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Abstract

We prove Toda’s Theorem in the context of structural communication
complexity, i.e. PH® C BP - P C P°(#P°°) = P°(PP°°). The class
PSPACE® was defined via alternating protocols with O(logn) many
alternations. We consider the class BP - @P°“ of Toda’s Theorem, and
show that every language in this class can be decided with alternating
protocols using O(logn/loglogn) many alternations. The proof is based
on a new alternating protocol for the inner product function IP with
O(logn/loglogn) many alternations.

1 Introduction

The main contribution of this paper is to establish Toda’s Theorem in the setting
of communication complexity, i.e. we prove PH® C BP - P C P (#P<) =
P<¢(PP). This might be useful in the search for a solution of the famous PH
vs. PSPACE problem, because no communication complexity measures/lower
bound methods are known for alternating classes, while for the classes BPP¢
and ®P°¢ lower bound methods are available. Thus, it might be easier to come
up with a measure for BP - ®P¢, a class not based on the concept of alterna-
tion, than to develop a measure for alternation. Of course, it might be the case
that BP - P = PSPACE, but we show that every language in BP - P
can be decided with alternating protocols using only O(logn/loglogn) many
alternations, i.e. substantially less than allowed for PSPACE®“. The proof is
based on a new alternating protocol for the inner product function IP with
O(logn/loglogn) many alternations.

1.1 Structural complexity

For introductions to the broad field of structural complexity see [3, 2, 6, 14, 10].
Nice surveys on a variety of topics in this field can be found in [18, 19], especially
on counting complexity in [15, 7] by Schéning and Fortnow, respectively. The
parity class ®P was defined by Papadimitriou and Zachos in [12], where it was
shown that @P(@P) = ®P. One can define operators on complexity classes, e.g.
the BP-operator, which was defined by Schoning [16]. Using the BP-operator
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and the Valiant-Vazirani-Lemma [21] Toda [20] was able to prove his celebrated
theorem
PH C BP - &P C P(#P) = P(PP) ,

which tells us that counting (mod 2 with random source) is at least as powerful
as the whole polynomial-time hierarchy PH. See also [17] for a simplified proof.

1.2 Communication complexity

For a thorough introduction to communication complexity we refer the reader
to the book of Kushilevitz and Nisan [11].

1.2.1 Basic definitions and notation.

We only work with the binary alphabet B := {0,1}. The length of a string « € B*
is denoted by |z|. A prefix-free encoding of x is T := 0/*1x. In order to encode
pairs of strings =,y € B* we use the pairing function (z, y) := Ty. The set of pairs
of strings of equal length is denoted by B** := {(z,y) | z,y € B*, |z| = |y|}.
A language L is a subset of B**, its characteristic function x“ is defined as
xE = (x), where xZ: B® x B® — N, xL(z,y) := 1, if (z,y) € L, and 0
otherwise. We write (z,y) € L if Xfﬂ(%y) = 1. The set of all languages is
denoted by L. A (communication) complezity class is a subset C C L. We define
poly := {f: RT — R" | Jpolynomial p: f < p}, the set of functions with
polynomial growth. With log we denote the logarithm to the basis 2.

1.2.2 Yao’s model.

We consider the basic model of communication complexity, introduced by Yao
[22]. In this model, there are two players (parties) Alice and Bob, who want
to cooperatively compute a function f: X x Y — Z, where X', ) and Z are
finite sets. Both have complete information about f and unlimited computa-
tional power but receive only parts of the inputs. Alice is given z € X, Bob is
given y, and they exchange messages in order to compute f(z,y). Each message
solely depends on the player’s input and the messages communicated so far.
The communication is carried out according to a fixed protocol II (over domain
X x Y with range Z).

1.2.3 Protocols.

There are four kinds of protocols, namely deterministic, randomized, nondeter-
manistic and elternating ones. We only describe deterministic protocols in detail:
A deterministic protocol is a labeled binary tree, where an inner node specifies
the player who sends a bit of communication next. If v is an inner node, then it
is labeled either by a function a,: X — {0,1} or by a function b,: Y — {0,1}.
Each leaf [ is labeled with an output value z; € Z. The value of the protocol
IT on input (x,y) is the label of the leaf reached by starting from the root, and
walking on the tree. At each internal node v labeled by a, Alice sends a,(z) and
they walk left if a,(x) = 0 and right if a,(z) = 1. Analogously, if v is labeled
with b,. The cost of the protocol II on input (z,y) is the length of the path
taken on this input. In a randomized protocol Alice and Bob have access to a
public or private source of randomness (random siring). The functions a,, b, are



arbitrary functions of the inputs and the random strings. In a nondeterministic
protocol, we have Z = {0,1}, and each player gets a guess string in addition to
the input. Here, a, and b, are arbitrary functions of the inputs and the guess
strings. For nondeterministic protocols there exist different accepting modes. For
example, a nondeterministic protocol accepts a language L in the nondetermin-
istic accepting mode, if for all (z,y) € L there exist guess strings g4 and gp such
that Alice on input x and guess string g4 and Bob on input y and guess string
gp reach a leaf labeled with 1, and if for all (x,y) ¢ L there do not exist any
guess strings such that the players reach a 1-leaf. Another example is the parity
accepting mode: Here, an input is accepted iff the number of guess strings such
that the players reach a 1-leaf is odd. For a definition of alternating protocols,
see [1, p.339]. For formal definitions concerning protocols, cost and complexity
measures, and accepting modes, see [11, Def. 1.1, p.4; Chap. 3, p.28; Chap. 2,
p.18] and [5]. A protocol over domain X x Y is an n-bit protocol, if ¥ = Y = B".
A protocol family (IL,),en of n-bit protocols II,, decides a language L if each
I1,, computes xZ.

1.2.4 Communication complexity classes.

Each protocol type and acceptance mode leads to a complexity measure, e.g.
D(f) for the deterministic communication complexity of f, or &D(f), which is
the minimum cost of a nondeterministic protocol deciding f in parity accepting
mode. If a problem can be solved with communication polylogarithmically in
the input size, then we consider this as efficient. The communication complexity
classes are defined as sets of languages that can be decided efficiently according
to a fixed measure. For example, P is the class of languages such that L € P
iff there exists a bound b € poly with D(x%) < p(logn), and ®P° is the
class of languages such that L € &P iff there exists a bound b € poly with
®D(x%) < p(logn).

1.2.5 Oracle protocols.

A deterministic, randomized, nondeterministic or alternating protocol IT over X,
Y is an oracle protocol with oracle family O = (O,,)men, if II contains oracle
nodes in its protocol tree. Associated with an oracle node v are two functions
a,: X — B™ and b,: Y — B™». If Alice and Bob reach an oracle node v during
a computation on input (x,y) € X x Y, they compute by themselves 2’ := a,(x)
and y' := b,(y), respectively, and call O,,, on (2/,y"). The oracle node v has
exactly |range(O)| many successors. Alice and Bob continue the computation
on one of them according to the returned value O(z’,y’). The communication
costs for each oracle call are [log|range(O)|]. If a language L is used as an
oracle family, we write L instead of x*. Relativized communication complezity
classes are defined via efficient oracle protocol families. For example, P¢(L’)
contains all languages L which can be decided by a protocol family (I, ),en of
deterministic n-bit oracle protocols with L’ as the oracle.

1.3 Structural communication complexity

Research in the field of structural communication complexity started with the
article of Babai, Frankl and Simon [1], where some analogies between Turing ma-



chine classes like P, NP, PP, PSPACE, the polynomial hierachy PH = (J, X%,
etc. and the corresponding communication complexity classes P¢¢, NP“¢, PP,
PSPACE, PH = | J, X{°, etc. were shown. For more ground work, especially
on closure properties, the boolean communication hierarchy, or counting com-
munication complexity classes like MOD,,, P, see Halstenberg and Reischuk [8]
or Damm et al. [5]. In [9] Klauck established separation results between MA“
and NP, MA“ and APP“, and APP and PP, respectively. In recent
research, Buhrman et al. [4] showed X5°,II5° € PP““. This was improved to
56,115 € UPP by Razborov and Sherstov [13].

1.3.1 Reductions.

We introduce different kinds of reductions between languages. The many-one
reductions are also called rectangular reductions. The disjunctive reductions are
not needed in the sequel but defined only for the sake of completeness.

Definition 1.1. (Reductions) Let L and L' be languages.

1. L is many-one reducible to L', if there ezists a bound b € poly and a
Jamily of function pairs {(fa, gn)bners frrgn: B — B2""1 such that
for all (z,y) € (B")? it holds: (x,y) € L iff (fu(x),gn(y)) € L.

2. L is Turing reducible to L', if L € P°¢(L’).

3. L is majority reducible to L', if there exist bounds b,t € poly and a family
of function pairs {(fu, gn)}neris fu,gn: BY — (B T)IHM00T uch

that for all (z,y) € (B™)? it holds: (z,y) € L iff ((fu(2))i, (9n(y)):) € L'
for the magjority of the indices i € [[t(logn)]].

4. L is conjunctively reducible to L', if there exist bounds b,t € poly and a
family of function pairs {(fn, gn)nen, fn,gn: B™ — ([Bgﬂb“‘)“)l)[t(lognﬂ’
such that for all (x,y) € (B™)? it holds: (z,vy) € L iff (fu(2))s, (gn(y))i) €
L’ for all indices i € [[t(logn)]].

5. L is disjunctively reducible to L', if there exist bounds b,t € poly and a
family of function pairs {(fa, ga)ncrs fr gu: BT — (BIZ*=V)lton)],
such that for all (x,y) € (B™)? it holds: (z,y) € L iff (fu(2))s, (gn(v))i) €
L’ for at least one of the indices i € [[t(logn)]].

1.4 Organization of this paper

In Section 1 we prove Toda’s Theorem in the setting of communication com-
plexity. In Section 2 we present an alternating protocol for the inner product
function IP with O(log n/loglogn) many alternations, which gives us an upper
bound on the number of alternations for languages in the class BP - @P¢¢ of
Toda’s Theorem.

2 Toda’s Theorem

In order to prove Toda’s Theorem we need to define different kinds of opera-
tors on communication complexity classes. Readers familiar with communication



complexity might wonder why the operators are defined in a public coin style, i.e.
both players get the same witness/random string. Of course, one can define the
operators such that each player gets his/her own witness/random string (private
coin style). The reason is that these definitions are equivalent, if the operators
are simulated by a protocol. Alice can guess Bob’s witness and send it to him,
or she can send him her random string, because the length of witnesses/random
strings is bounded polylogarithmically in the length of the input.

Definition 2.1. (Complexity class operators) For a language L C B** and
bounds p,q € poly we define

V(L) {(z,y) € B* | Vw € BIPWSIDT: ((z,w), (y,w)) € L}

F(L) = {(z,y) €B™ | Iw e BPEFN: (2,w), (y,w) € L},

Modf(L) = {(z,y) € B | [{w € BBV | ((z,w), (y,w)) € L}mod k # 0},
@P(L) = ModE(L) .

For a communication complexity class C C L we define

co-C = {L|LecC},

v-C = {VW(L)|LeC,p¢€poly} ,
3.C = {FIFL)|LelCpepoly} ,
Mody -C = {Mod}(L)|L €C,p € poly} ,

@®-C := Mody-C .

A language L is in BP -C if there exists a language L' € C and a bound q € poly
such that for all (z,y) € (B")? it holds:

(2,y) € L implies |{r € BI1UEsWT| ((z,r), (y,r)) € L'}|/2M900e ]

Y

AN

(z,y) ¢ L implies |{r € Bl | ((z,7), (y,r)) € L'}|/2l700e™)]

We give a definition of the polynomial hierarchy suitable for our purposes based
on the class operators defined above. Note that this definition is equivalent to
the one given in [1].

Definition 2.2. (Polynomial hierarchy) PH = J, -, X7, where X§° := P
and Xi5, =3 - co- B¢°. -
We observe the following properties of the communication complexity class op-

erators. The proofs are easy, so we omit most of them for space reasons.

Observation 2.3. (Probability amplification) Let C C L be a communication
complexity class closed under majority reductions, and let b € poly. If a lan-
guage L is in BP - C, then there exists a language L' € C and a bound q € poly
such that for all (z,y) € (B™)? it holds:

(5,9) € L= [{r € BIOSD | ((@,7), (y,1)) € L'} / 2faosm] > 1 —g-blosm),
(0,9) & L= {r € BIosm1 | ((a,1), (y, 7)) € L/} / 2Fa0o8m] < g-b0o8m).

Observation 2.4. (Inclusion) Let C C L be a communication complexity class
closed under many-one reductions. Then C C Op - C for every operator Op €
{V, 3, Mody, &, BP}.



Observation 2.5. (Monotonicity) Let C,D C L be communication complez-
ity classes such that C C D. Then Op-C C Op - D for every operator Op €
{co,V, 3, Mody, ®, BP}.

Observation 2.6. (Idempotency) Let C C L be a communication complexity
class closed under many-one reductions. Then Op - Op - C = Op - C for every
operator Op € {V,3,®}.

The idempotency of the BP-operator follows from its probability amplification
property (Observation 2.3).

Observation 2.7. (Idempotency of BP) Let C C L be a communication com-
plexity class closed under magority reductions. Then BP - BP -C = BP - C.

Observation 2.8. (co- vs. --- ) Let C C L be a communication complezity class.
Thenco-3-C=V-co-C,co-V-C=3-co-C, andco-BP-C=BP-co-C.

Definition 2.9. (Intersection and Union) Let C and C' be communication com-
plezity classes. C is closed under C’-intersection iff for all L € C and L' € C’
we have LN L' € C. C is closed under C’-union iff for all L € C and L' € C' we
have LU L' € C.

Observation 2.10. (co- vs. @) Let C C L be a communication complezity class
that contains P, is closed under P -intersection, P -union, and many-one
reductions. Thenco-®-C =& -C.

Proof. Let L € @-C. There exist a bound p € poly and a language L; € C such
that L = ®P(Ly). Define

Ly = {({(z,bywy), {y,baws)) | b1,ba € B, ({x,w1), (y,ws)) € L1} ,
Ly = {((z,1w1), (y, 1w2)) | [z = |y| = n, |wi] = |ws| = [p(logn)]} ,
Ly = {({z,0wy), (y,0we)) | || = |y| = n,wy = wy = 0lPU8™MTY

Then Ly is in C, because C is closed under many-one reductions, and L3, Ly €
Pe¢. The language Ls := (La N L3) U Ly is in C, because C is closed under P-
intersection and P-union. Define L' := ®P*1(L5). Clearly, L=L € ®-C. [

Observation 2.11. If C C L is a communication complezity class closed under
conjunctive reductions, then & - C is closed under conjunctive reductions.

Using Observations 2.10 and 2.11 one can prove the result of Papadimitriou and
Zachos [12] in the setting of communication complexity as in time complexity
(see also [10, Prop. 4.8, p.125]).

Fact 2.12. (Papadimitriou & Zachos) Let C C L be a communication complez-
ity class, which contains P, is closed under P -intersection, P-union, and
conjunctive reductions. Then @P(®-C) =@ -C.

The following observation shows that the names used for the operators are
compatible with the names of classical communication complexity classes, if the
operators are applied to Pec.

Observation 2.13. (Compatibility)

NP* = 3.P, gP* = @ P,
co-NP* = V.P*, BPP® = BP.P«.



Swapping lemmata are well known in the field of structural complexity theory.
Below, we give a proof of a lemma of this type for the sake of completeness. The
main ingredient is the probability amplification property of the BP-operator
(Observation 2.3).

Lemma 2.14. (Swapping) Let C C L be a communication complexity class
closed under majority reductions. Then &-BP-C CBP-&-C.

Proof. Let L be a language in @ - BP - C. Then there exists a language L' in
BP - C and a bound p’ € poly such that L = & (L'). As L' € BP-C and C is
closed under majority reductions we use probability amplification to obtain a
language L in C and a bound p” € poly such that

(z,w), (yw) € ' = Pr,[(({z,w),7), {(y,w),r)) € L] 21 =272 and
(z,w), (yw)) ¢ L' = Pr.[({(z,w), ), ((y,w),r)) € L"] <2772

for every input (z,y) € (B")? and witness w. Here, I, :== [p/(logn)], and the
random string r is uniformly drawn from B!~ , where I/ := [p”(logn)]. We define
Wy = {w € B | ((z,w),(y,w)) € L'} and Good,, := ), i, Goody )
where Good,, , := {r € B | V(z,y) € (B")?: ({(x,w),r), ({y,w),r)) € L' &
w € Wy} For a fixed wo we get

Pr.[r ¢ Good,] < 24 .Pr.[r¢ Good, ] < 2n 2072 <

=

Thus, Pr,[r € Good,,] > 2. The language

L = {(((2,r), w), ((y, '), w")) | ({2, w), 7). ((y,w), 1)) € L}

is in C (closure under many-one reductions).
In case (z,y) € L we have

I
o T
77

Yw: w € W(ac,y) 54 (<<1‘,’w>,7°>, <<y’w>ar>) € LH} (1)

AVARY)

Pr,[r € Good,] > % ,
where (1) follows from (z,y) € L < [W(,,,)| odd.
The case (z,y) ¢ L is treated similarly. We conclude L € BP - & - C. O

The Valiant-Vazirani-Lemma, is well known in structural complexity theory, and
there exist many proof ideas for this important result. The solution we propose
is an adaptation of an algebraic proof due to Fortnow in [7, p.88, Lemma 3.12].

Lemma 2.15. (Vuliant-Vazirani) Let C C L be a communication complezity
class containing P°¢ and closed under P<“-intersection, P°°-union and conjunc-
tive reductions. Then 3-C CBP - & -C.

Proof. Let L be a language in 3 - C. There exists a language L' € C and a
bound p € poly such that L = 3P(L’). Define [, := [p(logn)]. We fix an input



(z,y) € L, |z| = |y| = n. Let S := {w € B | ((x,w),(y,w)) € L'} be the
set of witnesses of (z,y) and d := |S] its size. We pick a natural number m
such that 2l,d < m < 4l,,d and encode the witnesses as polynomials over F :=
GF(2™), the finite field with 2™ elements. We then consider pairs (a,b) € F?
and show that for a sizable fraction of them there will be exactly one polynomial
p representing a witness such that p(a) = b. The statement follows by choosing
m, a and b at random. For a string s = s;---s; we define the polynomial
ps(X) = 2221 5;X". We fix a witness w in S. An element a of F is called
w-good, if for all witnesses w’ # w in S we have p,(a) # pw (a). Since p,, and
Py can agree on at most [, elements, there are at least |F| — l,,d many w-good
elements in F. Consider the set A, containing all pairs (a,py(a)) for w-good
elements a. The sets A, and A, are disjoint for different strings w and w'.

Define A := J,,cg Aw- Then |A] > d(|F| — l,d). We define the language L” in
C by
L = {(({z, ), w), (g, r),w)) [ n= [z| = |y|,r = (M", a,b),m" € [2L,,],

a,be GF(Q"L*), |w| = ln, pw(a) = b, ((z,w), (y,w)) € L'} ,

where r = (m*,a,b) means that we use r as an encoding of a natural number
m* and field elements a and b. Furthermore, define L" := ¢P(L") € & - C.

If (z,y) ¢ L then for all w and r the pair ({(z,r),w), ({y,r),w)) is not in L,
and thus (x,y) ¢ L.

If (z,y) € L then with probability 1/2l,, we have m = m* as m < logdl,d <
2l,,. In case m = m™* there is exactly one witness w for ({x,r), (y,r)) showing
(x,y) € L". The size of A is at least [,,d?, the size of F? is at most 16/2d?. If
we choose (a,b) at random in F? we have a 1/16l,, chance of being in A. Thus,
for fixed input (z,y) the probability of choosing r at random such that m = m*
and (a,b) € A is at least 1/32[2.

The class @-C is closed under majority reductions by Fact 2.12. Thus, probability
amplification is possible, and we get L € BP - & - C. O

Theorem 2.16. (Toda) PH® C BP - @ - P<.

Proof. We prove X¢¢ C BP - @ - P*¢ by induction on k:

Case k = 0: The class P is closed under many-one reductions. The class
@ - P°¢ is also closed under many-one reductions by Fact 2.12, because P¢°
is closed under P““-intersection, P°“-union, and conjunctive reductions. Thus,
¥ =P C @ P« C BP-& - P by the inclusion property of the &- and
BP-operator (Observation 2.4).

Case k — k + 1: It holds

€ = 3oco B @
C J.-co-BP-@ -P* (3)
3.BP-co- @ P (4)

= 3.BP-@ P« (5)

C BP-@-BP.-@. P (6)

C BP-BP-@-@- P (7)

— BP-BP.@. P« 8)

= BP.-@ P~ 9)



(2) By Definition 2.2.

(3) By the induction hypothesis for 3¢¢ and monotonicity (Observation 2.5)
of the operators co- and 3.

(4) By Observation 2.8.
(5) By closure under complement of @ - P (Observation 2.10).

(6) By the Valiant-Vazirani-Lemma (Lemma 2.15). Its application is possi-
ble, because BP - @ - P¢¢ is closed under conjunctive reductions and Pcc-
intersection.

(7) By the Swapping-Lemma (Lemma 2.14) and monotonicity of the BP-
operator (Observation 2.5). The Swapping-Lemma can be applied, because
@ - P is closed under majority reductions.

(8) By idempotency of the @-operator (Observation 2.6).

(9) By idempotency of the BP-operator (Observation 2.7). This holds because
@ - P is closed under majority reductions.

O
Fact 2.17. P<(PP) = Pec(#P<).

Proof. Alice and Bob can compute every #P°“-function f by binary search with
polylog communication asking oracle queries to Graph(f) := {((z,v), (y,v)) |
(v)2 < f(z,y)} € PP

Theorem 2.18. (Toda) PH® C BP - ®P° C P¢(#P) = P°¢(PP°).

Proof. Let accri(x,y) denote the number of accepting paths of a nondetermin-
istic protocol II on input (x,y). The class #P contains all constant func-
tions and is closed under addition and multiplication. If (I, ),cn is an efficient
nondeterministic protocol family with accyy := (accr, Jnen in #P¢, and if we
choose p € poly, then there exists an efficient nondeterministic protocol family

neN such that accerp (z = (1 4+ accr, (z . 1S proves
(I}, )nen such th Lz, y) = (1 (@, y)PlosmTylelos T This p
BP - @P C P(#P) as in the time complexity setting. O

Let IP denote the inner product function (see [11, Ex. 1.25, p.12]), and let MAJ
denote the magjority function (see e.g. [9]). The corollary below considers the
consequences of the unlikely case that the inner product or majority function
can be computed with a constant number of alternations.

Corollary 2.19. It holds:
1. IP € PH® iff PH* = BP - ¢P*“.
2. If PH® = PSPACE®® then PH® = BP - ¢P<°.
3. MAJ € PH® iff PH* = BP - P = BP“(PP*).
4. IP € PH® iff MAJ € PH*.



Proof. 1. =: IP € PH implies P C PH because IP is complete for
@®P under many-one reductions. Applying the BP-operator yields BP-@P C
BP - PH® = PH®. «: IP € P C BP - P = PH*".

2. Follows from @P¢ C PSPACE® and (1.).

3. =: MAJ € PH® implies PP C PH® because MAJ is complete for
PP under many-one reductions. We obtain BPP“(PP“’) C BPP““(PH) =
PH* C BP . @P« C P«(PP“) C BPP“(PP). «: MAJ € PP*“ C
BPP(PP*) = PH.

4. Follows from (1.) and (3.).

O

3 An alternating protocol for IP

The class PSPACE® was defined as the class of languages which can be recog-
nized with protocols using (logn)©*) communication and O(logn) alternations.
In this section we show that languages in the clags BP - @P°¢ can be recognized
by alternating protocols using only O(logn/loglogn) many alternations. It is
enough to give such a protocol for the inner product function, because IP is com-
plete for @P°, and Schoning’s generalization BP-C C 3-V-CNV-3-C of the well
known result of Lautemann, which is easily transferred into the communication
complexity context. For a proof, see [10, Prop. 2.24, p.76]. Fix an odd natural
number k. Alice has input © = xg...x,_1 and Bob has input y = yo...¥yn_1-
They execute the following alternating protocol Ix(s,t,b) on their inputs:

If (k>t—s+1) then Alice and Bob determine if IP;_ o1 (25 ... T4, ys ... Y¢) =
b using the trivial protocol (Alice sends her input; both compute the value
by themselves). They return the value of the trivial protocol.

else Alice guesses the following strings and sends them to Bob:

1. 35 C{0,...,k—1},]5| odd: (branch disjunctively)
2. 3b € {0,1}: (branch disjunctively)
3. Vi € S: (branch conjunctively)
4. Vj € S: (branch conjunctively)
5. Vh € {i,j}: (branch conjunctively)
return Iy (sy,t1,b1), where d :=t—s+ 1, B := [%1, s$1:=h-B, t; :=
min{n —1,(h+ 1) - B — 1}, and if (h = ¢) then by := b else by :=b.
Correctness. Divide each input x and y in an odd number & of blocks
of approximately equal sizes, i.e. z = () ...2®) y = ¢ ...y Tt holds
IP(2,y) = 3,y TP (2™, y) mod 2. If IP(z, y) evaluates to 1, there exists an

odd number of blocks S” C [k] where IP evaluates to 1 and the values of IP
cancel on S’. There are three cases:

1. 1Pz, y@)) =0 for all j € §7. We set S := 5" and b := 0.
2. IP(zW), y)) =1 for all j € &. We set S := S’ and b := 1.

3. There exist jo, j1 € S such that IP(200) 4(0)) = 0 and TP(21), yU1)) = 1.
The number of j € S with IP(:L'(J‘),y(j))~ = 1 has to be even. We set
S:=8U{jeS | Pz, y¥)) =1} and b := 0. Note that |S| is odd.
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In all three cases we have obtained a set S C [k] of odd cardinality and a b
such that IP(z(®,y®) = 1 for all i € S and IP(z@),y)) = b for all j € S.
The case when IP(x, y) evaluates to 0 is analogous. Thus, the protocol Ix(s,t,b)
accepts iff IP;_s1q(xs ... 24, Ys - - . y:) = b. The protocol I;(0,n —1,1) computes
1P, (x,y).

Communication costs. There are two alternations in each round and the
number of rounds is bounded by ¢t = log, n/log, k. If we choose an odd k of
size (logn)¢ then the communication costs in each round are O(k) bits and the
number of alternations is O(logn/loglogn). If AComm 4(F) denotes the class
of languages which can be recognized by alternating protocols using communi-
cation bounded by a function in F and a number of alternations bounded by a
function in A, we have obtained

Theorem 3.1. BP - ®P* C AComm(iog 1/ 1og log n) ( (108 n)°M),
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