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Abstract

Various simpli�ed or improved, and partly corrected well-known im-
plicit characterizations of the complexity classes FPTIME and NC are
presented. Primarily, the interest is in simplifying the required simulations
of various recursion schemes in the corresponding (implicit) framework,
and in developing those simulations in a more uniform way, based on a
step-by-step comparison technique, thus consolidating groundwork in im-
plicit computational complexity.

1 Introduction

In implicit computational complexity, much attention has been payed to the
complexity classes FPTIME andNC, e.g. see [2, 4, 6, 7, 9, 10, 15, 18, 19, 24, 26].
This paper presents simpli�ed or improved, and partly corrected well-known
implicit characterizations of the complexity classes FPTIME and NC.

The core of the present research is to simplify the required simulations of
various (bounded) recursion schemes in the corresponding (implicit) framework,
and moreover, to develop those simulations in a more uniform way, based on
a step-by-step comparison technique. Furthermore, we establish a new ground
type function algebraic characterization ofNC, which might be of help to resolve
the open problem [2] of characterizing NC through higher types.

The starting point is a simpli�ed proof that the functions of Cobham's class,
Cob [12], characterizing FPTIME is contained in the function algebra BC
of Bellantoni and Cook [4]. That every function f of Cobham's class can be
simulated in BC rests on three �ndings:

(S1) For every f in Cob one can construct a function f ′(w; ~x) in BC, called
simulation of f , and a polynomial pf , called witness for f , such that

f(~x) = f ′(w; ~x) whenever |w| ≥ pf (|~x|).

(S2) For every polynomial p(~x) one can construct a function Wp(~x; ) in BC,
called length-bound on p, such that |Wp(~x; )| ≥ p(|~x|).
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(S3) Every function g(~x; ~y, ~z) in BC can be written as SN(g)(~x, ~y; ~z), called
safe-to-normal property.

Thus, by use of (S1), (S2), (S3), and safe composition, the proof that every
f in Cob can be simulated in BC is then concluded as follows:

f(~x) = SN(f ′)(Wpf
(~x; ), ~x; )

In each simulation, we will concentrate on the crucial statement corresponding
to (S1). As for (S1) above, all cases are obvious, except for the case where
f is de�ned by bounded recursion on notation, and here a di�cult simulation
and proof was given in [4]. The di�culty mainly arises because of an unnatural
choice of a case function de�ned as

case( ;x, even, odd) :=

{
even if x is even

odd if x is odd.

When replacing function case by the function bcase (for binary case), that is,

bcase( ; x, zero, even, odd) :=


zero if x = 0
even if x > 0 and x is even

odd if x > 0 and x is odd

then a simulation f ′ can be constructed the correctness of which is immediate
from its de�nition. So let BC′ be BC where case is replaced with bcase.

Note that both case and bcase (as well as the binary predecessor function
p) could be de�ned by recursion on notation and composition, using projections
and the constructor functions 0, s0, s1. But in both algebras BC and BC′,
this is only possible at the cost of introducing normal input positions, and that
is why they come as initial functions with safe input positions only. But then
we have a choice between case and bcase. We clearly opt for bcase because it
is the natural choice. In fact, bcase naturally springs from a ��at� recursion on
notation, since that scheme distinguishes � for the recursion argument � the cases
zero, nonzero and even and nonzero and odd1. Furthermore, note that while
bcase( ; x, y, z0, z1) is provably inde�nable in BC, the function case( ; x, z0, z1)
is obviously in BC′, since case( ; x, z0, z1)=bcase( ; x, z0, z0, z1).

To our knowledge, the �simulation method� (S1) appears for the �rst time
in the groundwork of Bellantoni and Cook [4]. Since then, it has been applied
directly or in adapted form to many characterizations of complexity classes,
e.g. the Kálmar-elementary functions and Pspace are treated in [25], in [20], [5]
the method is extended to all levels of the Grzegorczyk hierarchy, and in [15]
that method is adapted so as to compute all functions at Grzegorczyk level n+2
by loop programs of µ-measure n.

Roughly speaking, the simulation method consists in separating the �struc-
ture� in a recursion from the �growth rate� given with it. Technically, one in-
troduces a single normal parameter, w, to which all given recursion parameters
refer to in a �safe� way. It is hard to say what those simulations compute for
wrong values of w, however, once w is su�ciently large, and that is where the
witness comes into play, all given recursions unfold in the expected way.

1As a technical consequence, in BC′ we don't have to bother with de�ning the functions
�PARITY�, �I�, �V� or �h�, unlike in [4].
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Our way of performing the simulation method for various forms of recursion
does not change that at all. However, unlike many instances of that method in
the literature, we always start o� with a clear semantics based on a step-by-
step comparison technique such that when implementing the simulation in the
given framework, the correctness of the implementation is immediate from the
speci�ed semantics. As pointed out above, the right choice of initial functions,
such as bcase, will sometimes prove decisive.

Rounding o�, the main goal is to propose a step-by-step comparison tech-
nique, exempli�ed at various forms of recursion, so as to perform the simulation
method in a way that is easy to grasp and does away with hard going proofs.
Thereby, groundwork in implicit computational complexity is revised and con-
solidated.

The paper is organized as follows. In Section 2, all basic notions involved
in the design of Cobham's and Bellantoni/Cook's function algebra, Cob and
BC, are introduced and examined. Section 3 presents a simpli�ed proof of
BC′=Cob, thereby demonstrating the step-by-step comparison technique. Re-
calling Clote's function algebra, CLO, in Section 4 and 5, two variants, CLO′

and CLO′′, are considered, and a proof of CLO′=CLO=CLO′′ is presented,
using the same technique. In Section 6 several rami�ed function algebras are in-
troduced, and, using both the step-by-step comparison technique and the above
identities, it is proved that all of them characterize the class NC.

2 Preliminaries and some existing function alge-

bras

We assume only basic knowledge about the function algebras and complexity
classes studied here. In this section, we introduce to and summarize some basic
concepts, and make some stipulations concerning notations used throughout this
article.

Albeit describing operations on binary representations, all of the functions
under consideration are number-theoretic, that is, functions of the form f : Nn →
N. For unary functions f and numbers k, fk denotes the kth iterate of f , induc-
tively de�ned by f0(x)=x and fk+1(x)=f(fk(x)).

Binary representations of natural numbers x, denoted by bin(x), can be
simulated by 0 (viewed as 0-ary function) and the binary successors S0,S1 which
correspond to the operations of extending binary representations by a new lowest
order bit.

S0(x) = 2·x (operation bin(x) 7→bin(x)0 for x 6=0)
S1(x) = 2·x + 1 (operation bin(x) 7→bin(x)1)

This �data structure� gives rise to a canonical recursion scheme: A function f
is de�ned by recursion on notation from functions g, h0, h1, denoted by f =
RN(g, h0, h1), if for all y, ~x,

f(0, ~x) = g(~x)
f(Si(y), ~x) = hi(y, ~x, f(y, ~x)) for Si(y) 6= 0.

Observe that bin(y) = bl−1 . . . b0 6= ε implies y = Sb0(Sb1(. . .Sbl−1(0) . . .)). Thus,
for recursion on notation, the recourse is from bl−1 . . . b0 to bl−1 . . . b1 to . . . to
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bl−1 = S1(0), and �nally from S1(0) to 0. So one needs |y| recursive calls of f
when computing f(y, ~x), where |y|=dlog2(y + 1)e is the binary length of y.

A function f is de�ned by bounded recursion on notation from functions g, h
and bound B, denoted by f =BRN(g, h, B), if f =RN(g, h) and f ≤ B.

Finally, f is de�ned by ordinary composition from functions h, g1, . . . , gl,
denoted by f =COMP(h, g1, . . . , gl), if it satis�es f(~x)=h(g1(~x), . . . , gl(~x)).

We use Clote's [11] notation to specify function algebras, [X ;op], denoting
the smallest set of functions containing the functions speci�ed in X and closed
under the operations listed in op.

Each function algebra is either purely number-theoretical or rami�ed. A typ-
ical example of the former is Cobham's [12] well-known function algebra

Cob := [0,S0,S1,Π,#; COMP,BRN]

where Π denotes the set of all projections Πn
i satisfying Πn

i (x1, . . . , xn)=xi, for
1 ≤ i ≤ n, and where #, called smash function, satis�es #(x, y)=2|x|·|y|.

The idea in the design of Cob is that recursion on notation can be used
to de�ne new functions in the class as long as they are bounded by functions
already de�ned. That this actually allows one to de�ne in Cob functions of any
polynomial length is due to the presence of the initial function #. In fact, one
easily veri�es that for every function f in Cob there exists a polynomial length
bound on f , that is, a polynomial bf satisfying |f(~x)| ≤ bf (|~x|).

While the latter is a necessary condition for all functions in FPTIME, that
is, the functions computable (in binary) on a Turing machine in polynomial time
(in the binary length of the input), Cobham showed that the polynomial-time
computable functions are precisely the functions de�nable in Cob.

Theorem 2.1 ([12]). Cob = FPTIME

From a programming point of view, function algebras like Cob are not prac-
tically appealing because they cannot be used as a construction kit: Whenever a
recursion is performed, one is prompted with a proof that the computed function
is bounded by some function already constructed.

Building on work of Simmons [27] and Leivant [16, 17], Bellantoni and Cook
[4] were the �rst to give a purely functional characterization of FPTIME that
does away with the �explicit� reference to the growth rate of functions de�ned by
(BRN) in Cobham's class. In fact, this �explicit� reference can be made �implicit�
by ensuring the following principle (P-BC): Computed values in recursions
must not control other recursions (cf. [21], [23]).

That principle led to the well-known function algebra BC [4] which actually
can be used as a construction kit, since all restrictions are of purely syntactical
nature. In BC, each function is written in the form f(~x; ~y), thus bookkeeping
the normal input positions, ~x, which may control a recursion, and those (safe),
~y, which do not. This simple bookkeeping allows us to implement (P-BC): A
function f(y, ~x; ~a) is de�ned by safe recursion from g(~x; ~a), h0(u, ~x; ~a, v), and
h1(u, ~x; ~a, v), denoted by f =srn(g, h0, h1), if for all y, ~x,~a,

f(0, ~x; ~a) = g(~x; ~a)
f(Si(y), ~x; ~a) = hi(y, ~x; ~a, f(y, ~x; ~a)) for Si(y) 6= 0.

Enforcing the above principle when composing functions of given ones, a func-
tion f(~x; ~a) is de�ned by safe composition from functions g(~u; ~v),~h(~x; ), and
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~j(~x; ~a), denoted by f =scomp(g,~h,~j), if for all ~x,~a,

f(~x; ~a) = g(~h(~x; );~j(~x; ~a)).

Of course, now all initial functions must be written in a rami�ed form, too.
These are the functions 0, s0( ; y), s1( ; y), πn,m

i (~x; ~y), p( ; y), and case( ;x, y, z),
where the latter is de�ned in Section 1. The function p( ; y) is the rami�ed form
of the binary predecessor P satisfying P(x)= bx

2 c, and thus corresponds to the
operation of chopping o� the lowest order bit, if any.

Note that the projections πn,m
i (x1, . . . , xn; xn+1, . . . , xn+m)=xi, for 1≤ i≤

n+m, are the only initial functions with normal input positions. It is their pres-
ence that is in charge of the safe-to-normal property, (S3), stated in Section 1.
To see this, let f(~x; ~y, ~z) be in BC, say ~x = x1, . . . , xl, ~y = xl+1, . . . , xn with
n := l+m, and ~z=xn+1, . . . , xs with s := n+r. Then by scomp we obtain

SN(f)(~x, ~y; ~z)=f(πn,0
1 (~x, ~y; ), . . . , πn,0

l (~x, ~y; ); πn,r
l+1(~x, ~y; ~z), . . . , πn,r

s (~x, ~y; ~z)).

In particular, this shows that normal variables may occur in any safe position
in the right-hand side of any de�ning equation according to scomp.

Furthermore, note that both ~h(~x; ) and ~j(~x; ~a) in scheme scomp may be
empty function lists. Thus, all n-ary constant functions Cn

a (~x; ~y) = a can be
de�ned in BC: Cn

0 (~x; ~y) = 0, and inductively for 2 ·a+ i ≥ 1, Cn
2a+i(~x; ~y) =

si( ; Cn
a (~x; ~y)). As a consequence, every constant a may occur in the right-hand

side of any de�ning equation according to scomp or srn.
Altogether, the function algebra BC can be stated as

BC := [0, s0, s1, π, p, case; scomp, srn]

where π denotes the set of all rami�ed projections.
This function algebra is a prominent example of a rami�ed algebra, and as

done here, for the remainder we will adopt the convention that rami�ed versions
of functions written in capital letters, like Si,P or BIT, are written in small
letters, like si,p or bit, and if not explicitly stated otherwise, we tacitly assume
that they have safe input positions only.

The bene�t of rami�cation can be seen by the fact, veri�ed by a straight-
forward induction on the structure of functions in BC, that for every function
f(~x; ~y) there exists a poly-max length bound, that is, a polynomial qf satisfying

|f(~x; ~y)| ≤ qf (|~x|) + max(|~y|).

Using this poly-max length bounding, every recursion in BC can be written
as bounded recursion in Cobham's class, implying BC ⊆ Cob. The converse
holds by simulating the functions of Cob in BC, and that brings us back to the
main topic of the present research.

Theorem 2.2 ([4]). BC = FPTIME

Rounding o� this section, we prove property (S2) stated in Section 1. First
note that the shift-left function shl(x; y)=2|x| ·y is de�ned by srn as follows:

shl(0; y) = π0,1
1 ( ; y)

shl(Si(x); y) = s0( ; shl(x; y)) for Si(x) 6= 0
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As 2(|x|+1)·|y|=2|y| · 2|x|·|y|, the smash function #(x, y; )=2|x|·|y| is de�ned by

#(0, y; ) = 1

#(Si(x), y; ) = shl(π2,0
2 (x, y; ); #(x, y; )) for Si(x) 6= 0.

Now, to prove (S2), we proceed by induction on the structure of polynomials
p(~x) in N[~x]. If p(x1, . . . , xn) is xi or c, then Wxi(~x; ) := shl(πn,0

i (~x; ); 1) and
Wc(~x; ) := Cn

2c(~x; ), respectively, will do. Otherwise p(~x) is p1(~x) ◦ p2(~x) with
◦∈{+, ·}, and using x+y, x·y ≤ (x + 1)·(y + 1) and |2x|=x+1, we inductively
de�ne the required function Wp(~x; ) by safe composition as follows:

Wp(~x; ) := #(s1( ;Wp1(~x; )), s1( ;Wp2(~x; )); )

3 The variant BC′ and the step-by-step compar-

ison technique

In this section, we will give a simpli�ed proof of BC′ =Cob, for the following
variant BC′ of Bellantoni and Cook's function algebra (cf. Section 1 for bcase).

BC′ := [0, s0, s1, π, p,bcase; scomp, srn]

Theorem 3.1. BC′ = FPTIME.

Proof. Cob ⊆ BC′ Following the simulation method (S1) stated above, we
only consider the crucial case f =BRN(g, h0, h1, B), assuming inductively simu-
lations g′, h′

0, h
′
1∈BC′ and witnesses pg, ph0 , ph1 . As usual, the witness for f is

de�ned by pf (y, ~x) := (ph0+ph1)(y, ~x, bf (y, ~x))+pg(~x)+2y+1 for some polynomial
length bound bf on f . Thus, by monotonicity of polynomials, we have that (∗)
|w|≥phj (|Pi(y), ~x, f(Pi(y), ~x)|) whenever |w|≥pf (|y, ~x|). Now, for any y, i ∈ N,
let

y{i} := Pi(y)

be the y-section up to i. That is, for given y = (bl−1 · · · b0)2 with bin(y) =
bl−1 · · · b0, we have y{i}=(bl−1 · · · bi)2, and y{i}mod2=bi for i < |y|. Thus, by
unfolding the recursion we obtain the following steps:

f(y,~a) = hy{0}mod 2(y{1},~a, step 1
. . .

...
hy{i

.−1}mod 2(y{i},~a, step i
. . .

...
hy{|y| .−1}mod 2(y{|y|},~a, step |y|

g(~a)) · · · ) · · · ) step |y|+ 1

We will de�ne a simulation f ′ ∈ BC′ by

f ′(w; y,~a) := f̂(w,w; y,~a)
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where f̂ := srn(0, ĥ, ĥ) is de�ned by safe recursion from the zero function and
some ĥ ∈ BC′. Again, unfolding the recursion yields the following f̂ -steps:

f̂(w,w; y,~a) = ĥ(P1(w), w; y,~a, step 1
. . .

...
ĥ(Pi(w), w; y,~a, step i

. . .
...

ĥ(P|y|(w), w; y,~a, step |y|
ĥ(P|y|+1(w), w; y,~a, step |y|+ 1
· · · (0)) · · · ) · · · ) step > |y|+ 1

Thus, for f(y,~a) = f̂(w,w; y,~a) whenever |w| ≥ pf (|y,~a|), using the I.H. for
g, h0, h1 � recall (∗) � a stepwise comparison yields the following requirements:

ĥ(Pi(w), w; y,~a, vi) = h′
y{i

.−1}mod 2
(w; y{i},~a, vi) in steps 1 ≤ i ≤ |y|

ĥ(P|y|+1(w), w; y,~a, v|y|+1) = g′(w; ~a) in step |y|+ 1

where vi := f(Pi(y),~a) for i = 1, . . . , |y|+1. Now, de�ning 	(u; v) := P|u|(v)
by (srn), and hence | 	 (u; v)| = |v| .− |u|, by safe composition we obtain the
following y-section implementation in BC′.

Y (ŵ, w; y) := 	(SN(	)(ŵ, w; ); y) = P|w| .−|ŵ|(y) = y{|w| .− |ŵ|}

In fact, for su�ciently large w, that is, for |w|≥pf (|y,~a|), one has that

Y (Pi(w), w; y) =

{
y{i} if i ≤ |y|
0 if |y| ≤ i ≤ |w|

Y (S1(Pi(w)), w; y) = y{i .− 1} > 0 for 1 ≤ i ≤ |y|.

Thus, using function bcase above, function ĥ can be de�ned in BC′ as follows:

ĥ(ŵ, w; y,~a, v) := bcase( ; Y (s1( ; ŵ), w; y),
g′(w; ~a),
h′

0(w; Y (ŵ, w; y),~a, v),
h′

1(w; Y (ŵ, w; y),~a, v))

To see this, for steps 1≤ i≤|y| (and w su�ciently large), we obtain as required,
with Tb := h′

b(w; y{i},~a, vi),

ĥ(Pi(w), w; y,~a, vi) = bcase( ; y{i .− 1}, g′(w; ~a), T0, T1)
= h′

y{i
.−1}mod 2(w; y{i},~a, vi) as y{i .− 1} > 0,

and ĥ(P|y|+1(w), w; y,~a, v|y|+1)=bcase( ; 0, g′(w; ~a), · · · , · · · )=g′(w; ~a).
The converse BC′ ⊆ Cob follows by a straightforward induction on the

structure of f(~x; ~a) in BC′, using polymax length bounding to turn any safe
recursion on notation into a bounded recursion in Cob (cf. [4] or [20], [22]).

4 Clote's function algebra CLO and its variant

CLO′

In this section, we �rst recall Clote's [10, 11] function algebra, CLO, that char-
acterizes the class NC of functions computable by uniform circuit families of
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polynomial size and poly-logarithmic depth. Then we consider a variant CLO′

due to Bellantoni [3], and prove that these classes coincide.
To de�ne CLO, we need two more schemes and the function BIT satisfying

BIT(m, i)=bi if bin(m)=bl−1 . . . b0 and i < l, and BIT(m, i)=0 otherwise.
A function f is de�ned by weak bounded recursion on notation from functions

g, h0, h1, B, denoted by f :=WBRN(g, h0, h1, B), if it satis�es f(y,~a)=F (|y|,~a),
for F =BRN(g, h0, h1, B).

Furthermore, a function f is de�ned by concatenation recursion on notation
from functions g, h0, h1, denoted by f :=CRN(g, h0, h1), if for all y,~a,

f(0,~a) = g(~a)
f(Si(y),~a) = Shi(y,~a) mod 2(f(y,~a)) for Si(y) 6= 0.

Clote [10, 11] was the �rst to give a function-algebraic characterization of NC
through his algebra

CLO := [0,S0,S1,Π, | · |,BIT,#; COMP,CRN,WBRN].

Theorem 4.1 ([10, 11]). NC = CLO

In [3, p. 73] Bellantoni pointed out that the same class is obtained when
replacing scheme (WBRN) with the following streamlined variant.

De�nition 4.2. A function f is de�ned by WBRN′ from functions g, h, B,
denoted by f :=WBRN′(g, h, B), if for all y,~a,

f(0,~a) = g(~a)
f(y,~a) = h(y,~a, f(H(y),~a)) for y 6= 0
f(y,~a) ≤ B(y,~a)

where the half function H is de�ned by H(m) := bm/2d|m|/2ec.

The behavior of function H can be easily expressed on binary representations:

H((b2n−1 · · · b0)2) = (b2n−1 · · · bn)2 even length

H((b2n · · · b0)2) = (b2n · · · bn+1)2 odd length

In fact, de�ning the class CLO′ by

CLO′ := [0,S0,S1,Π, | · |,BIT,#; COMP,CRN,WBRN′]

one obtains the following result.

Theorem 4.3. CLO = CLO′

As the proof sketch in [3, footnote on p. 73] of either inclusion is wrong2, we
give a proof of the above theorem � the �rst one according to our knowledge �,
using the above step-by-step comparison technique.

2Any f =WBRN(g, h0, h1, B) is claimed to be identical to f ′ := WBRN′(g, h′, B), where
h′(x,~v, z) := h|x|mod 2(|x|−1, ~v, z). But, for example, f(5, ~v) = F (|5|, ~v) = F (S1(S1(0)), ~v) =
h1(1, ~v, h1(0, ~v, g(~v))), while f ′(5, ~v)=h′(5, ~v, h′(1, ~v, g(~v)))=h|5|mod 2(|5|−1, ~v, h|1|mod 2(|1|−
1, ~v, g(~v)))=h1(2, ~v, h1(0, ~v, g(~v))).

For the converse, any f ′=WBRN′(g, h, B) is claimed to be de�nable by f(u,~v) := f̂(u, u,~v),

where f̂ := WBRN(g, h0, h1, B), and hi(u, x,~v, z) := h(E(u, x), ~v, z), with E(u, x)=x mod 2u,
being the low-order u bits of x, assuming u ≤ |x|. But, e.g., f ′(5, ~v) = h(5, ~v, h(1, ~v, g(~v))),

while f(5, ~v) = f̂(5, 5, ~v) = F̂ (|5|, 5, ~v) = F̂ (S1(S1(0))) = h(E(1, 5), ~v, h(E(0, 5), ~v, g(~v))) =
h(1, ~v, h(0, ~v, g(~v))).
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The key observation is that the recursion depths of both schemes WBRN
and WBRN′ are identical, and hence step-by-step simulations are possible. To
see this, we �rst de�ne the half norm of y, denoted by ‖y‖H , that represents
the recursion depth of an WBRN′ instance at y.

‖y‖H := min{k ∈ N | Hk(y) = 0}

As |(|y|)| represents the recursion depth of an WBRN instance at y, the above
claimed equality on recursion depth then follows by the next lemma.

Lemma 4.4 (Half Norm). For any y ∈ N, one has

(0) ‖y‖H = |(|y|)|

(and so we just write ||y|| for ‖y‖H).

Proof. We proceed by course-of-values induction. As ‖0‖H =0= |(|0|)|, consider
any y>0, say |y|=2n+i, i∈{0, 1}. Then |H(y)|=n by de�nition, and we obtain

||y||H = ||H(y)||H +1
(I.H.)
= |(|H(y)|)|+1 = |n|+1 = |2n+i| = |(|y|)|.

Further facilitating the proof structure, we provide some auxiliary functions.

Lemma 4.5 (Auxiliary functions). All of the following functions belong to both
CLO and CLO′:

(a) the most signi�cant part, MSP, satisfying MSP(m,n) = bm
2n c = Pn(m),

(b) function DROP, satisfying DROP(m,n) = b m
2|n|

c = P|n|(m),

(c) the binary predecessor, P, satisfying P(m) = bm
2 c,

(d) the unary conditional, COND, satisfying COND(x, y, z) :=

{
y if x = 0
z else,

(e) the binary conditional, CASE, satisfying CASE(x, y, z)=case( ;x, y, z),

(f) and function half, H, satisfying H(m) = bm/2d|m|/2ec.
Proof. As for part (a), observe that MSP can be de�ned by (CRN), since

MSP(0, n) = 0
MSP(Sb(m), n) = SBIT(Sb(m),n)(MSP(m,n))

for Sb(m) 6= 0. Thus, both parts (b) and (c) follow from (a), since

DROP(m,n) = MSP(m, |n|)
P(m) = MSP(m, 1).

As for (d), �rst de�ne function F :=BRN(g, h, h, b) from both CLO and CLO′

functions g(y, z)= y, h(x, y, z, v)= z, and b(x, y, z)=2|z| ·y + z, where b can be
de�ned by (CRN). Then we already have F =COND. Thus, as |x|=0 ⇔ x=0,
we can use (WBRN) to de�ne COND(x, y, z)=F (|x|, y, z) as a function in CLO.
As well, since ||x||=0 ⇔ x=0, we obtain COND=WBRN′(g, h, b) ∈ CLO′.

Now, part (e) follows from (d), since CASE(x, y, z) = COND(BIT(x, 0), y, z),
and �nally, (f) follows from parts (a) � (e), since

H(m) = CASE(|m|,DROP(m,P(|m|)),DROP(m,P(|S1(m)|))).
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Proof. CLO ⊆ CLO′ . It su�ces to consider any f := WBRN(g, h0, h1, B) in
CLO, assuming g, h0, h1, B ∈ CLO′. We shall give a direct simulation f ′ ∈
CLO′ of f , that is, f(y,~a)=f ′(y,~a) for all y,~a, where

f ′(y,~a) := f̂(y, y,~a) with f̂ := WBRN′(ĝ, ĥ, B̂)

for some ĝ, ĥ, B̂∈CLO′. Here, the y-section is de�ned by

(1) y{i} := Pi(|y|).

Referring to (0), suppose that |y|=(b||y|| .−1 · · · b0)2. Then y{i}=(b||y|| .−1 · · · bi)2,
and y{i}mod2=bi for i< ||y||. Therefore, by unfolding the recursions we obtain
the following steps in comparison:

f(y,~a) = F (|y|,~a) != f ′(y,~a) steps
= hb0(y{1},~a, = ĥ(H0(y), y,~a, 1

. . .
. . .

...
hbi

.−1
(y{i},~a, ĥ(Hi

.−1(y), y,~a, i
. . .

. . .
...

hb||y|| .−1
(y{||y||},~a, ĥ(H||y|| .−1(y), y,~a, ||y||
g(~a)) · · · ) · · · ) ĝ(y,~a)) · · · ) · · · ) ||y||+ 1

Thus, a stepwise comparison yields the requirement

(2) ĥ(Hi
.−1(y), y,~a, v) = hy{i

.−1}mod 2(y{i},~a, v) in steps 1 ≤ i ≤ ||y||

and step ||y||+1 implies that ĝ can be de�ned by ĝ(y,~a) := g(~a).
By (1) the y-section implementation in CLO′ (below) we need this time is

Y (w, y) := P||y|| .−||w||(|y|) = y{||y|| .− ||w||}.

As (0) implies ||Hi(y)|| = ||y|| .− i, we conclude that

(3) Y (Hi(y), y) = y{i} for i ≤ ||y||.

Thus, the required function ĥ satisfying (2) can be de�ned by

ĥ(w, y,~a, v) := hY (w,y) mod 2(Y (H(w), y),~a, v)

= CASE(Y (w, y), h0(Y (H(w), y),~a, v), h1(Y (H(w), y),~a, v)).

In fact, (2) is true of ĥ, since (3) implies for i ≤ ||y||:

ĥ(Hi
.−1(y), y,~a, v) = hY (Hi

.−1(y),y) mod 2(Y (Hi(y), y),~a, v)

= hy{i
.−1}mod 2(y{i},~a, v)

For ĥ ∈ CLO′, it remains to de�ne inCLO′ function Y (w, y) = P||y|| .−||w||(|y|).
First we de�ne by (WBRN′) a function 	′ satisfying || 	′ (w, y)|| = ||y|| .− ||w||.

	′(0, y) := y

	′(w, y) := H(	′(H(w), y)) for w 6= 0

10



To see this, observe inductively that for w 6= 0, || 	′ (w, y)||= ||H(	′(H(w), y))||
= ||	′ (H(w), y)|| .−1=(||y|| .−||H(w)||) .−1=(||y|| .− (||w|| .−1)) .−1= ||y|| .−||w||,
as ||w|| ≥ 1. Note that the outmost use of H ∈ CLO′ in the above de�nition is
not part of the (WBRN′) scheme. Now, we conclude the required de�nition of
the y-section implementation in CLO′ as follows:

Y (w, y) := MSP(|y|,	′(w, y))

To complete the de�nition of f̂ , it still remains to de�ne a bound B̂ ∈ CLO′,
and here we run into a problem. To see this, �rst observe that one can show:

(4) ||w|| ≤ ||y|| =⇒ f̂(w, y, ~x) = F (Y (w, y), ~x) ≤ B(Y (w, y), ~x)

But Y (w, y)= |y| whenever ||w|| ≥ ||y||, hence ĥ(w, y,~a, v)=h|y|mod 2(P(|y|),~a,

v), which in turn implies that f̂(w, y,~a) is obtained by iterating ||w|| .−(||y||−1)
times function h|y|mod 2(P(|y|),~a, ·) on f(y,~a). Thus, we cannot guarantee that
f̂ can be bounded by a function in CLO′. To resolve that problem, by use of
the functions COND,	′ (both in CLO′) and | · |, we simply modify ĥ such
that it returns 0 whenever ||w|| .− ||y|| > 0. Thus by (4), setting B̂(w, y, ~x) :=
B(Y (w, y), ~x) will do.

CLO′ ⊆ CLO It su�ces to consider any f := WBRN′(g, h, B), assuming
inductively g, h, B ∈ CLO. Accordingly, the y-section we need is de�ned by

(5) y{i} := Hi
.−1(y).

Again, we will give a direct simulation f ′ ∈ CLO of f (see above), where

f ′(y,~a) := f̂(y, y,~a) with f̂ := WBRN(ĝ, ĥ, ĥ, B̂)

for some ĝ, ĥ, B̂ ∈ CLO. By unfolding the recursions, we obtain the following
steps:

f(y,~a) != f̂(y, y,~a) = F̂ (|y|, y,~a) steps
= h(y{1},~a, = ĥ(P1(|y|), y,~a, 1

. . .
. . .

...
h(y{i},~a, ĥ(Pi(|y|), y,~a, i

. . .
. . .

...
h(y{||y||},~a, ĥ(P||y||(|y|), y,~a, ||y||

g(~a)) · · · ) · · · ) ĝ(y,~a)) · · · ) · · · ) ||y||+ 1

Thus, a stepwise comparison yields the requirement

(6) ĥ(Pi(|y|), y,~a, v) = h(y{i},~a, v) in steps 1 ≤ i ≤ ||y||

and again, step ||y||+1 shows that ĝ can be de�ned by ĝ(y,~a) := g(~a).
By (5), (6) the y-section implementation in CLO we need this time is

(7) Y (w, y) := H||y|| .−(|w|+1)(y) = y{||y|| .− |w|}

In fact, since |Pi(|y|)| = ||y|| .− i, we conclude from (7) that

Y (Pi(|y|), y) = y{i} for i ≤ ||y||.
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Thus, we obtain the required function ĥ ∈ CLO by setting

ĥ(w, y,~a, v) := h(Y (w, y),~a, v)

provided that function Y is de�nable in CLO. To see that, using H,DROP ∈
CLO, and |w|< |x| ⇔ |S1(w)| ≤ |x| ⇔ DROP(S1(w), x) = P|x|(S1(w)) = 0, we
�rst de�ne by (BRN) a function G in CLO, satisfying G(x, y, w)=H|x| .−|w|(y).

G(0, y, w) := y

G(Sb(x), y, w) := COND(DROP(S1(w), x),H(G(x, y, w)), y)

for Sb(x) 6= 0. Then de�ne Ỹ (x, y, w) :=G(|x|, y, w)=H ||x|| .−|w|(y) by (WBRN),
and conclude the y-section implementation in CLO by setting

Y (w, y) := Ỹ (y, y,S1(w)).

To complete the de�nition of f̂ , it remains to de�ne a bound B̂ ∈ CLO, and
again we run into a problem. To see this, �rst observe that one can show:

(8) |w| ≤ ||y|| =⇒ F̂ (w, y, ~x) = f(Y (w, y), ~x) ≤ B(Y (w, y), ~x)

But Y (w, y) = y whenever |w| ≥ ||y||, hence ĥ(w, y,~a, v) = h(y,~a, v), which
in turn implies that f̂(w, y,~a) is obtained by iterating |w| .− (||y|| − 1) times
function h(y,~a, ·) on f(y,~a). Thus, we cannot guarantee that f̂ can be bounded
by a function in CLO. To resolve this problem, we use the functions COND, | · |
and G′ below (all of which are in CLO) to modify ĥ such that it returns 0
whenever |w| .− ||y|| > 0, and by (8) setting B̂(w, y, ~x) := B(Y (w, y), ~x) then
will do.

As for the required function G′ ∈ CLO satisfying |G′(y, w)| = |w| .− ||y||,
�rst observe that the unrami�ed version of 	, that is, 	(u, v)=P|u|(v), can be
de�ned by (BRN) from CLO functions. Thus, applying (WBRN) to 	 yields
the CLO function G′(y, w)=	(|y|, w), satisfying G′(y, w)=P||y||(w).

5 Variant CLO′′ of CLO

In this section, we consider another variant of Clote's function algebra that
appears in the literature ([1], [2]), the main goal being to give a higher type
characterization of NC, building on ideas and techniques presented in [6].

Before de�ning that variant of CLO′, �rst observe that one obtains the same
class when replacing scheme (CRN) with the following h-variant that unlike
(CRN) uses a single step function (h), and where nonzero recursion arguments
are not decremented in h.

De�nition 5.1. A function f is de�ned by the h-variant of CRN from functions
g, h, denoted by f := CRN′(g, h), if for all y,~a,

f(0,~a) = g(~a)
f(y,~a) = Sh(y,~a) mod 2(f(P(y),~a)) for y 6= 0.

Corollary 5.2 (h-variant). In the context of CLO or CLO′, the h-variant
(CRN′) is equivalent to (CRN).
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Proof. Given any f =CRN(g, h0, h1), we obtain f =CRN′(g, h) for

h(w,~a) := CASE(w, h0(P(w),~a), h1(P(w),~a)).

Conversely, given any f =CRN′(g, h), we have f =CRN(g, h0, h1) where

hb(w,~a) := h(Sb(w),~a)

Unlike the above corollary, the proof of CLO′ ⊆CLO′′ does not come so
easy, where CLO′′ results from CLO′ by replacing scheme (CRN′) with the
g-variant obtained from (CRN′) by setting the base function, g, to the zero
function.

De�nition 5.3. A function f is de�ned by the g-variant of CRN′ from function
h, denoted by f := CRN′′(h), if for all y,~a,

f(0,~a) = 0
f(y,~a) = Sh(y,~a) mod 2(f(P(y),~a)) for y 6= 0.

In fact, de�ning the class CLO′′ by

CLO′′ := [0,S0,S1,Π, | · |,BIT,#; COMP,CRN′′,WBRN′]

one ends up with the same class of functions. In [4, p. 77] CRN is simulated by
the rami�ed g-variant of CRN (rami�ed CRN′′). As this construction is wrong3,
we give a proof in the corresponding unrami�ed setting.

Theorem 5.4 (g-variant). CLO′ = CLO′′

Proof. As CRN′′(h)=CRN′(0, h), the inclusion �⊇� follows from Corollary 5.2.
CLO′ ⊆ CLO′′ By Corollary 5.2 it su�ces to consider any function f :=
CRN′(g, h), assuming inductively that g, h ∈ CLO′′. Accordingly, the y-section
is de�ned by

y{i} := Pi(y)

and by unfolding the recursion, we obtain the following steps:

f(y,~a) = Sh(y{0},~a) mod 2( step 1
. . .

...
Sh(y{i

.−1},~a) mod 2( step i
. . .

...
Sh(y{|y| .−1},~a) mod 2(g(~a)) · · · ) · · · ) step |y|

3To see this, consider the function f = CRN(0, C1
1 , C1

1 ) satisfying f(u; ) = 2|u|.

It is claimed that for su�ciently large w, f(u; ) = f ′(w; u) := f̂(w; w, u), where

h′(w; u) := case(; u, h′0(w; p( ; u)), h′1(w; p( ; u))) = C2
1 (w; u) = 1, and f̂(w; 0, u) :=

0, and f̂(w; c, u) := scase(; |c|≤|u|,h′(w; u mod c),bit(; g′(w; ),|c−h′(w; u)|))( ; f̂(w; P(c), u)) =

scase(; |c|≤|u|,1,0)( ; f̂(w; P(c), u)) for c 6= 0. But f(1) = 1, while e.g. for |w| = 3 we

have f ′(w; 1) = f̂(w; w, 1) = scase(; 3≤|1|,1,0)( ; scase(; 2≤|1|,1,0)( ; scase(; 1≤|1|,1,0)( ; 0))) =
S0(S0(S1(0))) = 4 6= 1. In general, if f(y,~v) =2 bl−1 . . . b0, then for su�ciently large w,

f ′(w; y,~v) =2 bl−1 . . . b00|w|−|f(y,~v)|.

13



To achieve a step-by-step simulation with respect to CRN′′(ĥ) for some ĥ, we
just express g(~a) as further steps of ĥ that will be performed after the above |y|
steps. The simple idea is that any z=(bl−1 . . . b0)2 can be written as

z = Sb0(. . . (Sbl−1(S
k
0(0)) . . .) for any k ∈ N.

Thus, it is natural to extend the above |y| steps by further ≥ |g(~a)| steps:

g(~a) = SBIT(g(~a),0)( step |y|+ 1
. . .

...
SBIT(g(~a),|g(~a)| .−1)( step |y|+ |g(~a)|

S0( step |y|+ |g(~a)|+ 1
. . .

...
S0(0) · · · )) · · · ) step |y|+ |g(~a)|+ k

In other words, for the intended bitwise step-by-step simulation we need

≥ |y|+ |g(~a)| steps.

Of course, exactly |y| + |g(~a)| steps would su�ce, but computing that ex-
act value in CLO′′ is di�cult. Instead, we de�ne a function f̂(ŵ, w, y,~a) =
CRN′′(ĥ)(ŵ, w, y,~a) by recursion on ŵ, using w as a bound on |y|+ |g(~a)|, and
show that for all y,~a,

(9) f(y,~a) = f ′(y,~a) := f̂(W (y,~a),W (y,~a),~a)

where W is any CLO′′ function satisfying |W (y,~a)| ≥ |y|+ |g(~a)|. For example,
setting W (y,~a) := #(S1(y),S1(g(~a))) will do, since

|W (y,~a)|= |2(|y|+1)·(|g(~a)|+1)| ≥ |2|y|+|g(~a)|−1| = |y|+ |g(~a)|.

Now, a bitwise step-by-step simulation w.r.t. (9), with w := W (y,~a), requires

(10) ĥ(Pi(w), w, y,~a) =

{
h(y{i},~a) if i < |y|
BIT(g(~a), i .− |y|) if |y| ≤ i ≤ |w|.

Observe that BIT(g(~a), i .− |y|) = 0 for i ≥ |y| + |g(~a)|. Accordingly, we need a
y-section implementation Y (ŵ, w, y) in CLO′′ satisfying

(11) Y (ŵ, w, y) = P|w| .−|ŵ|(y).

Then (11) implies that for i ≤ |w|:

Pi(y) = Y (Pi(w), w, y)

i < |y| ⇔ Y (Pi(w), w, y)>0

i
.− |y| = |DROP(DROP(w,Pi(w)), y)|

The latter follows from |w| .− (|w| .− i) = i for i ≤ |w|, and |DROP(m,n)| =
|P|n|(m)|= |m| .− |n|, implying |DROP(w,Pi(w))|= i for i ≤ |w|.

Altogether, as Pi(w) acts as ŵ in f̂(ŵ, w, y,~a), the required function ĥ sat-
isfying (10) can be de�ned in CLO′′ by

ĥ(ŵ, w, y,~a, v) := COND(Y (ŵ, w, y),
BIT(g(~a), |DROP(DROP(w, ŵ), y)|),
h(Y (ŵ, w, y),~a))
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and the y-section implementation Y satisfying (11) is de�nable in CLO′′, since

Y (ŵ, w, y) = P|w| .−|ŵ|(y) = DROP(y, DROP(w, ŵ)).

To see that ĥ, Y ∈ CLO′′, just recall the proof of Lemma 4.5, and observe that
the de�nition of function MSP is, in fact, by CRN′′ in CLO′′. As a consequence,
the given de�nitions of both functions DROP and COND show that they belong
to CLO′′, too. Thus, we obtain Y, ĥ ∈ CLO′′ as claimed.

6 Embeddings

In this �nal section, we consider the following rami�ed function algebras and
prove that they all characterize NC, facilitated by CLO = CLO′ = CLO′′

established in the last two sections.

2CLO := [0, s0, s1, π, len,bit,#Bel, case; scomp, scrn, slr]
2NC := [0, s0, s1, π, len,bit,#Bel, case,half,drop; scomp, scrn′, slr]
2NC′ := [0, s0, s1, π, len,bit, sm,#AJST, case,half,drop; scomp, scrn′, slr]
2NC′′ := [0, s0, s1, π, len, sm,#AJST,bcase,msp; scomp, scrn′′, slr]

To explain the new components, a function f(y, ~x; ~a) is de�ned by safe loga-
rithmic recursion (the rami�ed version of (WBRN′) de�ned in Section 4) from
functions g(~x; ~a) and h(u, ~x; ~a, v), denoted by f =srn(g, h), if for all y, ~x,~a,

f(0, ~x; ~a) = g(~x; ~a)
f(y, ~x; ~a) = h(y, ~x; ~a, f(H(y), ~x; ~a)) for y 6= 0.

The scheme (scrn) is the rami�ed form of (CRN′′) de�ned in Section 5, except
that the recursion parameter y in f =scrn(h) is in a safe position:

f(~x; y,~a) = Sh(~x; y,~a) mod 2(f(~x; P(y),~a))

By contrast, scheme (scrn′) is just the rami�ed version of (CRN′′), with y being
in normal positions only. Finally, the new initial functions satisfy #Bel(w; a, b)=
2|a|·|b| mod2|w|2 , sm(w; a, b)=2|a|·|b| mod2|w|, and #AJST(w; )=2|w|2 .

These function algebras should be contrasted with those of Bloch [8], namely
sc(BASE) := [BASE; scomp, safe DCR] characterizing NC1, and vsc(BASE) :=
[BASE; scomp, very safe DCR] characterizing �alternating polylog time�. Here
BASE is a large set of initial functions, and the recursion schemes �safe� and
�very safe DCR� are similar to the scheme slr. But as scheme scrn is missing in
Bloch's algebras, no characterization of NC is obtained, because scrn is neces-
sary to reach any level NCk of the NC hierarchy.

Furthermore, 2CLO was de�ned in [3], and 2NC implicitly in [1]. The
idea to split the smash function #Bel into two parts can be found in [2]; we
call this algebra 2NC′. The class 2NC′′, treated in [28], contains fewer base
functions, and uses the following variant of safe concatenation recursion on
notation f =scrn′′(h).

De�nition 6.1. A function f is de�ned by the safe g-variant of CRN′ from
function h, denoted by f := scrn′′(h), if for all y, ~x,~a,

f(0, ~x; ~a) = 0
f(y, ~x; ~a) = sh(~x; y,~a) mod 2(f(P(y), ~x; ~a)) for y 6= 0.

15



In contrast to scheme (scrn) in [3], the recursion parameter here appears in
a normal position of f � in consistency with the spirit of rami�cation �, and
unlike the scheme in [2], nonzero recursion parameters, y, must be used in a safe
position of h, which is more restrictive.

The development of the above variants of 2CLO was motivated by the wish
to achieve a higher type characterization of NC. Such characterizations are use-
ful because programs extracted from proofs of their speci�cations usually use
higher type recursion, which easily exceeds the realm of feasible computation.
Therefore, however challenging, one would like to guarantee for a reasonable
large class of such extracted programs, usually presented as rami�ed term sys-
tems, that they run in polynomial time or even feasibly highly parallel. While
showing correctness of such systems is hard work, completeness is usually ob-
tained by embedding suitable ground type rami�ed function algebras known to
characterize the intended complexity class, e.g. see [13] or [6]. A problem with
such higher type systems is that � in order to tame higher type recursion �, they
sometimes lead to very restrictive conditions, such as only allowing the use of
�non-size-increasing� functions in recursions and limited usage of �previous func-
tionals� in higher type recursions [14]. Note that the present variants of 2CLO,
especially 2NC′′ with its restricted scheme (scrn′′), were designed exactly for
such situations.

Observe that both properties (S2) and (S3) (cf. Section 1) hold for any of
the above rami�ed function algebras. In particular, for every function f(~x; ~y) in
any of the above algebras there exists a poly-max length bound (cf. Section 2).

Inspecting the function algebras characterizing NC considered so far, we
obtain the following embeddings.

Theorem 6.2. 2CLO⊆2NC⊆2NC′⊆2NC′′⊆CLO′′⊆2CLO

Proof. 2CLO ⊆ 2NC As the recursion parameter of any scrn(h) is in a safe po-
sition, we cannot show directly the required inclusion. However, we can proceed
similarly to the proof of 2NC′⊆2NC′′.

2NC ⊆ 2NC′ It su�ces to de�ne function #Bel(w; a, b) in 2NC′. As
|P(2x)| = x and p( ;x) = drop( ;x, s1( ; 0)), hence p ∈ 2NC′, this follows
from

#Bel(w; a, b) = 2|a|·|b| mod2|w|2

= sm( ; p( ;#AJST(w; )), a, b).

2NC′ ⊆ 2NC′′ We must show that the functions bit,half, and drop all are in
2NC′′, and that any f = scrn′(h) with h ∈ 2NC′′ is contained in 2NC′′, too.
Recalling Lemma 4.5, this is easily obtained for those initial functions, since

bit( ;m,n) = bm
2n cmod2 = case( ;msp( ; m,n), 0, s1( ; 0))

drop( ; m,n) = b m
2|n|

c = msp( ;m, len( ; n))
half( ; m) = bm/2d|m|/2ec

= case( ; len( ; m),
drop( ; m,p( ; len( ; m))),
drop( ; m,p( ; len( ; s1( ;m)))))

where case( ; x, y, z) = bcase( ; x, y, y, z). For the remaining statement, i.e. f ∈
2NC′′ whenever f =scrn′(h) with h∈2NC′′, we run into a problem, since any
attempt to de�ne f directly as scrn′′(ĥ) for some ĥ∈ 2NC′′ is tantamount to
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turning the normal position of h, to which the recursion f passes any nonzero
recursion parameter, into a safe position of ĥ. That cannot work!

To resolve this problem, we will construct for every function f(~x; ~a) in 2NC′

a simulation f ′(w; ~x,~a) in 2NC′′, and a (polynomial) witness pf such that

f(~x; ~a) = f ′(w; ~x,~a) whenever |w| ≥ pf (|~x,~a|).

Building on the above de�nitions of bit,half,drop in 2NC′′, all cases are obvious
or standard, except for the case f = scrn′(h) with h ∈ 2NC′. The I.H. yields
a simulation h′ ∈ 2NC′′ with witness ph. The witness of f is then de�ned by
pf (y, ~x,~a) := ph(y, ~x,~a, bf (y, ~x,~a))+2y+1 for some polynomial length bound bf .
We'll de�ne a simulation f ′∈2NC′′ of f by

f ′(w; y, ~x,~a) := f̂(w,w; y, ~x,~a) with f̂ :=scrn′′(ĥ)

for some ĥ(w; ŵ, y, ~x,~a) in 2NC′′. Accordingly, the y-section is de�ned by

y{i} := Pi(y)

and by unfolding the recursions we obtain the following steps:

f(y, ~x; ~a) != f̂(w,w; y, ~x,~a) steps
= Sh(y{0},~x; ~a) mod 2( = Sĥ(w; w,y,~x,~a) mod 2( 1

. . .
. . .

...
Sh(y{i

.−1},~x; ~a) mod 2( Sĥ(w; Pi
.−1(w),y,~x,~a) mod 2( i

. . .
. . .

...
Sh(y{|y| .−1},~x; ~a) mod 2(0) Sĥ(w; P|y| .−1(w),y,~x,~a) mod 2(0) |y|

· · · ) · · · ) · · · ) · · · )

Thus, for f(y, ~x; ~a) = f̂(w,w; y, ~x,~a) whenever |w| ≥ pf (|y, ~x,~a|), a stepwise
comparison, together with the I.H. for h, yields the following requirement:

ĥ(w; Pi(w), y, ~x,~a) =

{
h′(w; y{i}, ~x,~a) if i < |y|
0 else.

In the presence of drop( ;m,n) = P|n|(m) in 2NC′′, this time the required
y-section implementation in 2NC′′ is de�nable with safe positions only because

Y ( ;w, ŵ, y) = P|w| .−|ŵ|(y) = drop( ; y, drop( ; w, ŵ)).

Indeed, for su�ciently large w, we have for i ≤ |w|:

Y ( ;w,Pi(w), y) =

{
Pi(y) if i < |y|
0 else.

Since i < |y| ⇔ Y ( ;w,Pi(w), y)>0, function ĥ can be de�ned in 2NC′′ by

ĥ(w; ŵ, y, ~x,~a) := cond( ; Y ( ;w, ŵ, y), 0, h′(w; Y ( ;w, ŵ, y), ~x,~a))

where cond( ; x, y, z)=bcase( ; x, y, z, z).
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2NC′′ ⊆ CLO′′ This inclusion is fairly standard, since the functions sm,
msp and #AJST can be easily de�ned in CLO′′ (for msp, cf. Lemma 4.5), and
by forgetting rami�cation we see inductively that every f ∈2NC′′ is de�nable
in CLO′′. In particular, by poly-max bounding and the fact that for every
polynomial p there exists a function Wp∈CLO′′ such that 2p(|~x|)≤Wp(~x), every
f =slr(g, h)∈2NC′′ can be turned into a CLO′′ function WBRN′(g, h, Wp).

CLO′′ ⊆ 2CLO We will construct for every f ∈ CLO′′ a simulation f ′(w; ~x)
in 2CLO, and a (polynomial) witness pf such that

f(~x) = f ′(w; ~x) whenever |w| ≥ pf (|~x|).

If f is 0,S0,S1, π
n,m
i , | · | or BIT, then we can de�ne f ′ directly in 2CLO using

safe composition and projection. If f is # then #(x, y)=sm(w; x, y) for |w| ≥
|x|·|y|+ 1, since amod b = a ⇔ a < b.

The cases (COMP), (WBRN′) are fairly standard, leaving the case f =
CRN′′( h) with h ∈ CLO′′. Here we can proceed as in the case scrn′(h) of
2NC′ ⊆ 2NC′′, because in 2CLO function msp( ;m,n) can be de�ned by
(scrn) from bit( ;m,n) using safe variables only � recall the recursion equations
of MSP in the proof of Lemma 4.5 �, and hence we obtain as above function
drop( ; m,n) in 2CLO.

By Theorems 4.1, 4.3, 5.4, and Theorem 6.2 we have established the following
new characterization of NC.

Corollary 6.3. NC=[0, s0, s1, π, len, sm,#AJST,bcase,msp; scomp, scrn′′, slr]
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