

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

On Reversal and Transposition Medians

Martin Bader

Ulmer Informatik-Berichte
Nr. 2009-04

März 2009

On Reversal and Transposition Medians

Martin Bader

University of Ulm, Institute of Theoretical Computer Science, 89069 Ulm, Germany
Email: martin.bader@uni-ulm.de

Abstract. During the last years, the genomes of more and more species
have been sequenced, providing data for phylogenetic reconstruction
based on genome rearrangement measures. A main task in all phylo-
genetic reconstruction algorithms is to solve the median of three prob-
lem. Although this problem is NP-hard even for the simplest distance
measures, there are exact algorithms for the breakpoint median and the
reversal median that are fast enough for practical use. In this paper,
we extend this approach to the transposition median as well as to the
weighted reversal and transposition median. Although there is no ex-
act polynomial algorithm known even for the pairwise distances, we will
show that it is in most cases possible to solve these problems exactly
within reasonable time by using a branch and bound algorithm.

1 Introduction

Due to the increasing amount of sequenced genomes, the problem of reconstruct-
ing phylogenetic trees based on this data is of great interest in computational
biology. In the context of genome rearrangements, a genome is usually repre-
sented as a permutation of (1, . . . , n), where each element represents a gene, i.e.
the permutation represents the shuffled ordering of the genes on the genome.
Additionally, the strandedness of the genes can be taken into account by giving
each element an orientation. In the multiple genome rearrangement problem,
one searches for a phylogenetic tree describing the most “plausible” rearrange-
ment scenario for multiple genomes. Formally, given k genomes and a distance
measure d, find a tree T with the k genomes as leaf nodes and assign ancestral
genomes to internal nodes of T such that the tree is optimal w.r.t. d, i.e. the sum
of rearrangement distances over all edges of the tree is minimal. If we set k = 3,
i.e. we search for an ancestor such that the sum of the distances from this ances-
tor to three given genomes is minimized, we speak of the median problem. All of
the actual state-of-the-art algorithms for solving the multiple genome rearrange-
ment problem rely on algorithms for solving the median problem. Unfortunately,
this problem is NP-hard even for the simplest rearrangement measures, namely
the breakpoint distance and the reversal distance [12, 8]. Currently, the most
interesting distance measures are:

– The reversal distance between two genomes is the minimum number of rever-
sals required to transform one genome into the other. It can be computed in

linear time [1]. The reversal median problem has been proven to be NP-hard
[8]. The currently best software tools to solve the multiple genome rearrange-
ment problem based on this distance measure are GRAPPA [11], MGR [7], amGRP
[6], and phylo [2]. All of them rely on Caprara’s median solver [8] (GRAPPA
can alternatively use Siepel’s median solver [13]).

– The transposition distance between two genomes is the minimum number of
transpositions required to transform one genome into the other. So far, it is
not clear whether it is in P or not, and the currently best approximation
algorithm has an approximation ratio of 1.375 [10]. An exact branch and
bound algorithm is described in [9]. To the best of our knowledge, the only
program that solves the multiple genome rearrangement problem based on
this distance measure is GRAPPA-TP [14], which uses an extension of Siepel’s
median solver [13] and solves pairwise distances by a fast heuristic.

– The weighted reversal and transposition distance between two genomes is the
minimum weight of a sequence consisting of reversals and transpositions that
transforms one genome into the other, where reversals and transpositions are
weighted differently. Again, it is not clear whether it is in P or not, but there
exist a 1.5-approximation algorithm that covers each weight ratio from 1:1 to
1:2 (reversals:transpositions) [3]. As far as we know, the only program that
solves the multiple genome rearrangement problem based on this distance
measure is phylo [2], which uses a preliminary version of the median solver
that we present in this paper.

In this paper, we will show how one can solve the transposition median as well as
the weighted reversal and transposition median by extending Caprara’s median
solver. In order to do this, we need to calculate pairwise distances between
genomes, which can be either done approximately using the algorithm devised
in [3], or exactly using a new branch and bound algorithm presented in this
paper. Experimental results show that the approximation rate of the first method
is very good in practice, and that even the exact algorithm runs in feasible
time for practical use. In Section 2 we give basic definitions. The algorithm to
calculate exact pairwise distances is described in Section 3, the algorithm to
solve the median problem is described in Section 4. The experimental results
and a comparison with GRAPPA-TP, which was kindly provided by Jijun Tang,
can be found in Section 5. Section 6 summarizes the method and the results.

2 Preliminaries

A signed permutation π = (π1 . . . πn) is a permutation of (1 . . . n), where each el-
ement π has an orientation (indicated by −→πi or←−πi). We will use the term “permu-
tation” as short hand for signed permutation. The permutation id = (

−→
1 . . .−→n)

is called the identity permutation of size n. A segment of a permutation π is
a consecutive sequence of elements in π. A reversal is an operation that in-
verts the order of the elements of a segment in a permutation. Additionally,
the orientation of every element in the segment is flipped. A transposition is an

operation that cuts a segment out of a permutation, and reinserts it at another
position in the permutation. If we additionally apply a reversal on this segment,
we speak of an inverted transposition. The weight of an operation op is denoted
by w(op), and the weight of a sequence of operations is the sum of the weights
of the operations in the sequence. In the following, reversals have weight wr,
whereas transpositions and inverted transpositions have weight wt, and we as-
sume that wr ≤ wt ≤ 2wr (otherwise optimal sequences would have an unrealis-
tic strong bias either towards reversals or transpositions). The problem of sorting
by weighted reversals and transpositions is defined as follows. Given two permu-
tations π1, π2, find a sequence of reversals and transpositions of minimum weight
that transforms π1 into π2. This minimum weight is called the weighted reversal
and transposition distance (wRTD) dw(π1, π2). If we restrict the set of operations
to transpositions only, the problem is called sorting by transpositions, and the
corresponding distance is called the transposition distance (TD) dt(π1, π2). Since
a transposition can never change the orientation of an element, all the elements
in π1 as well as in π2 must have positive orientation. Given q permutations
π1, . . . , πq, the weighted reversal and transposition median problem (wRTMP)
calls for a permutation ρ such that δ(ρ) =

∑q
k=1 dw(ρ, πk) is minimized. The

transposition median problem (TMP) is defined analogously. For solving wRTMP
and TMP, we will use the multiple breakpoint graph, which has been introduced
by Caprara [8] and is a generalization of the breakpoint graph defined in [4]. For
permutations π1, . . . , πq, the MB graph G = (V,E) is a multigraph with node
set V = {−1,+1,−2,+2, . . . ,−n,+n} (where n is the size of the permutations).
The edge set can be obtained as follows. First, we replace in each permutation πk

(1 ≤ k ≤ q) all elements with positive orientation −→x by −x +x and all elements
with negative orientation←−x by +x −x. Then, each permutation πk induces the
edge set Mk = {(i, j) | i 6= −j and πk contains the adjacent values i and j }, i.e.
the edge set Mk corresponds to the adjacencies in πk. The edge set E of the MB
graph G is the union of these edge sets, i.e. E =

⋃q
k=1M

k. As each node is con-
nected to exactly one edge in each edge set Mk, the graphs Gi,j = (V,M i ∪M j)
(with 1 ≤ i, j ≤ q) decompose into cycles with alternating edges from the edge
sets M i and M j . A cycle is called an odd cycle if its number of edges divided by
2 is an odd number, otherwise it is called an even cycle. Let codd(πi, πj) denote
the number of odd cycles in Gi,j , and let ceven(πi, πj) denote the number of even
cycles in Gi,j . The score σ between two permutations πi and πj is defined by
σ(πi, πj) = codd(πi, πj) + (2 − 2wr

wt
)ceven(πi, πj). The following theorems show

how we can use this score to obtain lower and upper bounds for the wRTD.

Theorem 1. [3, 5] A lower bound lbw(πi, πj) for the weighted reversal and trans-
position distance dw(πi, πj) can be defined as follows.

dw(πi, πj) ≥ lbw(πi, πj), where lbw(πi, πj) := (n− σ(πi, πj))
wt
2

A lower bound lbt(πi, πj) for the transposition distance dt(πi, πj) can be defined
as follows.

dt(πi, πj) ≥ lbt(πi, πj), where lbt(πi, πj) := (n− codd(πi, πj)
wt
2

Note that if we set wt = 2wr, the lower bounds for both distances are equal.
This will later simplify the description of the algorithms, as we will only use the
lower bound for the wRTD.

Theorem 2. [3, 10] An upper bound ubw(πi, πj) for the weighted reversal and
transposition distance dw(πi, πj) can be defined as follows.

dw(πi, πj) ≤ ubw(πi, πj), where lbw(πi, πj) := 1.5lbw(πi, πj)

An upper bound ubt(πi, πj) for the transposition distance dt(πi, πj) can be defined
as follows.

dt(πi, πj) ≤ ubt(πi, πj), where ubt(πi, πj) := 1.375lbt(πi, πj)

3 Calculating pairwise distances

As exact polynomial algorithms are neither known for the TD nor for the wRTD,
we introduce a branch and bound algorithm for the pairwise distances. The main
idea of the algorithm is straightforward. W.l.o.g., the task is to find an optimal
sorting sequence between a permutation π and the identity permutation id of the
same size. We create a set S that contains triples (π̃, d′(π, π̃), lb(π̃, id)), where
π̃ is a permutation, d′(π, π̃) is the sum of the weights of all operations that
have been performed on the path from π to π̃, and lb(π̃, id) is the lower bound
for the remaining distance towards id according to Theorem 1. Initially, we set
S = {(π, 0, lb(π, id))}. In each step, we select the triple (π̃, d′(π, π̃), lb(π̃, id)) from
S where d′(π, π̃) + lb(π̃, id) is minimized, and remove it from S. If lb(π̃, id) =
0, then π̃ = id and d′(π, π̃) = d(π, id), i.e. we have found an optimal so-
lution and the algorithm aborts. The sequence of operations can be recon-
structed by a traceback. Otherwise, for each operation op, we add the triple
(op π̃, d′(π, π̃) + w(op), lb(op π̃, id) to S, i.e. we add all possible predecessors of
π̃ to S. We call this step expanding π̃. We now continue by again selecting the
best triple.
So far, the algorithm is just an ordinary branch and bound algorithm, and does
not perform very well in practice. Thus, we improve the algorithm by a duplicate
elimination. Because there are usually different optimal sequences to reach an
intermediate permutation, this permutation would be stored several times, and
in the worst case the number of duplicates of a permutation can be exponential
in the distance to the origin permutation. Therefore, we first check if we already
have generated a permutation before creating a new triple containing this permu-
tation. Searching for a possible duplicate can be done quite efficiently by hashing
techniques. We can further reduce the number of elements in S by working on
the minimal permutations, which have been defined in [9] as follows. Given a
permutation π̃, we obtain the minimal permutation gl(π̃) by ‘gluing’ all the ad-
jacencies together, i.e. we replace each segment of elements that is identical in π̃
and id by a single element. As an example, the permutations π̃ = (

−→
1
−→
2
−→
4
−→
3)

and π̂ = (
−→
1
−→
3
−→
4
−→
2) have both the same minimal permutation (

−→
1
−→
3
−→
2).

The following lemma ensures that it is sufficient to search for an optimal sorting
sequence between gl(π̃) and id′ to obtain an optimal sorting sequence between
π̃ and id, where id′ is the identity permutation of same size as gl(π̃).

Lemma 1. [9] Let π be a permutation and gl(π) be its minimal permutation.
Let id be the identity permutation of same size as π, and let id′ be the identity
permutation of same size as gl(π). Then, an optimal sorting sequence between
gl(π) and id′ can easily be transformed into an optimal sorting sequence between
π and id. Both sorting sequences have the same weight, i.e. d(π, id) = d(π̃, id′).

Note that the original lemma in [9] only considered the TD. However, the proof
for the wRTD works analogously, thus this lemma holds for the TD as well as
for the wRTD. While Christie used this proof only to show that one never has
to split adjacencies, we will also use it for duplicate elimination. In the example
above, π̂ would be considered to be a duplicate of π̃. In fact, we even do not
store the original permutations but only their minimal permutations, resulting
in a further space improvement.

4 The median solver

Our median solver is an extension of Caprara’s reversal median solver [8]. While
Caprara’s algorithm solves instances of the Cycle Median Problem (CMP) and
reestimates the distances using the reversal distance, we extend the CMP to the
weighted Cycle Median Problem and reestimate the distances using the TD or
the wRTD.
For a given wRTMP instance with permutations π1, . . . , πq, and an arbitrary
permutation ρ, define γ(ρ) :=

∑q
k=1 σ(ρ, πk). The weighted Cycle Median Prob-

lem (wCMP) is defined as follows. Given a set of q permutations π1, . . . , πq,
find a permutation τ such that qn − γ(τ) is minimized. In the following, let
ρ∗ be the solution of a given wRTMP and let δ∗ := δ(ρ∗) =

∑q
i=1 dw(πi, ρ∗)

be its solution value. Let τ∗ be the solution of the associated wCPM and let
qn − γ∗ := qn − γ(τ∗) be its solution value. The following lemma shows the
relation between a wRTMP instance and the associated wCMP instance.

Lemma 2. Given a wRTMP instance with solution value δ∗ and the associated
wCMP instance with solution value qn− γ∗,

wt
2

(qn− γ∗) ≤ δ∗ ≤ 3wt
4

(qn− γ∗)

Proof. Using the bounds given in Theorems 1 and 2, we get wt

2 (qn − γ∗) =
wt

2 (qn − γ(τ∗)) ≤ wt

2 (qn − γ(ρ∗)) =
∑q
k=1 lb(π

k, ρ∗) ≤ δ∗ ≤
∑q
k=1 d(πk, τ∗) ≤

1.5
∑q
k=1 lb(π

k, τ∗) = 3wt

4 (qn− γ∗).

Note that this proof also holds for the TD if we set wr = 1, wt = 2, and restrict
the search space of the wCMP to permutations where all elements have positive
orientation. In this case, γ(τ) =

∑q
k=1 codd(π

k, τ), i.e. an optimal solution of

the wCPM maximizes the number of odd cycles. In most cases, δ∗ is very close
to the lower bound. This motivates the idea to solve a wRTMP instance by
solving the associated wCMP instance and then check whether the solution of
the wCMP instance is also a solution of the wRTMP instance. We will now
address the problem of solving a wCMP instance. As we will use a branch and
bound algorithm that successively extends a partial solution until we have a
complete solution, we must extend the MB graph such that we can use it to
obtain strong lower bounds for partial solutions. A graph (V,E) is weighted if
each edge e ∈ E has an integer weight w(e). Given a weighted graph G = (V,E)
with node set V = {−1,+1,−2,+2, . . . ,−n,+n}, a weighted matching M is a
set of edges in G such that each node in V is incident to at most one edge in M
and each edge in M has an odd weight (restricting the weights to be odd will
simplify later proofs). A weighted matching M is called perfect if each node in
V is incident to exactly one edge in M . It is easy to see that the union of two
matchings decomposes the graph into cycles and paths consisting of alternating
edges from both matchings. The length of a cycle or path is the sum of the weights
of its edges. A cycle is called an odd cycle if its length divided by 2 is an odd
number, otherwise it is called an even cycle. Note that cycles always consist of an
even number of edges, all having an odd weight (recall the definition of weighted
matchings), thus the length of a cycle is always divisible by 2. Analogous to
the definition given in Section 2, codd(M i,M j) is the number of odd cycles in
(V,M i ∪M j), ceven(M i,M j) is the number of even cycles in (V,M i ∪M j), and
σ(M i,M j) := codd(M i,M j) + (2− 2wr

wt
)ceven(M i,M j). The base matching H is

defined by H := {(−k,+k) | 1 ≤ k ≤ n} and ∀e ∈ H : w(e) = 1. A weighted
matching M is called a permutation matching if H ∪M defines a Hamiltonian
cycle on G, i.e. a cycle that visits each node in V exactly once.

Lemma 3. [4] There is a one-to-one correspondence between signed permuta-
tions and permutation matchings where each edge has weight 1.

In other words, we can transform each permutation matching into a permuta-
tion by ignoring the weights. On the other hand, we can reduce the search space
to permutation matchings. Interpreting the MB graph as the special case of a
weighted graph (where each weight is set to 1) leads to the following formulation
of the wCMP. Given a node set V with |V | = 2n and q permutation matchings
M1, . . . ,Mq, find a permutation matching Mτ with edge weights 1 that mini-
mizes

∑q
k=1(n − σ(Mτ ,Mk)). Note that we do not restrict the weights of the

edges of the given permutation matches. While all edges in the initial problem
have weight 1, the branch and bound algorithm will create partial solutions
where also other edge weights are possible.

Lemma 4. The weighted cycle distance n− σ(S, T) on permutation matchings
is a metric.

Proof. 1. Positive definiteness: n− σ(S, S) = 0, because the graph decomposes
into n odd cycles. For permutation matchings S, T with S 6= T , there must
be at least one cycle with at least four edges, thus the overall number of

cycles is less than n. As each cycle adds at most 1 to σ(S, T), σ(S, T) < n
and n− σ(S, T) > 0.

2. Symmetry: This follows directly from the symmetry of σ(S, T).
3. Triangle inequation: We show that for permutation matchings S, T , and R,
n− σ(S,R) + n− σ(R, T) ≥ n− σ(S, T). For this, we modify R successively
by the following rules. (a) If (V, S ∪ R) contains an even cycle with only
two edges, change the weight of the corresponding edge in R such that the
cycle becomes odd. This increases σ(S,R) by 2wr

wt
− 1. In (V,R ∪ T), this

either changes an even cycle into an odd cycle, or an odd cycle into an even
cycle. Thus, σ(S,R) + σ(R, T) does not decrease. (b) If (V, S ∪ R) contains
a cycle with at least four edges, remove two of the edges of R and rejoin
the endpoints such that the cycle is split into two cycles. Weight the new
edges such that both cycles are odd cycles. If the original cycle was even,
σ(S,R) increases by 2wr

wt . As the operation can effect at most two cycles in
(V,R ∪ T), the worst possible effect on σ(R, T) is that we merge two odd
cycles into an even cycle. Thus, σ(S,R) + σ(R, T) does not decrease. If the
original cycle was odd, σ(S,R) increases by 1, and the overall number of odd
cycles changes by 1. As the parity of the number of odd cycles is always equal
in (V, S ∪R) and (V,R ∪ T), the worst possible effect on σ(R, T) is that we
merge two odd cycles into one odd cycle. Thus, σ(S,R) + σ(R, T) does not
decrease. (c) If none of the two rules above can be applied, S and R contain
the same edges, but maybe with different weights. Change the weights of
the edges of R such that they have the same weights as the edges in S.
Note that this step has no effect on the cycles, as all cycles in (V, S ∪ R)
are already odd. Thus, σ(S,R) + σ(R, T) remains unchanged. The whole
transformation transformed R into S without decreasing σ(S,R) + σ(R, T).
Therefore, n−σ(S,R)+n−σ(R, T) ≥ n−σ(S, S)+n−σ(S, T) = n−σ(S, T).

The following lemma will give us a lower bound for the solution value of a wCMP.

Lemma 5. Given a wCMP instance associated with weighted matchings M1, . . . ,Mq

and solution Mτ , we have

q∑
k=1

(n− σ(Mτ ,Mk)) ≥ qn

2
−
q−1∑
k=1

q∑
l=k+1

σ(Mk,M l)
q − 1

Proof. Using the triangle inequality given in Lemma 4, we get

qn

2
−
q−1∑
k=1

q∑
l=k+1

σ(Mk,M l)
q − 1

=
1

q − 1

q−1∑
k=1

q∑
l=k+1

(n−σ(Mk,M l)) ≤
q∑

k=1

(n−σ(Mτ ,Mk))

In order to describe partial solutions, we must introduce the contraction of an
edge. Given a weighted graph G = (V,E) with |V | = 2n and E =

⋃q
k=1M

k,
where each Mk is a permutation matching, the contraction of an edge e = (vi, vj)
is an operation that modifies G as follows. The nodes vi, vj are removed from
V . Each permutation matching Mk is transformed into Mk/e by the following

rules. If e ∈Mk, remove e from Mk, i.e. Mk/e = Mk \{e}. Otherwise, let (a, vi)
and (b, vj) be the two edges incident to vi and vj in Mk. Remove these edges and
add a new edge (a, b), i.e. Mk/e = Mk \ {(a, vi), (b, vj)} ∪ {(a, b)}. The weight
of the new edge (a, b) will be set to w(a, b) := w(a, vi) + w(b, vj) + 1. Note that
this is also an odd number, as w(a, vi) and w(b, vj) are odd. Analogously, the
base matching H will be replaced by H/e.

Lemma 6. [8] Given two perfect matchings M and L of V and an edge (vi, vj) ∈
M , M ∪L defines a Hamiltonian cycle of V if and only if (M/e)∪ (L/e) defines
a Hamiltonian cycle of V \ {vi, vj}.

Lemma 7. Let M1, . . . ,Mq be a wCMP instance, let Mτ be a permutation
matching with edge weights 1, and let e ∈Mτ be an edge. Then,

q∑
k=1

(n− σ(Mτ ,Mk)) = q −
q∑

k=1

σ(Mk, {e}) +
q∑

k=1

(n− 1− σ(Mτ/e,Mk/e))

Proof. A cycle in Mτ ∪ Mk is either absorbed by the contraction step, or it
corresponds to a cycle in Mτ/e ∪Mk/e of the same length. In the first case,
the absorbed cycle is equivalent to the cycle in Mk ∪ {e}, and the sum of the
scores of the absorbed cycles is

∑q
k=1 σ(Mk, {e}). As there are no new cycles

in Mτ/e ∪Mk/e, we get
∑q
i=1 σ(Mτ ,Mk) = −

∑q
k=1 σ(Mk, {e}) +

∑q
k=1(n −

σ(Mτ/e,Mk/e)) = q −
∑q
k=1 σ(Mk, {e}) +

∑q
k=1(n− 1− σ(Mτ/e,Mk/e)).

By combining Lemmas 6 and 7, we get the following

Corollary 1. Given a wCMP instance M1, . . .Mq with solution Mτ and an
edge e ∈Mτ , then Mτ \{e} is a solution of the wCMP instance M1/e, . . . ,Mq/e.

We are now ready to describe our branch and bound algorithm for wCMP. A
partial solution consists of a matching that is not necessarily perfect, and the
lower bound of a partial solution M can be calculated by contracting all edges in
M and calculating the lower bound of the contracted graph, using the formulas
described in Lemmas 5 and 7. In each step, we select the partial solution M with
the currently least lower bound and expand it as follows. Let V ′ be the nodes of
V such that forall vi ∈ V ′, vj ∈ V : (vi, vj) 6∈ M , and let va be a fixed node in
V ′. Then, we create new partial solutions M ′ by setting M ′ = M ∪(va, vb) for all
vb ∈ V ′, vb 6= va. Partial solutions M ′ that cannot be expanded to a permutation
matching (i.e. M ′ ∪H contains a cycle that is not a Hamiltonian cycle) can be
directly discarded, for all other partial solutions we calculate the lower bounds.
The algorithm has found an optimal solution for the wCMP when the partial
solution with the least lower bound is a perfect matching.
The algorithm can easily be extended such that it can solve the wRTMP or
the TMP by adding the following step. Whenever the best partial solution
Mτ is a perfect matching, create the corresponding permutation πτ and test
if

∑q
k=1 dw(πk, πτ) is equal to the lower bound (of course one has to take dt

instead of dw if one wants to solve the TMP). In this case, we have found an
optimal solution. Otherwise, we increase the lower bound for Mτ and reinsert it

into the set of partial solutions. We can get a further speed-up of the pairwise
distance algorithm by providing an upper bound (remember that we only want
to test if the sum of the pairwise distances is equal to the lower bound, thus
we can abort the pairwise distance algorithms if the currently best results are
above this bound). If one wants to solve the TMP, partial solutions are further
restricted to matchings where all edges are of the form (+i,−j), because other
edges correspond to a change in orientation in the permutation and therefore
these permutations cannot be sorted by transpositions only.

5 Experimental results

We tested our algorithm on artificial datasets with 37 and 100 markers, reflect-
ing the size of mitochondrian and chloroplast genomes. We created datasets
by, starting from the identity permutation, creating three different sequences of
operations to get the input genomes. The weight of the edges is uniformly dis-
tributed in [0.5r, 1.5r], where r is the expected weight of an edge, varying from 2
to 15. For the data sets to test the transposition median solver, wt was set to 1.
For the data sets to test the weighted reversal and transposition median solver,
wr was set to 1, and we created different data sets for wt = 1, wt = 1.5, and
wt = 2. When creating the data sets, the probability of performing a transposi-
tion reflects the weight of wt, i.e. the expected ratio of reversals to transpositions
is wt : wr. For each combination of these parameters, we created 10 data sets.
All tests were performed on a standard 3.16 GHz PC, the running time for each
test case was limited to one hour, and RAM was limited to 4GB.
The experiments showed that the size of the datasets has only little influence on
the results. Up to an expected edge length of r = 8, we could solve all test cases
exactly, most of them even in less than one second. For higher distances, the run-
ning times increased. However, we could still solve 9 instances of the TMP with
r = 15 and n = 37 with an average running time of 6:21 min, and 6 instances of
the TMP with r = 15 and n = 100 with an average running time of 16:27 min.
For the instances of the wRTMP, the running times depend on the used weight
ratio. While setting wr : wt to 1 : 2 allowed us to solve all test cases within a
few seconds, the running times increased for the other weight ratio. Moreover,
we had to prune the heap due to the memory limit in some cases, which means
that there is a slight chance that we missed the optimal solution. Nevertheless,
we were still able to solve all test cases, except for a few test cases with n = 100,
wr : wt = 1 : 1, and r > 13. Using the approximation algorithm instead of the
exact algorithm for the pairwise distances resulted in better running times at
almost the same accuracy. In most cases, we found a solution of same weight
as with the exact algorithm, and the gap between the weights of the solutions
never exceeded 1.
A comparison with GRAPPA-TP on the instances of the TMP shows that GRAPPA-TP
is slightly less accurate than our median solver, but its main drawback is the
speed. For r = 7, its average running time was 3:36 min (n = 37) respectively
6:41 min (n = 100), while our algorithm solved these test cases within less than

one second. Increasing the edge lengths further decreased the number of solved
test cases. For n = 37, none of the test cases with r ≥ 14 could be solved within
one hour. For n = 100, none of the test cases with r ≥ 11 could be solved within
one hour.
A more detailed view of the test results can be found in Appendix A. In the
tables, we list the number of solved test cases and the average running time
of the approximation algorithm and the exact algorithm for each combination
of parameters, as well as the average gap and the maximum gap between the
solution of the approximation algorithm and the exact algorithm. Of course, the
gaps can only be computed for test cases which have been solved by both al-
gorithms, and the average running times only consider test cases that could be
solved within the time limit. The column “proven exact” indicates the number of
test cases where we can assure that the exact algorithm did not miss an optimal
solution due to heap pruning. Note that a solution there we cannot assure this
might still be exact. In fact, as we only prune the currently worst solutions, the
probability of missing an optimal solution is rather low.

6 Conclusion

We presented an extension of Caprara’s median solver that can solve instances
of the TMP and the wRTMP. The method has been tested on artificial datasets,
showing that is possible to solve the wRTMP and the TMP exactly in many
cases. A comparison with GRAPPA-TP on TMPs shows that our algorithm brings
a speed improvement of several orders of magnitude.

References

1. D. Bader, B. Moret, and M. Yan. A linear-time algorithm for computing inversion
distance between signed permutations with an experimental study. Journal of
Computational Biology, 8:483–491, 2001.

2. M. Bader, M. Abouelhoda, and E. Ohlebusch. A fast algorithm for the multiple
genome rearrangement problem with weighted reversals and transpositions. BMC
Bioinformatics, 9:516, 2008.

3. M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions, and
inverted transpositions. Journal of Computational Biology, 14(5):615–636, 2007.

4. V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. SIAM
Journal on Computing, 25(2):272–289, 1996.

5. V. Bafna and P. Pevzner. Sorting by transpositions. SIAM Journal on Discrete
Mathematics, 11(2):224–240, 1998.

6. M. Bernt, D. Merkle, and M. Middendorf. Using median sets for inferring phylo-
genetic trees. Bioinformatics, 23:e129–e135, 2007.

7. B. Bourque and P. Pevzner. Genome-scale evolution: Reconstructing gene orders
in the ancestral species. Genome Research, 12(1):26–36, 2002.

8. A. Caprara. The reversal median problem. INFORMS Journal on Computing,
15(1):93–113, 2003.

9. D. Christie. Genome Rearrangement Problems. PhD thesis, University of Glasgow,
1998.

10. I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpo-
sitions. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
3(4):369–379, 2006.

11. B. Moret, S. Wyman, D. Bader, T. Warnow, and M. Yan. A new implementation
and detailed study of breakpoint analysis. In Pacific Symposium on Biocomputing,
pages 583–594, 2001.

12. I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete.
Electronic Colloquium on Computational Complexity, 5(71), 1998.

13. A. Siepel and B. Moret. Finding an optimal inversion median: Experimental results.
In Proc. 1st Workshop on Algorithms, volume 2149 of Lecture Notes in Computer
Science, pages 189–203. Springer-Verlag, 2001.

14. F. Yue, M. Zhang, and J. Tang. A heuristic for phylogenetic reconstruction using
transposition. In Proc. 7th IEEE Conference on Bioinformatics and Bioengineer-
ing, pages 802–808, 2007.

A Detailed experimental results

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:06 10 9 1:16

8 10 0 0 0:02 10 10 0:04

9 10 0 0 0:15 10 9 2:22

10 10 0.22 1 1:17 9 5 6:00

11 10 0 0 2:12 8 3 1:54

12 10 0.11 1 2:18 9 2 7:22

13 10 0.11 1 1:59 8 3 4:17

14 10 0.13 1 4:37 8 0 15:32

15 10 0.11 1 2:57 9 3 6:21
Table 1. n = 37, transposition distance

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0 0 0:00 10 10 0:00

10 10 0 0 0:00 9 9 0:00

11 10 0 0 0:04 10 10 0:04

12 9 0 0 0:25 9 8 0:30

13 9 0.17 1 7:50 6 4 2:35

14 9 0.14 1 2:54 7 5 0:19

15 7 0.17 1 7:24 6 3 16:27
Table 2. n = 100, transposition distance

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:01 10 10 0:01

8 10 0 0 1:20 10 8 1:24

9 10 0.1 1 0:06 10 10 0:03

10 10 0.2 1 2:48 10 6 3:01

11 10 0 0 4:19 10 2 6:17

12 10 0.2 1 5:23 10 2 6:04

13 10 0.3 1 9:38 10 1 11:05

14 10 0.2 1 9:28 10 0 13:18

15 10 0.3 1 10:49 10 1 16:21
Table 3. n = 37, wr = 1, wt = 1

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:05 10 10 0:05

9 9 0 0 1:01 10 7 1:22

10 10 0 0 0:38 10 8 0:52

11 10 0 0 4:21 10 7 4:49

12 10 0 0 0:53 10 7 0:58

13 8 0 0 2:09 8 6 2:39

14 7 0 0 16:46 7 4 19:33

15 4 0 0 13:40 3 2 1:30
Table 4. n = 100, wr = 1, wt = 1

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.05 0.5 0:00 10 10 0:00

7 10 0.05 0.5 0:00 10 10 0:00

8 10 0.05 0.5 0:00 10 10 0:00

9 10 0.05 0.5 0:00 10 10 0:00

10 10 0.15 0.5 0:06 10 9 0:01

11 10 0 0 0:10 10 9 0:11

12 10 0.1 0.5 0:05 10 8 0:05

13 10 0 0 0:56 10 8 1:16

14 10 0.1 0.5 1:09 10 7 1:33

15 10 0.05 0.5 0:09 10 8 0:09
Table 5. n = 37, wr = 1, wt = 1.5

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.05 0.5 0:00 10 10 0:00

7 10 0.05 0.5 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0.05 0.5 0:02 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0.1 0.5 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0.2 1 0:01 10 10 0:01

14 10 0.05 0.5 0:07 10 10 0:03

15 10 0 0 0:20 10 8 0:19
Table 6. n = 100, wr = 1, wt = 1.5

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0 0 0:00 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0 0 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0 0 0:00 10 10 0:00

14 10 0 0 0:02 10 10 0:03

15 10 0 0 0:01 10 10 0:01
Table 7. n = 37, wr = 1, wt = 2

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0.1 1 0:00 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0 0 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0 0 0:00 10 10 0:00

14 10 0 0 0:00 10 10 0:00

15 10 0 0 0:00 10 10 0:00
Table 8. n = 100, wr = 1, wt = 2

r solved avg gap max gap avg time

2 10 0 0 0:00

3 10 0.2 2 0:04

4 10 0.3 2 0:16

5 9 0.22 1 0:22

6 8 0.13 1 2:57

7 8 0.5 2 3:36

8 1 0 0 13:25

9 3 0.33 1 4:23

10 3 0.2 3 0:21

11 0

12 0

13 0

14 0

15 0

r solved avg gap max gap avg time

2 10 0 0 0:00

3 10 0 0 0:05

4 10 0.1 1 0:29

5 10 0 0 0:34

6 10 0.4 2 2:06

7 10 0.2 1 6:41

8 10 0 0 12:35

9 7 0.43 2 19:08

10 1 1 1 16:16

11 3 0 0 7:54

12 2 0 0 21:34

13 1 1 1 39:55

14 0

15 0

Table 9. GRAPPA-TP, n = 37 (left) and n = 100 (right).

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

