

Covers have structure

Henning Wunderlich

Ulmer Informatik-Berichte

Nr. 2008-08 Juli 2008

Covers have structure

Henning Wunderlich *

July 8, 2008

Abstract

We establish a new connection between the theory of Berge graphs (perfect graphs) and communication complexity. We discover a new class of square-free Berge graphs, the class of *beautiful graphs*, and make progress towards their characterization: on the one hand, we give a complete list of forbidden induced subgraphs of order ≤ 7 , on the other hand, we show that every square-free bipartite graph is beautiful, and, as the main result, we characterize the beautiful line graphs of square-free bipartite graphs.

1 Introduction

1.1 Theory of perfect graphs

Shannon [11, 12] considered zero-error data transmission and reduced the problem of determining the zero-error channel capacity to a problem in graph theory, namely calculating $\sup_{n\to\infty} \frac{1}{n} \log \omega(G^n)$ (now called Shannon zero-error capacity), where G is a graph associated with the given channel, G^n is its n-th graph power, and $\omega(G)$ is the clique number of G. The n-th graph power G^n is the strong graph product of n copies of g; given graphs G_1 and G_2 the strong graph product is a graph with vertex set $V(G_1) \times V(G_2)$ and two distinct vertices are connected iff they are adjacent or equal in each coordinate. Determining the Shannon zero-error capacity is extremely hard in general, e.g. see [1, 8], but easily solved for so called *perfect graphs*, introduced by Berge [2]. These are graphs for which the chromatic and clique number have the same value for each induced subgraph. Berge conjectured that a graph is perfect iff it does not contain any odd holes or odd antiholes. An induced cycle of odd length at least 5 is called an *odd hole*, while an induced subgraph that is the complement of an odd hole is called an *odd antihole*. Graphs without odd holes and odd antiholes are called Berge graphs. The above conjecture was known as the Strong Perfect Graph Conjecture, which, based on a series of works, especially [4], was finally answered in the affirmative by Chudnovsky, Robertson, Seymour and Thomas [3] in May, 2002.

In the sequel we will also need the following notions: A 4-cycle is called a square; a square-free graph does not contain a square as an induced subgraph. The line graph of the graph G is the graph L(G) whose nodes are the edges of G and two nodes u, v of L(G) are adjacent in L(G) iff the edges u, v of G are incident

^{*}Universität Ulm, Fakultät für Ingenieurwissenschaften und Informatik, Institut für Theoretische Informatik, Oberer Eselsberg, D-89069 Ulm, e-mail: Henning.Wunderlich@uni-ulm.de

to a common node of G. We write $G =_{iso} H$ iff G and H are isomorphic, and $G \leq_{iso} H$ iff G is isomorphic to an induced subgraph of H. For introductions to graph theory and the theory of perfect graphs, we refer the reader to [5, 10].

1.2 Basics from communication complexity

In 1979 Yao [13] introduced a two player communication model: Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be finite sets. Player Alice has input $x \in \mathcal{X}$, player Bob has $y \in \mathcal{Y}$. Both want to compute f(x, y) for a function $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$, or they want to compute a relation, i.e. a value $z \in \mathcal{Z}$ such that $(x, y, z) \in R$ for a relation $R \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$. The communication between the two players is specified by protocols. We will not delve into definitions of protocols and communication complexity. For an excellent introduction to this subject we refer to [7]. Important for us is that a (nondeterministic) protocol induces a cover of the communication matrix of the function/relation via monochromatic combinatorial rectangles. These notions are defined below.

A matrix $M: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ is called a *function matrix over* $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$, and a matrix $M: \mathcal{X} \times \mathcal{Y} \to \mathcal{P}(\mathcal{Z})$ is called a *relation matrix over* $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ iff for all rows $x \in \mathcal{X}$ and columns $y \in \mathcal{Y}$ we have $M_{x,y} \neq \emptyset$. A combinatorial rectangle in M is a set $R = A \times B$, $A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}$. For $R = C \times D$ we define A(R) := C and B(R) := D. Let $z \in \mathcal{Z}$. If M is a function matrix, a combinatorial rectangle $R = A \times B$ is called z-chromatic in M iff for all $x \in A, y \in B$ we have $M_{x,y} = z$. If M is a relation matrix, R is called z-chromatic in M iff for all $x \in A, y \in B$ we have $M_{x,y} = z$. If M is a relation matrix, R is called z-chromatic in M iff there exists $z \in \mathcal{Z}$ such that R is z-chromatic.

Definition 1.1. Let M be a function or relation matrix over $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$.

- A combinatorial rectangle R is *nonextendible* iff R is monochromatic in M and adding rows or columns to R results in a nonmonochromatic rectangle.
- We associate with M its cover structure graph $\mathcal{G}(M) := (V(M), E(M))$ (cs-graph for short),
 - $V(M) := \{R \mid R \text{ nonextendible rectangle in } M\}$ $E(M) := \{\{R, R'\} \mid R, R' \in V(M), R \neq R', R \cap R' \neq \emptyset\}$
- Let $z \in \mathcal{Z}$. We also associate with M its z-chromatic cover structure graph $\mathcal{G}^{z}(M) := (V^{z}(M), E^{z}(M)),$

 $\begin{array}{lll} V^z(M) &:= & \{R \mid R \text{ nonextendible } z\text{-chromatic rectangle in } M\} \\ E^z(M) &:= & \{\{R, R'\} \mid R, R' \in V^z(M), R \neq R', R \cap R' \neq \emptyset\} \end{array}$

1.3 Communication complexity and Berge graphs

As we mentioned earlier, Berge graphs play an important role in noninteractive communication complexity, i.e. information theory, in the context of zero-error data transmission and the determination of channel capacities. But no connection was known before in the interactive case, i.e. communication complexity. We show, that for total functions f the covers of their communication matrices M_f have structure in the sense, that their cover structure graphs $\mathcal{G}(M_f)$ are not arbitrary. For an important subclass of the cover structure graphs, the *beautiful graphs*, we prove that this class is strictly contained in the class of square-free Berge graphs, thus establishing a connection between Berge graphs and interactive communication.

The following result might lead to the conclusion, that cs-graphs are uninteresting. However, for function matrices the situation is completely different, as we will see in Theorem 2.3. We denote with [n] the set $\{1, \ldots, n\}$ of the first n natural numbers.

Theorem 1.2. Let G be an arbitrary graph. Then there exists a relation matrix M, such that $G =_{iso} \mathcal{G}(M)$.

Proof. W.l.o.g. assume G = (V, E), V = [n]. We define the $1 \times n^2$ -block matrix M with values in $\mathcal{P}([n])$ by $M := (B^{(1)}, \ldots, B^{(n)})$, where each block $B^{(i)}$ is a $1 \times n$ -matrix defined by $B_j^{(i)} := \{i, j\}$, if $\{i, j\} \in E$, and $B_j^{(i)} := \{i\}$ otherwise. For each color $i \in [n]$ there exists exactly one nonextendible rectangle $R_i := \{1\} \times \{j \mid i \in M_{1,j}\}$. Thus, $V(M) = \{R_i \mid i \in [n]\}$. If $\{i, j\} \in E$, then R_i, R_j intersect in block position $B_j^{(i)}$ (and $B_i^{(j)}$) implying $\{R_i, R_j\} \in E(M)$. Conversely, if $\{R_i, R_j\} \in E(M)$, then there exist $k, l \in [n]$, such that R_i, R_j intersect in $B_l^{(k)}$. The case $k \notin \{i, j\}$ cannot occur by construction $(|B_j^{(i)}| \leq 2)$. W.l.o.g. assume k = i. Necessarily, $B_l^{(i)} = \{i, j\}$. Thus, l = j and $\{i, j\} \in E$. We conclude $E(M) = \{\{R_i, R_j\} \mid \{i, j\} \in E\}$ proving $G =_{iso} \mathcal{G}(M)$. □

Given $z \in \mathbb{Z}$ and a function matrix M over $\mathcal{X}, \mathcal{Y}, \mathbb{Z}$, define the corresponding $\{0, 1\}$ -valued matrix $M^{(z)}$ by $M_{x,y}^{(z)} := 1$, if $M_{x,y} = z$, and $M_{x,y}^{(z)} := 0$ otherwise. As rectangles with different colors do not intersect for function matrices, we get $\mathcal{G}(M) =_{iso} \bigcup_{z \in \mathbb{Z}} \mathcal{G}^z(M^{(z)})$, where \bigcup denotes the disjoint union of graphs. Thus, we only need to deal with cs-graphs of function matrices over finite sets \mathcal{X}, \mathcal{Y} and $\mathcal{Z} = \{0, 1\}$. From here on, when we talk about matrices, we mean function matrices over finite sets \mathcal{X}, \mathcal{Y} and $\mathcal{Z} = \{0, 1\}$. We also write $\mathcal{G}(M)$, when we mean $\mathcal{G}^1(M)$. We call matrices M with $G = \mathcal{G}(M)$ representations of G. We denote the class of cover structure graphs (cs-graphs), i.e. the class of graphs which can be represented by function matrices, with csg.

1.4 Easy observations concerning cs-graphs

In this subsection we prove several easy results about cs-graphs and state structural properties. The independent set \overline{K}_n , the complete graph K_n and even cycles C_{2n} are cs-graphs, $n \in \mathbb{N}$, as can be seen by looking at the identity matrix E_n and the matrices over $\mathcal{X} = \mathcal{Y} = [n]$ defined below: For $m, n \in \mathbb{N}$, $m \leq n$, define the following $n \times n$ -matrix by $(\operatorname{rep} K_m^{(n)})_{i,j} := 1$, if $i \leq m + 1 - j$, and $(\operatorname{rep} K_m^{(n)})_{i,j} := 0$ otherwise. Then $K_m =_{iso} \mathcal{G}(\operatorname{rep} K_m^{(n)})$, and $\overline{K}_n =_{iso} \mathcal{G}(E_n)$. The matrix $\operatorname{rep} K_m^{(n)}$ as a representation for K_m is defined more general than is needed here, because we need it later in this form. A possible representation for the even cycle C_{2n} is the following $n \times n$ -matrix:

$${}_{\mathrm{rep}}\mathbf{C}_{2n} \ := \ \left(\begin{array}{ccccccc} 1 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 1 & & & \vdots \\ \vdots & & 1 & 1 & & \vdots \\ \vdots & & & & \ddots & 0 \\ 0 & & & & 1 & 1 \\ 1 & 0 & \cdots & \cdots & 0 & 1 \end{array} \right)$$

Clearly, we have $C_{2n} =_{iso} \mathcal{G}(_{rep}C_{2n})$.

In the sequel we only consider connected cs-graphs. On the one hand, if G has connected components G_1 and G_2 represented by M_1 and M_2 , respectively, then the block diagonal matrix $M := \text{diag}(M_1, M_2)$ is a representation of G. On the other hand, one can show that if G is a cs-graph, then its components G_1 and G_2 are also cs-graphs: If in a representation M of G a rectangle R_1 representing a node $v_1 \in G_1$ would share a row or column with a rectangle R_2 representing a node $v_2 \in G_2$, then there would exist a nonextendible rectangle J incident to both G_1 and G_2 . As M is a representation of G the rectangle J would represent a node adjacent to both v_1 and v_2 in contradiction to the assumption that G_1 and G_2 are different connected components. If A_i , B_i denote the rows and columns covered by rectangles representing nodes in G_i , then $A_1 \cap A_2, B_1 \cap B_2 = \emptyset$. Thus, a permutation of the rows and columns of M yields a representation $diag(M_1, M_2)$ of G.

2 Covers have structure

In this section we show that in contrast to the case of relation matrices not every graph is a cs-graph of a function matrix. Thus, in contrast to relations for total functions the corresponding cs-graphs are not arbitrary implying that (for total functions) covers have structure. This might explain why there are phenomenological differences (see e.g. [7, Chap. 5]) in the communication complexity of relations compared to the communication complexity of total functions.

An important observation is that nonextendible combinatorial rectangles cannot intersect in an arbitrary fashion. Only two modes of intersection are possible, namely *cross* and *spade* situations (see Figure 1).

Definition 2.1. Let M be a matrix, and let $R_i := A_i \times B_i \in V(M), i \in [2], \{R_1, R_2\} \in E(M).$

- If $A_1 \subsetneq A_2$ and $B_2 \subsetneq B_1$, then we have a cross situation $cross(R_1, R_2)$.
- If $A_1 A_2, A_2 A_1, B_1 B_2, B_2 B_1 \neq \emptyset$, then we have a spade situation $spade\{R_1, R_2\}$.

Note that while $spade\{R_1, R_2\}$ implies $spade\{R_2, R_1\}$ in case $cross(R_1, R_2)$ the situation $cross(R_2, R_1)$ does not occur. In case we do not care which cross situation holds, we let $cross\{R_1, R_2\} := cross(R_1, R_2) \lor cross(R_2, R_1)$ denote the symmetrized version.

In the following lemma we list helpful observations we will extensively use in the sequel.

Figure 1: cross and spade situations

Lemma 2.2. Let M be a matrix, and let $R_i := A_i \times B_i \in V(M), i \in [3]$.

1. If $\{R_1, R_2\} \in E(M)$, then exactly one of the following situations occurs:

 $cross(R_1, R_2), \quad cross(R_2, R_1), \quad spade\{R_1, R_2\}.$

- 2. If we have $cross(R_1, R_2)$ and $cross(R_2, R_3)$, then $\{R_1, R_3\} \in E(M)$.
- 3. Let M be a matrix, and let $R_i := A_i \times B_i \in V(M)$, $i \in [3]$. If we have $spade\{R_1, R_2\}$, then $K_4 \leq_{iso} \mathcal{G}(M)$.
- 4. We assume $cross(R_1, R_2)$, $cross(R_3, R_2)$ and $\{R_1, R_3\} \notin E(M)$. If $B_2 \subsetneq B_1 \cap B_3$, then there exists $R_4 \in V(M)$, such that $\{R_i, R_4\} \in E(M)$ for all $i \in [3]$.

Proof. 1. By case distinction: Case $A_1 = A_2$. Here $R_1 = R_2$, or at least one of R_1, R_2 is extendible, a contradiction. Case $A_1 \subsetneq A_2$. If $B_1 \subsetneq B_2$ or $B_1 - B_2, B_2 - B_1 \neq \emptyset$ then R_1 is extendible, a contradiction. If $B_2 \subsetneq B_1$ then we have $cross(R_1, R_2)$. Case $A_2 \subsetneq A_1$. Analogous to $A_1 \subsetneq A_2$. Case $A_1 - A_2, A_2 - A_1 \neq \emptyset$. All cases are analogous to the previous ones, except $B_1 - B_2, B_2 - B_1 \neq \emptyset$, where we have a spade situation $spade\{R_1, R_2\}$.

2. Both R_1, R_3 cover $A_1 \times B_3$ by nonextendibility, and thus intersect. From $cross(R_1, R_2)$ and $cross(R_2, R_3)$ it also follows $A_1 \subsetneq A_2$ and $A_2 \subsetneq A_3$, respectively. Thus, $A_1 \subsetneq A_3$, which implies $R_1 \neq R_3$.

3. Let R_3, R_4 be arbitrary nonextendible combinatorial rectangles in M covering $(A_1 \cap A_2) \times (B_1 \cup B_2)$ and $(A_1 \cup A_2) \times (B_1 \cap B_2)$, respectively. Clearly, R_1, \ldots, R_4 are pairwise distinct. As all of them cover $(A_1 \cap A_2) \times (B_1 \cap B_2)$ they pairwise intersect. Thus, $\mathcal{G}(M)(\{R_1, \ldots, R_4\}) =_{iso} K_4$.

4. Let $R_4 \in V(M)$ be an arbitrary nonextendible combinatorial rectangle covering $(A_1 \cup A_3) \times (B_1 \cap B_3)$. From $cross(R_1, R_2)$ it follows $A_1 \subsetneq A_2$. As $B_2 \subsetneq B_1 \cap B_3$, we get $R_4 \cap R_2 \neq \emptyset$ and $R_4 \neq R_2$. By construction we also have $R_4 \cap R_1, R_4 \cap R_3 \neq \emptyset$. From $\{R_1, R_3\} \notin E(M)$ and $\emptyset \neq B_2 \subsetneq B_1 \cap B_3$ we derive $A_1 \cap A_3 = \emptyset$. Thus, $R_4 \neq R_1$ and $R_4 \neq R_3$.

Now we can show that not all graphs are cs-graphs:

Theorem 2.3. The square C_4 , odd holes C_{2n+1} , $n \ge 2$, and the graphs gem, star¹ and watch (see Figure 2) are not cs-graphs.

Figure 2: Star, gem and watch

Proof. Due to the many case distinctions we recommend that the reader visualizes the proofs by drawing the cross situations under consideration (we cannot do this here for space reasons).

1. We assume that C_4 is a cs-graph. Then there exists a matrix M such that $C_4 =_{iso} \mathcal{G}(M)$. We have $V(M) = \{R_1, \ldots, R_4\}$ and $E(M) = \{\{R_1, R_2\}, \{R_2, R_3\}, \{R_3, R_4\}, \{R_4, R_1\}\}$. By Lemma 2.2 (1, 3) for R_i, R_{i+1} and R_4, R_1 only cross situations are possible, as $K_4 \not\leq_{iso} C_4$. W.l.o.g. we assume $cross(R_1, R_2)$. Then by Lemma 2.2 (2) we must have $cross(R_3, R_2)$, as $C_3 \not\leq_{iso} C_4$. Applying Lemma 2.2 (4) yields $B_1 \cap B_3 = B_2$. An analogous argumentation (consider the transpose of M) for R_2, R_3, R_4 yields $A_2 \cap A_4 = A_3$. From $R_1 \cap R_3 = \emptyset$ and $B_1 \cap B_3 = B_2 \neq \emptyset$ it follows $A_1 \cap A_3 = \emptyset$. Then we have $A_4 = A_3 \cup (A_4 - A_2)$, and thus $A_4 \cap A_1 = (A_3 \cap A_1) \cup ((A_4 - A_2) \cap A_1) = \emptyset \cup \emptyset = \emptyset$ using $A_1 \subseteq A_2$. But this implies $R_1 \cap R_4 = \emptyset$ contradicting $\{R_1, R_4\} \in E(M)$. We conclude that C_4 cannot be a cs-graph.

2. We assume that C_{2n+1} is a cs-graph for $n \geq 2$. Then there exists a matrix M, such that $C_{2n+1} =_{iso} \mathcal{G}(M)$. We have $V(M) = \{R_1, \ldots, R_{2n+1}\}$ and $E(M) = \{\{R_i, R_{i+1}\} \mid i \in [2n]\} \cup \{\{R_{2n+1}, R_1\}\}$. As $K_4 \not\leq_{iso} C_{2n+1}$, by Lemma 2.2 (1, 3) only cross situations are possible. W.l.o.g. we assume $cross(R_1, R_2)$. As $C_3 \not\leq_{iso} C_{2n+1}$ iteratively applying Lemma 2.2 (2) yields the sequence $cross(R_3, R_2)$, $cross(R_3, R_4)$, ..., $cross(R_{2n+1}, R_{2n})$, and thus $cross(R_{2n+1}, R_1)$. But going backwards starting from $cross(R_1, R_2)$ gives us $cross(R_1, R_{2n+1})$. We get $cross(R_{2n+1}, R_1)$ and $cross(R_1, R_{2n+1})$, a contradiction. We conclude that C_{2n+1} cannot be a cs-graph.

3. We assume that gem is a cs-graph, i.e. gem $=_{iso} \mathcal{G}(M)$ for a matrix M. We have $V(M) = \{R_1, \ldots, R_5\}$ and $E(M) = \{\{R_1, R_2\}, \{R_1, R_5\}, \{R_2, R_3\}, \{R_2, R_4\}, \{R_2, R_5\}, \{R_3, R_4\}, \{R_4, R_5\}\}$. As $K_4 \not\leq_{iso}$ gem, only cross situations are possible. W.l.o.g. we assume $cross(R_1, R_2)$. $\{R_1, R_3\}, \{R_1, R_4\} \notin E(M)$ implies $cross(R_3, R_2)$ and $cross(R_4, R_2)$, respectively. Case 1: Assume $cross(R_3, R_4)$. Case 1.1: Assume $cross(R_1, R_5)$. $cross(R_2, R_5)$ implies $cross(R_3, R_5)$ contradicting $R_3 \cap R_5 = \emptyset$. Thus, assume $cross(R_5, R_2)$. Case 1.1.1: Assume $cross(R_4, R_5)$. Then $A(R_3) \subseteq A(R_4) \subseteq A(R_5)$ and $B(R_5) \subseteq B(R_4) \subseteq B(R_3)$.

¹The star graph is also called *net* in many publications.

But $R_3 \cap R_5 = (A(R_3) \cap A(R_5)) \times (B(R_3) \cap B(R_5)) \supseteq A(R_3) \times B(R_5) \neq \emptyset$, a contradiction. Case 1.1.2: Assume $cross(R_5, R_4)$. We must have $A(R_1) \cap A(R_4) = \emptyset$, as $B(R_1) \cap B(R_4) \supseteq B(R_2) \neq \emptyset$ and $R_1 \cap R_4 = \emptyset$. But then $A(R_5) \subseteq A(R_4)$ implies $A(R_1) \cap A(R_5) = \emptyset$ contradicting $R_1 \cap R_5 \neq \emptyset$. Case 1.2: Assume $cross(R_5, R_1)$. We still have $A(R_1) \cap A(R_4) = \emptyset$. But $A(R_5) \subseteq A(R_1)$ implies $A(R_4) \cap A(R_5) = \emptyset$ contradicting $R_4 \cap R_5 \neq \emptyset$. Case 2: Assume $cross(R_4, R_3)$. $cross(R_5, R_4)$ implies $cross(R_5, R_3)$ contradicting $R_3 \cap R_5 = \emptyset$. Thus, assume $cross(R_4, R_5)$. If $cross(R_2, R_5)$ then $cross(R_3, R_5)$ contradicting $R_3 \cap R_5 = \emptyset$. If $cross(R_5, R_2)$ then $\emptyset \neq B(R_2) \subseteq B(R_3) \cap B(R_5)$. As $R_3 \cap R_5 = \emptyset$, it must hold $A(R_3) \cap A(R_5) = \emptyset$. But $A(R_4) \subseteq A(R_5)$. We finally get $A(R_3) \cap A(R_4) = \emptyset$ contradicting $R_3 \cap R_4 \neq \emptyset$. We conclude that gem cannot be a cs-graph.

4. We assume that star is a cs-graph, i.e. star $=_{iso} \mathcal{G}(M)$ for a matrix M. We have $V(M) = \{R_{i,A}, R_{i,B} \mid i \in [3]\}$ and $E(M) = \{\{R_{i,A}, R_{i,B}\} \mid i \in [3]\} \cup \{\{R_{1,A}, R_{2,A}\}, \{R_{2,A}, R_{3,A}\}, \{R_{1,A}, R_{3,A}\}\}$. As $K_4 \not\leq_{iso}$ star, only cross situations are possible. W.l.o.g. we assume $cross(R_{1,A}, R_{2,A})$. Case 1: Assume $cross(R_{2,A}, R_{3,A})$. $cross(R_{2,A}, R_{2,B})$ implies $cross(R_{1,A}, R_{2,B})$ which contradicts $R_{1,A} \cap R_{2,B} = \emptyset$. $cross(R_{2,B}, R_{2,A})$ implies $cross(R_{2,B}, R_{3,A})$ contradicting $R_{2,B} \cap R_{3,A} = \emptyset$. Case 2: Assume $cross(R_{3,A}, R_{2,A})$. Case 2.1: Assume $cross(R_{1,A}, R_{3,B})$ contradicting $R_{1,A} \cap R_{3,B} = \emptyset$. $cross(R_{3,B}, R_{3,A})$ implies $cross(R_{3,B}, R_{2,A})$ contradicting $R_{2,A} \cap R_{3,B} = \emptyset$. case 2.2: Assume $cross(R_{3,A}, R_{1,A})$. $cross(R_{1,A}, R_{1,B})$ implies $cross(R_{1,B}, R_{2,A})$ contradicting $R_{3,A} \cap R_{1,B} = \emptyset$. $cross(R_{1,B}, R_{1,A})$ implies $cross(R_{1,B}, R_{2,A})$ contradicting $R_{2,A} \cap R_{1,B} = \emptyset$. $cross(R_{1,B}, R_{2,A})$ contradicting $R_{2,A} \cap R_{1,B} = \emptyset$. We conclude that star cannot be a cs-graph.

5. We assume that watch is a cs-graph, i.e. watch $=_{iso} \mathcal{G}(M)$ for a matrix M. We have $V(M) = \{R_1, \ldots, R_6\}$ and $E(M) = \{\{R_5, R_2\}, \{R_2, R_1\}, \{R_2, R_3\}, \{R_2, R_4\}, \{R_1, R_3\}, \{R_4, R_3\}, \{R_3, R_6\}\}$. As $K_4 \not\leq_{iso}$ watch, only cross situations are possible. W.l.o.g. we assume $cross(R_1, R_2)$. Case 1: Assume $cross(R_2, R_3)$. $cross(R_2, R_5)$ implies $cross(R_1, R_5)$ contradicting $R_1 \cap R_5 = \emptyset$. $cross(R_5, R_2)$ implies $cross(R_1, R_3)$. $cross(R_3, R_6)$ implies $cross(R_1, R_6)$ contradicting $R_1 \cap R_6 = \emptyset$. $cross(R_6, R_3)$ implies $cross(R_6, R_2)$ contradicting $R_2 \cap R_6 = \emptyset$. $cross(R_3, R_1)$. $cross(R_2, R_4)$ implies $cross(R_1, R_4)$ contradicting $R_1 \cap R_4 = \emptyset$. Thus, assume $cross(R_4, R_2)$. If $cross(R_3, R_4)$ then $R_2 \cap R_3 \subseteq R_4$ implying $R_1 \cap R_4 \neq \emptyset$, a contradiction. $cross(R_4, R_3)$ implies $cross(R_4, R_1)$, but again, then we have $R_1 \cap R_4 \neq \emptyset$, a contradiction. We conclude that watch cannot be a cs-graph.

3 Beautiful graphs

We have seen in the last section, that **csg** does not contain all graphs, i.e. covers have structure. As squares and odd holes are "forbidden", the previous results motivate the following definition:

Definition 3.1. A graph is *beautiful* iff every induced subgraph is a cs-graph.

Clearly, from Theorem 2.3 we obtain:

Theorem 3.2. Every beautiful graph is a square-free Berge graph.

The opposite is not true, as e.g. star is square-free and Berge, but not beautiful. A comparison with known classes of perfect graphs (see e.g. [6, 9] and Figure 3 below comparing the cs-graphs, K_4 -free cs-graphs and the class **beautiful** of beautiful graphs with well-known classes of square-free perfect graphs, namely interval, split, threshold, triangulated and trivially perfect graphs) yields, that the class of beautiful graphs **beautiful** is a new class of perfect graphs. In Figure 3 we list the interesting class of K_4 -free cs-graphs, because such graphs cannot be represented by matrices containing spade situations. We conjecture that they coincide with the class of K_4 -free beautiful graphs. We state without proof (for space reasons), that the list of forbidden induced subgraphs of beautiful graphs in Theorem 2.3 is complete up to connected graphs of order $n \leq 7$.

	interval	split	threshold	triangulated	triv.perfect
beautiful	⊉, gem	$\not\supseteq$, star	⊉, gem	⊉, gem	⊉, star
	$\not\subseteq, C_6$	$\not\subseteq, \overline{C}_4$	$\not\subseteq, \overline{C}_4$	$\not\subseteq, C_6$	$\not\subseteq, P_4$
$K_4 - \mathbf{free}$	⊉, gem	$\not\supseteq$, star	⊉, gem	⊉, gem	⊉, star
csg	$\not\subseteq, C_6$	$\not\subseteq, \overline{C}_4$	$\not\subseteq, \overline{C}_4$	$\not\subseteq, C_6$	$\not\subseteq, P_4$
csg	⊉, gem	$\not\supseteq$, star	⊉, gem	⊉, gem	⊉, star
	$\not\subseteq, C_6$	$\not\subseteq, \overline{C}_4$	$ \not\subseteq, \overline{C}_4$	$\not\subseteq, C_6$	$\not\subseteq, P_4$

interval split threshold triangulated triv.perfect

Figure 3: Comparisons of graph classes

We explore the structure of beautiful graphs and make progress towards a characterization in the spirit of Conforti, Cornuéjols and Vušković [4]. Recall their characterization/decomposition theorem of square-free perfect graphs:

Fact 3.3. A square-free perfect graph is bipartite or the line graph of a bipartite graph or has a star cutset or a 2-join.

We are able to give characterizations of the beautiful square-free bipartite graphs (3.1) and the beautiful line graphs of square-free bipartite graphs (3.2).

3.1 Characterization of beautiful sqr.-free bipartite graphs

Proposition 3.4. Every square-free bipartite graph is a cs-graph.

Proof. Let $G := (U \cup V, E)$ be square-free and bipartite. W.l.o.g. assume U = [m] and V = [n]. Define the $m \times n$ -matrix I by $I_{u,v} := 1$, if $\{u, v\} \in E$, and $I_{u,v} := 0$ otherwise, $u \in U, v \in V$. Let

$$M := \left(\begin{array}{cc} 0 & E_n \\ E_m & I \end{array}\right)$$

Consider any $R = A \times B \in V(M)$. If R covers elements in E_m , then necessarily |A| = 1. There exists $u \in [m]$, and $B = \{m+v \mid v \in [n], \{u,v\} \in E\}$. If R covers elements in E_n , then necessarily |B| = 1. There exists $v \in [n]$, and $A = \{n+u \mid u \in [m], \{u,v\} \in E\}$. Suppose, R covers only elements in I. Then necessarily, $|A|, |B| \ge 2$. Then there exist distinct $u_1, u_2 \in A$, and distinct $v_1, v_2 \in B$ such that $I_{u_i,v_j} = 1$, $i \in [2]$, $j \in [2]$. This means $\{u_1, v_1\}, \{v_1, u_2\}, \{u_2, v_2\}, \{v_2, u_1\} \in E$. As G is bipartite, we have $\{u_1, u_2\}, \{v_1, v_2\} \notin E$. Thus, $C_4 \leq_{iso} G$, a contradiction. We conclude $G =_{iso} \mathcal{G}(M)$.

As every induced subgraph of a square-free bipartite graph is square-free bipartite, from Proposition 3.4 we immediately obtain:

Theorem 3.5. Every square-free bipartite graph is beautiful.

3.2 Characterization of beautiful line graphs of squarefree bipartite graphs

Now we completely describe square-free line graphs of bipartite graphs, i.e. we consider line graphs of square-free bipartite graphs. Here, the situation is more complicated.

We begin by fixing some notation. In this section, we let $\tilde{G} := (U_l \cup U_r, \tilde{E})$ be a square-free bipartite graph, and we let $G := L(\tilde{G}) = (V, E), V := \tilde{E}$, be its line graph. For $u \in U_l$ define $K_u^l := \{e \in V \mid u \in e\}$. K_u^r is defined analogously for $u \in U_r$. Each K_u^l is a clique in G and $\{K_u^l \mid u \in U_l\}$ is a partition of V, the *left clique partition of G.* The *right clique partition* is defined analogously. We prove all results for the *left side* only, but of course, they also hold for the *right side.* We need the following claim:

Claim 3.6. Let $u, u' \in U_l$, $u \neq u'$, be arbitrary. Then between K_u^l and $K_{u'}^l$ there is at most one edge.

Proof. We assume the opposite. Let $e_1, e_2 \in K_u^l$, $e_1 \neq e_2$, and let $d \in K_{u'}^l$, such that $\{e_1, d\}, \{e_2, d\} \in E$. Then there exist distinct $v_1, v_2 \in U_r$ such that $e_i = \{u, v_i\}, i \in [2]$. As $\{e_1, d\} \in E$, we obtain $d = \{u, v_1\}$, and also $d = \{u, v_2\}$ by $\{e_2, d\} \in E$, a contradiction.

Now we assume $e_1, e_2 \in K_u^l$, $e_1 \neq e_2$, and $d_1, d_2 \in K_{u'}^l$, $d_1 \neq d_2$, such that $\{e_1, d_1\}, \{e_2, d_2\} \in E$. By the argument above, we have $\{e_1, d_2\}, \{e_2, d_1\} \notin E$. As $\{e_1, e_2\}, \{d_1, d_2\} \in E$ we get $C_4 \leq_{iso} G$, again a contradiction. We conclude that there is at most one edge between K_u^l and $K_{u'}^l$.

Definition 3.7. For $u \in U_l$ define the set of *connection nodes* as

$$B_u^l := \{e \in K_u^l \mid \exists u' \in U_l : u \neq u', e \text{ adjacent to } K_{u'}^l\}$$

Lemma 3.8. Assume that G is beautiful. Then the following statements hold:

- 1. Assume there exist distinct $u, u' \in U_l$, distinct $e_1, e_2 \in K_u^l$, and $d \in K_{u'}^l$ such that $\{d, e_1\} \in E$. Let $G =_{iso} \mathcal{G}(M)$ for a matrix M. If R(v) denotes the corresponding nonextendible combinatorial rectangle of $v \in V$ in M, then we must have $cross\{R(e_1), R(e_2)\}$ and $cross\{R(e_1), R(d)\}$.
- 2. In each clique K_u^l there exist at most two nodes adjacent to other cliques K_{\cdot}^l . Especially, we must have $|B_u^l| \leq 2$ for each $u \in U_l$.
- 3. Let $u_i \in U_l$ be pairwise distinct, and let $e_i \in K_{u_i}^l$, $i \in [3]$. Then the set of nodes $\{e_i \mid i \in [3]\}$ cannot form a triangle in G.
- 4. $\mathcal{G}(\bigcup_{u \in U_l} B_u^l)$ is bipartite.

Proof. 1. We assume $spade\{R(e_1), R(e_2)\}$. By Lemma 2.2 (3) there exist distinct $g_1, g_2 \in V$ such that $\{e_1, e_2, g_1, g_2\}$ is a K_4 in G. By Claim 3.6 we get $g_1, g_2 \in K_u^l$. In case $cross\{R(e_1), R(d)\}$ we must have $\{d, e_1\}, \{d, g_1\} \in E$ or

 $\{d, e_1\}, \{d, g_2\} \in E$, which is impossible by Claim 3.6. In case $spade\{R(e_1), R(d)\}$ by Lemma 2.2 (3) there exist distinct $h_1, h_2 \in V$ such that $\{e_1, d, h_1, h_2\}$ is a K_4 in G. In addition, the nodes g_1, g_2, h_1, h_2 are pairwise distinct. W.l.o.g. $\{h_1, e_1\}, \{h_1, g_1\} \in E$. The case $\{h_1, e_1\}, \{h_1, g_2\} \in E$ is analogous. If $h_1 \in K_u^l$, then $\{d, e_1\}, \{d, h_1\} \in E$ contradicting Claim 3.6. If $h_1 \notin K_u^l$, then there exists $u'' \in U_l, u \neq u''$, such that $h_1 \in K_{u''}^l$. But then $\{h_1, e_1\}, \{h_1, g_1\} \in E$ again contradicts Claim 3.6. We conclude that the situation $spade\{R(e_1), R(e_2)\}$ cannot occur. By Lemma 2.2 (1) we obtain $cross\{R(e_1), R(e_2)\}$ proving the first statement.

Now, we assume $spade\{R(e_1), R(d)\}$. By Lemma 2.2 (3) there exist distinct $g_1, g_2 \in V$ such that $\{e_1, d, g_1, g_2\}$ is a K_4 in G. By Claim 3.6 there must exist $u_1, u_2 \in U_l, u, u', u_1, u_2$ pairwise distinct, such that $g_1 \in K_{u_1}^l$ and $g_2 \in K_{u_2}^l$. We saw in the first part of this proof, that we must have a $cross\{R(e_1), R(e_2)\}$ situation between e_1 and e_2 . This implies the situation $cross\{R(e_2), R(g_2)\}$. But both $\{e_2, g_1\} \in E$ or $\{e_2, g_2\} \in E$ together with $\{e_1, g_1\}, \{e_1, g_2\} \in E$ contradict Claim 3.6. We conclude $cross\{R(e_1), R(d)\}$.

2. We assume the opposite. Let $u, u_1, u_2, u_3 \in U_l$ be pairwise distinct, and let $e_1, e_2, e_3 \in K_u^l$ be pairwise distinct. Let $g_i \in K_{u_i}^l$, such that $\{g_i, e_i\} \in E$, $i \in [3]$. By (1) we only have cross situations $cross\{R(g_i), R(e_i)\}$, $i \in [3]$, $cross\{R(e_1), R(e_2)\}$, $cross\{R(e_1), R(e_3)\}$ and also $cross\{R(e_2), R(e_3)\}$. W.l.o.g. we can assume $cross(R(g_1), R(e_1))$. Then $cross(R(e_2), R(e_1))$ as otherwise the case $R(g_1) \cap R(e_2) \neq \emptyset$ would imply $\{g_1, e_2\} \in E$ contradicting Claim 3.6. By an analogous argument we get $cross(R(e_2), R(g_2))$ and $cross(R(e_2), R(e_3))$. $B(R(e_1)) \cap B(R(e_3)) = \emptyset$ cannot be the case, as $\{e_1, e_3\} \in E(K_u^l$ is a clique). But $B(R(e_1)) \cap B(R(e_3)) \neq \emptyset$ implies $R(e_3) \cap R(g_1) \neq \emptyset$ and thus, $\{e_3, g_1\} \in E$, again contradicting Claim 3.6. We conclude that in each clique K_u^l there are at most two nodes adjacent to other cliques K_i^l .

3. We assume the opposite. Then there exist $v, v_1, v_2, v_3 \in U_r$ pairwise distinct, such that $\{u_i, v_i\}, \{u_i, v\} \in \tilde{E}, i \in [3]$. Thus, in K_v^r there exist more than two nodes adjacent to other cliques in contradiction to (2), which also holds for the right clique partition.

4. We assume, that the induced subgraph $D := G(\bigcup_{u \in U_l} B_u^l)$ is not bipartite. Then D contains an odd cycle. As G is beautiful, also D is beautiful. One can show by induction on the cycle length, that a Berge graph containing an odd cycle as a subgraph (not necessarily induced) contains a triangle. Thus, Dcontains a triangle $\{e_1, e_2, e_3\}$. Each node e_i must lie in a separate clique by Claim 3.6. But this contradicts (3). We conclude that D must be bipartite. \Box

The derivations above (Lemma 3.8) motivate the following definition:

Definition 3.9. *G* has the *property* \mathcal{B} if

- $|B_u^l| \leq 2$ for each $u \in U_l$, and
- $G(\bigcup_{u \in U_l} B_u^l)$ is bipartite.

Lemma 3.10. If G has property \mathcal{B} , then G is a cs-graph.

Proof. Let $G = L(\tilde{G})$ be the line graph of a square-free bipartite graph $\tilde{G} = (U_l \cup U_r, \tilde{E})$, where G has property \mathcal{B} . W.l.o.g. assume $U_l = [m]$. Let $\{K_u^l \mid u \in U_l\}$ be the left clique partition of G. Define $s_u := |K_u^l|$ and $s := \max\{s_u \mid u \in U_l\}$. We have to define a matrix M such that $G =_{iso} \mathcal{G}(M)$. Define the block matrix $M := (M_{i,j})_{i,j\in[m]}$, where each block $M_{i,j}$ is an $s \times s$ -matrix over $\{0,1\}$. In the diagonal, the left cliques are represented, i.e. $M_{i,i} := \operatorname{rep} K_{s_i}^{(s)}, i \in [m]$. See Subsection 1.4 for the definition of $\operatorname{rep} K_{s_i}^{(s)}$. By Lemma 3.8 (4) we know that $\mathcal{G}(\bigcup_{u \in U_l} B_u^l)$ is bipartite. Thus, there exists a 2-coloring $c : \bigcup_{u \in U_l} B_u^l \to [2]$. For each $B_u^l \neq \emptyset$, we can now define its elements. If $e \in B_u^l$ and c(e) = b, define $e_u^b := e, b \in [2]$. Trivially, $c(e_u^b) = b$. Now we can define the nondiagonal blocks in M: For distinct $i, j \in [m]$, if e_i^1 is adjacent to e_j^2 , then define

$$M_{i,j} \quad := \quad E_{1,1} := \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right)$$

Otherwise, let $M_{i,j} := (0)$. Note, that there does not exist any nonextendible rectangle R in M, such that R covers elements in blocks $M_{i,j}, M_{r,s}$ with $i \neq r$, $j \neq s$. Assume the contrary. We distinguish three cases: In case i = j and r = sthe left cliques K_i^l and K_r^l would be connected by two edges $\{e_i^1, e_r^2\}, \{e_i^2, e_r^1\} \in$ E, which is impossible. In case i = j and $r \neq s$ by construction of M, there would exist edges $\{e_i^1, e_r^2\}, \{e_s^1, e_r^2\}, \{e_s^1, e_i^2\} \in E$ implying $C_4 \leq_{iso} G$, because $\{e_i^1, e_i^2\} \in E$ and $\{e_i^1, e_s^1\}, \{e_i^2, e_r^2\} \notin E$, as c is a 2-coloring. But this is impossible, as G is square-free. Similarly, in case $i \neq j$ and $r \neq s$, there would exist edges $\{e_i^1, e_j^2\}, \{e_j^2, e_r^1\}, \{e_r^1, e_s^2\}, \{e_s^2, e_i^1\} \in E$, again forming an induced C_4 in G. Thus, such a rectangle R cannot exist, and we conclude $G =_{iso} \mathcal{G}(M)$.

Every induced subgraph of the line graph of a square-free bipartite graph, which has property \mathcal{B} , is also the line graph of a square-free bipartite graph, which has property \mathcal{B} . Thus, by Lemma 3.10 we have:

Theorem 3.11. If G has property \mathcal{B} , then G is beautiful.

As a technical intermediate characterization by Lemma 3.8 (2) and (4), and Theorem 3.11 we get:

 \square

Theorem 3.12. G is beautiful iff G has property \mathcal{B} .

But what do these graphs look like? In U_r we can safely ignore isolated nodes. We delete nodes of degree one obtaining U'_r . We also delete nodes in U_l which have become isolated. Call the new set U'_l . The property of $G(\bigcup_{u \in U_l} B^l_u)$ being bipartite implies that in U'_r nodes of degree ≥ 3 do not exist (otherwise, one would have a triangle). If we restrict \tilde{G} on U'_l and U'_r , all nodes on the right side have degree two while all nodes on the left have degree one. This graph consists of disjoint cycles of even length ≥ 6 and paths of even length ≥ 2 . Thus, the corresponding line graph consists of cycles of even length and paths of odd length. We color the edges of G red and green such that end edges are colored green. The leaves in \tilde{G} induce additional cliques in the line graph. These are cliques of arbitrary size which are attached to the start or end nodes of a path or contain a single red edge of a path or a cycle and only additional nodes and edges. We call such graphs Odd Paths and Even Cycles of Cliques graph, see e.g. Figure 4.

Thus, our main theorem reads as follows:

Figure 4: Odd Paths and Even Cycles of Cliques

Theorem 3.13. A line graph of a square-free bipartite graph is beautiful iff it is an Odd Paths and Even Cycles of Cliques graph. \Box

Acknowledgements I would like to thank Martin Dietzfelbinger for many fruitful discussions and for his contribution to Theorem 3.13.

I would also like to thank Andreas Brandstädt and Michael Stiebitz for their suggestions concerning the presentation of this paper, Jacobo Torán for interesting discussions, and Thanh Minh Hoang and Fabian Wagner for careful proofreading.

References

- N. Alon, E. Lubetzky, The shannon capacity of a graph and the independence numbers of its powers, IEEE Transactions on Information Theory 52 (5) (2006) 2172-2176.
- [2] C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung), Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe (1961) 114–115.
- [3] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Annals of Mathematics 164 (2006) 51–229.
- [4] M. Conforti, G. Cornuéjols, K. Vušković, Square-free perfect graphs, J. Comb. Theory, Ser. B 90 (2) (2004) 257–307.
- [5] R. Diestel, Graph Theory, vol. 173 of Graduate Texts in Mathematics, 3rd ed., Springer-Verlag, Heidelberg, 2005.
- [6] S. Hougardy, Classes of perfect graphs, Discrete Mathematics 306 (19-20) (2006) 2529-2571.
- [7] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, 1997.

- [8] L. Lovász, On the shannon capacity of a graph, IEEE Trans. Inform. Theory IT-25 (1979) 1–7.
- [9] T. A. McKee, F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, 1999.
- [10] J. L. Ramírez-Alfonsín, B. A. Reed, Perfect Graphs, Wiley, 2001.
- [11] C. E. Shannon, A mathematical theory of communication, Bell Sys. Tech. Journal 27 (1948) 379–423 and 623–656.
- [12] C. E. Shannon, The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory IT-2 (1965) 8–19.
- [13] A. C.-C. Yao, Some complexity questions related to distributive computing (preliminary report), in: Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing, 30 April-2 May, 1979, Atlanta, Georgia, USA, 1979.

Liste der bisher erschienenen Ulmer Informatik-Berichte

Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm Some of them are available by FTP from ftp.informatik.uni-ulm.de Reports marked with * are out of print

91-01	Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe Instance Complexity
91-02*	K. Gladitz, H. Fassbender, H. Vogler Compiler-Based Implementation of Syntax-Directed Functional Programming
91-03*	Alfons Geser Relative Termination
91-04*	J. Köbler, U. Schöning, J. Toran Graph Isomorphism is low for PP
91-05	Johannes Köbler, Thomas Thierauf Complexity Restricted Advice Functions
91-06*	<i>Uwe Schöning</i> Recent Highlights in Structural Complexity Theory
91-07*	<i>F. Green, J. Köbler, J. Toran</i> The Power of Middle Bit
91-08*	V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara, U. Schöning, R. Silvestri, T. Thierauf Reductions for Sets of Low Information Content
92-01*	Vikraman Arvind, Johannes Köbler, Martin Mundhenk On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets
92-02*	<i>Thomas Noll, Heiko Vogler</i> Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars
92-03	Fakultät für Informatik 17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen
92-04*	V. Arvind, J. Köbler, M. Mundhenk Lowness and the Complexity of Sparse and Tally Descriptions
92-05*	Johannes Köbler Locating P/poly Optimally in the Extended Low Hierarchy
92-06*	Armin Kühnemann, Heiko Vogler Synthesized and inherited functions -a new computational model for syntax-directed semantics
92-07*	Heinz Fassbender, Heiko Vogler A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost Narrowing

92-08*	<i>Uwe Schöning</i> On Random Reductions from Sparse Sets to Tally Sets
92-09*	Hermann von Hasseln, Laura Martignon Consistency in Stochastic Network
92-10	<i>Michael Schmitt</i> A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any Linearly Separable Boolean Function
92-11	<i>Johannes Köbler, Seinosuke Toda</i> On the Power of Generalized MOD-Classes
92-12	V. Arvind, J. Köbler, M. Mundhenk Reliable Reductions, High Sets and Low Sets
92-13	Alfons Geser On a monotonic semantic path ordering
92-14*	Joost Engelfriet, Heiko Vogler The Translation Power of Top-Down Tree-To-Graph Transducers
93-01	Alfred Lupper, Konrad Froitzheim AppleTalk Link Access Protocol basierend auf dem Abstract Personal Communications Manager
93-02	M.H. Scholl, C. Laasch, C. Rich, HJ. Schek, M. Tresch The COCOON Object Model
93-03	<i>Thomas Thierauf, Seinosuke Toda, Osamu Watanabe</i> On Sets Bounded Truth-Table Reducible to P-selective Sets
93-04	<i>Jin-Yi Cai, Frederic Green, Thomas Thierauf</i> On the Correlation of Symmetric Functions
93-05	K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam A Conceptual Approach to an Open Hospital Information System
93-06	Klaus Gaßner Rechnerunterstützung für die konzeptuelle Modellierung
93-07	Ullrich Keßler, Peter Dadam Towards Customizable, Flexible Storage Structures for Complex Objects
94-01	<i>Michael Schmitt</i> On the Complexity of Consistency Problems for Neurons with Binary Weights
94-02	Armin Kühnemann, Heiko Vogler A Pumping Lemma for Output Languages of Attributed Tree Transducers
94-03	Harry Buhrman, Jim Kadin, Thomas Thierauf On Functions Computable with Nonadaptive Queries to NP
94-04	<i>Heinz Faßbender, Heiko Vogler, Andrea Wedel</i> Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree Transducers

94-05	V. Arvind, J. Köbler, R. Schuler On Helping and Interactive Proof Systems
94-06	<i>Christian Kalus, Peter Dadam</i> Incorporating record subtyping into a relational data model
94-07	Markus Tresch, Marc H. Scholl A Classification of Multi-Database Languages
94-08	Friedrich von Henke, Harald Rueß Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge
94-09	<i>F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker</i> Construction and Deduction Methods for the Formal Development of Software
94-10	Axel Dold Formalisierung schematischer Algorithmen
94-11	Johannes Köbler, Osamu Watanabe New Collapse Consequences of NP Having Small Circuits
94-12	Rainer Schuler On Average Polynomial Time
94-13	Rainer Schuler, Osamu Watanabe Towards Average-Case Complexity Analysis of NP Optimization Problems
94-14	Wolfram Schulte, Ton Vullinghs Linking Reactive Software to the X-Window System
94-15	Alfred Lupper Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen
94-16	Robert Regn Verteilte Unix-Betriebssysteme
94-17	Helmuth Partsch Again on Recognition and Parsing of Context-Free Grammars: Two Exercises in Transformational Programming
94-18	Helmuth Partsch Transformational Development of Data-Parallel Algorithms: an Example
95-01	Oleg Verbitsky On the Largest Common Subgraph Problem
95-02	<i>Uwe Schöning</i> Complexity of Presburger Arithmetic with Fixed Quantifier Dimension
95-03	Harry Buhrman, Thomas Thierauf The Complexity of Generating and Checking Proofs of Membership
95-04	Rainer Schuler, Tomoyuki Yamakami Structural Average Case Complexity
95-05	Klaus Achatz, Wolfram Schulte Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06	Christoph Karg, Rainer Schuler Structure in Average Case Complexity
95-07	P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen
95-08	Jürgen Kehrer, Peter Schulthess Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik
95-09	Hans-Jörg Burtschick, Wolfgang Lindner On Sets Turing Reducible to P-Selective Sets
95-10	<i>Boris Hartmann</i> Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen Netzen am Beispiel Truck Backer-Upper
95-12	Klaus Achatz, Wolfram Schulte Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists
95-13	Andrea Mößle, Heiko Vogler Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes
95-14	Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß A Generic Specification for Verifying Peephole Optimizations
96-01	<i>Ercüment Canver, Jan-Tecker Gayen, Adam Moik</i> Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche mit VSE
96-02	<i>Bernhard Nebel</i> Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class
96-03	Ton Vullinghs, Wolfram Schulte, Thilo Schwinn An Introduction to TkGofer
96-04	<i>Thomas Beuter, Peter Dadam</i> Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am Beispiel der Domäne Concurrent-Engineering
96-05	Gerhard Schellhorn, Wolfgang Ahrendt Verification of a Prolog Compiler - First Steps with KIV
96-06	Manindra Agrawal, Thomas Thierauf Satisfiability Problems
96-07	Vikraman Arvind, Jacobo Torán A nonadaptive NC Checker for Permutation Group Intersection
96-08	<i>David Cyrluk, Oliver Möller, Harald Rueβ</i> An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with Composition and Extraction
96-09	Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT– Ansätzen

96-10	Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß Formalizing Fixed-Point Theory in PVS
96-11	Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß Mechanized Semantics of Simple Imperative Programming Constructs
96-12	Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß Generic Compilation Schemes for Simple Programming Constructs
96-13	<i>Klaus Achatz, Helmuth Partsch</i> From Descriptive Specifications to Operational ones: A Powerful Transformation Rule, its Applications and Variants
97-01	Jochen Messner Pattern Matching in Trace Monoids
97-02	<i>Wolfgang Lindner, Rainer Schuler</i> A Small Span Theorem within P
97-03	<i>Thomas Bauer, Peter Dadam</i> A Distributed Execution Environment for Large-Scale Workflow Management Systems with Subnets and Server Migration
97-04	<i>Christian Heinlein, Peter Dadam</i> Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow Dependencies
97-05	Vikraman Arvind, Johannes Köbler On Pseudorandomness and Resource-Bounded Measure
97-06	Gerhard Partsch Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den digitalen Mobilfunkstandard DECT
97-07	<i>Manfred Reichert, Peter Dadam</i> <i>ADEPT</i> _{<i>flex</i>} - Supporting Dynamic Changes of Workflows Without Loosing Control
97-08	Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler The Project NoName - A functional programming language with its development environment
97-09	Christian Heinlein Grundlagen von Interaktionsausdrücken
97-10	Christian Heinlein Graphische Repräsentation von Interaktionsausdrücken
97-11	Christian Heinlein Sprachtheoretische Semantik von Interaktionsausdrücken
97-12	<i>Gerhard Schellhorn, Wolfgang Reif</i> Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem Provers

97-13	Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn Experimenteller Vergleich statischer und dynamischer Softwareprüfung für eingebettete Systeme
97-14	Wolfgang Reif, Gerhard Schellhorn Theorem Proving in Large Theories
97-15	<i>Thomas Wennekers</i> Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen
97-16	<i>Peter Dadam, Klaus Kuhn, Manfred Reichert</i> Clinical Workflows - The Killer Application for Process-oriented Information Systems?
97-17	Mohammad Ali Livani, Jörg Kaiser EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications
97-18	<i>Johannes Köbler,Rainer Schuler</i> Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity Classes
98-01	Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde Uhrmacher, Steffen Wolf Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung
98-02	<i>Thomas Bauer, Peter Dadam</i> Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und Analyse
98-03	Marko Luther, Martin Strecker A guided tour through Typelab
98-04	Heiko Neumann, Luiz Pessoa Visual Filling-in and Surface Property Reconstruction
98-05	<i>Ercüment Canver</i> Formal Verification of a Coordinated Atomic Action Based Design
98-06	Andreas Küchler On the Correspondence between Neural Folding Architectures and Tree Automata
98-07	Heiko Neumann, Thorsten Hansen, Luiz Pessoa Interaction of ON and OFF Pathways for Visual Contrast Measurement
98-08	<i>Thomas Wennekers</i> Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons
98-09	<i>Thomas Bauer, Peter Dadam</i> Variable Migration von Workflows in <i>ADEPT</i>
98-10	<i>Heiko Neumann, Wolfgang Sepp</i> Recurrent V1 – V2 Interaction in Early Visual Boundary Processing
98-11	Frank Houdek, Dietmar Ernst, Thilo Schwinn Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12	Gerhard Schellhorn Proving Properties of Directed Graphs: A Problem Set for Automated Theorem Provers
98-13	Gerhard Schellhorn, Wolfgang Reif Theorems from Compiler Verification: A Problem Set for Automated Theorem Provers
98-14	Mohammad Ali Livani SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN
98-15	Mohammad Ali Livani, Jörg Kaiser Predictable Atomic Multicast in the Controller Area Network (CAN)
99-01	Susanne Boll, Wolfgang Klas, Utz Westermann A Comparison of Multimedia Document Models Concerning Advanced Requirements
99-02	<i>Thomas Bauer, Peter Dadam</i> Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und Simulation
99-03	<i>Uwe Schöning</i> On the Complexity of Constraint Satisfaction
99-04	<i>Ercument Canver</i> Model-Checking zur Analyse von Message Sequence Charts über Statecharts
99-05	Johannes Köbler, Wolfgang Lindner, Rainer Schuler Derandomizing RP if Boolean Circuits are not Learnable
99-06	<i>Utz Westermann, Wolfgang Klas</i> Architecture of a DataBlade Module for the Integrated Management of Multimedia Assets
99-07	<i>Peter Dadam, Manfred Reichert</i> Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems, Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings, Informatik '99
99-08	Vikraman Arvind, Johannes Köbler Graph Isomorphism is Low for ZPP ^{NP} and other Lowness results
99-09	<i>Thomas Bauer, Peter Dadam</i> Efficient Distributed Workflow Management Based on Variable Server Assignments
2000-02	<i>Thomas Bauer, Peter Dadam</i> Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow- Management-System ADEPT
2000-03	Gregory Baratoff, Christian Toepfer, Heiko Neumann Combined space-variant maps for optical flow based navigation
2000-04	<i>Wolfgang Gehring</i> Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05	Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos
2000-06	Wolfgang Reif, Gerhard Schellhorn, Andreas Thums Fehlersuche in Formalen Spezifikationen
2000-07	<i>Gerhard Schellhorn, Wolfgang Reif (eds.)</i> FM-Tools 2000: The 4 th Workshop on Tools for System Design and Verification
2000-08	Thomas Bauer, Manfred Reichert, Peter Dadam Effiziente Durchführung von Prozessmigrationen in verteilten Workflow- Management-Systemen
2000-09	<i>Thomas Bauer, Peter Dadam</i> Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in ADEPT
2000-10	Thomas Bauer, Manfred Reichert, Peter Dadam Adaptives und verteiltes Workflow-Management
2000-11	Christian Heinlein Workflow and Process Synchronization with Interaction Expressions and Graphs
2001-01	Hubert Hug, Rainer Schuler DNA-based parallel computation of simple arithmetic
2001-02	Friedhelm Schwenker, Hans A. Kestler, Günther Palm 3-D Visual Object Classification with Hierarchical Radial Basis Function Networks
2001-03	Hans A. Kestler, Friedhelm Schwenker, Günther Palm RBF network classification of ECGs as a potential marker for sudden cardiac death
2001-04	<i>Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm</i> Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and Frequency Features and Data Fusion
2002-01	Stefanie Rinderle, Manfred Reichert, Peter Dadam Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow- Instanzen bei der Evolution von Workflow-Schemata
2002-02	Walter Guttmann Deriving an Applicative Heapsort Algorithm
2002-03	Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk A Mechanically Verified Compiling Specification for a Realistic Compiler
2003-01	<i>Manfred Reichert, Stefanie Rinderle, Peter Dadam</i> A Formal Framework for Workflow Type and Instance Changes Under Correctness Checks
2003-02	Stefanie Rinderle, Manfred Reichert, Peter Dadam Supporting Workflow Schema Evolution By Efficient Compliance Checks
2003-03	Christian Heinlein Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04	Stefanie Rinderle, Manfred Reichert, Peter Dadam On Dealing With Semantically Conflicting Business Process Changes.
2003-05	Christian Heinlein Dynamic Class Methods in Java
2003-06	Christian Heinlein Vertical, Horizontal, and Behavioural Extensibility of Software Systems
2003-07	<i>Christian Heinlein</i> Safely Extending Procedure Types to Allow Nested Procedures as Values (Corrected Version)
2003-08	Changling Liu, Jörg Kaiser Survey of Mobile Ad Hoc Network Routing Protocols)
2004-01	Thom Frühwirth, Marc Meister (eds.) First Workshop on Constraint Handling Rules
2004-02	<i>Christian Heinlein</i> Concept and Implementation of C+++, an Extension of C++ to Support User-Defined Operator Symbols and Control Structures
2004-03	Susanne Biundo, Thom Frühwirth, Günther Palm(eds.) Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence
2005-01	Armin Wolf, Thom Frühwirth, Marc Meister (eds.) 19th Workshop on (Constraint) Logic Programming
2005-02	Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven 2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm
2005-03	Walter Guttmann, Markus Maucher Constrained Ordering
2006-01	Stefan Sarstedt Model-Driven Development with ACTIVECHARTS, Tutorial
2006-02	Alexander Raschke, Ramin Tavakoli Kolagari Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten Systemen
2006-03	Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari Eine qualitative Untersuchung zur Produktlinien-Integration über Organisationsgrenzen hinweg
2006-04	Thorsten Liebig Reasoning with OWL - System Support and Insights –
2008-01	H.A. Kestler, J. Messner, A. Müller, R. Schuler On the complexity of intersecting multiple circles for graphical display

2008-02	Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser, Markus Lauer Architectural Design of Flexible Process Management Technology
2008-03	Frank Raiser Semi-Automatic Generation of CHR Solvers from Global Constraint Automata
2008-04	Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für produktlinien-basierte Entwicklungsprozesse
2008-05	Markus Kalb, Claudia Dittrich, Peter Dadam Support of Relationships Among Moving Objects on Networks
2008-06	Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.) WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke
2008-07	<i>M. Maucher, U. Schöning, H.A. Kestler</i> An empirical assessment of local and population based search methods with different degrees of pseudorandomness
2008-08	Henning Wunderlich Covers have structure

Ulmer Informatik-Berichte ISSN 0939-5091

Herausgeber: Universität Ulm Fakultät für Ingenieurwissenschaften und Informatik 89069 Ulm