

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Implicit characterizations of FPTIME and NC
revisited

Karl-Heinz Niggl, Henning Wunderlich

Ulmer Informatik-Berichte
Nr. 2008-09

Juli 2008

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

Implicit characterizations of FPTIME and

NC revisited

Karl-Heinz Niggl∗ Henning Wunderlich†

July 8, 2008

Abstract

Various simpli�ed or improved, and partly corrected well-known im-
plicit characterizations of the complexity classes FPTIME and NC are
presented. Primarily, the interest is in simplifying the required simulations
of various recursion schemes in the corresponding (implicit) framework,
and in developing those simulations in a more uniform way, based on a
step-by-step comparison technique, thus consolidating groundwork in im-
plicit computational complexity.

1 Introduction

In implicit computational complexity, much attention has been payed to the
complexity classes FPTIME andNC, e.g. see [2, 4, 6, 7, 9, 10, 15, 18, 19, 24, 26].
This paper presents simpli�ed or improved, and partly corrected well-known
implicit characterizations of the complexity classes FPTIME and NC.

The core of the present research is to simplify the required simulations of
various (bounded) recursion schemes in the corresponding (implicit) framework,
and moreover, to develop those simulations in a more uniform way, based on
a step-by-step comparison technique. Furthermore, we establish a new ground
type function algebraic characterization ofNC, which might be of help to resolve
the open problem [2] of characterizing NC through higher types.

The starting point is a simpli�ed proof that the functions of Cobham's class,
Cob [12], characterizing FPTIME is contained in the function algebra BC
of Bellantoni and Cook [4]. That every function f of Cobham's class can be
simulated in BC rests on three �ndings:

(S1) For every f in Cob one can construct a function f ′(w; ~x) in BC, called
simulation of f , and a polynomial pf , called witness for f , such that

f(~x) = f ′(w; ~x) whenever |w| ≥ pf (|~x|).

(S2) For every polynomial p(~x) one can construct a function Wp(~x;) in BC,
called length-bound on p, such that |Wp(~x;)| ≥ p(|~x|).

∗Technische Universität Ilmenau, Fakultät für Informatik und Automatisierung, Institut für
Theoretische Informatik, Helmholtzplatz 1, D-98684 Ilmenau, e-mail: niggl@tu-ilmenau.de

†Universität Ulm, Fakultät für Ingenieurwissenschaften und Informatik, Institut für Theo-
retische Informatik, Oberer Eselsberg, D-89069 Ulm, e-mail: Henning.Wunderlich@uni-ulm.de

1

(S3) Every function g(~x; ~y, ~z) in BC can be written as SN(g)(~x, ~y; ~z), called
safe-to-normal property.

Thus, by use of (S1), (S2), (S3), and safe composition, the proof that every
f in Cob can be simulated in BC is then concluded as follows:

f(~x) = SN(f ′)(Wpf
(~x;), ~x;)

In each simulation, we will concentrate on the crucial statement corresponding
to (S1). As for (S1) above, all cases are obvious, except for the case where
f is de�ned by bounded recursion on notation, and here a di�cult simulation
and proof was given in [4]. The di�culty mainly arises because of an unnatural
choice of a case function de�ned as

case(;x, even, odd) :=

{
even if x is even

odd if x is odd.

When replacing function case by the function bcase (for binary case), that is,

bcase(; x, zero, even, odd) :=


zero if x = 0
even if x > 0 and x is even

odd if x > 0 and x is odd

then a simulation f ′ can be constructed the correctness of which is immediate
from its de�nition. So let BC′ be BC where case is replaced with bcase.

Note that both case and bcase (as well as the binary predecessor function
p) could be de�ned by recursion on notation and composition, using projections
and the constructor functions 0, s0, s1. But in both algebras BC and BC′,
this is only possible at the cost of introducing normal input positions, and that
is why they come as initial functions with safe input positions only. But then
we have a choice between case and bcase. We clearly opt for bcase because it
is the natural choice. In fact, bcase naturally springs from a ��at� recursion on
notation, since that scheme distinguishes � for the recursion argument � the cases
zero, nonzero and even and nonzero and odd1. Furthermore, note that while
bcase(; x, y, z0, z1) is provably inde�nable in BC, the function case(; x, z0, z1)
is obviously in BC′, since case(; x, z0, z1)=bcase(; x, z0, z0, z1).

To our knowledge, the �simulation method� (S1) appears for the �rst time
in the groundwork of Bellantoni and Cook [4]. Since then, it has been applied
directly or in adapted form to many characterizations of complexity classes,
e.g. the Kálmar-elementary functions and Pspace are treated in [25], in [20], [5]
the method is extended to all levels of the Grzegorczyk hierarchy, and in [15]
that method is adapted so as to compute all functions at Grzegorczyk level n+2
by loop programs of µ-measure n.

Roughly speaking, the simulation method consists in separating the �struc-
ture� in a recursion from the �growth rate� given with it. Technically, one in-
troduces a single normal parameter, w, to which all given recursion parameters
refer to in a �safe� way. It is hard to say what those simulations compute for
wrong values of w, however, once w is su�ciently large, and that is where the
witness comes into play, all given recursions unfold in the expected way.

1As a technical consequence, in BC′ we don't have to bother with de�ning the functions
�PARITY�, �I�, �V� or �h�, unlike in [4].

2

Our way of performing the simulation method for various forms of recursion
does not change that at all. However, unlike many instances of that method in
the literature, we always start o� with a clear semantics based on a step-by-
step comparison technique such that when implementing the simulation in the
given framework, the correctness of the implementation is immediate from the
speci�ed semantics. As pointed out above, the right choice of initial functions,
such as bcase, will sometimes prove decisive.

Rounding o�, the main goal is to propose a step-by-step comparison tech-
nique, exempli�ed at various forms of recursion, so as to perform the simulation
method in a way that is easy to grasp and does away with hard going proofs.
Thereby, groundwork in implicit computational complexity is revised and con-
solidated.

The paper is organized as follows. In Section 2, all basic notions involved
in the design of Cobham's and Bellantoni/Cook's function algebra, Cob and
BC, are introduced and examined. Section 3 presents a simpli�ed proof of
BC′=Cob, thereby demonstrating the step-by-step comparison technique. Re-
calling Clote's function algebra, CLO, in Section 4 and 5, two variants, CLO′

and CLO′′, are considered, and a proof of CLO′=CLO=CLO′′ is presented,
using the same technique. In Section 6 several rami�ed function algebras are in-
troduced, and, using both the step-by-step comparison technique and the above
identities, it is proved that all of them characterize the class NC.

2 Preliminaries and some existing function alge-

bras

We assume only basic knowledge about the function algebras and complexity
classes studied here. In this section, we introduce to and summarize some basic
concepts, and make some stipulations concerning notations used throughout this
article.

Albeit describing operations on binary representations, all of the functions
under consideration are number-theoretic, that is, functions of the form f : Nn →
N. For unary functions f and numbers k, fk denotes the kth iterate of f , induc-
tively de�ned by f0(x)=x and fk+1(x)=f(fk(x)).

Binary representations of natural numbers x, denoted by bin(x), can be
simulated by 0 (viewed as 0-ary function) and the binary successors S0,S1 which
correspond to the operations of extending binary representations by a new lowest
order bit.

S0(x) = 2·x (operation bin(x) 7→bin(x)0 for x 6=0)
S1(x) = 2·x + 1 (operation bin(x) 7→bin(x)1)

This �data structure� gives rise to a canonical recursion scheme: A function f
is de�ned by recursion on notation from functions g, h0, h1, denoted by f =
RN(g, h0, h1), if for all y, ~x,

f(0, ~x) = g(~x)
f(Si(y), ~x) = hi(y, ~x, f(y, ~x)) for Si(y) 6= 0.

Observe that bin(y) = bl−1 . . . b0 6= ε implies y = Sb0(Sb1(. . .Sbl−1(0) . . .)). Thus,
for recursion on notation, the recourse is from bl−1 . . . b0 to bl−1 . . . b1 to . . . to

3

bl−1 = S1(0), and �nally from S1(0) to 0. So one needs |y| recursive calls of f
when computing f(y, ~x), where |y|=dlog2(y + 1)e is the binary length of y.

A function f is de�ned by bounded recursion on notation from functions g, h
and bound B, denoted by f =BRN(g, h, B), if f =RN(g, h) and f ≤ B.

Finally, f is de�ned by ordinary composition from functions h, g1, . . . , gl,
denoted by f =COMP(h, g1, . . . , gl), if it satis�es f(~x)=h(g1(~x), . . . , gl(~x)).

We use Clote's [11] notation to specify function algebras, [X ;op], denoting
the smallest set of functions containing the functions speci�ed in X and closed
under the operations listed in op.

Each function algebra is either purely number-theoretical or rami�ed. A typ-
ical example of the former is Cobham's [12] well-known function algebra

Cob := [0,S0,S1,Π,#; COMP,BRN]

where Π denotes the set of all projections Πn
i satisfying Πn

i (x1, . . . , xn)=xi, for
1 ≤ i ≤ n, and where #, called smash function, satis�es #(x, y)=2|x|·|y|.

The idea in the design of Cob is that recursion on notation can be used
to de�ne new functions in the class as long as they are bounded by functions
already de�ned. That this actually allows one to de�ne in Cob functions of any
polynomial length is due to the presence of the initial function #. In fact, one
easily veri�es that for every function f in Cob there exists a polynomial length
bound on f , that is, a polynomial bf satisfying |f(~x)| ≤ bf (|~x|).

While the latter is a necessary condition for all functions in FPTIME, that
is, the functions computable (in binary) on a Turing machine in polynomial time
(in the binary length of the input), Cobham showed that the polynomial-time
computable functions are precisely the functions de�nable in Cob.

Theorem 2.1 ([12]). Cob = FPTIME

From a programming point of view, function algebras like Cob are not prac-
tically appealing because they cannot be used as a construction kit: Whenever a
recursion is performed, one is prompted with a proof that the computed function
is bounded by some function already constructed.

Building on work of Simmons [27] and Leivant [16, 17], Bellantoni and Cook
[4] were the �rst to give a purely functional characterization of FPTIME that
does away with the �explicit� reference to the growth rate of functions de�ned by
(BRN) in Cobham's class. In fact, this �explicit� reference can be made �implicit�
by ensuring the following principle (P-BC): Computed values in recursions
must not control other recursions (cf. [21], [23]).

That principle led to the well-known function algebra BC [4] which actually
can be used as a construction kit, since all restrictions are of purely syntactical
nature. In BC, each function is written in the form f(~x; ~y), thus bookkeeping
the normal input positions, ~x, which may control a recursion, and those (safe),
~y, which do not. This simple bookkeeping allows us to implement (P-BC): A
function f(y, ~x; ~a) is de�ned by safe recursion from g(~x; ~a), h0(u, ~x; ~a, v), and
h1(u, ~x; ~a, v), denoted by f =srn(g, h0, h1), if for all y, ~x,~a,

f(0, ~x; ~a) = g(~x; ~a)
f(Si(y), ~x; ~a) = hi(y, ~x; ~a, f(y, ~x; ~a)) for Si(y) 6= 0.

Enforcing the above principle when composing functions of given ones, a func-
tion f(~x; ~a) is de�ned by safe composition from functions g(~u; ~v),~h(~x;), and

4

~j(~x; ~a), denoted by f =scomp(g,~h,~j), if for all ~x,~a,

f(~x; ~a) = g(~h(~x;);~j(~x; ~a)).

Of course, now all initial functions must be written in a rami�ed form, too.
These are the functions 0, s0(; y), s1(; y), πn,m

i (~x; ~y), p(; y), and case(;x, y, z),
where the latter is de�ned in Section 1. The function p(; y) is the rami�ed form
of the binary predecessor P satisfying P(x)= bx

2 c, and thus corresponds to the
operation of chopping o� the lowest order bit, if any.

Note that the projections πn,m
i (x1, . . . , xn; xn+1, . . . , xn+m)=xi, for 1≤ i≤

n+m, are the only initial functions with normal input positions. It is their pres-
ence that is in charge of the safe-to-normal property, (S3), stated in Section 1.
To see this, let f(~x; ~y, ~z) be in BC, say ~x = x1, . . . , xl, ~y = xl+1, . . . , xn with
n := l+m, and ~z=xn+1, . . . , xs with s := n+r. Then by scomp we obtain

SN(f)(~x, ~y; ~z)=f(πn,0
1 (~x, ~y;), . . . , πn,0

l (~x, ~y;); πn,r
l+1(~x, ~y; ~z), . . . , πn,r

s (~x, ~y; ~z)).

In particular, this shows that normal variables may occur in any safe position
in the right-hand side of any de�ning equation according to scomp.

Furthermore, note that both ~h(~x;) and ~j(~x; ~a) in scheme scomp may be
empty function lists. Thus, all n-ary constant functions Cn

a (~x; ~y) = a can be
de�ned in BC: Cn

0 (~x; ~y) = 0, and inductively for 2 ·a+ i ≥ 1, Cn
2a+i(~x; ~y) =

si(; Cn
a (~x; ~y)). As a consequence, every constant a may occur in the right-hand

side of any de�ning equation according to scomp or srn.
Altogether, the function algebra BC can be stated as

BC := [0, s0, s1, π, p, case; scomp, srn]

where π denotes the set of all rami�ed projections.
This function algebra is a prominent example of a rami�ed algebra, and as

done here, for the remainder we will adopt the convention that rami�ed versions
of functions written in capital letters, like Si,P or BIT, are written in small
letters, like si,p or bit, and if not explicitly stated otherwise, we tacitly assume
that they have safe input positions only.

The bene�t of rami�cation can be seen by the fact, veri�ed by a straight-
forward induction on the structure of functions in BC, that for every function
f(~x; ~y) there exists a poly-max length bound, that is, a polynomial qf satisfying

|f(~x; ~y)| ≤ qf (|~x|) + max(|~y|).

Using this poly-max length bounding, every recursion in BC can be written
as bounded recursion in Cobham's class, implying BC ⊆ Cob. The converse
holds by simulating the functions of Cob in BC, and that brings us back to the
main topic of the present research.

Theorem 2.2 ([4]). BC = FPTIME

Rounding o� this section, we prove property (S2) stated in Section 1. First
note that the shift-left function shl(x; y)=2|x| ·y is de�ned by srn as follows:

shl(0; y) = π0,1
1 (; y)

shl(Si(x); y) = s0(; shl(x; y)) for Si(x) 6= 0

5

As 2(|x|+1)·|y|=2|y| · 2|x|·|y|, the smash function #(x, y;)=2|x|·|y| is de�ned by

#(0, y;) = 1

#(Si(x), y;) = shl(π2,0
2 (x, y;); #(x, y;)) for Si(x) 6= 0.

Now, to prove (S2), we proceed by induction on the structure of polynomials
p(~x) in N[~x]. If p(x1, . . . , xn) is xi or c, then Wxi(~x;) := shl(πn,0

i (~x;); 1) and
Wc(~x;) := Cn

2c(~x;), respectively, will do. Otherwise p(~x) is p1(~x) ◦ p2(~x) with
◦∈{+, ·}, and using x+y, x·y ≤ (x + 1)·(y + 1) and |2x|=x+1, we inductively
de�ne the required function Wp(~x;) by safe composition as follows:

Wp(~x;) := #(s1(;Wp1(~x;)), s1(;Wp2(~x;));)

3 The variant BC′ and the step-by-step compar-

ison technique

In this section, we will give a simpli�ed proof of BC′ =Cob, for the following
variant BC′ of Bellantoni and Cook's function algebra (cf. Section 1 for bcase).

BC′ := [0, s0, s1, π, p,bcase; scomp, srn]

Theorem 3.1. BC′ = FPTIME.

Proof. Cob ⊆ BC′ Following the simulation method (S1) stated above, we
only consider the crucial case f =BRN(g, h0, h1, B), assuming inductively simu-
lations g′, h′

0, h
′
1∈BC′ and witnesses pg, ph0 , ph1 . As usual, the witness for f is

de�ned by pf (y, ~x) := (ph0+ph1)(y, ~x, bf (y, ~x))+pg(~x)+2y+1 for some polynomial
length bound bf on f . Thus, by monotonicity of polynomials, we have that (∗)
|w|≥phj (|Pi(y), ~x, f(Pi(y), ~x)|) whenever |w|≥pf (|y, ~x|). Now, for any y, i ∈ N,
let

y{i} := Pi(y)

be the y-section up to i. That is, for given y = (bl−1 · · · b0)2 with bin(y) =
bl−1 · · · b0, we have y{i}=(bl−1 · · · bi)2, and y{i}mod2=bi for i < |y|. Thus, by
unfolding the recursion we obtain the following steps:

f(y,~a) = hy{0}mod 2(y{1},~a, step 1
. . .

...
hy{i

.−1}mod 2(y{i},~a, step i
. . .

...
hy{|y| .−1}mod 2(y{|y|},~a, step |y|

g(~a)) · · ·) · · ·) step |y|+ 1

We will de�ne a simulation f ′ ∈ BC′ by

f ′(w; y,~a) := f̂(w,w; y,~a)

6

where f̂ := srn(0, ĥ, ĥ) is de�ned by safe recursion from the zero function and
some ĥ ∈ BC′. Again, unfolding the recursion yields the following f̂ -steps:

f̂(w,w; y,~a) = ĥ(P1(w), w; y,~a, step 1
. . .

...
ĥ(Pi(w), w; y,~a, step i

. . .
...

ĥ(P|y|(w), w; y,~a, step |y|
ĥ(P|y|+1(w), w; y,~a, step |y|+ 1
· · · (0)) · · ·) · · ·) step > |y|+ 1

Thus, for f(y,~a) = f̂(w,w; y,~a) whenever |w| ≥ pf (|y,~a|), using the I.H. for
g, h0, h1 � recall (∗) � a stepwise comparison yields the following requirements:

ĥ(Pi(w), w; y,~a, vi) = h′
y{i

.−1}mod 2
(w; y{i},~a, vi) in steps 1 ≤ i ≤ |y|

ĥ(P|y|+1(w), w; y,~a, v|y|+1) = g′(w; ~a) in step |y|+ 1

where vi := f(Pi(y),~a) for i = 1, . . . , |y|+1. Now, de�ning 	(u; v) := P|u|(v)
by (srn), and hence | 	 (u; v)| = |v| .− |u|, by safe composition we obtain the
following y-section implementation in BC′.

Y (ŵ, w; y) := 	(SN()(ŵ, w;); y) = P|w| .−|ŵ|(y) = y{|w| .− |ŵ|}

In fact, for su�ciently large w, that is, for |w|≥pf (|y,~a|), one has that

Y (Pi(w), w; y) =

{
y{i} if i ≤ |y|
0 if |y| ≤ i ≤ |w|

Y (S1(Pi(w)), w; y) = y{i .− 1} > 0 for 1 ≤ i ≤ |y|.

Thus, using function bcase above, function ĥ can be de�ned in BC′ as follows:

ĥ(ŵ, w; y,~a, v) := bcase(; Y (s1(; ŵ), w; y),
g′(w; ~a),
h′

0(w; Y (ŵ, w; y),~a, v),
h′

1(w; Y (ŵ, w; y),~a, v))

To see this, for steps 1≤ i≤|y| (and w su�ciently large), we obtain as required,
with Tb := h′

b(w; y{i},~a, vi),

ĥ(Pi(w), w; y,~a, vi) = bcase(; y{i .− 1}, g′(w; ~a), T0, T1)
= h′

y{i
.−1}mod 2(w; y{i},~a, vi) as y{i .− 1} > 0,

and ĥ(P|y|+1(w), w; y,~a, v|y|+1)=bcase(; 0, g′(w; ~a), · · · , · · ·)=g′(w; ~a).
The converse BC′ ⊆ Cob follows by a straightforward induction on the

structure of f(~x; ~a) in BC′, using polymax length bounding to turn any safe
recursion on notation into a bounded recursion in Cob (cf. [4] or [20], [22]).

4 Clote's function algebra CLO and its variant

CLO′

In this section, we �rst recall Clote's [10, 11] function algebra, CLO, that char-
acterizes the class NC of functions computable by uniform circuit families of

7

polynomial size and poly-logarithmic depth. Then we consider a variant CLO′

due to Bellantoni [3], and prove that these classes coincide.
To de�ne CLO, we need two more schemes and the function BIT satisfying

BIT(m, i)=bi if bin(m)=bl−1 . . . b0 and i < l, and BIT(m, i)=0 otherwise.
A function f is de�ned by weak bounded recursion on notation from functions

g, h0, h1, B, denoted by f :=WBRN(g, h0, h1, B), if it satis�es f(y,~a)=F (|y|,~a),
for F =BRN(g, h0, h1, B).

Furthermore, a function f is de�ned by concatenation recursion on notation
from functions g, h0, h1, denoted by f :=CRN(g, h0, h1), if for all y,~a,

f(0,~a) = g(~a)
f(Si(y),~a) = Shi(y,~a) mod 2(f(y,~a)) for Si(y) 6= 0.

Clote [10, 11] was the �rst to give a function-algebraic characterization of NC
through his algebra

CLO := [0,S0,S1,Π, | · |,BIT,#; COMP,CRN,WBRN].

Theorem 4.1 ([10, 11]). NC = CLO

In [3, p. 73] Bellantoni pointed out that the same class is obtained when
replacing scheme (WBRN) with the following streamlined variant.

De�nition 4.2. A function f is de�ned by WBRN′ from functions g, h, B,
denoted by f :=WBRN′(g, h, B), if for all y,~a,

f(0,~a) = g(~a)
f(y,~a) = h(y,~a, f(H(y),~a)) for y 6= 0
f(y,~a) ≤ B(y,~a)

where the half function H is de�ned by H(m) := bm/2d|m|/2ec.

The behavior of function H can be easily expressed on binary representations:

H((b2n−1 · · · b0)2) = (b2n−1 · · · bn)2 even length

H((b2n · · · b0)2) = (b2n · · · bn+1)2 odd length

In fact, de�ning the class CLO′ by

CLO′ := [0,S0,S1,Π, | · |,BIT,#; COMP,CRN,WBRN′]

one obtains the following result.

Theorem 4.3. CLO = CLO′

As the proof sketch in [3, footnote on p. 73] of either inclusion is wrong2, we
give a proof of the above theorem � the �rst one according to our knowledge �,
using the above step-by-step comparison technique.

2Any f =WBRN(g, h0, h1, B) is claimed to be identical to f ′ := WBRN′(g, h′, B), where
h′(x,~v, z) := h|x|mod 2(|x|−1, ~v, z). But, for example, f(5, ~v) = F (|5|, ~v) = F (S1(S1(0)), ~v) =
h1(1, ~v, h1(0, ~v, g(~v))), while f ′(5, ~v)=h′(5, ~v, h′(1, ~v, g(~v)))=h|5|mod 2(|5|−1, ~v, h|1|mod 2(|1|−
1, ~v, g(~v)))=h1(2, ~v, h1(0, ~v, g(~v))).

For the converse, any f ′=WBRN′(g, h, B) is claimed to be de�nable by f(u,~v) := f̂(u, u,~v),

where f̂ := WBRN(g, h0, h1, B), and hi(u, x,~v, z) := h(E(u, x), ~v, z), with E(u, x)=x mod 2u,
being the low-order u bits of x, assuming u ≤ |x|. But, e.g., f ′(5, ~v) = h(5, ~v, h(1, ~v, g(~v))),

while f(5, ~v) = f̂(5, 5, ~v) = F̂ (|5|, 5, ~v) = F̂ (S1(S1(0))) = h(E(1, 5), ~v, h(E(0, 5), ~v, g(~v))) =
h(1, ~v, h(0, ~v, g(~v))).

8

The key observation is that the recursion depths of both schemes WBRN
and WBRN′ are identical, and hence step-by-step simulations are possible. To
see this, we �rst de�ne the half norm of y, denoted by ‖y‖H , that represents
the recursion depth of an WBRN′ instance at y.

‖y‖H := min{k ∈ N | Hk(y) = 0}

As |(|y|)| represents the recursion depth of an WBRN instance at y, the above
claimed equality on recursion depth then follows by the next lemma.

Lemma 4.4 (Half Norm). For any y ∈ N, one has

(0) ‖y‖H = |(|y|)|

(and so we just write ||y|| for ‖y‖H).

Proof. We proceed by course-of-values induction. As ‖0‖H =0= |(|0|)|, consider
any y>0, say |y|=2n+i, i∈{0, 1}. Then |H(y)|=n by de�nition, and we obtain

||y||H = ||H(y)||H +1
(I.H.)
= |(|H(y)|)|+1 = |n|+1 = |2n+i| = |(|y|)|.

Further facilitating the proof structure, we provide some auxiliary functions.

Lemma 4.5 (Auxiliary functions). All of the following functions belong to both
CLO and CLO′:

(a) the most signi�cant part, MSP, satisfying MSP(m,n) = bm
2n c = Pn(m),

(b) function DROP, satisfying DROP(m,n) = b m
2|n|

c = P|n|(m),

(c) the binary predecessor, P, satisfying P(m) = bm
2 c,

(d) the unary conditional, COND, satisfying COND(x, y, z) :=

{
y if x = 0
z else,

(e) the binary conditional, CASE, satisfying CASE(x, y, z)=case(;x, y, z),

(f) and function half, H, satisfying H(m) = bm/2d|m|/2ec.
Proof. As for part (a), observe that MSP can be de�ned by (CRN), since

MSP(0, n) = 0
MSP(Sb(m), n) = SBIT(Sb(m),n)(MSP(m,n))

for Sb(m) 6= 0. Thus, both parts (b) and (c) follow from (a), since

DROP(m,n) = MSP(m, |n|)
P(m) = MSP(m, 1).

As for (d), �rst de�ne function F :=BRN(g, h, h, b) from both CLO and CLO′

functions g(y, z)= y, h(x, y, z, v)= z, and b(x, y, z)=2|z| ·y + z, where b can be
de�ned by (CRN). Then we already have F =COND. Thus, as |x|=0 ⇔ x=0,
we can use (WBRN) to de�ne COND(x, y, z)=F (|x|, y, z) as a function in CLO.
As well, since ||x||=0 ⇔ x=0, we obtain COND=WBRN′(g, h, b) ∈ CLO′.

Now, part (e) follows from (d), since CASE(x, y, z) = COND(BIT(x, 0), y, z),
and �nally, (f) follows from parts (a) � (e), since

H(m) = CASE(|m|,DROP(m,P(|m|)),DROP(m,P(|S1(m)|))).

9

Proof. CLO ⊆ CLO′ . It su�ces to consider any f := WBRN(g, h0, h1, B) in
CLO, assuming g, h0, h1, B ∈ CLO′. We shall give a direct simulation f ′ ∈
CLO′ of f , that is, f(y,~a)=f ′(y,~a) for all y,~a, where

f ′(y,~a) := f̂(y, y,~a) with f̂ := WBRN′(ĝ, ĥ, B̂)

for some ĝ, ĥ, B̂∈CLO′. Here, the y-section is de�ned by

(1) y{i} := Pi(|y|).

Referring to (0), suppose that |y|=(b||y|| .−1 · · · b0)2. Then y{i}=(b||y|| .−1 · · · bi)2,
and y{i}mod2=bi for i< ||y||. Therefore, by unfolding the recursions we obtain
the following steps in comparison:

f(y,~a) = F (|y|,~a) != f ′(y,~a) steps
= hb0(y{1},~a, = ĥ(H0(y), y,~a, 1

. . .
. . .

...
hbi

.−1
(y{i},~a, ĥ(Hi

.−1(y), y,~a, i
. . .

. . .
...

hb||y|| .−1
(y{||y||},~a, ĥ(H||y|| .−1(y), y,~a, ||y||
g(~a)) · · ·) · · ·) ĝ(y,~a)) · · ·) · · ·) ||y||+ 1

Thus, a stepwise comparison yields the requirement

(2) ĥ(Hi
.−1(y), y,~a, v) = hy{i

.−1}mod 2(y{i},~a, v) in steps 1 ≤ i ≤ ||y||

and step ||y||+1 implies that ĝ can be de�ned by ĝ(y,~a) := g(~a).
By (1) the y-section implementation in CLO′ (below) we need this time is

Y (w, y) := P||y|| .−||w||(|y|) = y{||y|| .− ||w||}.

As (0) implies ||Hi(y)|| = ||y|| .− i, we conclude that

(3) Y (Hi(y), y) = y{i} for i ≤ ||y||.

Thus, the required function ĥ satisfying (2) can be de�ned by

ĥ(w, y,~a, v) := hY (w,y) mod 2(Y (H(w), y),~a, v)

= CASE(Y (w, y), h0(Y (H(w), y),~a, v), h1(Y (H(w), y),~a, v)).

In fact, (2) is true of ĥ, since (3) implies for i ≤ ||y||:

ĥ(Hi
.−1(y), y,~a, v) = hY (Hi

.−1(y),y) mod 2(Y (Hi(y), y),~a, v)

= hy{i
.−1}mod 2(y{i},~a, v)

For ĥ ∈ CLO′, it remains to de�ne inCLO′ function Y (w, y) = P||y|| .−||w||(|y|).
First we de�ne by (WBRN′) a function 	′ satisfying || 	′ (w, y)|| = ||y|| .− ||w||.

	′(0, y) := y

	′(w, y) := H(′(H(w), y)) for w 6= 0

10

To see this, observe inductively that for w 6= 0, || 	′ (w, y)||= ||H(′(H(w), y))||
= ||	′ (H(w), y)|| .−1=(||y|| .−||H(w)||) .−1=(||y|| .− (||w|| .−1)) .−1= ||y|| .−||w||,
as ||w|| ≥ 1. Note that the outmost use of H ∈ CLO′ in the above de�nition is
not part of the (WBRN′) scheme. Now, we conclude the required de�nition of
the y-section implementation in CLO′ as follows:

Y (w, y) := MSP(|y|,	′(w, y))

To complete the de�nition of f̂ , it still remains to de�ne a bound B̂ ∈ CLO′,
and here we run into a problem. To see this, �rst observe that one can show:

(4) ||w|| ≤ ||y|| =⇒ f̂(w, y, ~x) = F (Y (w, y), ~x) ≤ B(Y (w, y), ~x)

But Y (w, y)= |y| whenever ||w|| ≥ ||y||, hence ĥ(w, y,~a, v)=h|y|mod 2(P(|y|),~a,

v), which in turn implies that f̂(w, y,~a) is obtained by iterating ||w|| .−(||y||−1)
times function h|y|mod 2(P(|y|),~a, ·) on f(y,~a). Thus, we cannot guarantee that
f̂ can be bounded by a function in CLO′. To resolve that problem, by use of
the functions COND,	′ (both in CLO′) and | · |, we simply modify ĥ such
that it returns 0 whenever ||w|| .− ||y|| > 0. Thus by (4), setting B̂(w, y, ~x) :=
B(Y (w, y), ~x) will do.

CLO′ ⊆ CLO It su�ces to consider any f := WBRN′(g, h, B), assuming
inductively g, h, B ∈ CLO. Accordingly, the y-section we need is de�ned by

(5) y{i} := Hi
.−1(y).

Again, we will give a direct simulation f ′ ∈ CLO of f (see above), where

f ′(y,~a) := f̂(y, y,~a) with f̂ := WBRN(ĝ, ĥ, ĥ, B̂)

for some ĝ, ĥ, B̂ ∈ CLO. By unfolding the recursions, we obtain the following
steps:

f(y,~a) != f̂(y, y,~a) = F̂ (|y|, y,~a) steps
= h(y{1},~a, = ĥ(P1(|y|), y,~a, 1

. . .
. . .

...
h(y{i},~a, ĥ(Pi(|y|), y,~a, i

. . .
. . .

...
h(y{||y||},~a, ĥ(P||y||(|y|), y,~a, ||y||

g(~a)) · · ·) · · ·) ĝ(y,~a)) · · ·) · · ·) ||y||+ 1

Thus, a stepwise comparison yields the requirement

(6) ĥ(Pi(|y|), y,~a, v) = h(y{i},~a, v) in steps 1 ≤ i ≤ ||y||

and again, step ||y||+1 shows that ĝ can be de�ned by ĝ(y,~a) := g(~a).
By (5), (6) the y-section implementation in CLO we need this time is

(7) Y (w, y) := H||y|| .−(|w|+1)(y) = y{||y|| .− |w|}

In fact, since |Pi(|y|)| = ||y|| .− i, we conclude from (7) that

Y (Pi(|y|), y) = y{i} for i ≤ ||y||.

11

Thus, we obtain the required function ĥ ∈ CLO by setting

ĥ(w, y,~a, v) := h(Y (w, y),~a, v)

provided that function Y is de�nable in CLO. To see that, using H,DROP ∈
CLO, and |w|< |x| ⇔ |S1(w)| ≤ |x| ⇔ DROP(S1(w), x) = P|x|(S1(w)) = 0, we
�rst de�ne by (BRN) a function G in CLO, satisfying G(x, y, w)=H|x| .−|w|(y).

G(0, y, w) := y

G(Sb(x), y, w) := COND(DROP(S1(w), x),H(G(x, y, w)), y)

for Sb(x) 6= 0. Then de�ne Ỹ (x, y, w) :=G(|x|, y, w)=H ||x|| .−|w|(y) by (WBRN),
and conclude the y-section implementation in CLO by setting

Y (w, y) := Ỹ (y, y,S1(w)).

To complete the de�nition of f̂ , it remains to de�ne a bound B̂ ∈ CLO, and
again we run into a problem. To see this, �rst observe that one can show:

(8) |w| ≤ ||y|| =⇒ F̂ (w, y, ~x) = f(Y (w, y), ~x) ≤ B(Y (w, y), ~x)

But Y (w, y) = y whenever |w| ≥ ||y||, hence ĥ(w, y,~a, v) = h(y,~a, v), which
in turn implies that f̂(w, y,~a) is obtained by iterating |w| .− (||y|| − 1) times
function h(y,~a, ·) on f(y,~a). Thus, we cannot guarantee that f̂ can be bounded
by a function in CLO. To resolve this problem, we use the functions COND, | · |
and G′ below (all of which are in CLO) to modify ĥ such that it returns 0
whenever |w| .− ||y|| > 0, and by (8) setting B̂(w, y, ~x) := B(Y (w, y), ~x) then
will do.

As for the required function G′ ∈ CLO satisfying |G′(y, w)| = |w| .− ||y||,
�rst observe that the unrami�ed version of 	, that is, 	(u, v)=P|u|(v), can be
de�ned by (BRN) from CLO functions. Thus, applying (WBRN) to 	 yields
the CLO function G′(y, w)=	(|y|, w), satisfying G′(y, w)=P||y||(w).

5 Variant CLO′′ of CLO

In this section, we consider another variant of Clote's function algebra that
appears in the literature ([1], [2]), the main goal being to give a higher type
characterization of NC, building on ideas and techniques presented in [6].

Before de�ning that variant of CLO′, �rst observe that one obtains the same
class when replacing scheme (CRN) with the following h-variant that unlike
(CRN) uses a single step function (h), and where nonzero recursion arguments
are not decremented in h.

De�nition 5.1. A function f is de�ned by the h-variant of CRN from functions
g, h, denoted by f := CRN′(g, h), if for all y,~a,

f(0,~a) = g(~a)
f(y,~a) = Sh(y,~a) mod 2(f(P(y),~a)) for y 6= 0.

Corollary 5.2 (h-variant). In the context of CLO or CLO′, the h-variant
(CRN′) is equivalent to (CRN).

12

Proof. Given any f =CRN(g, h0, h1), we obtain f =CRN′(g, h) for

h(w,~a) := CASE(w, h0(P(w),~a), h1(P(w),~a)).

Conversely, given any f =CRN′(g, h), we have f =CRN(g, h0, h1) where

hb(w,~a) := h(Sb(w),~a)

Unlike the above corollary, the proof of CLO′ ⊆CLO′′ does not come so
easy, where CLO′′ results from CLO′ by replacing scheme (CRN′) with the
g-variant obtained from (CRN′) by setting the base function, g, to the zero
function.

De�nition 5.3. A function f is de�ned by the g-variant of CRN′ from function
h, denoted by f := CRN′′(h), if for all y,~a,

f(0,~a) = 0
f(y,~a) = Sh(y,~a) mod 2(f(P(y),~a)) for y 6= 0.

In fact, de�ning the class CLO′′ by

CLO′′ := [0,S0,S1,Π, | · |,BIT,#; COMP,CRN′′,WBRN′]

one ends up with the same class of functions. In [4, p. 77] CRN is simulated by
the rami�ed g-variant of CRN (rami�ed CRN′′). As this construction is wrong3,
we give a proof in the corresponding unrami�ed setting.

Theorem 5.4 (g-variant). CLO′ = CLO′′

Proof. As CRN′′(h)=CRN′(0, h), the inclusion �⊇� follows from Corollary 5.2.
CLO′ ⊆ CLO′′ By Corollary 5.2 it su�ces to consider any function f :=
CRN′(g, h), assuming inductively that g, h ∈ CLO′′. Accordingly, the y-section
is de�ned by

y{i} := Pi(y)

and by unfolding the recursion, we obtain the following steps:

f(y,~a) = Sh(y{0},~a) mod 2(step 1
. . .

...
Sh(y{i

.−1},~a) mod 2(step i
. . .

...
Sh(y{|y| .−1},~a) mod 2(g(~a)) · · ·) · · ·) step |y|

3To see this, consider the function f = CRN(0, C1
1 , C1

1) satisfying f(u;) = 2|u|.

It is claimed that for su�ciently large w, f(u;) = f ′(w; u) := f̂(w; w, u), where

h′(w; u) := case(; u, h′0(w; p(; u)), h′1(w; p(; u))) = C2
1 (w; u) = 1, and f̂(w; 0, u) :=

0, and f̂(w; c, u) := scase(; |c|≤|u|,h′(w; u mod c),bit(; g′(w;),|c−h′(w; u)|))(; f̂(w; P(c), u)) =

scase(; |c|≤|u|,1,0)(; f̂(w; P(c), u)) for c 6= 0. But f(1) = 1, while e.g. for |w| = 3 we

have f ′(w; 1) = f̂(w; w, 1) = scase(; 3≤|1|,1,0)(; scase(; 2≤|1|,1,0)(; scase(; 1≤|1|,1,0)(; 0))) =
S0(S0(S1(0))) = 4 6= 1. In general, if f(y,~v) =2 bl−1 . . . b0, then for su�ciently large w,

f ′(w; y,~v) =2 bl−1 . . . b00|w|−|f(y,~v)|.

13

To achieve a step-by-step simulation with respect to CRN′′(ĥ) for some ĥ, we
just express g(~a) as further steps of ĥ that will be performed after the above |y|
steps. The simple idea is that any z=(bl−1 . . . b0)2 can be written as

z = Sb0(. . . (Sbl−1(S
k
0(0)) . . .) for any k ∈ N.

Thus, it is natural to extend the above |y| steps by further ≥ |g(~a)| steps:

g(~a) = SBIT(g(~a),0)(step |y|+ 1
. . .

...
SBIT(g(~a),|g(~a)| .−1)(step |y|+ |g(~a)|

S0(step |y|+ |g(~a)|+ 1
. . .

...
S0(0) · · ·)) · · ·) step |y|+ |g(~a)|+ k

In other words, for the intended bitwise step-by-step simulation we need

≥ |y|+ |g(~a)| steps.

Of course, exactly |y| + |g(~a)| steps would su�ce, but computing that ex-
act value in CLO′′ is di�cult. Instead, we de�ne a function f̂(ŵ, w, y,~a) =
CRN′′(ĥ)(ŵ, w, y,~a) by recursion on ŵ, using w as a bound on |y|+ |g(~a)|, and
show that for all y,~a,

(9) f(y,~a) = f ′(y,~a) := f̂(W (y,~a),W (y,~a),~a)

where W is any CLO′′ function satisfying |W (y,~a)| ≥ |y|+ |g(~a)|. For example,
setting W (y,~a) := #(S1(y),S1(g(~a))) will do, since

|W (y,~a)|= |2(|y|+1)·(|g(~a)|+1)| ≥ |2|y|+|g(~a)|−1| = |y|+ |g(~a)|.

Now, a bitwise step-by-step simulation w.r.t. (9), with w := W (y,~a), requires

(10) ĥ(Pi(w), w, y,~a) =

{
h(y{i},~a) if i < |y|
BIT(g(~a), i .− |y|) if |y| ≤ i ≤ |w|.

Observe that BIT(g(~a), i .− |y|) = 0 for i ≥ |y| + |g(~a)|. Accordingly, we need a
y-section implementation Y (ŵ, w, y) in CLO′′ satisfying

(11) Y (ŵ, w, y) = P|w| .−|ŵ|(y).

Then (11) implies that for i ≤ |w|:

Pi(y) = Y (Pi(w), w, y)

i < |y| ⇔ Y (Pi(w), w, y)>0

i
.− |y| = |DROP(DROP(w,Pi(w)), y)|

The latter follows from |w| .− (|w| .− i) = i for i ≤ |w|, and |DROP(m,n)| =
|P|n|(m)|= |m| .− |n|, implying |DROP(w,Pi(w))|= i for i ≤ |w|.

Altogether, as Pi(w) acts as ŵ in f̂(ŵ, w, y,~a), the required function ĥ sat-
isfying (10) can be de�ned in CLO′′ by

ĥ(ŵ, w, y,~a, v) := COND(Y (ŵ, w, y),
BIT(g(~a), |DROP(DROP(w, ŵ), y)|),
h(Y (ŵ, w, y),~a))

14

and the y-section implementation Y satisfying (11) is de�nable in CLO′′, since

Y (ŵ, w, y) = P|w| .−|ŵ|(y) = DROP(y, DROP(w, ŵ)).

To see that ĥ, Y ∈ CLO′′, just recall the proof of Lemma 4.5, and observe that
the de�nition of function MSP is, in fact, by CRN′′ in CLO′′. As a consequence,
the given de�nitions of both functions DROP and COND show that they belong
to CLO′′, too. Thus, we obtain Y, ĥ ∈ CLO′′ as claimed.

6 Embeddings

In this �nal section, we consider the following rami�ed function algebras and
prove that they all characterize NC, facilitated by CLO = CLO′ = CLO′′

established in the last two sections.

2CLO := [0, s0, s1, π, len,bit,#Bel, case; scomp, scrn, slr]
2NC := [0, s0, s1, π, len,bit,#Bel, case,half,drop; scomp, scrn′, slr]
2NC′ := [0, s0, s1, π, len,bit, sm,#AJST, case,half,drop; scomp, scrn′, slr]
2NC′′ := [0, s0, s1, π, len, sm,#AJST,bcase,msp; scomp, scrn′′, slr]

To explain the new components, a function f(y, ~x; ~a) is de�ned by safe loga-
rithmic recursion (the rami�ed version of (WBRN′) de�ned in Section 4) from
functions g(~x; ~a) and h(u, ~x; ~a, v), denoted by f =srn(g, h), if for all y, ~x,~a,

f(0, ~x; ~a) = g(~x; ~a)
f(y, ~x; ~a) = h(y, ~x; ~a, f(H(y), ~x; ~a)) for y 6= 0.

The scheme (scrn) is the rami�ed form of (CRN′′) de�ned in Section 5, except
that the recursion parameter y in f =scrn(h) is in a safe position:

f(~x; y,~a) = Sh(~x; y,~a) mod 2(f(~x; P(y),~a))

By contrast, scheme (scrn′) is just the rami�ed version of (CRN′′), with y being
in normal positions only. Finally, the new initial functions satisfy #Bel(w; a, b)=
2|a|·|b| mod2|w|2 , sm(w; a, b)=2|a|·|b| mod2|w|, and #AJST(w;)=2|w|2 .

These function algebras should be contrasted with those of Bloch [8], namely
sc(BASE) := [BASE; scomp, safe DCR] characterizing NC1, and vsc(BASE) :=
[BASE; scomp, very safe DCR] characterizing �alternating polylog time�. Here
BASE is a large set of initial functions, and the recursion schemes �safe� and
�very safe DCR� are similar to the scheme slr. But as scheme scrn is missing in
Bloch's algebras, no characterization of NC is obtained, because scrn is neces-
sary to reach any level NCk of the NC hierarchy.

Furthermore, 2CLO was de�ned in [3], and 2NC implicitly in [1]. The
idea to split the smash function #Bel into two parts can be found in [2]; we
call this algebra 2NC′. The class 2NC′′, treated in [28], contains fewer base
functions, and uses the following variant of safe concatenation recursion on
notation f =scrn′′(h).

De�nition 6.1. A function f is de�ned by the safe g-variant of CRN′ from
function h, denoted by f := scrn′′(h), if for all y, ~x,~a,

f(0, ~x; ~a) = 0
f(y, ~x; ~a) = sh(~x; y,~a) mod 2(f(P(y), ~x; ~a)) for y 6= 0.

15

In contrast to scheme (scrn) in [3], the recursion parameter here appears in
a normal position of f � in consistency with the spirit of rami�cation �, and
unlike the scheme in [2], nonzero recursion parameters, y, must be used in a safe
position of h, which is more restrictive.

The development of the above variants of 2CLO was motivated by the wish
to achieve a higher type characterization of NC. Such characterizations are use-
ful because programs extracted from proofs of their speci�cations usually use
higher type recursion, which easily exceeds the realm of feasible computation.
Therefore, however challenging, one would like to guarantee for a reasonable
large class of such extracted programs, usually presented as rami�ed term sys-
tems, that they run in polynomial time or even feasibly highly parallel. While
showing correctness of such systems is hard work, completeness is usually ob-
tained by embedding suitable ground type rami�ed function algebras known to
characterize the intended complexity class, e.g. see [13] or [6]. A problem with
such higher type systems is that � in order to tame higher type recursion �, they
sometimes lead to very restrictive conditions, such as only allowing the use of
�non-size-increasing� functions in recursions and limited usage of �previous func-
tionals� in higher type recursions [14]. Note that the present variants of 2CLO,
especially 2NC′′ with its restricted scheme (scrn′′), were designed exactly for
such situations.

Observe that both properties (S2) and (S3) (cf. Section 1) hold for any of
the above rami�ed function algebras. In particular, for every function f(~x; ~y) in
any of the above algebras there exists a poly-max length bound (cf. Section 2).

Inspecting the function algebras characterizing NC considered so far, we
obtain the following embeddings.

Theorem 6.2. 2CLO⊆2NC⊆2NC′⊆2NC′′⊆CLO′′⊆2CLO

Proof. 2CLO ⊆ 2NC As the recursion parameter of any scrn(h) is in a safe po-
sition, we cannot show directly the required inclusion. However, we can proceed
similarly to the proof of 2NC′⊆2NC′′.

2NC ⊆ 2NC′ It su�ces to de�ne function #Bel(w; a, b) in 2NC′. As
|P(2x)| = x and p(;x) = drop(;x, s1(; 0)), hence p ∈ 2NC′, this follows
from

#Bel(w; a, b) = 2|a|·|b| mod2|w|2

= sm(; p(;#AJST(w;)), a, b).

2NC′ ⊆ 2NC′′ We must show that the functions bit,half, and drop all are in
2NC′′, and that any f = scrn′(h) with h ∈ 2NC′′ is contained in 2NC′′, too.
Recalling Lemma 4.5, this is easily obtained for those initial functions, since

bit(;m,n) = bm
2n cmod2 = case(;msp(; m,n), 0, s1(; 0))

drop(; m,n) = b m
2|n|

c = msp(;m, len(; n))
half(; m) = bm/2d|m|/2ec

= case(; len(; m),
drop(; m,p(; len(; m))),
drop(; m,p(; len(; s1(;m)))))

where case(; x, y, z) = bcase(; x, y, y, z). For the remaining statement, i.e. f ∈
2NC′′ whenever f =scrn′(h) with h∈2NC′′, we run into a problem, since any
attempt to de�ne f directly as scrn′′(ĥ) for some ĥ∈ 2NC′′ is tantamount to

16

turning the normal position of h, to which the recursion f passes any nonzero
recursion parameter, into a safe position of ĥ. That cannot work!

To resolve this problem, we will construct for every function f(~x; ~a) in 2NC′

a simulation f ′(w; ~x,~a) in 2NC′′, and a (polynomial) witness pf such that

f(~x; ~a) = f ′(w; ~x,~a) whenever |w| ≥ pf (|~x,~a|).

Building on the above de�nitions of bit,half,drop in 2NC′′, all cases are obvious
or standard, except for the case f = scrn′(h) with h ∈ 2NC′. The I.H. yields
a simulation h′ ∈ 2NC′′ with witness ph. The witness of f is then de�ned by
pf (y, ~x,~a) := ph(y, ~x,~a, bf (y, ~x,~a))+2y+1 for some polynomial length bound bf .
We'll de�ne a simulation f ′∈2NC′′ of f by

f ′(w; y, ~x,~a) := f̂(w,w; y, ~x,~a) with f̂ :=scrn′′(ĥ)

for some ĥ(w; ŵ, y, ~x,~a) in 2NC′′. Accordingly, the y-section is de�ned by

y{i} := Pi(y)

and by unfolding the recursions we obtain the following steps:

f(y, ~x; ~a) != f̂(w,w; y, ~x,~a) steps
= Sh(y{0},~x; ~a) mod 2(= Sĥ(w; w,y,~x,~a) mod 2(1

. . .
. . .

...
Sh(y{i

.−1},~x; ~a) mod 2(Sĥ(w; Pi
.−1(w),y,~x,~a) mod 2(i

. . .
. . .

...
Sh(y{|y| .−1},~x; ~a) mod 2(0) Sĥ(w; P|y| .−1(w),y,~x,~a) mod 2(0) |y|

· · ·) · · ·) · · ·) · · ·)

Thus, for f(y, ~x; ~a) = f̂(w,w; y, ~x,~a) whenever |w| ≥ pf (|y, ~x,~a|), a stepwise
comparison, together with the I.H. for h, yields the following requirement:

ĥ(w; Pi(w), y, ~x,~a) =

{
h′(w; y{i}, ~x,~a) if i < |y|
0 else.

In the presence of drop(;m,n) = P|n|(m) in 2NC′′, this time the required
y-section implementation in 2NC′′ is de�nable with safe positions only because

Y (;w, ŵ, y) = P|w| .−|ŵ|(y) = drop(; y, drop(; w, ŵ)).

Indeed, for su�ciently large w, we have for i ≤ |w|:

Y (;w,Pi(w), y) =

{
Pi(y) if i < |y|
0 else.

Since i < |y| ⇔ Y (;w,Pi(w), y)>0, function ĥ can be de�ned in 2NC′′ by

ĥ(w; ŵ, y, ~x,~a) := cond(; Y (;w, ŵ, y), 0, h′(w; Y (;w, ŵ, y), ~x,~a))

where cond(; x, y, z)=bcase(; x, y, z, z).

17

2NC′′ ⊆ CLO′′ This inclusion is fairly standard, since the functions sm,
msp and #AJST can be easily de�ned in CLO′′ (for msp, cf. Lemma 4.5), and
by forgetting rami�cation we see inductively that every f ∈2NC′′ is de�nable
in CLO′′. In particular, by poly-max bounding and the fact that for every
polynomial p there exists a function Wp∈CLO′′ such that 2p(|~x|)≤Wp(~x), every
f =slr(g, h)∈2NC′′ can be turned into a CLO′′ function WBRN′(g, h, Wp).

CLO′′ ⊆ 2CLO We will construct for every f ∈ CLO′′ a simulation f ′(w; ~x)
in 2CLO, and a (polynomial) witness pf such that

f(~x) = f ′(w; ~x) whenever |w| ≥ pf (|~x|).

If f is 0,S0,S1, π
n,m
i , | · | or BIT, then we can de�ne f ′ directly in 2CLO using

safe composition and projection. If f is # then #(x, y)=sm(w; x, y) for |w| ≥
|x|·|y|+ 1, since amod b = a ⇔ a < b.

The cases (COMP), (WBRN′) are fairly standard, leaving the case f =
CRN′′(h) with h ∈ CLO′′. Here we can proceed as in the case scrn′(h) of
2NC′ ⊆ 2NC′′, because in 2CLO function msp(;m,n) can be de�ned by
(scrn) from bit(;m,n) using safe variables only � recall the recursion equations
of MSP in the proof of Lemma 4.5 �, and hence we obtain as above function
drop(; m,n) in 2CLO.

By Theorems 4.1, 4.3, 5.4, and Theorem 6.2 we have established the following
new characterization of NC.

Corollary 6.3. NC=[0, s0, s1, π, len, sm,#AJST,bcase,msp; scomp, scrn′′, slr]

References

[1] K. Aehlig, J. Johannsen, H. Schwichtenberg, S. Terwijn, Linear rami�ed
higher type recursion and parallel complexity, Technical Report 17, Mittag-
Le�er-Institut (2000).

[2] K. Aehlig, J. Johannsen, H. Schwichtenberg, S. Terwijn, Linear rami�ed
higher type recursion and parallel complexity, in: R. Kahle, P. Schroeder-
Heister, R. Stärk (Eds.), Proof Theory in Computer Science, Vol. 2183 of
Lecture Notes in Computer Science, Springer, 2001, pp. 1�21.

[3] S. Bellantoni, Predicative recursion and computational complexity, Ph.D.
thesis, Department of Computer Science, University of Toronto (1992).

[4] S. Bellantoni, S. Cook, A new recursion theoretic characterization of the
polytime functions., Computational Complexity 2 (1992) 97�110.

[5] S. Bellantoni, K.-H. Niggl, Ranking primitive recursions: The low Grzegor-
czyk classes revisited, SIAM Journal on Computing 29 (2) (2000) 401�415.

[6] S. Bellantoni, K.-H. Niggl, H. Schwichtenberg, Higher type recursion, ram-
i�cation and polynomial time, Annals of Pure and Applied Logic 104 (2)
(2000) 17�30.

[7] S. Bellantoni, I. Oitavem, Separating NC along the delta axis, in: J.-Y.
Marion (Ed.), Special issue on Implicit Computational Complexity, Theor.
Comput. Sci. 318(1-2): 57-78, Elsevier, 2004.

18

[8] S. A. Bloch, Function-algebraic characterizations of log and polylog parallel
time, Computational Complexity 4 (1994) 175�205.

[9] G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem, Towards an implicit char-

acterization of NCk, in: Z. Ésik (Ed.), CSL, Vol. 4207 of Lecture Notes in
Computer Science, Springer, 2006, pp. 212�224.

[10] P. Clote, Sequential, machine-independent characterizations of the paral-
lel complexity classes ALogTIME, ACk, NCk and NC, in: P. J. Scott,
S. R. Buss (Eds.), MSI Workshop on Feasable Mathematics, Birkhäuser,
1990, pp. 49�69.

[11] P. Clote, Computation models and function algebras, in: E. R. Gri�or (Ed.),
Handbook of Computability Theory, Elsevier Science B.V., 1999, pp. 589�
681.

[12] A. Cobham, The intrinsic computational di�culty of functions, in: Y. Bar-
Hillel (Ed.), Proceedings of the 1964 International Congress for Logic,
Methodology, and the Philosophy of Science, North Holland, 1964, pp. 24�
30.

[13] M. Hofmann, Type systems for polynomial-time computation, Ph.D. thesis,
Technische Universität Darmstadt (1998).

[14] M. Hofmann, Linear types and non-size-increasing polynomial time comp-
utation, Inform. and Comput. 183 (1) (2003) 57�85.

[15] L. Kristiansen, K.-H. Niggl, On the computational complexity of imperative
programming languages, in: J.-Y. Marion (Ed.), Special issue on Implicit
Computational Complexity, Theor. Comput. Sci. 318(1-2): 139�161, Else-
vier, 2004.

[16] D. Leivant, Subrecursion and lambda representation over free algebras, in:
S. Buss, P. Scott (Eds.), Feasible Mathematics, Perspectives in Computer
Science, Birkhäuser-Boston, New York, 1990, pp. 281�291.

[17] D. Leivant, A foundational delineation of computational feasibility, in: Pro-
ceedings of the Sixth IEEE Conference on Logic in Computer Science (Am-
sterdam), IEEE Computer Society Press, Washington D.C., 1991.

[18] D. Leivant, J.-Y. Marion, Lambda calculus characterizations of poly-time,
Fundam. Inform. 19 (1/2) (1993) 167�184.

[19] D. Leivant, Rami�ed recurrence and computational complexity I: Word
recurrence and poly-time, in: P. Clote, J. Remmel (Eds.), Feasible Mathe-
matics II, Birkhäuser Boston, 1994, pp. 320�343.

[20] K.-H. Niggl, The µ-measure as a tool for classifying computational com-
plexity, Archive for Mathematical Logic 39 (7) (2000) 515�539.

[21] K.-H. Niggl, A new recursion-theoretic characterization of the polytime
functions, by S. Bellantoni and S. Cook. A term rewriting characterization
of the polytime functions and related complexity classes, by A. Beckmann
and A. Weiermann, Review, The Bulletin of Symbolic Logic 6 (3) (2000)
351�353.

19

[22] K.-H. Niggl, Control structures in programs and computational complexity,
Habilitation thesis, Institut für Theoretische Informatik, Technische Uni-
versität Ilmenau (2001).
URL http://eiche.theoinf.tu-ilmenau.de/�niggl/

[23] K.-H. Niggl, Control structures in programs and computational complexity,
Annals of Pure and Applied Logic 133 (1-3) (2005) 247�273.

[24] K.-H. Niggl, H. Wunderlich, Certifying polynomial time and lin-
ear/polynomial space for imperative programs, SIAM Journal on Com-
puting 35 (5) (2006) 1122�1147.

[25] I. Oitavem, New recursive characterizations of the elementary functions
and the functions computable in polynomial space, Revista Mathemática
de la Universidad Complutense de Madrid 10 (1) (1997) 109�125.

[26] I. Oitavem. Characterizing NC with tier 0 pointers. Math. Log. Q., 50(1):
9�17, 2004.

[27] H. Simmons, The Realm of Primitive Recursion, Archive for Mathematical
Logic 27 (1988) 177�188.

[28] H. Wunderlich, Syntaktische Charakterisierungen e�zient berechenbarer
Funktionen, Diploma thesis, Institut für Theoretische Informatik, Technis-
che Universität Ilmenau (2003).

20

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

