, the game is fair and the expected gain is equal to 0. However, if
there exists a strategy that will consistently win, then we might suspect that
the sequence is not random.

Definition 10 A martingale is a function m : {0, 1}∗ → R≥0 with

m(w) =
1
2

(m(w0) +m(w1)) .

A martingale m succeeds on an infinite sequence s if

lim sup
n→∞

m(s1..n) =∞ .

Here, the function m(w) describes a player’s capital after the bits of w have
been thrown, m(w0) is the player’s capital after an additional 0, and m(w1)
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after an additional 1. This corresponds to a betting strategy where m(w0)/2 is
bet on a “0”, and m(w1)/2 is bet on a “1”.

It was shown by Schnorr [4] that a sequence s is Martin-Löf random iff s is
not succeeded by any recursively enumerable martingale.

A martingale always has access to all bits of w. When restricting ourselves
to martingales with a limited memory of the last k bits, then a pseudorandom
generator that outputs k+ 1-wise independent numbers could not be succeeded
by such a limited martingale.

Additionally, we could restrict martingales to efficiently computable func-
tions. This leads to a slightly different view on randomness, mainly found in
cryptography:

Definition 11 Let Dn be a probability distribution on {0, 1}n and X a random
variable with X = (X1, . . . , Xn) ∼ Dn. An algorithm A is an ε-predictor for
Dn if for some i < n, it predicts Xi from X1, . . . , Xi−1 with probability at least
1
2 + ε, i.e.

P [A(X1, . . . , Xi−1) = Xi] ≥
1
2

+ ε .

Now if we know that a sequence of random bits is distributed according
to a distribution Dn, we can use predictors to guess some bits in advance – if
those predictors exist. But suppose the sequence is distributed according to the
uniform distribution Un on n-bit strings. Then no matter how we guess the
outcome of an arbitrary bit of that sequence, we can only guess the correct bit
with probability 1

2 . That is, if A is an ε-predictor for D, it behaves differently
for input distributions Dn or Un. This leads us to the next definition, that of a
distinguisher.

Definition 12 Let Dn and D̃n be two probability distributions on {0, 1}n, and
X,Y two random variables with X ∼ Dn and Y ∼ D̃n. Then an algorithm A
is an ε-distinguisher for Dn and D̃n, if

|P [A(X) = 1]− P [A(Y ) = 1]| ≥ ε .

It can be shown that an ε-distinguisher for a distribution and the uniform
distribution exists if and only if an ε-predictor for that sequence exists. For a
proof, see for example [5].

In cryptography, the notions of distinguishers and predictors can be used to
define cryptographic security of a sequence. In this setting, a sequence (or the
pseudorandom generator that produces it) is defined as cryptographically secure
if there is no efficient distinguisher for that sequence. Here it is assumed that the
seed is chosen uniformly among all possible seeds. A distinguisher is “efficient”
if it runs in polynomial time, i.e. if it’s contained in an efficient complexity class
like BPP.

Definition 13 A sequence of distributions D = (D1, D2, D3, . . .) is called a
distribution ensemble, if for any i ∈ N, Di is a probability distribution on {0, 1}i.
Let Xi be random variables with Xi ∼ Di for all i ∈ N, and let Ui denote the
uniform distribution on {0, 1}i for all i ∈ N. Then the probability ensemble D
is cryptographically pseudorandom if no polynomials p(n) and q(n) exist such
that for each n there exists a 1

q(n) -distinguisher for Dn and Un with running
time p(n).
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Until today, it is not known if pseudorandom distribution ensembles can be
efficiently generated. In cryptography, being able to generate pseudorandom
sequences from smaller seeds would prove very useful: Sharing the secret seed
of such a sequence would allow two parties to efficiently share the whole sequence
and thus have access to a common source of bits that can’t be distinguished from
a source of truly random bits by any efficient algorithm.

2.5 Shannon Entropy

In 1948, C.E. Shannon defined a measure of randomness which was the founda-
tion of information theory, a new scientific discipline [7]. Unlike other measures
that define the randomness of single sequences, entropy measures the random-
ness of a stochastic process, resp. that of a random distribution.

Definition 14 Let S be a sample space, D a probability distribution on S and
X a random variable with X ∼ D. Then

H(X) := −
∑
s∈S

P [X = s] log2 P [X = s]

is the Shannon entropy of X. The minimum entropy of X, Hmin(x), is defined
as

Hmin(X) := min
s∈S
{− log2 P [X = s]} .

For a given sample space S, we always have 0 ≤ H(X) ≤ log2 |S|, where
H(X) reaches its maximum when X is uniformly distributed in S and its min-
imum when P [X = s] = 1 for an element s ∈ S. It can be shown that Shannon
entropy of a random variable X on S is a lower bound for the average code
word length for any code over S. On the other hand, there always exists a code
that maps every element s ∈ S to a code word of length d− log2 P [X = s]e, the
so-called Shannon-Fano code. Therefore, for the average codeword length L of
any optimal code for S the following inequality holds:

H(X) ≤ L < H(X) + 1 .

Note that for any random variable X, the entropy of X cannot be increased
by deterministic methods. I.e. for any function f , H(X) ≥ H(f(X)). Therefore,
the entropy of a pseudorandom sequence will never surpass the entropy of that
sequence’s seed.

While Kolmogorov complexity and its equivalent notions measure the ran-
domness of single strings, Shannon entropy measures the randomness of a prob-
ability distribution on a set of elements. But since both notions are related to
the lengths of descriptions or codes of elements, there is an elegant connection
between these two notions: If the probability function p(x) := P [X = x] is
computable, then

H(X) ≤
∑
s∈S

P [X = s]K(s) ≤ H(X) + cp ,

where cp is a non-negative constant that only depends on the function p. This
means that Kolmogorov complexity gives us codeword lengths of a universal code
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that has almost optimal average length (up to a constant added term) for any
distribution on the set of all strings, as long as this distribution is computable.

Note that while the Shannon entropy of a random variable X can’t be in-
creased by applying any function f to X, Kolmogorov complexity of a string x
may well be increased by applying a function f to it. As long as f is computable,
f ◦ p is still computable and the inequality above still holds, but the constant
cf◦p may be greater than cp.

2.6 Quasirandom sequences

Algorithms following the Monte Carlo method draw many random samples from
a given sample space, perform determinstic computations on these samples and
then recombine the results. For example, an integral

∫ 1

0
f(x)dx can be approxi-

mated by the sum 1
N

∑n
i=1 f(xi), where x1, x2, . . . , xN is a sequence of random

numbers in the interval [0, 1]. Since the result is largely based on the set of sam-
ples, these methods depend on a good quality of the random number generator
that is used. On the other hand, due to the large number of samples needed, the
random number generator should be very fast. Quasi-Monte Carlo algorithms
avoid the usage of random numbers, and instead attempt to generate numbers
that are spread over their domain evenly. In the case of the integral above, it can
be shown that the difference between the integral and the approximating sum
can be bounded from above by V (f)D∗(x1, . . . , xn), where V (f) is the variation
of f and D∗ is the star discrepancy [8]. Discrepany measures how evenly a set
of points in a k-dimensional cube is distributed.

Definition 15 Let P := {x1, x2, . . . , xN} ⊂ [0, 1)d. Then the star discrepancy
D∗ of P is defined as

D∗(P ) := sup
x∈[0,1)d

(
|{xi ∈ P | ∀j.x(j)

i < x(j)}|
N

−
d∏
i=1

x(i)

)
,

where x(j) denotes the j-th component of the vector x.

Note that |{xi∈P |∀j.x(j)
i <x(j)}|

N corresponds to an approximation of the volume of
x when using the Monte Carlo method: For each sample, we check if the sample
lies within x. At the end, we compute the fraction of these samples among the
set of all samples. The expected value of our computation is then equal to the
volume of x. I.e. star discrepancy measures the maximum difference between
the result of this Monte Carlo computation and the correct result.

An example of a sequence with low star discrepancy is the van der Corput
sequence.

Definition 16 Let nk, . . . , n0 be the b-ary representation of a number n, i.e.
n =

∑k
i=0 nib

i, with 0 ≤ ni < b for all i. We then define

φb(n) =
∞∑
j=0

nib
−i−1 .

The van der Corput sequence in base b is defined as

Xn = φb(n) .
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Intuitively, φb takes the digits of a number n in b-ary representation, reverses
their order and places them behind a decimal point. For example, φ2(110012) =
0.100112. A van der Corput sequence X in base b has a star discrepancy of
D∗n(X) = O

(
logN
N

)
.

When tupels of higher dimension are needed, the van der Corput sequences
can be generalized to sequences of k-tuples:
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Figure 3: Plots of two-dimensional Halton sequences of lengths 100, 500, 1000
and 2000.

Definition 17 A Halton sequence in the bases b1, . . . , bk is defined as

Xn = (φb1(n), . . . , φbk
(n)) .

A Halton sequence is a composition of multiple van der Corput sequences
with different bases. Some plots of two-dimensional Halton sequences of bases
2 and 3 can be seen in Figure 3. Compare with Figure 5, where uniformly
distributed numbers were used.

3 Pseudorandom Generators

There exist many different kinds of pseudorandom number generators. We here
list some that are or were used intensively in practice or that were used to
theoretically analyze algorithmic behavior.

Linear congruential generators

A linear congruential generator with parameters a,b and m and seed X0 ∈
{0, . . . ,m− 1} is defined by the recursion

Xn+1 = aXn + b mod m .
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For further reference, see [2]. It can be shown that the parameters a and
b can be chosen in a way that the linear congruential generator has a period
length of m. This property alone, however, does not guarantee that the resulting
sequence looks random. For example, the parameters a = b = 1 lead to a period
length of m, but not to a sequence that looks random. If the parameters do not
guarantee a period length of m, the output can have a very short period length.
For example, the parameters a = 3, b = 3 and m = 17 lead to a period length
of 16 for almost every seed in {0, 1, . . . , 16}. Using X0 = 7, however, leads to
an output of period length 1, with Xi = 7 for all i.

Generalisations include the polynomial congruential generator, which uses
a recursion of the form Xn =

∑k
i=0 aix

i mod m, or the inversive congruential

generator, using a recursion of the form Xn =
(∑k

i=0 aix
i
)−1

mod m.

Linear feedback shift registers

A linear feedback shift register is another kind congruential generator. Its binary
output sequence is created by the recursion

xi =
k⊕
j=1

ajxi−j mod 2 .

Such a generator can be implemented in hardware, essentially using a shift
register where an internal state (xi−k, . . . , xi−1) is stored and updated.

Many stream ciphers used in cryptography (e.g. Trivium) are based on linear
feedback shift registers. Since the recursion of a linear feedback shift register can
easily be computed from its output, they add non-linear operations like AND
and OR. This makes their cryptanalysis a lot more difficult.

Explicit polynomial generators

An explicit polynomial generator of degree k with parameters a0, a1, . . . , ak and
prime m is defined by

Xn =
k∑
i=0

ain
i mod m .

An important property of explicit polynomial generators is k-wise independence.
Within one period, any k output numbers of this generator are independent if
the parameters a0, . . . , ak are chosen at random. The period length of such a
generator is at most m, since p(x) ≡m p(x+m) for any polynomial p.

If only pairwise independence is needed, any class of universal hash functions
can be used to create a sequence of pairwise independent numbers.

Lagged fibonacci generators

A lagged fibonacci generator produces a sequence similar to the fibonacci se-
quence, but it usually adds less recent numbers of the output sequence to gen-
erate a new number. A lagged fibonacci generator with parameters i1 and i2
and operation ⊕ produces the sequence defined by

Xn = Xn−i1 ⊕Xn−i2 mod m .
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Typically ⊕ is implemented as addition, subtraction, multiplication or bitwise
XOR. The seed consists of the first max(i1, i2) numbers of the sequence. Choos-
ing a seed for this kind of generator is non-trivial and choosing it at random
may lead to output of rather low quality. Generators of this type were used in
various programs (e.g. Matlab [9]), but are nowadays replaced by the Mersenne
Twister.

Mersenne Twister

The Mersenne Twister [10] is a relatively recent pseudorandom number gener-
ator with an extremely huge period length of 219937 − 1 in the most commonly
used version. It is based on a combination of linear recurrences and is currently
used as the standard source of random numbers in many mathematical software
projects like R [11] or Maple [12]. Any 623 subsequent numbers of its output
are independent and uniformly distributed, which makes this generator a good
choice in many cases. Note, however, that it is not cryptographically secure and
should therefore not be used in security-related algorithms.

Isaac

Isaac (Indirection, Shift, Accumulate, Add, and Count) uses an internal state of
256 bytes and various operations to transform that internal state: Indirection
(using a part of the internal state as an address inside the internal state), Shift
(rotating parts of the internal state), Accumulate (accumulating a value over
various iterations of the algorithm), Add and Count. It has a minimum cycle
length of 240 and an expected cycle length of 28295. It was designed to be
cryptographically secure, and as of today, there are no efficient distinguishers
or predictors known.

Physical random sources

Instead of using a small seed to produce many numbers, one could also think of
ways to rapidly “capture” randomness from physical processes. A few physical
sources have already been used to obtain random numbers:

• Radio frequencies where no signal is sent contains only atmospheric noise,
which is mainly caused by lightnings all over the world. This noise can
be measured with the help of a radio antenna and transformed into a
sequence of random numbers.

• When a beam of photons is sent through a so-called beam splitter, every
photon has two possible paths to leave that beam splitter. By using fast
detectors that can detect single photons, this method can produce random
bits at a rate of about 1 Mbit/s [13, 14].

Archived bits

Instead of using a given pseudorandom generator, one can instead use random
bits that are available on CD, DVD or the internet. This idea isn’t new, however:
Back in 1927, a book with the title “Random sampling numbers” was published,
containing mostly tables of random numbers [15].
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Figure 4: Creating random bits with a beam splitter. Photons are emitted by
the photon emitter. With probability 0.5 they pass the beam splitter and are
reported by detector 0. With probability 0.5 they are reflected by the beam
splitter and are then reported by detector 1.
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Figure 5: Some sets of random two-dimensional points. Set sizes are 100, 500,
1000 and 2000. The numbers are from Marsaglia’s Diehard sequence [16].

Marsaglia’s Diehard suite [16] is one of these sources available on the inter-
net. It is a set of statistical tests that was published on CDROM in 1995, along
with several files of bit sequences that pass these tests. These sequences were
obtained by the bitwise XOR of several sequences, some of them obtained from
physical devices, some of them from other sources like pseudorandom number
generators or even an audio CD. This approach is based on the following fact:
Let X,Y ∈ {0, 1} be two independent random variables. Then X ⊕ Y is uni-
formly distributed if at least one of the two variables is uniformly distributed.
This way, the bitwise XOR of several sequences is uniformly distributed among
the set of all bit sequences of the same length, if at least one of those sequences
was uniformly distributed. Thus, one could hope to obtain a good pseudo-
random sequence when forming the bitwise XOR of several sequences that are
supposed to behave like true random numbers. For some plots of numbers from
this source, see Figure 5.

Another source of random bits is the web page random.org [17]. It measures
atmospheric noise and converts it into random bits. Currently, downloading a
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limited amount of random bits from that source is free.

4 Influence on Algorithms

Pseudorandom numbers are used in various algorithms. For some algorithms,
theoretical and empirical results are known about the influence of different pseu-
dorandom generators on the results of these algorithms.

In [18], a simple evolutionary algorithm was run with various pseudorandom
generators, but no relevant influences have been found. This indicates that the
given evolutionary algorithm does not depend on a very high “quality” of the
random numbers involved. In [19] however, an evolutionary algorithm led to
better results when quasirandom sequences were used. I.e. a part of the algo-
rithm (namely the mutation phase) was identified where the use of deterministic
numbers instead of pseudorandom numbers led to better results. This indicates
that in some scenarios, regularity leads to better results than randomness.

Simulated Annealing, another search heuristic, is severely influenced by the
period length of the pseudorandom generator. In [19], the Traveling Salesman
problem, among others, was solved with the Simulated Annealing heuristic. As
long as the period length was long enough, the heuristic was quite tolerant
with respective to the “quality” of the generator, i.e. if a linear congruential
generator was used or a more sophisticated Mersenne Twister. Shortening the
period length of the pseudorandom sequence however, gradually led to worse
results.

It is a well-known fact that Shannon’s entropy is a lower bound for any
sorting method that is based on pairwise comparisons. The entropy of a uni-
form distribution on the set of all permutations of n elements is equal to
log2(n!) = Θ(n log n). For the randomized version of the QuickSort algorithm,
some additional results have been achieved. Karloff et al. [20] showed that
QuickSort’s worst case complexity can go up to Ω(n2) when sorting n num-
bers with the help of a linear congruential generator. They also showed that
QuickSort shows an average case running time of O(n log n) when using an ex-
plicit polynomial generator of degree 4. Their main argument uses the fact that
this generator produces 5-wise independent numbers. B. List et al. [21, 22]
showed how QuickSort’s running time is gradually increased to Ω(n2) when the
probability of “bad” pivot elements (i.e. very small or large elements) increases.

Chor and Golreich have shown that k-wise independent random numbers are
a useful tool for sampling [23]. With this method, only the random bits for a
seed are needed and the chance of hitting any subset of the sample space is still
good. This can be used to reduce the error probability of RP algorithms with
relatively few bits. Usually, such an algorithm’s error probability can be reduced
by running it multiple times, each time using new random numbers. The use
of k-wise independent bits allows the same technique to some lesser degree: If
the algorithm needs r random bits, these r bits can be used as a seed for a
pseudorandom number generator that creates k-wise independent bits for some
k. The algorithm can then be run multiple times, using bits from the pseudo
random generator. Repeating the algorithm l times, the error probability can
be reduced to (1/l), while still only r bits were used. This approach can also
be used for BPP algorithms. Note that using true random bits would reduce
the error probability exponentially in l, at the cost of a total of lr random bits.
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Further uses of pairwise independent numbers can be found in an overview of
M. Luby and A. Wigderson [24].

Bach [25] showed that linear congruential generators with a prime modu-
lus are a sufficient source of randomness for computing square roots modulo a
prime p (with two probabilistic algorithms from Lehmer [26] and Shanks [27]),
for computing q-th roots modulo a prime p (with a probabilistic algorithm by
Adleman, manders and Miller [28]), and for testing primality (with the Miller
test [29]). For each of these algorithms, the error probability was shown to not
increase when a linear congruential generator was used instead of independent,
uniformly distributed random numbers.

Hoos et. al. [30] empirically examined the influence of some pseudorandom
generators on the result of probabilistic algorithms for the satisfiability problem.
They observed that the quality of the random numbers didn’t influence the
output quality of these algorithms. However, completely derandomizing the
algorithms caused them to fail for a few input instances and made parallelization
difficult.

Azar et. al. [31] show that random walks can be influenced by a biased
source of randomness. They consider random walks on d-regular graphs (i.e.
graphs where every node has degree d) and a random source that outputs val-
ues 1, 2, . . . , d. At each step, with probability 1− ε, that number is drawn ran-
domly under a uniform distribution. With probability ε, a deterministic process
may decide which number is output. They show that the limit probability of
any subset S ⊆ V of the graph’s vertices can be augmented from |S|/|V | to
(|S|/|V |)1−cε. This result also shows that a malevolent random source could
decrease a Markov chain’s probability to converge to a good solution.

The rho algorithm for factoring numbers is based on the birthday paradox,
a statistical fact about independent random numbers. In and of itself, this
approach would not be able to beat the running time of the naive approach.
The rho algortihm however exploits the fact that it uses a pseudorandom gen-
erator. It uses the regularity of that pseudorandom generator to save many
computations and thus achieves a much better running time.
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[19] Markus Maucher, Uwe Schöning, and Hans A. Kestler. An empirical assess-
ment of local and population based search methods with different degrees
of pseudorandomness. Technical report, Universität Ulm, 2008.

[20] Howard Karloff and Prabhakar Raghavan. Randomized algorithms and
pseudorandom numbers. In STOC ’88: Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 310–321, New York, NY,
USA, 1988. ACM.

[21] Beatrice List. Probabilistische Algorithmen und schlechte Zufallszahlen.
PhD thesis, Universität Ulm, 1999.

19



[22] Beatrice List, Markus Maucher, Uwe Schöning, and Rainer Schuler. Ran-
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