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Figure 1: Our progressive rendering system is able to handle a wide range of complex light paths efficiently by combining three approaches.
The shown scene contains diffuse and specular objects that are illuminated only by two lamps enclosed in glass. Our system not only handles
the bright areas well but allows for smooth indirect illumination from this kind of light sources without the need for parameter tuning.

Abstract

We present a physically-based progressive global illumination system that is capable of simulating complex light-
ing situations robustly by efficiently using both light and eye paths. Specifically, we combine three distinct al-
gorithms: point-light-based illumination which produces low-noise approximations for diffuse inter-reflections,
specular gathering for glossy and singular effects, and a caustic histogram method for the remaining light paths.
The combined system efficiently renders low-noise production quality images with indirect illumination from arbi-
trary light sources including inter-reflections from caustics and allows for simulating depth of field and dispersion
effects. Our system computes progressive approximations by continuously refining the solution using a constant
memory footprint without the need of pre-computations or optimizing parameters beforehand.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism: Color, shading, shadowing, and texture

1. Introduction

In this paper we present a progressive bidirectional
physically-based rendering system that improves the per-
ceived image quality in many situations.

VPL CH

SG

Image

For this we combine three different techniques in a robust
way. Each technique contributes a distinct part to the final

image and together they are able to simulate for example
caustics, specular surfaces, and depth of field effects.

The benefit of the combination is that the techniques can
take advantage of each other by reusing information where
appropriate and that the advantages of each technique are
retained:

• virtual point light sources (VPL): smooth indirect illumi-
nation

• caustic histograms (CH): crisp, efficient caustics
• specular gathering (SG): robust handling of glossy and

singular materials,



2 H. Dammertz & A. Keller & H. P. A. Lensch / Progressive Point-Light-Based Global Illumination

The novel caustic histogram method collects photons in
bins that are created for each of the progressively sampled
eye paths. Although we include approximating techniques
and thus accept a certain small bias in the solution, the
progressive rendering algorithm consistently converges to
a unique solution, especially in complex illumination situ-
ations.

We argue that a fully progressive system allows for much
easier handling of the renderer by artists because the choice
of parameters does not change the final image quality (they
affect only rendering time). In addition, the proposed sys-
tem decouples memory consumption and image quality (i.e.
higher quality renderings do not require more memory at
runtime). Compared to many previous approaches our sys-
tem renders low-noise production quality images with indi-
rect illumination from arbitrary light sources including inter-
reflections from caustics and allows for simulating depth of
field and dispersion effects.

2. Related Work

Physically-based rendering is a sub-problem of image syn-
thesis, which aims to simulate light transport on a computer
in a physically correct way. The problem has been studied
in great detail [PH04, DBB06] and as it stands, ray tracing
is the only method that allows to solve complex illumination
problems consistently. Even though ray tracing performance
has been improved greatly in the recent years [Shi06], only
few of the achievements directly help Monte Carlo based
global illumination algorithms [BWB08, DHK08]. Several
hundreds of million paths need to be ray traced for a final
image and thus Monte Carlo and quasi-Monte Carlo render-
ing algorithms have a very high computational demand and
long rendering times. Unbiased Monte Carlo-based render-
ing systems are progressive by nature and thus have the ad-
vantage of robustly handling even complex situations with
the only limitation being the rendering time. The disadvan-
tage is that even in simple situations unbiased Monte Carlo
algorithms have a high variance perceivable as noise in the
image.

Kajiya [Kaj86] introduced Monte Carlo path tracing al-
gorithms to computer graphics. Since then, a lot of research
headed to improve the efficiency of the basic algorithm. The
family of bidirectional path tracing algorithms using multi-
ple importance sampling [LW93, VG94] and the Metropolis
light transport algorithm [VG97] belong to the most power-
ful algorithms to date. While these algorithms are unbiased
and can deal with complex lighting situations, they suffer
from variance, which becomes visible as noise in images.
Our system approaches the global illumination from both
light and eye paths using a Monte Carlo technique, however,
it reduces variance through the use of correlated point light
sources for diffuse inter-reflections.

The Instant Radiosity algorithm [Kel97] uses point light

sources and graphics hardware to quickly compute a global
illumination solution for diffuse scenes. Since then, point-
light-based global illumination has proven to be a useful
and efficient way to approximate diffuse inter-reflection in
real time systems [BWS03] and preview systems [HPB07].
In [SIMP07] an extension to the Instant Radiosity algorithm
is presented that uses Metropolis sampling to increase ef-
ficiency. The use of VPLs is at the core of our rendering
system, however, we extend it to simulate non-diffuse light
paths as well.

Photon mapping [Jen96] has been introduced as a solu-
tion to the problem that there exist paths that cannot be effi-
ciently sampled by any unbiased technique. With the recent
improvements [HOJ08], many shortcomings of the original
method have been removed. In our approach we remove the
remaining memory bound on the number of eye path ver-
tices that need to be stored, which for example allows one
to simulate anti-aliased depth of field with any sampling rate
required.

The Lightcuts rendering framework [WFA∗05,WABG06]
is a powerful approach to the many-lights problem, which is
entirely based on point-light sources. Due to the ability to
deal with an enormous number of point light sources, glossy
effects can be handled, however, the system cannot simulate
caustics and is not progressive. As our approach is progres-
sive there is no limitation on the number of light sources and
even the simulation of caustics is integrated.

3. System Overview

Our physically-based rendering system is designed to pro-
duce production quality images of 3D scenes with global
illumination in complex situations without the need for ex-
tensive parameter tweaking. We therefore assume physically
plausible input: for example light sources are modeled as ge-
ometry that is part of the scene, glass objects always have a
thickness, and surface shaders need to be energy conserving.
Progressiveness enables the user to continue image compu-
tation until a satisfactory result is achieved. There is neither
the need to restart computations nor to discard intermediate
results that allow for previews of an illumination situation
after a short amount of time.

The goal of our system is to provide a fast and smoother
global illumination solution as compared to approaches us-
ing multiple importance sampling [VG95, Vea97, VG97]
without sacrificing too much quality and flexibility. We
achieve this goal by combining three techniques, each of
which simulates a disjoint subset of path space in such a
way that the techniques benefit from each other. For ease of
reading, we apply Heckbert’s [Hec90] notation to identify
path subspaces: E is the eye or camera, D denotes a diffuse
bounce (in Section 4 we define what diffuse means for our
rendering system), S is a non-diffuse (specular) bounce, and
L represents the light sources.
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Figure 2: Illustration of selected light paths that we are able
to simulate robustly and consistently: ’A’ is a classic caustic
path (EDSSL), ’B’ shows the mirror image of a diffuse ob-
ject behind a glass object (ESSDSL), ’C’ is diffuse indirect
illumination from the green wall to the sofa (EDDL), and
’D’ shows a complex shaped light source (lava lamp) behind
glass illuminating the scene (EDSL). Also note the caustic
generated by the monkey head in the mirror (ESDSSL).

Figure 2 illustrates some of the light transport paths we
are able to simulate. The techniques and the simulated light
paths in our system are:

ED+L: is handled by the point-light-based algorithm (Sec-
tion 5.1) (also handles EDD{D|S}∗L)

EDS+L: is created by the caustic histogram method (Sec-
tion 5.3)

ES+DL: is handled by specular gathering (Section 5.2) and
uses the results of the previous two methods

ES∗L: is directly evaluated as in a path tracer [DBB06]
EDS+D+L: caustics from indirect illumination are handled

by the combination.

Looking at the path notation it can be seen that all these con-
tributions are distinct and two methods can never generate
a contribution for the same path. The final solution is sim-
ply obtained by summation. However, our system is biased,
as we make several approximations that are described and
discussed in the following.

Figure 3 shows the steps our rendering system performs
in each rendering pass. A rendering pass is one iteration of
computation that is finally added to the accumulation buffer
containing the progressively refined result image. In the fol-
lowing sections each of the steps is explained in detail.

Store Eye Path Vertices on Diffuse Surfaces and
compute Ray Differentials

Select Visibility Representants from Eye Path
Vertices (VPLs rejection)

Generate Light Source Samples (primary VPLs)

Generate Caustic -
Projection Maps VPLs Random Walk

Caustic Photon Tracing
of Eye Path Vertices

Diffuse Illumination
of Eye Path Vertices

Filtered Accumulation Buffer

Figure 3: This figure describes the order of the basic oper-
ations our rendering system performs each rendering pass.

3.1. Eye Path Generation

The first step of our rendering system is the generation of
eye path vertices. This is illustrated in Figure 4 (a). The eye
paths are created by a random walk starting from the cam-
era and are terminated via Russian roulette or when they
hit a diffuse surface. The vertices are stored only on dif-
fuse surfaces. These points are similar to the gather points
in the Lightcuts [WABG06] algorithm (but we store only the
end points of a path) or the hitpoints stored in the progres-
sive photon map algorithm [HOJ08]. The main difference is
that we create a new set of eye path vertices each rendering
pass instead of keeping them for the whole image generation
process. This allows for progressive refinement of spatial
anti-aliasing and complex specular effects. In the standard
setting one eye path is started per pixel for each rendering
pass. When such a path hits a light source (either directly
or via an arbitrary number of specular bounces: ES∗L) the
contribution is directly added into the accumulation buffer
but the path is not necessarily terminated as the surface of
the light source might also reflect light. Using the generated
eye path vertices we will gather diffuse illumination (Sec-
tion 5.1), specular contributions (Section 5.2) and caustics
(Section 5.3).

In order to estimate the bin size in the caustic histogram
(Section 5.3) we also need a size associated with each eye
path vertex. For this, we trace ray differentials [Ige99] start-
ing with half the pixel size. This provides a good estimate of
projected pixel footprint even after specular bounces.

4. Material Model

While general production renderers for the movie indus-
try can use arbitrary complex programs to define surface
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color and reflection behavior [DH05, Kes08], physically-
based systems are more restricted in their choice of reflection
functions [PH04]. Many practical algorithms exploit the fact
that BRDFs are not only energy-conserving, but also provide
an efficient sampling function.

A wealth of surface reflection models has been developed
in computer graphics that provide most of the required func-
tionality [Bli77, War92, AS00]. These reflection models al-
low one to describe a wide variety of basic surface types. For
more complex surface behavior usually several reflection
models are combined to a single layered material [PH04].

Systems using multiple importance sampling [PH04] re-
quire the BRDF model to satisfy the Helmholtz reciprocity
condition in order to obtain consistent results. Since we par-
titioned path space and use only one technique on each par-
tition, this condition no longer needs to be fulfilled, allowing
one to use more convenient approaches like e.g. the halfway
vector disc model [EBJ∗06], while still enjoying conver-
gence to a unique solution.

In order to determine the partition of the path space, we
need to decide when a reflection is almost diffuse. In princi-
ple our system can use any physically-based layered BRDF
model for which a parameter κ can be assigned to each layer
expressing how diffuse it is. This parameter is assumed to
be normalized such that for κ = 0 the layer is perfect Lam-
bertian and for κ = 1 the surface is a perfect mirror. Dur-
ing rendering each sample evaluates only one material layer
that is selected by random sampling. We use the threshold of
κ = 0.2 for classifying a material layer as diffuse or specular.

For example, in all renderings we use the Blinn-Phong
model [Bli77] with Phong-exponent k = 1024κ+1. Layered
materials such as simple metal or glass (one reflecting, one
transmitting layer) and more complex materials like coated
plastic can be constructed easily using the Fresnel term or
one of the approximations [Sch94] for weighted sampling
of material layers. For transmissive materials the direction is
selected according to Snell’s law but the width of the lobes is
controlled as before, as this allows for diffuse and imperfect
glass.

5. Bidirectional Global Illumination

Based on the material properties we partition the path space.
In the following we describe how the different subsets are
sampled.

5.1. Point-Light-Based Diffuse Illumination

We approximate the diffuse illumination by virtual point
light sources (VPL) similar to the Instant Radiosity algo-
rithm [Kel97]. In order to be consistent with existing liter-
ature we use the term VPL (Virtual Point Lightsource) for
a light path vertex even though we prefer the term DIAL
(Diffuse Illumination-Approximating Light) in the context

of our rendering system. Note that the notion of diffuse il-
lumination not only includes perfectly Lambertian surfaces,
but also slightly glossy surfaces as specified in Section 4.

The first step in the Instant Radiosity algorithm generates
samples on the light sources. As our scenes contain arbitrar-
ily shaped light sources modeled as triangles, we first com-
pute a PDF according to the area and intensity of each emit-
ting triangle. This PDF is created once and can be reused
for all subsequent rendering passes. Using three random
numbers, a position on the light sources (stored as primary
VPL) is sampled. Then a random walk terminated by Rus-
sian roulette is performed in the manner of a particle tracer,
where on each diffuse surface another VPL is stored. Un-
like eye paths, the light paths are not terminated on the first
diffuse hit. This is illustrated in Figure 4 (b). These VPLs
represent a point-wise approximation of the diffuse inter-
reflection. In contrast to [Kel97], the contribution of each
VPL is then accumulated by sampling the direct visibility of
the VPLs to each pixel via the stored eye path vertices, i.e.
possibly incorporating even multiple specular bounces (see
next section). Figure 4 (c) illustrates this. This accumulation
is inherently progressive as each series of VPLs, generated
by one random walk, is independent of the other random
walks and the final image is independent of the number of
VPLs created per rendering pass.

Stochastic Culling of VPLs. As we want to be able to ef-
ficiently handle complex scenes, we use an additional opti-
mization to discard VPLs that are likely to have no contribu-
tion. For this purpose we choose a stratified subset of 256 of
the eye path vertices and check the visibility from these loca-
tions prior to VPL storage. This can be either done based on
an acceptance probability to not introduce an additional bias,
or fully deterministic. To guarantee a good coverage and a
changing subset for each rendering pass we use the Halton
sequence over the image plane for the selection [KW00].

5.2. Glossy and Singular Effects

Glossy and singular effects need to be simulated when the
BRDF is not sufficiently diffuse (see Section 4). The idea
of specular gathering is to sample the BRDF according to
its probability density function by extending the eye path.
This extension of the eye path is repeated until either it is
terminated by Russian roulette or the path hits a diffuse sur-
face. At this point the illumination is computed by using the
point light sources and the caustic histogram (see next sec-
tion). So, per rendering pass we gather the illumination for
specular eye paths by using the current global illumination
approximation given by the two other techniques. As this
approximation is recomputed in each pass, the specular part
becomes progressively refined, too.



H. Dammertz & A. Keller & H. P. A. Lensch / Progressive Point-Light-Based Global Illumination 5

(a) (b) (c) (d)

Figure 4: (a): Generation of the eye path vertices by performing a random walk into the scene starting from the eye. (b):
Generation of the VPLs by a random walk starting from light sources. (c): Evaluation of the VPLs to compute an approximation
of the diffuse illumination at the eye path vertices. (d): Accumulation of caustic photons into eye path vertices.

5.3. Caustic Histogram Method

The final technique of our rendering system is the histogram
method that provides the caustic paths. From each primary
VPL we trace photon random walks into the scene. If they
do not hit a specular material they are discarded, otherwise
they are continued until a diffuse material is found (or they
are terminated by Russian roulette). There, they are accu-
mulated into bins associated with each eye path vertex via a
kd-tree. The bin size varies per vertex (see Section 3). This
procedure is illustrated in Figure 4 (d) for a glass sphere.
In our implementation we trace photons until we have ac-
cumulated a given number (100000 in all images) for each
rendering pass. Using the previously computed VPL as emit-
ting light sources has the advantage of not requiring a new
set of light source samples.

This method is conceptually similar to the progressive
photon mapping algorithm [HOJ08]. However, first, we only
use the caustic histogram for the LS+DS∗E paths, and sec-
ond, constant radius per eye path vertex is used for the bins
based on the projected pixel size, which speeds up the pho-
ton collection. Furthermore, we recreate the bins in each ren-
dering pass and thus in addition are able to support progres-
sive per pixel anti-aliasing, glossy surfaces, depth of field,
and motion blur. The fixed radius selection may of course
introduce the usual photon mapping artifacts and introduces
a bias, but as the (projected) bin size is not larger than half
the pixel size the error is not larger than the error introduced
by image space filters [SW00].

Projection Maps. Even for arbitrarily complex light
sources only relatively few VPLs are generated per render-
ing pass. As we emit caustic photons from these VPLs we
can make efficient use of a projection map per VPL as op-
posed to previous approaches of using projection maps with
photon emission [Jen01].

Projection maps are a pre-computation to direct caustic
photons only in areas where glossy/specular objects are. This
increases the efficiency in simple scenes (with few glossy
objects) significantly without slowing down complex scenes.

We create the projection map as a conservative projection

Figure 5: Illustration of four of the projection maps of the
scene shown in Figure 10. The third map is from a VPL in-
side the lava lamp.

of all triangles classified as specular onto the hemisphere of
each VPL and then use correctly weighted sampling to reject
photon rays that would surely hit only diffuse surfaces. In or-
der to efficiently splat the spherical triangles we approximate
them by the bounding box of the projected vertices. Figure 5
shows some projection maps created in the Box scene. We
used a resolution of 128×256 for each projection map. Dur-
ing rendering the generation of projection maps was between
2% and 5% of the total time spent on the caustic histogram
method. The speed-up achieved is linear to the coverage of
the hemisphere, saving 85.2% of the photon rays in the Box
scene, corresponding to 65.3% of the time required to com-
pute the caustics and 4.6% of the total render time.

Implementation Details. In practical applications the num-
ber of eye path vertices per rendering pass is larger than our
chosen number of photons per pass. Since our accumulation
of photons into vertices is redone every pass we can reverse
the order and store the photons instead of the eye path ver-
tices as in the original photon map algorithm [Jen96]. This
does not change the result of the computation but may be
more memory efficient for high resolution images.

6. Lazy Spectral Rendering

For efficiency reasons our system is based on RGB render-
ing. Yet it is possible to consistently integrate an approxima-
tion for dispersion effects into our rendering system by lazy
spectral rendering. This works by using the normal RGB
transport until a ray hits a dispersive surface (e.g. glass). At
this point the ray is assigned a randomly sampled wavelength
from the original RGB color. In addition, we further assign a
novel RGB color corresponding to the sampled wavelength.



6 H. Dammertz & A. Keller & H. P. A. Lensch / Progressive Point-Light-Based Global Illumination

Figure 6: On demand spectral rendering allows to integrate
dispersion into an RGB based render.
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Figure 7: This graph shows the errors of the images (com-
puted at 1024× 1024) shown in Figure 10 from 16 to 2048
rendering passes in steps of 16 compared to a reference im-
age with 11456 rendering passes. The steep descent at the
beginning is because the indirect illumination is quickly ap-
proximated by the point light sources.

Once a ray has an assigned wavelength it will keep it until
the ray terminates.

The wavelength assignment is done for all rays generated
in the system: eye-paths, photon-paths and the random walks
to generate the VPLs. This allows for the usual color caus-
tics (photon paths), the chromatic aberration seen through re-
fractive objects (eye-paths) and correct indirect illumination
from colored caustics (VPLs). Figure 6 shows a rendering
with a dispersive glass object.

7. Results

In this section we discuss the results of our rendering sys-
tem. All images in this paper were computed using the same
default parameter settings of 16 VPL paths, 1 eye path per
pixel, and 100000 caustic paths per rendering pass.

Figure 11 shows the statistics for the different scenes used
to present different aspects of our system. Figure 10 shows
the image generation process with the inverse difference im-
age scaled by 8 compared to a reference image with 11456
render passes. In Figure 7 you can find the associated graph
showing the mean square error.

Diffuse Illumination. The diffuse illumination (direct and
indirect) is approximated by the use of VPLs and thus very

Figure 8: Equal time comparison (10 minutes on a single
thread Core 2 2.33GHz) of a BDPT (left) and the point light
based renderer (right) in a simple diffuse scene. The noise in
the BDPT solution is especially noticeable in the dark areas
where none of the details are yet visible while in the other
image the door and ceiling is clearly visible on the left side.

robust. This method was already discussed in many publica-
tions and is known to produce good results with a sufficient
number of point light sources. As our system is progressive,
the only limiting factor for the number of point light sources
is rendering time. Figure 8 shows an equal time compar-
ison of a bidirectional path tracer (BDPT) and point light
based global illumination. The difference is most noticeable
in the darker areas where the detail is still obstructed by
noise in the BDPT while the VPLs approximation already
shows each feature clearly. This robustness of indirect illu-
mination in darker areas can also be seen in Figure 1 where
the far left and right sides are only illuminated by indirect
light. Note that the use of point lights for diffuse illumina-
tion also allows for efficient handling of diffuse transparent
objects like curtains by creating VPLs also on the exit points
(two sided) during the random walk.

Glossy Effects. Figure 9 shows a simple single layered ma-
terial where κ is varied from 0 to 0.9. The first three spheres
in the last row have a κ ∈ (0, 0.1, 0.199) and are thus illumi-
nated by VPLs directly (the specular threshold is κ ≥ 0.2).
The remaining spheres are illuminated by specular gather-
ing, i.e. by extending the eye paths. Note, how these two
techniques generate a consistent transition.

The top right image in Figure 11 shows a scene with many
glossy objects and high variance situations where glossy ob-
jects are reflected in other glossy objects. In addition, the
scene features depth of field. The illumination comes from
a sky model only through the two small windows. The im-
age was computed at a resolution of 960× 600 with 52224
rendering passes for a good visual quality of the high vari-
ance areas (there is still some noticeable noise in the back of
the room). Using this many gather points with progressive
photon mapping would be infeasible: assuming 76 bytes per
gather point as in the original paper [HOJ08] 2.1 terabyte of
data would be generated.

Caustics and other SDS paths. Caustics and SDS paths
are efficiently treated by the caustic histogram method us-
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Figure 9: This image shows the smoothness of changing
from VPLs based illumination for diffuse illumination (κ <
2, Section 5.1) to specular surfaces (κ≥ 2, Section 5.2). Due
to the progressive rendering both methods converge to a final
solution where no difference is noticeable without the need
to set the correct number of samples or number of point light
sources.

ing projection maps (Figure 1 and Figure 2). The SDS paths
are especially difficult in BDPT-based renderers and take a
long time to converge even with Metropolis sampling. With-
out them the ground below the feet of the glass dinosaur in
Figure 1 would be black. Section 5.3 further demonstrates
how spectral effects can be integrated in our rendering sys-
tem. The effect of spectral rendering is most noticeable in
caustic areas, however, the presented method integrates well
with the other proposed parts of the rendering system.

Depth of Field. Since we create a new set of eye path ver-
tices in each rendering pass we can easily simulate e.g. a thin
lens camera that renders depth of field effects. As our system
is progressive we do not need to adjust any of the parame-
ters for the illumination computation and, in many cases, the
number of rendering passes needed for the illumination to
converge is sufficient to robustly estimate depth of field ef-
fects (Figure 11).

8. Limitations

Indirect caustics (EDS+D+L) are created from non-primary
VPLs. This works well when diffuse surfaces are brightly
lit, but in many scenes this increases the variance too drasti-
cally for the final visible effect. So we chose to make them
artist-controllable instead of enabling them by default. Fur-
thermore, the depth of indirect caustics can be selected prior
to rendering.

The bias of bounding the geometric term in the Instant
Radiosity method can be removed by the method proposed
in [KK04]. The clamped contribution of point lights is com-
pensated by gathering the missed illumination through addi-
tional rays. This comes at the cost of increasing the variance,
especially in corners for an effect that is only seen in few
scenes. We again made this an artist-controllable option.

While our proposed rendering system is progressive by
design, it is not yet adaptive in any way (except that in highly
glossy scenes automatically fewer VPLs are stored). Espe-
cially in diffuse areas the resulting image quickly converges
to an acceptable solution while in areas of SDS paths there
is still noticeable variance. By intuition one would like to
sample only in areas of high variance. But this would re-
move some of the advantage of a real progressive renderer
as it cannot be guaranteed that the undersampled region is
no area of higher variance (for example light through a key
hole) that was not yet sampled. Of course knowledge about
a given scene allows an artist to increase convergence speed
by tuning the number of point light sources or caustic pho-
tons per rendering pass accordingly.

9. Conclusion

We showed how a combination of three distinct techniques
based on point light sources allows us to compute a global
illumination solution including caustics, specular surfaces,
depth of field, and dispersion effects in a single unified ren-
dering system. Each of the techniques - VPLs, specular gath-
ering and the novel caustic histograms - efficiently works
with the other two in combination. The progressive nature of
our system allows the artist to start a rendering and be sure
that it will converge to a unique solution independent of the
parameter choice. At least in theory our system would pro-
duce the same image even if just a single VPL path or a sin-
gle photon path would be generated per rendering pass. Ad-
ditionally, our system uses only a constant amount of mem-
ory during rendering independent of the final image quality.

Future Work. Subsurface scattering can be integrated in
our system by allowing eye path vertices inside solid ob-
jects and tracing the photons also through these objects. Ad-
ditionally, participating media using the VPLs can be inte-
grated [RSK06]. Adding motion blur requires to sample just
another dimension in our progressive renderer [CFLB06]. A
desirable feature for the whole rendering system would be
to automatically balance the three parameters (number of
VPLs, number of specular gathering rays, and the number
of photons for the histogram) for optimal convergence speed
with respect to a given scene.
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Figure 10: Evolution of the error with increasing number of rendering passes compared to a reference image with 11456
rendering passes (resolution: 1024× 1024). The top row shows the results after 16,128,512 and 2048 rendering passes. The
bottom row shows the inverse difference image scaled by 8. Figure 7 shows the graph of the errors for the full image series.
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