

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

On Toda’s Theorem in structural
communication complexity

Henning Wunderlich

Ulmer Informatik-Berichte
Nr. 2008-12

September 2008

On Toda's Theorem in structural

communication complexity

Henning Wunderlich ∗

August 27, 2008

Abstract

We prove Toda's Theorem in the context of structural communication

complexity, i.e. PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(#Pcc) = Pcc(PPcc). The class

PSPACEcc was de�ned via alternating protocols with O(log n) many

alternations. We consider the class BP · ⊕Pcc of Toda's Theorem, and

show that every language in this class can be decided with alternating

protocols using O(log n/ log log n) many alternations. The proof is based

on a new alternating protocol for the inner product function IP with

O(log n/ log log n) many alternations.

1 Introduction

The main contribution of this paper is to establish Toda's Theorem in the setting
of communication complexity, i.e. we prove PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(#Pcc) =
Pcc(PPcc). This might be useful in the search for a solution of the famous PHcc

vs. PSPACEcc problem, because no communication complexity measures/lower
bound methods are known for alternating classes, while for the classes BPPcc

and ⊕Pcc lower bound methods are available. Thus, it might be easier to come
up with a measure for BP · ⊕Pcc, a class not based on the concept of alterna-
tion, than to develop a measure for alternation. Of course, it might be the case
that BP · ⊕Pcc = PSPACEcc, but we show that every language in BP · ⊕Pcc

can be decided with alternating protocols using only O(log n/ log log n) many
alternations, i.e. substantially less than allowed for PSPACEcc. The proof is
based on a new alternating protocol for the inner product function IP with
O(log n/ log log n) many alternations.

1.1 Structural complexity

For introductions to the broad �eld of structural complexity see [3, 2, 6, 14, 10].
Nice surveys on a variety of topics in this �eld can be found in [18, 19], especially
on counting complexity in [15, 7] by Schöning and Fortnow, respectively. The
parity class ⊕P was de�ned by Papadimitriou and Zachos in [12], where it was
shown that ⊕P(⊕P) = ⊕P. One can de�ne operators on complexity classes, e.g.
the BP-operator, which was de�ned by Schöning [16]. Using the BP-operator

∗Universität Ulm, Fakultät für Ingenieurwissenschaften und Informatik, Institut für Theo-

retische Informatik, Oberer Eselsberg, D-89069 Ulm, e-mail: Henning.Wunderlich@uni-ulm.de

1

and the Valiant-Vazirani-Lemma [21] Toda [20] was able to prove his celebrated
theorem

PH ⊆ BP · ⊕P ⊆ P(#P) = P(PP) ,

which tells us that counting (mod 2 with random source) is at least as powerful
as the whole polynomial-time hierarchy PH. See also [17] for a simpli�ed proof.

1.2 Communication complexity

For a thorough introduction to communication complexity we refer the reader
to the book of Kushilevitz and Nisan [11].

1.2.1 Basic de�nitions and notation.

We only work with the binary alphabet B := {0, 1}. The length of a string x ∈ B∗
is denoted by |x|. A pre�x-free encoding of x is x := 0|x|1x. In order to encode
pairs of strings x, y ∈ B∗ we use the pairing function 〈x, y〉 := xy. The set of pairs
of strings of equal length is denoted by B∗∗ := {(x, y) | x, y ∈ B∗, |x| = |y|}.
A language L is a subset of B∗∗, its characteristic function χL is de�ned as
χL := (χL

n), where χL
n : Bn × Bn → N, χL

n(x, y) := 1, if (x, y) ∈ L, and 0
otherwise. We write (x, y) ∈ L if χL

|x|(x, y) = 1. The set of all languages is

denoted by L. A (communication) complexity class is a subset C ⊆ L. We de�ne
poly := {f : R+ → R+ | ∃polynomial p : f ≤ p}, the set of functions with
polynomial growth. With log we denote the logarithm to the basis 2.

1.2.2 Yao's model.

We consider the basic model of communication complexity, introduced by Yao
[22]. In this model, there are two players (parties) Alice and Bob, who want
to cooperatively compute a function f : X × Y → Z, where X , Y and Z are
�nite sets. Both have complete information about f and unlimited computa-
tional power but receive only parts of the inputs. Alice is given x ∈ X , Bob is
given y, and they exchange messages in order to compute f(x, y). Each message
solely depends on the player's input and the messages communicated so far.
The communication is carried out according to a �xed protocol Π (over domain
X × Y with range Z).

1.2.3 Protocols.

There are four kinds of protocols, namely deterministic, randomized, nondeter-
ministic and alternating ones. We only describe deterministic protocols in detail:
A deterministic protocol is a labeled binary tree, where an inner node speci�es
the player who sends a bit of communication next. If v is an inner node, then it
is labeled either by a function av : X → {0, 1} or by a function bv : Y → {0, 1}.
Each leaf l is labeled with an output value zl ∈ Z. The value of the protocol
Π on input (x, y) is the label of the leaf reached by starting from the root, and
walking on the tree. At each internal node v labeled by av Alice sends av(x) and
they walk left if av(x) = 0 and right if av(x) = 1. Analogously, if v is labeled
with bv. The cost of the protocol Π on input (x, y) is the length of the path
taken on this input. In a randomized protocol Alice and Bob have access to a
public or private source of randomness (random string). The functions av, bv are

2

arbitrary functions of the inputs and the random strings. In a nondeterministic
protocol, we have Z = {0, 1}, and each player gets a guess string in addition to
the input. Here, av and bv are arbitrary functions of the inputs and the guess
strings. For nondeterministic protocols there exist di�erent accepting modes. For
example, a nondeterministic protocol accepts a language L in the nondetermin-
istic accepting mode, if for all (x, y) ∈ L there exist guess strings gA and gB such
that Alice on input x and guess string gA and Bob on input y and guess string
gB reach a leaf labeled with 1, and if for all (x, y) 6∈ L there do not exist any
guess strings such that the players reach a 1-leaf. Another example is the parity
accepting mode: Here, an input is accepted i� the number of guess strings such
that the players reach a 1-leaf is odd. For a de�nition of alternating protocols,
see [1, p.339]. For formal de�nitions concerning protocols, cost and complexity
measures, and accepting modes, see [11, Def. 1.1, p.4; Chap. 3, p.28; Chap. 2,
p.18] and [5]. A protocol over domain X ×Y is an n-bit protocol, if X = Y = Bn.
A protocol family (Πn)n∈N of n-bit protocols Πn decides a language L if each
Πn computes χL

n .

1.2.4 Communication complexity classes.

Each protocol type and acceptance mode leads to a complexity measure, e.g.
D(f) for the deterministic communication complexity of f , or ⊕D(f), which is
the minimum cost of a nondeterministic protocol deciding f in parity accepting
mode. If a problem can be solved with communication polylogarithmically in
the input size, then we consider this as e�cient. The communication complexity
classes are de�ned as sets of languages that can be decided e�ciently according
to a �xed measure. For example, Pcc is the class of languages such that L ∈ Pcc

i� there exists a bound b ∈ poly with D(χL
n) ≤ p(log n), and ⊕Pcc is the

class of languages such that L ∈ ⊕Pcc i� there exists a bound b ∈ poly with
⊕D(χL

n) ≤ p(log n).

1.2.5 Oracle protocols.

A deterministic, randomized, nondeterministic or alternating protocol Π over X ,
Y is an oracle protocol with oracle family O = (Om)m∈N, if Π contains oracle
nodes in its protocol tree. Associated with an oracle node v are two functions
av : X → Bmv and bv : Y → Bmv . If Alice and Bob reach an oracle node v during
a computation on input (x, y) ∈ X×Y, they compute by themselves x′ := av(x)
and y′ := bv(y), respectively, and call Omv on (x′, y′). The oracle node v has
exactly |range(O)| many successors. Alice and Bob continue the computation
on one of them according to the returned value O(x′, y′). The communication
costs for each oracle call are dlog |range(O)|e. If a language L is used as an
oracle family, we write L instead of χL. Relativized communication complexity
classes are de�ned via e�cient oracle protocol families. For example, Pcc(L′)
contains all languages L which can be decided by a protocol family (Πn)n∈N of
deterministic n-bit oracle protocols with L′ as the oracle.

1.3 Structural communication complexity

Research in the �eld of structural communication complexity started with the
article of Babai, Frankl and Simon [1], where some analogies between Turing ma-

3

chine classes like P, NP, PP, PSPACE, the polynomial hierachy PH =
⋃

k Σp
k,

etc. and the corresponding communication complexity classes Pcc, NPcc, PPcc,
PSPACEcc, PHcc =

⋃
k Σcc

k , etc. were shown. For more ground work, especially
on closure properties, the boolean communication hierarchy, or counting com-
munication complexity classes like MODmP, see Halstenberg and Reischuk [8]
or Damm et al. [5]. In [9] Klauck established separation results between MAcc

and NPcc, MAcc and APPcc, and APPcc and PPcc, respectively. In recent
research, Buhrman et al. [4] showed Σcc

2 ,Πcc
2 6⊆ PPcc. This was improved to

Σcc
2 ,Πcc

2 6⊆ UPPcc by Razborov and Sherstov [13].

1.3.1 Reductions.

We introduce di�erent kinds of reductions between languages. The many-one
reductions are also called rectangular reductions. The disjunctive reductions are
not needed in the sequel but de�ned only for the sake of completeness.

De�nition 1.1. (Reductions) Let L and L′ be languages.

1. L is many-one reducible to L′, if there exists a bound b ∈ poly and a

family of function pairs {(fn, gn)}n∈N, fn, gn : Bn → Bd2b(log n)e, such that
for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� (fn(x), gn(y)) ∈ L′.

2. L is Turing reducible to L′, if L ∈ Pcc(L′).

3. L is majority reducible to L′, if there exist bounds b, t ∈ poly and a family

of function pairs {(fn, gn)}n∈N, fn, gn : Bn → (Bd2b(log n)e)dt(log n)e, such
that for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� ((fn(x))i, (gn(y))i) ∈ L′

for the majority of the indices i ∈ [dt(log n)e].

4. L is conjunctively reducible to L′, if there exist bounds b, t ∈ poly and a

family of function pairs {(fn, gn)}n∈N, fn, gn : Bn → (Bd2b(log n)e)dt(log n)e,
such that for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� ((fn(x))i, (gn(y))i) ∈
L′ for all indices i ∈ [dt(log n)e].

5. L is disjunctively reducible to L′, if there exist bounds b, t ∈ poly and a

family of function pairs {(fn, gn)}n∈N, fn, gn : Bn → (Bd2b(log n)e)dt(log n)e,
such that for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� ((fn(x))i, (gn(y))i) ∈
L′ for at least one of the indices i ∈ [dt(log n)e].

1.4 Organization of this paper

In Section 1 we prove Toda's Theorem in the setting of communication com-
plexity. In Section 2 we present an alternating protocol for the inner product
function IP with O(log n/ log log n) many alternations, which gives us an upper
bound on the number of alternations for languages in the class BP · ⊕Pcc of
Toda's Theorem.

2 Toda's Theorem

In order to prove Toda's Theorem we need to de�ne di�erent kinds of opera-
tors on communication complexity classes. Readers familiar with communication

4

complexity might wonder why the operators are de�ned in a public coin style, i.e.
both players get the same witness/random string. Of course, one can de�ne the
operators such that each player gets his/her own witness/random string (private
coin style). The reason is that these de�nitions are equivalent, if the operators
are simulated by a protocol. Alice can guess Bob's witness and send it to him,
or she can send him her random string, because the length of witnesses/random
strings is bounded polylogarithmically in the length of the input.

De�nition 2.1. (Complexity class operators) For a language L ⊆ B∗∗ and
bounds p, q ∈ poly we de�ne

∀p(L) := {(x, y) ∈ B∗∗ | ∀w ∈ Bdp(log |x|)e : (〈x,w〉, 〈y, w〉) ∈ L} ,

∃p(L) := {(x, y) ∈ B∗∗ | ∃w ∈ Bdp(log |x|)e : (〈x,w〉, 〈y, w〉) ∈ L} ,

Modp
k(L) := {(x, y) ∈ B∗∗ | |{w ∈ Bdp(log |x|)e | (〈x,w〉, 〈y, w〉) ∈ L}|mod k 6= 0},

⊕p(L) := Modp
2(L) .

For a communication complexity class C ⊆ L we de�ne

co · C := {L | L ∈ C} ,

∀ · C := {∀p(L) | L ∈ C, p ∈ poly} ,

∃ · C := {∃p(L) | L ∈ C, p ∈ poly} ,

Modk · C := {Modp
k(L) | L ∈ C, p ∈ poly} ,

⊕ · C := Mod2 · C .

A language L is in BP ·C if there exists a language L′ ∈ C and a bound q ∈ poly
such that for all (x, y) ∈ (Bn)2 it holds:

(x, y) ∈ L implies |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|/2dq(log n)e ≥ 2
3 .

(x, y) /∈ L implies |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|/2dq(log n)e ≤ 1
3 .

We give a de�nition of the polynomial hierarchy suitable for our purposes based
on the class operators de�ned above. Note that this de�nition is equivalent to
the one given in [1].

De�nition 2.2. (Polynomial hierarchy) PHcc :=
⋃

k≥0 Σcc
k , where Σcc

0 := Pcc

and Σcc
k+1 := ∃ · co · Σcc

k .

We observe the following properties of the communication complexity class op-
erators. The proofs are easy, so we omit most of them for space reasons.

Observation 2.3. (Probability ampli�cation) Let C ⊆ L be a communication
complexity class closed under majority reductions, and let b ∈ poly. If a lan-
guage L is in BP · C, then there exists a language L′ ∈ C and a bound q ∈ poly
such that for all (x, y) ∈ (Bn)2 it holds:

(x, y) ∈ L ⇒ |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|
/

2dq(log n)e ≥ 1−2−b(log n).

(x, y) /∈ L ⇒ |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|
/

2dq(log n)e ≤ 2−b(log n).

Observation 2.4. (Inclusion) Let C ⊆ L be a communication complexity class
closed under many-one reductions. Then C ⊆ Op · C for every operator Op ∈
{∀,∃,Modk,⊕,BP}.

5

Observation 2.5. (Monotonicity) Let C,D ⊆ L be communication complex-
ity classes such that C ⊆ D. Then Op · C ⊆ Op · D for every operator Op ∈
{co,∀,∃,Modk,⊕,BP}.

Observation 2.6. (Idempotency) Let C ⊆ L be a communication complexity
class closed under many-one reductions. Then Op · Op · C = Op · C for every
operator Op ∈ {∀,∃,⊕}.

The idempotency of the BP-operator follows from its probability ampli�cation
property (Observation 2.3).

Observation 2.7. (Idempotency of BP) Let C ⊆ L be a communication com-
plexity class closed under majority reductions. Then BP · BP · C = BP · C.

Observation 2.8. (co· vs. · · ·) Let C ⊆ L be a communication complexity class.
Then co · ∃ · C = ∀ · co · C, co · ∀ · C = ∃ · co · C, and co · BP · C = BP · co · C.

De�nition 2.9. (Intersection and Union) Let C and C′ be communication com-
plexity classes. C is closed under C′-intersection i� for all L ∈ C and L′ ∈ C′
we have L ∩ L′ ∈ C. C is closed under C′-union i� for all L ∈ C and L′ ∈ C′ we
have L ∪ L′ ∈ C.

Observation 2.10. (co· vs. ⊕) Let C ⊆ L be a communication complexity class
that contains Pcc, is closed under Pcc-intersection, Pcc-union, and many-one
reductions. Then co · ⊕ · C = ⊕ · C.

Proof. Let L ∈ ⊕·C. There exist a bound p ∈ poly and a language L1 ∈ C such
that L = ⊕p(L1). De�ne

L2 := {(〈x, b1w1〉, 〈y, b2w2〉) | b1, b2 ∈ B, (〈x,w1〉, 〈y, w2〉) ∈ L1} ,

L3 := {(〈x, 1w1〉, 〈y, 1w2〉) | |x| = |y| = n, |w1| = |w2| = dp(log n)e} ,

L4 := {(〈x, 0w1〉, 〈y, 0w2〉) | |x| = |y| = n, w1 = w2 = 0dp(log n)e} .

Then L2 is in C, because C is closed under many-one reductions, and L3, L4 ∈
Pcc. The language L5 := (L2 ∩ L3) ∪ L4 is in C, because C is closed under Pcc-
intersection and Pcc-union. De�ne L′ := ⊕p+1(L5). Clearly, L = L′ ∈ ⊕ · C.

Observation 2.11. If C ⊆ L is a communication complexity class closed under
conjunctive reductions, then ⊕ · C is closed under conjunctive reductions.

Using Observations 2.10 and 2.11 one can prove the result of Papadimitriou and
Zachos [12] in the setting of communication complexity as in time complexity
(see also [10, Prop. 4.8, p.125]).

Fact 2.12. (Papadimitriou & Zachos) Let C ⊆ L be a communication complex-
ity class, which contains Pcc, is closed under Pcc-intersection, Pcc-union, and
conjunctive reductions. Then ⊕Pcc(⊕ · C) = ⊕ · C.

The following observation shows that the names used for the operators are
compatible with the names of classical communication complexity classes, if the
operators are applied to Pcc.

Observation 2.13. (Compatibility)

NPcc = ∃ ·Pcc ,
co−NPcc = ∀ ·Pcc ,

⊕Pcc = ⊕ ·Pcc ,
BPPcc = BP ·Pcc .

6

Swapping lemmata are well known in the �eld of structural complexity theory.
Below, we give a proof of a lemma of this type for the sake of completeness. The
main ingredient is the probability ampli�cation property of the BP-operator
(Observation 2.3).

Lemma 2.14. (Swapping) Let C ⊆ L be a communication complexity class
closed under majority reductions. Then ⊕ · BP · C ⊆ BP · ⊕ · C.

Proof. Let L be a language in ⊕ · BP · C. Then there exists a language L′ in
BP · C and a bound p′ ∈ poly such that L = ⊕p′(L′). As L′ ∈ BP · C and C is
closed under majority reductions we use probability ampli�cation to obtain a
language L′′ in C and a bound p′′ ∈ poly such that

(〈x,w〉, 〈y, w〉) ∈ L′ ⇒ Prr[(〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≥ 1− 2−l′n−2 , and

(〈x,w〉, 〈y, w〉) /∈ L′ ⇒ Prr[(〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≤ 2−l′n−2 .

for every input (x, y) ∈ (Bn)2 and witness w. Here, l′n := dp′(log n)e, and the
random string r is uniformly drawn from Bl′′n , where l′′n := dp′′(log n)e. We de�ne
W(x,y) := {w ∈ Bl′n | (〈x,w〉, 〈y, w〉) ∈ L′} and Goodn :=

⋂
w∈Bl′n Goodn,w,

where Goodn,w := {r ∈ Bl′′n | ∀(x, y) ∈ (Bn)2 : (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′ ⇔
w ∈ W(x,y)}. For a �xed w0 we get

Prr[r /∈ Goodn] ≤ 2l′n · Prr[r /∈ Goodn,w0] ≤ 2l′n · 2l′n−2 ≤ 1
4

.

Thus, Prr[r ∈ Goodn] ≥ 3
4 . The language

L′′′ := {(〈〈x, r〉, w〉, 〈〈y, r′〉, w′〉) | (〈〈x,w〉, r〉, 〈〈y, w′〉, r′〉) ∈ L′′}

is in C (closure under many-one reductions).
In case (x, y) ∈ L we have

Prr[(〈x, r〉, 〈y, r〉) ∈ ⊕p′(L′′′)]
= Prr[|{w | (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′}| odd]
≥ Prr[∀w : w ∈ W(x,y) ⇔ (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] (1)

≥ Prr[∀(x, y) : ∀w : w ∈ W(x,y) ⇔ (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′]

= Prr[r ∈ Goodn] ≥ 3
4

,

where (1) follows from (x, y) ∈ L ⇔ |W(x,y)| odd.
The case (x, y) /∈ L is treated similarly. We conclude L ∈ BP · ⊕ · C.

The Valiant-Vazirani-Lemma is well known in structural complexity theory, and
there exist many proof ideas for this important result. The solution we propose
is an adaptation of an algebraic proof due to Fortnow in [7, p.88, Lemma 3.12].

Lemma 2.15. (Valiant-Vazirani) Let C ⊆ L be a communication complexity
class containing Pcc and closed under Pcc-intersection, Pcc-union and conjunc-
tive reductions. Then ∃ · C ⊆ BP · ⊕ · C.

Proof. Let L be a language in ∃ · C. There exists a language L′ ∈ C and a
bound p ∈ poly such that L = ∃p(L′). De�ne ln := dp(log n)e. We �x an input

7

(x, y) ∈ L, |x| = |y| = n. Let S := {w ∈ Bln | (〈x,w〉, 〈y, w〉) ∈ L′} be the
set of witnesses of (x, y) and d := |S| its size. We pick a natural number m
such that 2lnd < m ≤ 4lnd and encode the witnesses as polynomials over F :=
GF(2m), the �nite �eld with 2m elements. We then consider pairs (a, b) ∈ F 2

and show that for a sizable fraction of them there will be exactly one polynomial
p representing a witness such that p(a) = b. The statement follows by choosing
m, a and b at random. For a string s = s1 · · · sl we de�ne the polynomial
ps(X) :=

∑l
i=1 siX

i. We �x a witness w in S. An element a of F is called
w-good, if for all witnesses w′ 6= w in S we have pw(a) 6= pw′(a). Since pw and
pw′ can agree on at most ln elements, there are at least |F | − lnd many w-good
elements in F . Consider the set Aw containing all pairs (a, pw(a)) for w-good
elements a. The sets Aw and Aw′ are disjoint for di�erent strings w and w′.
De�ne A :=

⋃
w∈S Aw. Then |A| ≥ d(|F | − lnd). We de�ne the language L′′ in

C by

L′′ := {(〈〈x, r〉, w〉, 〈〈y, r〉, w〉) | n := |x| = |y|, r = 〈m∗, a, b〉,m∗ ∈ [2ln],
a, b ∈ GF(2m∗

), |w| = ln, pw(a) = b, (〈x,w〉, 〈y, w〉) ∈ L′} ,

where r = 〈m∗, a, b〉 means that we use r as an encoding of a natural number
m∗ and �eld elements a and b. Furthermore, de�ne L′′′ := ⊕p(L′′) ∈ ⊕ · C.
If (x, y) /∈ L then for all w and r the pair (〈〈x, r〉, w〉, 〈〈y, r〉, w〉) is not in L′′,
and thus (x, y) /∈ L′′′.
If (x, y) ∈ L then with probability 1/2ln we have m = m∗ as m ≤ log 4lnd ≤
2ln. In case m = m∗ there is exactly one witness w for (〈x, r〉, 〈y, r〉) showing
(x, y) ∈ L′′′. The size of A is at least lnd2, the size of F 2 is at most 16l2nd2. If
we choose (a, b) at random in F 2 we have a 1/16ln chance of being in A. Thus,
for �xed input (x, y) the probability of choosing r at random such that m = m∗

and (a, b) ∈ A is at least 1/32l2n.
The class⊕·C is closed under majority reductions by Fact 2.12. Thus, probability
ampli�cation is possible, and we get L ∈ BP · ⊕ · C.

Theorem 2.16. (Toda) PHcc ⊆ BP · ⊕ ·Pcc.

Proof. We prove Σcc
k ⊆ BP · ⊕ ·Pcc by induction on k:

Case k = 0: The class Pcc is closed under many-one reductions. The class
⊕ · Pcc is also closed under many-one reductions by Fact 2.12, because Pcc

is closed under Pcc-intersection, Pcc-union, and conjunctive reductions. Thus,
Σcc

0 = Pcc ⊆ ⊕ · Pcc ⊆ BP · ⊕ · Pcc by the inclusion property of the ⊕- and
BP-operator (Observation 2.4).
Case k → k + 1: It holds

Σcc
k+1 = ∃ · co · Σcc

k (2)

⊆ ∃ · co · BP · ⊕ ·Pcc (3)

= ∃ · BP · co · ⊕ ·Pcc (4)

= ∃ · BP · ⊕ ·Pcc (5)

⊆ BP · ⊕ · BP · ⊕ ·Pcc (6)

⊆ BP · BP · ⊕ · ⊕ ·Pcc (7)

= BP · BP · ⊕ ·Pcc (8)

= BP · ⊕ ·Pcc (9)

8

(2) By De�nition 2.2.

(3) By the induction hypothesis for Σcc
k and monotonicity (Observation 2.5)

of the operators co· and ∃·.

(4) By Observation 2.8.

(5) By closure under complement of ⊕ ·Pcc (Observation 2.10).

(6) By the Valiant-Vazirani-Lemma (Lemma 2.15). Its application is possi-
ble, because BP · ⊕ ·Pcc is closed under conjunctive reductions and Pcc-
intersection.

(7) By the Swapping-Lemma (Lemma 2.14) and monotonicity of the BP-
operator (Observation 2.5). The Swapping-Lemma can be applied, because
⊕ ·Pcc is closed under majority reductions.

(8) By idempotency of the ⊕-operator (Observation 2.6).

(9) By idempotency of the BP-operator (Observation 2.7). This holds because
⊕ ·Pcc is closed under majority reductions.

Fact 2.17. Pcc(PPcc) = Pcc(#Pcc).

Proof. Alice and Bob can compute every #Pcc-function f by binary search with
polylog communication asking oracle queries to Graph≤(f) := {(〈x, v〉, 〈y, v〉) |
(v)2 ≤ f(x, y)} ∈ PPcc.

Theorem 2.18. (Toda) PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(#Pcc) = Pcc(PPcc).

Proof. Let accΠ(x, y) denote the number of accepting paths of a nondetermin-
istic protocol Π on input (x, y). The class #Pcc contains all constant func-
tions and is closed under addition and multiplication. If (Πn)n∈N is an e�cient
nondeterministic protocol family with accΠ := (accΠn)n∈N in #Pcc, and if we
choose p ∈ poly, then there exists an e�cient nondeterministic protocol family
(Π′

n)n∈N such that accΠ′
n
(x, y) = (1 + accΠn(x, y)dp(log n)e)dp(log n)e. This proves

BP · ⊕Pcc ⊆ Pcc(#Pcc) as in the time complexity setting.

Let IP denote the inner product function (see [11, Ex. 1.25, p.12]), and let MAJ
denote the majority function (see e.g. [9]). The corollary below considers the
consequences of the unlikely case that the inner product or majority function
can be computed with a constant number of alternations.

Corollary 2.19. It holds:

1. IP ∈ PHcc i� PHcc = BP · ⊕Pcc.

2. If PHcc = PSPACEcc then PHcc = BP · ⊕Pcc.

3. MAJ ∈ PHcc i� PHcc = BP · ⊕Pcc = BPcc(PPcc).

4. IP ∈ PHcc i� MAJ ∈ PHcc.

9

Proof. 1. ⇒: IP ∈ PHcc implies ⊕Pcc ⊆ PHcc because IP is complete for
⊕Pcc under many-one reductions. Applying the BP-operator yields BP ·⊕Pcc ⊆
BP ·PHcc = PHcc. ⇐: IP ∈ ⊕Pcc ⊆ BP · ⊕Pcc = PHcc.
2. Follows from ⊕Pcc ⊆ PSPACEcc and (1.).
3. ⇒: MAJ ∈ PHcc implies PPcc ⊆ PHcc because MAJ is complete for
PPcc under many-one reductions. We obtain BPPcc(PPcc) ⊆ BPPcc(PHcc) =
PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(PPcc) ⊆ BPPcc(PPcc). ⇐: MAJ ∈ PPcc ⊆
BPP(PPcc) = PHcc.
4. Follows from (1.) and (3.).

3 An alternating protocol for IP

The class PSPACEcc was de�ned as the class of languages which can be recog-
nized with protocols using (log n)O(1) communication and O(log n) alternations.
In this section we show that languages in the class BP · ⊕Pcc can be recognized
by alternating protocols using only O(log n/ log log n) many alternations. It is
enough to give such a protocol for the inner product function, because IP is com-
plete for ⊕Pcc, and Schöning's generalization BP ·C ⊆ ∃·∀·C∩∀·∃·C of the well
known result of Lautemann, which is easily transferred into the communication
complexity context. For a proof, see [10, Prop. 2.24, p.76]. Fix an odd natural
number k. Alice has input x = x0 . . . xn−1 and Bob has input y = y0 . . . yn−1.
They execute the following alternating protocol Ik(s, t, b) on their inputs:

If (k ≥ t− s + 1) then Alice and Bob determine if IPt−s+1(xs . . . xt, ys . . . yt) =
b using the trivial protocol (Alice sends her input; both compute the value
by themselves). They return the value of the trivial protocol.

else Alice guesses the following strings and sends them to Bob:

1. ∃S ⊆ {0, . . . , k − 1}, |S| odd : (branch disjunctively)

2. ∃b̃ ∈ {0, 1} : (branch disjunctively)

3. ∀i ∈ S : (branch conjunctively)

4. ∀j ∈ S : (branch conjunctively)

5. ∀h ∈ {i, j} : (branch conjunctively)

return Ik(s1, t1, b1), where d := t − s + 1, B := d d
k e, s1 := h · B, t1 :=

min{n− 1, (h + 1) ·B − 1}, and if (h = i) then b1 := b else b1 := b̃.

Correctness. Divide each input x and y in an odd number k of blocks
of approximately equal sizes, i.e. x = x(1) · · ·x(k), y = y(1) · · · y(k). It holds
IP(x, y) =

∑
i∈[k] IP(x(i), y(i)) mod 2. If IP(x, y) evaluates to 1, there exists an

odd number of blocks S′ ⊆ [k] where IP evaluates to 1 and the values of IP
cancel on S′. There are three cases:

1. IP(x(j), y(j)) = 0 for all j ∈ S′. We set S := S′ and b̃ := 0.

2. IP(x(j), y(j)) = 1 for all j ∈ S′. We set S := S′ and b̃ := 1.

3. There exist j0, j1 ∈ S such that IP(x(j0), y(j0)) = 0 and IP(x(j1), y(j1)) = 1.
The number of j ∈ S′ with IP(x(j), y(j)) = 1 has to be even. We set
S := S′ ∪ {j ∈ S′ | IP(x(j), y(j)) = 1} and b̃ := 0. Note that |S| is odd.

10

In all three cases we have obtained a set S ⊆ [k] of odd cardinality and a b̃
such that IP(x(i), y(i)) = 1 for all i ∈ S and IP(x(j), y(j)) = b̃ for all j ∈ S.
The case when IP(x, y) evaluates to 0 is analogous. Thus, the protocol Ik(s, t, b)
accepts i� IPt−s+1(xs . . . xt, ys . . . yt) = b. The protocol Ik(0, n− 1, 1) computes
IPn(x, y).

Communication costs. There are two alternations in each round and the
number of rounds is bounded by t = log2 n/ log2 k. If we choose an odd k of
size (log n)c then the communication costs in each round are O(k) bits and the
number of alternations is O(log n/ log log n). If ACommA(F) denotes the class
of languages which can be recognized by alternating protocols using communi-
cation bounded by a function in F and a number of alternations bounded by a
function in A, we have obtained

Theorem 3.1. BP · ⊕Pcc ⊆ ACommO(log n/ log log n)((log n)O(1)).

Acknowledgement

I would like to express my deep gratitude to Martin Dietzfelbinger, Uwe Schön-
ing and Jacobo Torán for careful reading, fruitful discussions, and their support.

References

[1] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication
complexity theory (preliminary version). In 27th Annual Symposium on
Foundations of Computer Science, 27-29 October 1986, Toronto, Ontario,
Canada, pages 337�347, 1986.

[2] J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity II. Texts
in Theoretical Computer Science, An EATCS Series. Springer-Verlag, 1st
edition, 1990.

[3] J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Texts
in Theoretical Computer Science, An EATCS Series. Springer-Verlag, 2nd
edition, 1995.

[4] H. Buhrman, N. K. Vereshchagin, and R. de Wolf. On computation and
communication with small bias. In 22nd Annual IEEE Conference on Com-
putational Complexity (CCC 2007), 13-16 June 2007, San Diego, Califor-
nia, USA, pages 24�32. IEEE Computer Society, 2007.

[5] C. Damm, M. Krause, C. Meinel, and S. Waack. On relations be-
tween counting communication complexity classes. J. Comput. Syst. Sci.,
69(2):259�280, 2004.

[6] D.-Z. Du and K.-I. Ko. Theory of Computational Complexity. Series in
Discrete Mathematics and Optimization. Wiley-Interscience, 1st edition,
2000.

[7] L. Fortnow. Counting complexity. In Selman and Hemaspaandra [19], pages
81�107.

[8] B. Halstenberg and R. Reischuk. Relations between communication com-
plexity classes. J. Comput. Syst. Sci., 41(3):402�429, 1990.

11

[9] H. Klauck. Rectangle size bounds and threshold covers in communication
complexity. In 18th Annual IEEE Conference on Computational Complex-
ity, 7-10 July 2003, Aarhus, Denmark, pages 118�134. IEEE Computer
Society.

[10] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem �
Its Structural Complexity. Birkhäuser Boston, 1993.

[11] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[12] C. H. Papadimitriou and S. Zachos. Two remarks on the power of counting.
In A. B. Cremers and H.-P. Kriegel, editors, Theoretical Computer Science,
6th GI-Conference, Dortmund, Germany, January 5-7, 1983, Proceedings,
volume 145 of Lecture Notes in Computer Science, pages 269�276. Springer-
Verlag, 1983.

[13] A. Razborov and A. Sherstov. The sign-rank of AC0. FOCS'08, to appear.

[14] U. Schöning. Complexity and Structure, volume 211 of Lecture Notes in
Computer Science. Springer-Verlag, 1986.

[15] U. Schöning. The power of counting. In Selman [18], pages 204�223.

[16] U. Schöning. Probabilistic complexity classes and lowness. J. Comput.
Syst. Sci., 39(1):84�100, 1989.

[17] U. Schöning. Recent highlights in structural complexity theory (invited
talk). In SOFSEM'91, Nizké Tratry (CSFR), Conference Proceedings,
pages 205�216. Springer-Verlag, December 1991.

[18] A. L. Selman, editor. Complexity Theory Retrospective, Foundations of
Computing. Springer-Verlag, 1988.

[19] A. L. Selman and L. A. Hemaspaandra, editors. Complexity Theory Retro-
spective II, Foundations of Computing. Springer-Verlag, 1997.

[20] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865�877, 1991.

[21] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solu-
tions. Theor. Comput. Sci., 47(3):85�93, 1986.

[22] A. C.-C. Yao. Some complexity questions related to distributive computing
(preliminary report). In Conference Record of the Eleventh Annual ACM
Symposium on Theory of Computing, 30 April-2 May, 1979, Atlanta, Geor-
gia, USA, pages 209�213. ACM, 1979.

12

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

