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Abstract

We prove Toda's Theorem in the context of structural communication

complexity, i.e. PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(#Pcc) = Pcc(PPcc). The class

PSPACEcc was de�ned via alternating protocols with O(log n) many

alternations. We consider the class BP · ⊕Pcc of Toda's Theorem, and

show that every language in this class can be decided with alternating

protocols using O(log n/ log log n) many alternations. The proof is based

on a new alternating protocol for the inner product function IP with

O(log n/ log log n) many alternations.

1 Introduction

The main contribution of this paper is to establish Toda's Theorem in the setting
of communication complexity, i.e. we prove PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(#Pcc) =
Pcc(PPcc). This might be useful in the search for a solution of the famous PHcc

vs. PSPACEcc problem, because no communication complexity measures/lower
bound methods are known for alternating classes, while for the classes BPPcc

and ⊕Pcc lower bound methods are available. Thus, it might be easier to come
up with a measure for BP · ⊕Pcc, a class not based on the concept of alterna-
tion, than to develop a measure for alternation. Of course, it might be the case
that BP · ⊕Pcc = PSPACEcc, but we show that every language in BP · ⊕Pcc

can be decided with alternating protocols using only O(log n/ log log n) many
alternations, i.e. substantially less than allowed for PSPACEcc. The proof is
based on a new alternating protocol for the inner product function IP with
O(log n/ log log n) many alternations.

1.1 Structural complexity

For introductions to the broad �eld of structural complexity see [3, 2, 6, 14, 10].
Nice surveys on a variety of topics in this �eld can be found in [18, 19], especially
on counting complexity in [15, 7] by Schöning and Fortnow, respectively. The
parity class ⊕P was de�ned by Papadimitriou and Zachos in [12], where it was
shown that ⊕P(⊕P) = ⊕P. One can de�ne operators on complexity classes, e.g.
the BP-operator, which was de�ned by Schöning [16]. Using the BP-operator
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and the Valiant-Vazirani-Lemma [21] Toda [20] was able to prove his celebrated
theorem

PH ⊆ BP · ⊕P ⊆ P(#P) = P(PP) ,

which tells us that counting (mod 2 with random source) is at least as powerful
as the whole polynomial-time hierarchy PH. See also [17] for a simpli�ed proof.

1.2 Communication complexity

For a thorough introduction to communication complexity we refer the reader
to the book of Kushilevitz and Nisan [11].

1.2.1 Basic de�nitions and notation.

We only work with the binary alphabet B := {0, 1}. The length of a string x ∈ B∗
is denoted by |x|. A pre�x-free encoding of x is x := 0|x|1x. In order to encode
pairs of strings x, y ∈ B∗ we use the pairing function 〈x, y〉 := xy. The set of pairs
of strings of equal length is denoted by B∗∗ := {(x, y) | x, y ∈ B∗, |x| = |y|}.
A language L is a subset of B∗∗, its characteristic function χL is de�ned as
χL := (χL

n), where χL
n : Bn × Bn → N, χL

n(x, y) := 1, if (x, y) ∈ L, and 0
otherwise. We write (x, y) ∈ L if χL

|x|(x, y) = 1. The set of all languages is

denoted by L. A (communication) complexity class is a subset C ⊆ L. We de�ne
poly := {f : R+ → R+ | ∃polynomial p : f ≤ p}, the set of functions with
polynomial growth. With log we denote the logarithm to the basis 2.

1.2.2 Yao's model.

We consider the basic model of communication complexity, introduced by Yao
[22]. In this model, there are two players (parties) Alice and Bob, who want
to cooperatively compute a function f : X × Y → Z, where X , Y and Z are
�nite sets. Both have complete information about f and unlimited computa-
tional power but receive only parts of the inputs. Alice is given x ∈ X , Bob is
given y, and they exchange messages in order to compute f(x, y). Each message
solely depends on the player's input and the messages communicated so far.
The communication is carried out according to a �xed protocol Π (over domain
X × Y with range Z).

1.2.3 Protocols.

There are four kinds of protocols, namely deterministic, randomized, nondeter-
ministic and alternating ones. We only describe deterministic protocols in detail:
A deterministic protocol is a labeled binary tree, where an inner node speci�es
the player who sends a bit of communication next. If v is an inner node, then it
is labeled either by a function av : X → {0, 1} or by a function bv : Y → {0, 1}.
Each leaf l is labeled with an output value zl ∈ Z. The value of the protocol
Π on input (x, y) is the label of the leaf reached by starting from the root, and
walking on the tree. At each internal node v labeled by av Alice sends av(x) and
they walk left if av(x) = 0 and right if av(x) = 1. Analogously, if v is labeled
with bv. The cost of the protocol Π on input (x, y) is the length of the path
taken on this input. In a randomized protocol Alice and Bob have access to a
public or private source of randomness (random string). The functions av, bv are
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arbitrary functions of the inputs and the random strings. In a nondeterministic
protocol, we have Z = {0, 1}, and each player gets a guess string in addition to
the input. Here, av and bv are arbitrary functions of the inputs and the guess
strings. For nondeterministic protocols there exist di�erent accepting modes. For
example, a nondeterministic protocol accepts a language L in the nondetermin-
istic accepting mode, if for all (x, y) ∈ L there exist guess strings gA and gB such
that Alice on input x and guess string gA and Bob on input y and guess string
gB reach a leaf labeled with 1, and if for all (x, y) 6∈ L there do not exist any
guess strings such that the players reach a 1-leaf. Another example is the parity
accepting mode: Here, an input is accepted i� the number of guess strings such
that the players reach a 1-leaf is odd. For a de�nition of alternating protocols,
see [1, p.339]. For formal de�nitions concerning protocols, cost and complexity
measures, and accepting modes, see [11, Def. 1.1, p.4; Chap. 3, p.28; Chap. 2,
p.18] and [5]. A protocol over domain X ×Y is an n-bit protocol, if X = Y = Bn.
A protocol family (Πn)n∈N of n-bit protocols Πn decides a language L if each
Πn computes χL

n .

1.2.4 Communication complexity classes.

Each protocol type and acceptance mode leads to a complexity measure, e.g.
D(f) for the deterministic communication complexity of f , or ⊕D(f), which is
the minimum cost of a nondeterministic protocol deciding f in parity accepting
mode. If a problem can be solved with communication polylogarithmically in
the input size, then we consider this as e�cient. The communication complexity
classes are de�ned as sets of languages that can be decided e�ciently according
to a �xed measure. For example, Pcc is the class of languages such that L ∈ Pcc

i� there exists a bound b ∈ poly with D(χL
n) ≤ p(log n), and ⊕Pcc is the

class of languages such that L ∈ ⊕Pcc i� there exists a bound b ∈ poly with
⊕D(χL

n) ≤ p(log n).

1.2.5 Oracle protocols.

A deterministic, randomized, nondeterministic or alternating protocol Π over X ,
Y is an oracle protocol with oracle family O = (Om)m∈N, if Π contains oracle
nodes in its protocol tree. Associated with an oracle node v are two functions
av : X → Bmv and bv : Y → Bmv . If Alice and Bob reach an oracle node v during
a computation on input (x, y) ∈ X×Y, they compute by themselves x′ := av(x)
and y′ := bv(y), respectively, and call Omv on (x′, y′). The oracle node v has
exactly |range(O)| many successors. Alice and Bob continue the computation
on one of them according to the returned value O(x′, y′). The communication
costs for each oracle call are dlog |range(O)|e. If a language L is used as an
oracle family, we write L instead of χL. Relativized communication complexity
classes are de�ned via e�cient oracle protocol families. For example, Pcc(L′)
contains all languages L which can be decided by a protocol family (Πn)n∈N of
deterministic n-bit oracle protocols with L′ as the oracle.

1.3 Structural communication complexity

Research in the �eld of structural communication complexity started with the
article of Babai, Frankl and Simon [1], where some analogies between Turing ma-
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chine classes like P, NP, PP, PSPACE, the polynomial hierachy PH =
⋃

k Σp
k,

etc. and the corresponding communication complexity classes Pcc, NPcc, PPcc,
PSPACEcc, PHcc =

⋃
k Σcc

k , etc. were shown. For more ground work, especially
on closure properties, the boolean communication hierarchy, or counting com-
munication complexity classes like MODmP, see Halstenberg and Reischuk [8]
or Damm et al. [5]. In [9] Klauck established separation results between MAcc

and NPcc, MAcc and APPcc, and APPcc and PPcc, respectively. In recent
research, Buhrman et al. [4] showed Σcc

2 ,Πcc
2 6⊆ PPcc. This was improved to

Σcc
2 ,Πcc

2 6⊆ UPPcc by Razborov and Sherstov [13].

1.3.1 Reductions.

We introduce di�erent kinds of reductions between languages. The many-one
reductions are also called rectangular reductions. The disjunctive reductions are
not needed in the sequel but de�ned only for the sake of completeness.

De�nition 1.1. (Reductions) Let L and L′ be languages.

1. L is many-one reducible to L′, if there exists a bound b ∈ poly and a

family of function pairs {(fn, gn)}n∈N, fn, gn : Bn → Bd2b(log n)e, such that
for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� (fn(x), gn(y)) ∈ L′.

2. L is Turing reducible to L′, if L ∈ Pcc(L′).

3. L is majority reducible to L′, if there exist bounds b, t ∈ poly and a family

of function pairs {(fn, gn)}n∈N, fn, gn : Bn → (Bd2b(log n)e)dt(log n)e, such
that for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� ((fn(x))i, (gn(y))i) ∈ L′

for the majority of the indices i ∈ [dt(log n)e].

4. L is conjunctively reducible to L′, if there exist bounds b, t ∈ poly and a

family of function pairs {(fn, gn)}n∈N, fn, gn : Bn → (Bd2b(log n)e)dt(log n)e,
such that for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� ((fn(x))i, (gn(y))i) ∈
L′ for all indices i ∈ [dt(log n)e].

5. L is disjunctively reducible to L′, if there exist bounds b, t ∈ poly and a

family of function pairs {(fn, gn)}n∈N, fn, gn : Bn → (Bd2b(log n)e)dt(log n)e,
such that for all (x, y) ∈ (Bn)2 it holds: (x, y) ∈ L i� ((fn(x))i, (gn(y))i) ∈
L′ for at least one of the indices i ∈ [dt(log n)e].

1.4 Organization of this paper

In Section 1 we prove Toda's Theorem in the setting of communication com-
plexity. In Section 2 we present an alternating protocol for the inner product
function IP with O(log n/ log log n) many alternations, which gives us an upper
bound on the number of alternations for languages in the class BP · ⊕Pcc of
Toda's Theorem.

2 Toda's Theorem

In order to prove Toda's Theorem we need to de�ne di�erent kinds of opera-
tors on communication complexity classes. Readers familiar with communication
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complexity might wonder why the operators are de�ned in a public coin style, i.e.
both players get the same witness/random string. Of course, one can de�ne the
operators such that each player gets his/her own witness/random string (private
coin style). The reason is that these de�nitions are equivalent, if the operators
are simulated by a protocol. Alice can guess Bob's witness and send it to him,
or she can send him her random string, because the length of witnesses/random
strings is bounded polylogarithmically in the length of the input.

De�nition 2.1. (Complexity class operators) For a language L ⊆ B∗∗ and
bounds p, q ∈ poly we de�ne

∀p(L) := {(x, y) ∈ B∗∗ | ∀w ∈ Bdp(log |x|)e : (〈x,w〉, 〈y, w〉) ∈ L} ,

∃p(L) := {(x, y) ∈ B∗∗ | ∃w ∈ Bdp(log |x|)e : (〈x,w〉, 〈y, w〉) ∈ L} ,

Modp
k(L) := {(x, y) ∈ B∗∗ | |{w ∈ Bdp(log |x|)e | (〈x,w〉, 〈y, w〉) ∈ L}|mod k 6= 0},

⊕p(L) := Modp
2(L) .

For a communication complexity class C ⊆ L we de�ne

co · C := {L | L ∈ C} ,

∀ · C := {∀p(L) | L ∈ C, p ∈ poly} ,

∃ · C := {∃p(L) | L ∈ C, p ∈ poly} ,

Modk · C := {Modp
k(L) | L ∈ C, p ∈ poly} ,

⊕ · C := Mod2 · C .

A language L is in BP ·C if there exists a language L′ ∈ C and a bound q ∈ poly
such that for all (x, y) ∈ (Bn)2 it holds:

(x, y) ∈ L implies |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|/2dq(log n)e ≥ 2
3 .

(x, y) /∈ L implies |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|/2dq(log n)e ≤ 1
3 .

We give a de�nition of the polynomial hierarchy suitable for our purposes based
on the class operators de�ned above. Note that this de�nition is equivalent to
the one given in [1].

De�nition 2.2. (Polynomial hierarchy) PHcc :=
⋃

k≥0 Σcc
k , where Σcc

0 := Pcc

and Σcc
k+1 := ∃ · co · Σcc

k .

We observe the following properties of the communication complexity class op-
erators. The proofs are easy, so we omit most of them for space reasons.

Observation 2.3. (Probability ampli�cation) Let C ⊆ L be a communication
complexity class closed under majority reductions, and let b ∈ poly. If a lan-
guage L is in BP · C, then there exists a language L′ ∈ C and a bound q ∈ poly
such that for all (x, y) ∈ (Bn)2 it holds:

(x, y) ∈ L ⇒ |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|
/

2dq(log n)e ≥ 1−2−b(log n).

(x, y) /∈ L ⇒ |{r ∈ Bdq(log n)e | (〈x, r〉, 〈y, r〉) ∈ L′}|
/

2dq(log n)e ≤ 2−b(log n).

Observation 2.4. (Inclusion) Let C ⊆ L be a communication complexity class
closed under many-one reductions. Then C ⊆ Op · C for every operator Op ∈
{∀,∃,Modk,⊕,BP}.
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Observation 2.5. (Monotonicity) Let C,D ⊆ L be communication complex-
ity classes such that C ⊆ D. Then Op · C ⊆ Op · D for every operator Op ∈
{co,∀,∃,Modk,⊕,BP}.

Observation 2.6. (Idempotency) Let C ⊆ L be a communication complexity
class closed under many-one reductions. Then Op · Op · C = Op · C for every
operator Op ∈ {∀,∃,⊕}.

The idempotency of the BP-operator follows from its probability ampli�cation
property (Observation 2.3).

Observation 2.7. (Idempotency of BP) Let C ⊆ L be a communication com-
plexity class closed under majority reductions. Then BP · BP · C = BP · C.

Observation 2.8. (co· vs. · · · ) Let C ⊆ L be a communication complexity class.
Then co · ∃ · C = ∀ · co · C, co · ∀ · C = ∃ · co · C, and co · BP · C = BP · co · C.

De�nition 2.9. (Intersection and Union) Let C and C′ be communication com-
plexity classes. C is closed under C′-intersection i� for all L ∈ C and L′ ∈ C′
we have L ∩ L′ ∈ C. C is closed under C′-union i� for all L ∈ C and L′ ∈ C′ we
have L ∪ L′ ∈ C.

Observation 2.10. (co· vs. ⊕) Let C ⊆ L be a communication complexity class
that contains Pcc, is closed under Pcc-intersection, Pcc-union, and many-one
reductions. Then co · ⊕ · C = ⊕ · C.

Proof. Let L ∈ ⊕·C. There exist a bound p ∈ poly and a language L1 ∈ C such
that L = ⊕p(L1). De�ne

L2 := {(〈x, b1w1〉, 〈y, b2w2〉) | b1, b2 ∈ B, (〈x,w1〉, 〈y, w2〉) ∈ L1} ,

L3 := {(〈x, 1w1〉, 〈y, 1w2〉) | |x| = |y| = n, |w1| = |w2| = dp(log n)e} ,

L4 := {(〈x, 0w1〉, 〈y, 0w2〉) | |x| = |y| = n, w1 = w2 = 0dp(log n)e} .

Then L2 is in C, because C is closed under many-one reductions, and L3, L4 ∈
Pcc. The language L5 := (L2 ∩ L3) ∪ L4 is in C, because C is closed under Pcc-
intersection and Pcc-union. De�ne L′ := ⊕p+1(L5). Clearly, L = L′ ∈ ⊕ · C.

Observation 2.11. If C ⊆ L is a communication complexity class closed under
conjunctive reductions, then ⊕ · C is closed under conjunctive reductions.

Using Observations 2.10 and 2.11 one can prove the result of Papadimitriou and
Zachos [12] in the setting of communication complexity as in time complexity
(see also [10, Prop. 4.8, p.125]).

Fact 2.12. (Papadimitriou & Zachos) Let C ⊆ L be a communication complex-
ity class, which contains Pcc, is closed under Pcc-intersection, Pcc-union, and
conjunctive reductions. Then ⊕Pcc(⊕ · C) = ⊕ · C.

The following observation shows that the names used for the operators are
compatible with the names of classical communication complexity classes, if the
operators are applied to Pcc.

Observation 2.13. (Compatibility)

NPcc = ∃ ·Pcc ,
co−NPcc = ∀ ·Pcc ,

⊕Pcc = ⊕ ·Pcc ,
BPPcc = BP ·Pcc .
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Swapping lemmata are well known in the �eld of structural complexity theory.
Below, we give a proof of a lemma of this type for the sake of completeness. The
main ingredient is the probability ampli�cation property of the BP-operator
(Observation 2.3).

Lemma 2.14. (Swapping) Let C ⊆ L be a communication complexity class
closed under majority reductions. Then ⊕ · BP · C ⊆ BP · ⊕ · C.

Proof. Let L be a language in ⊕ · BP · C. Then there exists a language L′ in
BP · C and a bound p′ ∈ poly such that L = ⊕p′(L′). As L′ ∈ BP · C and C is
closed under majority reductions we use probability ampli�cation to obtain a
language L′′ in C and a bound p′′ ∈ poly such that

(〈x,w〉, 〈y, w〉) ∈ L′ ⇒ Prr[(〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≥ 1− 2−l′n−2 , and

(〈x,w〉, 〈y, w〉) /∈ L′ ⇒ Prr[(〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≤ 2−l′n−2 .

for every input (x, y) ∈ (Bn)2 and witness w. Here, l′n := dp′(log n)e, and the
random string r is uniformly drawn from Bl′′n , where l′′n := dp′′(log n)e. We de�ne
W(x,y) := {w ∈ Bl′n | (〈x,w〉, 〈y, w〉) ∈ L′} and Goodn :=

⋂
w∈Bl′n Goodn,w,

where Goodn,w := {r ∈ Bl′′n | ∀(x, y) ∈ (Bn)2 : (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′ ⇔
w ∈ W(x,y)}. For a �xed w0 we get

Prr[r /∈ Goodn] ≤ 2l′n · Prr[r /∈ Goodn,w0 ] ≤ 2l′n · 2l′n−2 ≤ 1
4

.

Thus, Prr[r ∈ Goodn] ≥ 3
4 . The language

L′′′ := {(〈〈x, r〉, w〉, 〈〈y, r′〉, w′〉) | (〈〈x,w〉, r〉, 〈〈y, w′〉, r′〉) ∈ L′′}

is in C (closure under many-one reductions).
In case (x, y) ∈ L we have

Prr[(〈x, r〉, 〈y, r〉) ∈ ⊕p′(L′′′)]
= Prr[|{w | (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′}| odd ]
≥ Prr[∀w : w ∈ W(x,y) ⇔ (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] (1)

≥ Prr[∀(x, y) : ∀w : w ∈ W(x,y) ⇔ (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′]

= Prr[r ∈ Goodn] ≥ 3
4

,

where (1) follows from (x, y) ∈ L ⇔ |W(x,y)| odd.
The case (x, y) /∈ L is treated similarly. We conclude L ∈ BP · ⊕ · C.

The Valiant-Vazirani-Lemma is well known in structural complexity theory, and
there exist many proof ideas for this important result. The solution we propose
is an adaptation of an algebraic proof due to Fortnow in [7, p.88, Lemma 3.12].

Lemma 2.15. (Valiant-Vazirani) Let C ⊆ L be a communication complexity
class containing Pcc and closed under Pcc-intersection, Pcc-union and conjunc-
tive reductions. Then ∃ · C ⊆ BP · ⊕ · C.

Proof. Let L be a language in ∃ · C. There exists a language L′ ∈ C and a
bound p ∈ poly such that L = ∃p(L′). De�ne ln := dp(log n)e. We �x an input

7



(x, y) ∈ L, |x| = |y| = n. Let S := {w ∈ Bln | (〈x,w〉, 〈y, w〉) ∈ L′} be the
set of witnesses of (x, y) and d := |S| its size. We pick a natural number m
such that 2lnd < m ≤ 4lnd and encode the witnesses as polynomials over F :=
GF(2m), the �nite �eld with 2m elements. We then consider pairs (a, b) ∈ F 2

and show that for a sizable fraction of them there will be exactly one polynomial
p representing a witness such that p(a) = b. The statement follows by choosing
m, a and b at random. For a string s = s1 · · · sl we de�ne the polynomial
ps(X) :=

∑l
i=1 siX

i. We �x a witness w in S. An element a of F is called
w-good, if for all witnesses w′ 6= w in S we have pw(a) 6= pw′(a). Since pw and
pw′ can agree on at most ln elements, there are at least |F | − lnd many w-good
elements in F . Consider the set Aw containing all pairs (a, pw(a)) for w-good
elements a. The sets Aw and Aw′ are disjoint for di�erent strings w and w′.
De�ne A :=

⋃
w∈S Aw. Then |A| ≥ d(|F | − lnd). We de�ne the language L′′ in

C by

L′′ := {(〈〈x, r〉, w〉, 〈〈y, r〉, w〉) | n := |x| = |y|, r = 〈m∗, a, b〉,m∗ ∈ [2ln],
a, b ∈ GF(2m∗

), |w| = ln, pw(a) = b, (〈x,w〉, 〈y, w〉) ∈ L′} ,

where r = 〈m∗, a, b〉 means that we use r as an encoding of a natural number
m∗ and �eld elements a and b. Furthermore, de�ne L′′′ := ⊕p(L′′) ∈ ⊕ · C.
If (x, y) /∈ L then for all w and r the pair (〈〈x, r〉, w〉, 〈〈y, r〉, w〉) is not in L′′,
and thus (x, y) /∈ L′′′.
If (x, y) ∈ L then with probability 1/2ln we have m = m∗ as m ≤ log 4lnd ≤
2ln. In case m = m∗ there is exactly one witness w for (〈x, r〉, 〈y, r〉) showing
(x, y) ∈ L′′′. The size of A is at least lnd2, the size of F 2 is at most 16l2nd2. If
we choose (a, b) at random in F 2 we have a 1/16ln chance of being in A. Thus,
for �xed input (x, y) the probability of choosing r at random such that m = m∗

and (a, b) ∈ A is at least 1/32l2n.
The class⊕·C is closed under majority reductions by Fact 2.12. Thus, probability
ampli�cation is possible, and we get L ∈ BP · ⊕ · C.

Theorem 2.16. (Toda) PHcc ⊆ BP · ⊕ ·Pcc.

Proof. We prove Σcc
k ⊆ BP · ⊕ ·Pcc by induction on k:

Case k = 0: The class Pcc is closed under many-one reductions. The class
⊕ · Pcc is also closed under many-one reductions by Fact 2.12, because Pcc

is closed under Pcc-intersection, Pcc-union, and conjunctive reductions. Thus,
Σcc

0 = Pcc ⊆ ⊕ · Pcc ⊆ BP · ⊕ · Pcc by the inclusion property of the ⊕- and
BP-operator (Observation 2.4).
Case k → k + 1: It holds

Σcc
k+1 = ∃ · co · Σcc

k (2)

⊆ ∃ · co · BP · ⊕ ·Pcc (3)

= ∃ · BP · co · ⊕ ·Pcc (4)

= ∃ · BP · ⊕ ·Pcc (5)

⊆ BP · ⊕ · BP · ⊕ ·Pcc (6)

⊆ BP · BP · ⊕ · ⊕ ·Pcc (7)

= BP · BP · ⊕ ·Pcc (8)

= BP · ⊕ ·Pcc (9)
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(2) By De�nition 2.2.

(3) By the induction hypothesis for Σcc
k and monotonicity (Observation 2.5)

of the operators co· and ∃·.

(4) By Observation 2.8.

(5) By closure under complement of ⊕ ·Pcc (Observation 2.10).

(6) By the Valiant-Vazirani-Lemma (Lemma 2.15). Its application is possi-
ble, because BP · ⊕ ·Pcc is closed under conjunctive reductions and Pcc-
intersection.

(7) By the Swapping-Lemma (Lemma 2.14) and monotonicity of the BP-
operator (Observation 2.5). The Swapping-Lemma can be applied, because
⊕ ·Pcc is closed under majority reductions.

(8) By idempotency of the ⊕-operator (Observation 2.6).

(9) By idempotency of the BP-operator (Observation 2.7). This holds because
⊕ ·Pcc is closed under majority reductions.

Fact 2.17. Pcc(PPcc) = Pcc(#Pcc).

Proof. Alice and Bob can compute every #Pcc-function f by binary search with
polylog communication asking oracle queries to Graph≤(f) := {(〈x, v〉, 〈y, v〉) |
(v)2 ≤ f(x, y)} ∈ PPcc.

Theorem 2.18. (Toda) PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(#Pcc) = Pcc(PPcc).

Proof. Let accΠ(x, y) denote the number of accepting paths of a nondetermin-
istic protocol Π on input (x, y). The class #Pcc contains all constant func-
tions and is closed under addition and multiplication. If (Πn)n∈N is an e�cient
nondeterministic protocol family with accΠ := (accΠn)n∈N in #Pcc, and if we
choose p ∈ poly, then there exists an e�cient nondeterministic protocol family
(Π′

n)n∈N such that accΠ′
n
(x, y) = (1 + accΠn(x, y)dp(log n)e)dp(log n)e. This proves

BP · ⊕Pcc ⊆ Pcc(#Pcc) as in the time complexity setting.

Let IP denote the inner product function (see [11, Ex. 1.25, p.12]), and let MAJ
denote the majority function (see e.g. [9]). The corollary below considers the
consequences of the unlikely case that the inner product or majority function
can be computed with a constant number of alternations.

Corollary 2.19. It holds:

1. IP ∈ PHcc i� PHcc = BP · ⊕Pcc.

2. If PHcc = PSPACEcc then PHcc = BP · ⊕Pcc.

3. MAJ ∈ PHcc i� PHcc = BP · ⊕Pcc = BPcc(PPcc).

4. IP ∈ PHcc i� MAJ ∈ PHcc.
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Proof. 1. ⇒: IP ∈ PHcc implies ⊕Pcc ⊆ PHcc because IP is complete for
⊕Pcc under many-one reductions. Applying the BP-operator yields BP ·⊕Pcc ⊆
BP ·PHcc = PHcc. ⇐: IP ∈ ⊕Pcc ⊆ BP · ⊕Pcc = PHcc.
2. Follows from ⊕Pcc ⊆ PSPACEcc and (1.).
3. ⇒: MAJ ∈ PHcc implies PPcc ⊆ PHcc because MAJ is complete for
PPcc under many-one reductions. We obtain BPPcc(PPcc) ⊆ BPPcc(PHcc) =
PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(PPcc) ⊆ BPPcc(PPcc). ⇐: MAJ ∈ PPcc ⊆
BPP(PPcc) = PHcc.
4. Follows from (1.) and (3.).

3 An alternating protocol for IP

The class PSPACEcc was de�ned as the class of languages which can be recog-
nized with protocols using (log n)O(1) communication and O(log n) alternations.
In this section we show that languages in the class BP · ⊕Pcc can be recognized
by alternating protocols using only O(log n/ log log n) many alternations. It is
enough to give such a protocol for the inner product function, because IP is com-
plete for ⊕Pcc, and Schöning's generalization BP ·C ⊆ ∃·∀·C∩∀·∃·C of the well
known result of Lautemann, which is easily transferred into the communication
complexity context. For a proof, see [10, Prop. 2.24, p.76]. Fix an odd natural
number k. Alice has input x = x0 . . . xn−1 and Bob has input y = y0 . . . yn−1.
They execute the following alternating protocol Ik(s, t, b) on their inputs:

If (k ≥ t− s + 1) then Alice and Bob determine if IPt−s+1(xs . . . xt, ys . . . yt) =
b using the trivial protocol (Alice sends her input; both compute the value
by themselves). They return the value of the trivial protocol.

else Alice guesses the following strings and sends them to Bob:

1. ∃S ⊆ {0, . . . , k − 1}, |S| odd : (branch disjunctively)

2. ∃b̃ ∈ {0, 1} : (branch disjunctively)

3. ∀i ∈ S : (branch conjunctively)

4. ∀j ∈ S : (branch conjunctively)

5. ∀h ∈ {i, j} : (branch conjunctively)

return Ik(s1, t1, b1), where d := t − s + 1, B := d d
k e, s1 := h · B, t1 :=

min{n− 1, (h + 1) ·B − 1}, and if (h = i) then b1 := b else b1 := b̃.

Correctness. Divide each input x and y in an odd number k of blocks
of approximately equal sizes, i.e. x = x(1) · · ·x(k), y = y(1) · · · y(k). It holds
IP(x, y) =

∑
i∈[k] IP(x(i), y(i)) mod 2. If IP(x, y) evaluates to 1, there exists an

odd number of blocks S′ ⊆ [k] where IP evaluates to 1 and the values of IP
cancel on S′. There are three cases:

1. IP(x(j), y(j)) = 0 for all j ∈ S′. We set S := S′ and b̃ := 0.

2. IP(x(j), y(j)) = 1 for all j ∈ S′. We set S := S′ and b̃ := 1.

3. There exist j0, j1 ∈ S such that IP(x(j0), y(j0)) = 0 and IP(x(j1), y(j1)) = 1.
The number of j ∈ S′ with IP(x(j), y(j)) = 1 has to be even. We set
S := S′ ∪ {j ∈ S′ | IP(x(j), y(j)) = 1} and b̃ := 0. Note that |S| is odd.
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In all three cases we have obtained a set S ⊆ [k] of odd cardinality and a b̃
such that IP(x(i), y(i)) = 1 for all i ∈ S and IP(x(j), y(j)) = b̃ for all j ∈ S.
The case when IP(x, y) evaluates to 0 is analogous. Thus, the protocol Ik(s, t, b)
accepts i� IPt−s+1(xs . . . xt, ys . . . yt) = b. The protocol Ik(0, n− 1, 1) computes
IPn(x, y).

Communication costs. There are two alternations in each round and the
number of rounds is bounded by t = log2 n/ log2 k. If we choose an odd k of
size (log n)c then the communication costs in each round are O(k) bits and the
number of alternations is O(log n/ log log n). If ACommA(F) denotes the class
of languages which can be recognized by alternating protocols using communi-
cation bounded by a function in F and a number of alternations bounded by a
function in A, we have obtained

Theorem 3.1. BP · ⊕Pcc ⊆ ACommO(log n/ log log n)((log n)O(1)).
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