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Abstract

This report presents the case study of an engine control applica-
tion.

The objective of the case study is to demonstrate the applicabil-
ity of the concepts from our Timing Model for AUTOSAR and the
RTE Tracing approach [4] on an integrated, rigorous and close to
real-world example. This includes the modeling of the relevant signal
paths within the application software of the corresponding AUTOSAR
system and their association with application-specific timing require-
ments. Furthermore, suitable timing properties are determined with
the help of an RTE Tracing experiment such that the degree of fulfill-
ment of the timing requirements can be evaluated by means of Timing
Oscilloscope Diagrams.
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1 Introduction

In order to demonstrate the applicability of the developed concepts of our
Timing Model for AUTOSAR [4] for describing signal, expressing timing re-
quirements and determining timing properties by means of the RTE Tracing
approach, a case study has been conducted. The case study, an engine con-
trol application, stems from a legacy demonstration project conducted at
ETAS (ETAS DemoCar project [8], [9]) where the functionalities of an en-
gine control application have been developed with the help of ETAS tools.
In the course of our case study, it has been re-engineered to an AUTOSAR-
compliant ECU system for our purposes.

The engine control application contains several functionalities for which
timing requirements can be specified. These must be satisfied by an
AUTOSAR-compliant realization. The objective of the case study is to de-
scribe these timing requirements by means of the concepts of the Timing
Model for AUTOSAR and to evaluate their degree of fulfillment by means
of an RTE Tracing experiment.

1.1 Outline

The rest of this report is structured as follows:
Section 2 gives a brief introduction into the widely employed working

principle of the four-stroke cycle for internal combustion engines. Further-
more, the tasks of an engine control application to control the combustion
processes in an engine are described. The consequences from engines be-
ing operated at different engine speeds on the determination of important
operating parameters are also discussed.

Section 3 then gives a more detailed overview of the basic functionalities
of the engine control application under consideration as case study. The
relevant input and output signals between the engine control application and
its environment are explained. This also includes a description of the most
relevant signal paths for the different functionalities as well as the timing
requirements which can be associated with the signal paths.

Our case study object is based on a legacy engine control application
from a previous demonstration project at ETAS (ETAS DemoCar project
[8], [9]). For our purposes, we have reengineered the engine control appli-
cation to an AUTOSAR-compliant ECU system. Section 4 describes the
AUTOSAR compliant ECU software architecture of the reengineered engine
control application and the technical realization as an AUTOSAR compliant
single ECU system.

Section 5 then describes the application of the concepts of the Timing
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Model for AUTOSAR to the AUTOSAR-compliant engine control applica-
tion. The relevant signal paths of the basic functionalities that have been
identified are modeled by means of hierarchical event chains that denote path
specifications. The latter are associated with application-specific timing re-
quirements. The objective is then to conduct an RTE Tracing experiment to
determine the timing properties and to evaluate the degree of fulfillment of
the timing requirements.

The technical setup used for RTE Tracing experiments with the
AUTOSAR-compliant engine control application is described in section 6. A
hardware-in-the-loop (HIL) setup is designed where the realized AUTOSAR
ECU system is coupled to a simulation hardware running a simulation model
for the physical processes in an engine, the vehicle it is installed in and a
virtual driver who drives the vehicle. From the development of the input
and output signals of the engine control application it is shown that the
implemented AUTOSAR-compliant engine control application operates as
intended. The HiL setup is thus viable for performing RTE Tracing experi-
ments.

Section 7 discusses the results from a conducted RTE Tracing experiment.
The determined timing properties of the AUTOSAR-compliant engine con-
trol application at a specific engine speed (2000rpm) are presented, and the
degree of fulfillment of the timing requirements is discussed with the help of
the Timing Oscilloscope Diagrams.

Section 8 provides a summary of the results of this report.

2 Internal Combustion Engines

2.1 Introduction

In internal combustion engines ([10], [13]), chemical energy provided in the
form of liquid fuel is transformed into heat and mechanical energy by means
of combustion. The combustion is termed internal as it takes place within a
combustion chamber. The mechanical energy is produced at the crankshaft
of the engine and then transferred via the drivetrain to the wheels where it
drives the vehicle.

In the following, the four-stroke cycle which is widely employed in internal
combustion engines in automotive vehicles is explained. The engine control
application of our case study controls such kind of combustion processes in
an eight-cylinder gasoline engine with intake-manifold fuel injection1. To

1Note that as a large variety of other types of engines exists, with respect to our case
study, we restrict our considerations to this specific type of engines where the air/fuel
mixture is prepared outside the combustion chamber in the intake manifold.
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understand the required functionalities of an engine control application, and
thus the purpose of our case study object, it is helpful to understand the
basic working principle of such engines.

2.2 The Four-Stroke Cycle

Combustion process in a single cylinder The four stroke cycle is an
operating cycle of internal combustion engines such as gasoline engines widely
used in automotive vehicles. Figure 1 depicts the four different strokes of a
combustion process in a single cylinder.

Figure 1: Combustion process in a single cylinder

The four strokes are:

1. Intake: Fuel is injected into the intake manifold by an injector where it
is mixed with air from the inlet. The air/fuel mixture is then soaked
into the combustion chamber through the downwards movement of the
piston and the consequent lower pressure in the combustion chamber.
When the piston reaches the bottom dead center (BDC) and when the
inlet valve is closed, the air/fuel mixture is uniformly distributed in the
combustion chamber.

2. Compression: The air/fuel mixture in the combustion chamber is com-
pressed until the piston reaches the top dead center (TDC). Before the
piston reaches the TDC, an ignition spark must be produced by the
ignition plug in order to ignite the air/fuel mixture.

3. Power (Combustion): While the air/fuel mixture is burned, the piston
is pushed downwards through the expansion of the combustion gases.
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This movement is translated to a torque on the crankshaft which drives
the drivetrain. In this phase, the chemical energy of the air/fuel mix-
ture is transformed into heat and mechanical energy.

4. Exhaust: The outlet valve opens and the exhaust gases stream out of
the combustion chamber. Additionally, the piston pushes the exhaust
gases out of the combustion chamber during its upwards movement.

In order to continuously deliver mechanical energy, the four-stroke combus-
tion cycle is repeated over and over.

Coordination of combustion processes in multiple cylinders
Gasoline engines installed in automotive vehicles in general have multiple
cylinders where individual such combustion processes take place. Each com-
bustion process in the cylinders makes a contribution to the overall driving
torque. In such multi-cylinder engines, the single combustion processes need
to be coordinated according to a specific pattern. This is required to min-
imize vibrations caused by the inertia forces of the moving masses in the
engine. In the eight-cylinder engine for which the engine control application
of our case study has originally been developed, for example, the combustion
processes are arranged as shown in figure 2.

Figure 2: Arrangement of combustion processes in the eight-cylinder engine
under consideration

The figure shows that the single combustion processes have a relative off-
set of 90◦. The combustion processes are independent of each other, meaning
that no two combustion processes in any two cylinders happen at the same
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time. This has the effect that the inertia forces are leveled out such that the
engine runs smoothly with a minimum of vibrations.

The figure also shows that the four stroke phases each take 180◦ mea-
sured in terms of an angle relative to the crankshaft, the so-called crankshaft
angle (CA). One combustion process takes two crankshaft revolutions, i.e.,
720◦CA. Fuel is injected in the intake cycle and ignited just before the end
of the compression cycle, before the piston reaches the TDC. The power and
exhaust strokes then complete the combustion cycle.

2.3 Tasks of an Engine Control Application

In order to keep the engine running, two parameters need to be determined
for each combustion process: the injection time and the ignition time. This
is the main task of an engine control application. In the following, the basics
for the determination of these parameters are explained.

Injection Time Parameter The driving torque delivered by an engine
mainly depends on the load of fuel that is combusted in the cylinders. A
higher air/fuel load in a combustion chamber leads higher forces through
a greater volume expansion of the gas in the cylinder. This consequently
leads to a higher driving torque. For an optimal combustion2, the air/fuel
ratio should be close to the theoretical ideal ratio of 14.7:1 (stoichiometric
mixture). I.e., in order to optimally combust 1kg of fuel, 14.7 kg air are
required. In an air-flow controlled engine as considered in our case study,
the fuel mass to be injected is determined based on the current air flow such
that the optimal air/fuel ratio is maintained. This is the basis for an optimal
combustion and efficient usage of the chemical energy provided by the fuel.
The mass of fuel that is injected into a combustion chamber by an injector
is proportional to the time that the injector opens, thus the term injection
time. The current mass air flow on which the fuel mass depends is measured
by a mass air-flow sensor which is installed in the intake system right after
the throttle (see figure 3). The mass air flow sensor measures the current
air-flow in kg/h. From that, the fuel mass per stroke can be determined.
The air-flow is dictated by the throttle which is governed by the accelerator
pedal. The latter is naturally under the control of the driver who, by this
mechanism, can request a specific driving torque in order to accelerate the
vehicle.

Ignition Time Parameter After the production of an ignition spark,
the combustion of the air/fuel mixture in a cylinder takes approximately
2ms. The ignition time must be determined in such a way that the maximum

2optimal in this context means that no fuel is left unburnt and that the exhaust gases
contain as few polluting substances as possible
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pressure from the combustion is achieved shortly after the top-dead center.
Thus, the ignition angle needs to be adjusted to earlier points in time at
higher engine speeds, i.e., longer before the piston reaches the top dead center
([10], [13]). The ignition time is in general determined as an angle that is
relative to the crankshaft. It determines the point in time when the ignition
spark must be produced before the cylinder reaches the TDC. The ignition
time depends on the speed of the engine and the load of the air/fuel mixture
for the combustion process. As the air/fuel mixture depends on the mass
air flow sensed by the mass air flow sensor, the ignition time also indirectly
depends upon the latter.

Figure 3 depicts a schematic overview of an engine with the most impor-
tant sensors and actuators for the basic operation of the engine through an
engine control application.

Figure 3: Schematic overview of an engine with engine control application
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Consequences from combustion process in one cylinder To op-
erate the engine at different engine speeds, the injection time and ignition
time parameters need to be provided in synchrony with the speed of the en-
gine. To achieve this synchronization, the injection time and ignition time
parameters are requested on a cylinder-specific basis from the engine control
application. This translates into engine speed dependent requests for the
injection time and ignition time parameters for the combustion process.

Figure 4 depicts the cylinder-specific requests from a single cylinder at
different engine speeds.

Figure 4: Number of cylinder-specific requests from a single cylinder at dif-
ferent engine speeds

The considered engine speed range between 800 rpm and 6000 rpm is the
range where the engine is operated after being started. The lower range value
is the engine speed where the engine is idling to prevent it from stalling. The
upper range value is a defined limit to prevent the engine from mechanical
damages due to uncontrollable combustion processes (“knocking”) at higher
engine speeds. As can be seen from the figure, the number of cylinder-specific
requests is linear dependent on the speed of the engine. The time between
two cylinder-specific requests also depends on the speed of the engine and
decreases with increasing speed of the engine. At the highest speed of the
engine, i.e., at 6000 rpm, only 20ms pass between two consecutive combustion
processes in an individual cylinder. At the lowest speed of the engine, i.e.,
at 800rpm, 150ms pass between two consecutive combustion processes in an
individual cylinder. Between two such cylinder-specific combustion processes,
the ignition time and injection time values need to be determined based on
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the latest inputs from the sensors (i.e., the mass air flow sensor).
From the above considerations, timing requirements for the correct oper-

ation of a single combustion process can be derived:

• Between each two cylinder-specific combustion processes, the injection
time and ignition time parameters need to be determined based on the
current state of the engine (inputs from sensors)

• The most stringent requirements on the calculation of new values for
the injection time and ignition time parameters apply at the highest
speed of the engine. In our case study, this is at 6000rpm.

• At the highest speed of the engine, the injection time and ignition time
parameters need to be determined at least every 20ms based on newly
acquired inputs from the respective sensors.

By satisfying the timing requirements towards the determination of the
injection time and ignition time parameters at the highest speed of the engine
it is guaranteed that the less stringent timing requirements that apply at
lower engine speeds are also satisfied.

Consequences from combustion processes in multiple cylinders
Figure 5 shows a similar diagram as shown in figure 4, this time, the number
of cylinder-specific requests from eight cylinders are considered (as in our
case study). In the considered engine, the combustion processes of the single
cylinders are arranged according to the coordination pattern as shown in
figure 2.

Figure 5: Number of cylinder-specific requests from eight cylinders at differ-
ent engine speeds
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Due to the coordination pattern of the combustion processes with their
90◦CA offset to each other, injection time and ignition time parameters are
requested in short intervals from the engine control application. When the
engine is continuously operated, every 90◦CA a different cylinder requests
its parameters. At the highest speed of the engine, i.e. at 6000rpm, every
20ms
8

= 2.5ms a new request is made from one of the cylinders. The engine
control application must be capable to process these requests and to deliver
the requested injection time and ignition time parameters to the respective
actuators.

From the latter considerations, requirements for a complete engine con-
trol application for an eight cylinder engine can be derived. In principle, it
must be capable to determine the parameters for the individual combustion
processes that are independent of each other at any speed of the engine.

2.4 Summary and Conclusion

In this section, the working principle of the four-stroke cycle that is widely
employed in gasoline engines that power automotive vehicles has been ex-
plained. The main task of an engine control application is to determine the
parameters to operate the combustion processes in the cylinders of an engine:
the injection time and the ignition time. The injection time determines the
amount of fuel that is injected into the intake manifold to be combusted in
a cylinder. It thus decides upon the driving torque that is delivered by the
engine. The ignition time determines the point in time when the air/fuel
mixture is ignited. It is important for a complete and optimal combustion in
order to achieve a maximum conversion of the chemical energy to mechani-
cal energy. To influence the amount of fuel that is injected for a combustion
process, the amount of air that is available for the combustion is regulated.
This is performed by means of a throttle that is installed in the intake sys-
tem. It is governed by the accelerator pedal which is under the control of the
driver. In order to deliver the driving torque requested by the driver in dif-
ferent driving situations, gasoline engines powering automotive vehicles are
operated at different engine speeds. The most stringent timing requirements
apply at the highest speed of the engine. Due to this fact, certain require-
ments towards the timely delivery of the parameters arise. These must be
satisfied by an engine control application. For the combustion process in
a single cylinder it is important that the injection time and ignition time
parameters are up-to-date and provided in time. This translates into certain
timing requirements on the functionality of an engine control application.
For the overall operation of the engine, it is important that the parameters
for the combustion processes in all cylinders are determined and provided in
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time according to the coordination scheme of the combustion processes em-
ployed by the engine. This translates into the requirement that the engine
control application must be capable to adequately operate the combustion
processes in all cylinders.

In the following section, the structure of the basic functionalities of the
engine control application under consideration, the signal paths they con-
tain and the timing requirements that can be formulated towards these are
outlined.

3 Engine Control Application: Basic Func-

tionalities, Signal Paths and Timing Re-

quirements

3.1 Introduction

The objective of the engine control application under consideration is to
control the combustion processes in the single cylinders of an air-flow con-
trolled, intake manifold fuel injected eight-cylinder engine in order to deliver
a desired driving torque according to the drivers wish. To control the com-
bustion processes, a multitude of functions are required which need to be
implemented in software. For our case study, we focus on the basic function-
alities. These are the control of the air-flow via the throttle, the calculation
of injection times and the ignition times, and the timely delivery of the latter
upon cylinder-specific requests.

Section 3.2 gives a coarse grain overview of the functionalities of our en-
gine control application. This is followed by a more detailed description of
the individual basic functionalities and the elementary functions they are
composed of in section 3.3. Furthermore, the chains of cause-and-effect and
related signal paths for the basic functionalities under consideration are de-
scribed as well as the timing requirements that must be satisfied and which
are associated with the signal paths. When mechanical parts are replaced
by electronics and software in automotive applications, specific redundancy
concepts need to be applied to guarantee the safety of the functionality. This
is also the case for our engine control application: the accelerator pedal and
the throttle are coupled electronically to the electronic control unit with the
engine control application. In our case study, this leads to the introduction
of redundant accelerator pedal sensors and redundant throttle sensors. This,
however, introduces additional functions as input signals must be acquired
redundantly and merged before any calculations based on these signals can be
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made. This also introduces additional timing requirements on the synchro-
nized processing of certain signals. These issues are also discussed further in
section 3.3. Section 3.4 provides a short summary of the basic functionalities
of our engine control application, the signal paths and the timing require-
ments.

3.2 Overview of the Basic Functionalities

Figure 6 depicts an overview the engine control application, the physical
processes it is embedded in and the signals exchanged between the engine
control application and the physical processes.

Figure 6: Overview of the engine control application, its environment and
the exchanged signals

The engine control application reads input values from various sensors
(i.e., mass air flow, current throttle angle3) and the set-point device that
is under the control of the driver (i.e., accelerator pedal position). Based
on those inputs, appropriate outputs for the actuators which influence the
combustion processes (i.e., fuel injectors and ignition plugs) are calculated.
Furthermore, the throttle position is controlled which dictates the air flow

3Note that also other input values from other sensors are read by the engine control
application, e.g., the engine speed, vehicle speed, coolant and inlet air temperatures,
battery voltage, lambda value etc. these, however, are not directly relevant for the signal
paths considered in our case study.
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in the intake. The latter influences the air/fuel ratio in the combustion
processes and thus the driving torque.

Figure 7 shows an overview of the internal structure and basic function-
alities of the engine control application.

Figure 7: Overview of the internal structure and basic functionalities

The overall functionality of the engine control application is divided into four
subsystems:

Air system The air system calculates a new desired throttle position based
on the current throttle position and the accelerator pedal position.
This influences the air flow and subsequently the injected fuel mass
and ignition timing for a combustion process.

Fueling system The fueling system calculates the fuel mass to be injected
in the intakte manifold for a combustion process in a cylinder. This is
based on the current mass air flow sensed in the intake system.

Ignition system The ignition system calculates the ignition angle that de-
termines the point in time when an ignition spark is produced to ignite
the air/fuel mixture in the combustion chamber. This is based on the
mass air flow and the current engine speed.

Injection time and ignition time actuation system The injection
time and ignition time actuation system delivers the latest values of
the two parameters upon a cylinder specific request. The calculation of
the two parameters is decoupled from the actuation as the parameters
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are pre-calculated for all cylinders (sequential injection). This allows
a fast response to a cylinder-specific request.

In our case study, specific functionalities that were traditionally realized as
purely mechanical systems are realized as mechatronical systems, i.e., as me-
chanical system additionally comprising electronics and software. The leg-
islative demands of the E-Gas concept [1] require the introduction of certain
redundancy concepts due to safety considerations when mechanical compo-
nents are replaced by electronics-based solutions. Such concepts include to
redundantly acquire inputs by multiple sensors and to compute a voted sig-
nal for further processing from the redundantly acquired sensor values. In
figure 7, the input signals for the accelerator pedal position and the throttle
position are thus duplicated.

In the following, the basic functionalities of the engine control application
are described in more detail.

3.3 Detailed Description of Basic Functionalities, Sig-
nal Paths and Timing Requirements

In the following, the individual functionalities of the engine control applica-
tion under consideration are described in more detail. This includes descrip-
tions of

• the structure of the functionalities by means of the elementary functions
they are composed of,

• the important signal paths, and

• the timing requirements that are specified towards the functionalities
and which can be associated with their signal paths.

3.3.1 Air system

Overview

The air system calculates a new desired throttle position based on the
current throttle position and the accelerator pedal position. This influences
the air flow and subsequently the injected fuel mass (and also the ignition
timing) for a combustion process.

The throttle installed in the engine is a dynamic system that needs to be
controlled. Together with the throttle installed in the engine, the air system
thus forms a closed-loop control application.

The air system is subdivided into several elementary functions that
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• capture input values from the accelerator pedal and throttle sensors
(functions AcceleratorPedalSensor and ThrottleSensor),

• analyze redundantly captured input values from the sensors and com-
pute a merged input signal (functions AcceleratorPedalVoter and
ThrottleSensor)

• analyze the merged accelerator pedal position input signal and compute
a desired throttle position set-point signal (function PedalFeel)

• compute a control signal for the adjustment of the current throttle
position based on the desired throttle position (function ThrottleCon-
troller)

• bring the computed desired throttle position into effect (function Throt-
tleActuator)

Figure 8 depicts an overview of the air system.

Figure 8: Overview of the air system

Signal Paths

The air system contains several signal paths between its input signals and
output signals. In principle, two conceptual signal paths can be identified:

• The first conceptual signal path is from the accelerator pedal position
to the desired throttle position. This signal path describes the chain
of cause-and-effect on how a change of the accelerator pedal position
influences the new throttle position.

• The second conceptual signal path is from the current throttle position
to the desired throttle position. This signal path describes the chain of23



cause-and-effect that corresponds to the feedback path of the throttle
control application.

Due to the required redundancy concepts, the accelerator pedal position
and the current throttle position are sensed by duplicate sensors and delivered
as separate signals. There are thus four concrete signal paths where each two
signal paths correspond to one conceptual signal path.

Figure 9 depicts an overview of the air system including identified signal
paths.

Figure 9: Overview of the air system, including identified signal paths

In the following, the timing requirements that can be associated with the
signal paths are described.
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Timing Requirements

Each of the identified signal paths of the air system is associated with
three different timing requirements. These originate from the fact that the
throttle control application in the air system is a continuous synchronous
real-time application. The timing requirements can be formulated as follows:

1. The first timing requirement is a timing requirement on the latency
of the signal transformation along the feedback path of the throttle
control application. A minimization of the path delay τ is required
such that these can be considered as being negligible. For this, the
path delay must be less than or equal to 1ms. This is expressed by

τThrottlePosition1 → DesiredThrottlePosition ≤ 1ms

and
τThrottlePosition2 → DesiredThrottlePosition ≤ 1ms

2.+3. The second and third timing requirement are timing requirements on
the latency between consecutive effective sampling and actuation ac-
tions. The throttle control application requires the maintenance of a
nominal effective sampling interval of 10ms. A deviation of 1ms is ac-
ceptable (acceptable effective sampling jitter). The same also holds for
the effective actuation interval (acceptable effective actuation jitter).
These timing requirements are expressed by

hsampling
ThrottlePosition1 → DesiredThrottlePosition = 10ms ± 1ms

and
hsampling
ThrottlePosition2 → DesiredThrottlePosition = 10ms ± 1ms

for the nominal sampling intervals, and

hactuationThrottlePosition1 → DesiredThrottlePosition = 10ms ± 1ms

and
hactuationThrottlePosition2 → DesiredThrottlePosition = 10ms ± 1ms

for the nominal effective actuation intervals.
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Figures 10(a) and 10(b) show the signal paths from the input signals
ThrottlePosition1 and ThrottlePosition2, respectively, to the output signal
DesiredThrottlePosition and the associated timing requirements.

(a) Signal path from input signal ThrottlePosition1 to output signal DesiredThrottlePosition
and associated timing requirements

(b) Signal path from input signal ThrottlePosition2 to output signal DesiredThrottlePosition
and associated timing requirements

Figure 10: Signal paths from input signals ThrottlePosition1/2 to output
signal DesiredThrottlePosition and associated timing requirements
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In the air system, the set-point signal for the throttle controller is com-
puted based on the accelerator pedal position. Three functions are involved in
this process. For the signal paths between the two accelerator pedal position
signals and the desired throttle position signal, similar timing requirements
can be formulated as for the feedback path:

1. The first timing requirement is a timing requirement on the latency of
the signal processing along the path from one of the accelerator pedal
position signals to the desired throttle position. As for the feedback
path of the throttle control application, the minimization of the path
delay τ is desirable. For this, the delay must be less than or equal to
1ms. This is expressed by

τAcceleratorPedalPosition1 → DesiredThrottlePosition ≤ 1ms

and
τAcceleratorPedalPosition2 → DesiredThrottlePosition ≤ 1ms

2.+3. The second and third timing requirement are timing requirements on
the latency between consecutive effective sampling and actuation ac-
tions. The throttle control application requires the maintenance of a
nominal effective sampling interval of 10ms. A deviation of 1ms is
acceptable. The same also holds for the effective actuation interval.
These timing requirements are expressed by

hsampling
AcceleratorPedalPosition1 → DesiredThrottlePosition = 10ms ± 1ms

and

hsampling
AcceleratorPedalPosition2 → DesiredThrottlePosition = 10ms ± 1ms

for the nominal sampling intervals, and

hactuationAcceleratorPedalPosition1 → DesiredThrottlePosition = 10ms ± 1ms

and

hactuationAcceleratorPedalPosition2 → DesiredThrottlePosition = 10ms ± 1ms

for the nominal effective actuation intervals.
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Figures 11(a) and 11(b) show the signal paths from the input signals Ac-
celeratorPedalPosition1 and AcceleratorPedalPosition2, respectively, to the
output signal DesiredThrottlePosition.

(a) Signal path from AcceleratorPedalPosition1 to DesiredThrottlePosition and associated
timing requirements

(b) Signal path from AcceleratorPedalPosition2 to DesiredThrottlePosition and associated
timing requirements

Figure 11: Signal paths from AcceleratorPedalPosition1/2 to DesiredThrot-
tlePosition and associated timing requirements

28



Furthermore, due to the employed redundancy concept, timing require-
ments on the synchronization of related input signals can be formulated.

The accelerator pedal position is provided as two signals from the two
different accelerator pedal sensors. After a conversion of the voltage values
delivered by the sensors (function AcceleratorPedalSensor), a voted accelera-
tor pedal position signal is determined (function AcceleratorPedalVoter). In
order to produce such a voted accelerator pedal position signal, it is required
that the values of the original voltage signals are temporally consistent. In
other words, the two input signals must be synchronized within an interval
of 1ms with respect to the voted accelerator pedal position signal. This is
expressed by

dAcceleratorPedalPosition1 → VotedPedalPosition ≤ 1ms (1)

and
dAcceleratorPedalPosition2 → VotedPedalPosition ≤ 1ms (2)

Figure 12 depicts the relevant segments of the signal paths from the input
signals AcceleratorPedalPosition1 and AcceleratorPedalPosition2 to the com-
mon intermediate signal VotedPedalPosition where both signal paths join.
Furthermore, the timing requirement that is associated with the two path
segments is shown.

Figure 12: Signal path segments from input signals AcceleratorPedalPosi-
tion1 and AcceleratorPedalPosition2 to common intermediate signal Vot-
edPedalPosition and associated timing requirements
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Similar to the accelerator pedal position, the throttle position is also pro-
vided as two signals from the two redundant throttle sensors. The conversion
of the voltage values delivered by the sensors to a percentage value and the
determination of a voted throttle position signal is performed by a single
function (function ThrottleSensor). Again, in order to produce such a voted
signal, the two input signals must be synchronized within an interval of 1ms
with respect to the voted signal. This is expressed by

dThrottlePosition1 → ThrottlePosition ≤ 1ms (3)

and
dThrottlePosition2 → ThrottlePosition ≤ 1ms (4)

Figure 13 depicts the relevant segments of the signal paths from input
signals ThrottlePosition1 and ThrottlePosition2 to the common intermediate
signal ThrottlePosition where both signal paths join. The timing requirement
that is associated with these is also shown.

Figure 13: Signal paths segments from ThrottlePosition1 and ThrottlePosi-
tion2 to ThrottlePosition and associated timing requirements
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3.3.2 Fueling System

Overview

The fueling system calculates the fuel mass to be injected in the intakte
manifold for a combustion process in a cylinder. The total fuel mass per
stroke is determined based on the current mass air flow in the intake system.

The fueling system is subdivided into several elementary functions that

• capture input values from the mass air flow sensor (function MassAir-
FlowSensor),

• determine the mass air flow per stroke (function AirMassFlow)

• determine the base fuel mass per stroke based on the mass air flow per
stroke (module BaseFuelMass)

• determine adjustments of the fuel mass due to specific wall wetting
effects in the intake system of the engine (function TransientFueling-
Compensation)

• determine the total fuel mass per stroke based on the transient fuel
mass per stroke (function TotalFuelMassPerStroke).

The determined total fuel mass per stroke applies for the combustion pro-
cesses in all cylinders (i.e., it is not determined on a cylinder-specific basis
in our engine control application). The actuation of the calculated total
fuel mass per stroke is performed by the injection time and ignition time
actuation system upon cylinder-specific requests.

Figure 14 depicts an overview of the fueling system.

Figure 14: Overview of the fueling system

In the following, the signal path and the associated timing requirements
are described.
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Signal Paths and Timing Requirements

Figure 15 depicts the relevant signal path that can be identified in the
fueling system for the calculation of the total fuel mass per stroke based on
the mass air flow.

Figure 15: Signal path from input signal MassAirFlow to intermediate signal
TotalFuelMassPerStroke and associated timing requirements

The signal path is associated with timing requirements that are derived
from the operation of the engine at its highest speed, i.e., at 6000rpm. As
described in section 2.3, the time between two consecutive combustion pro-
cesses in a single cylinder is 20ms at the highest speed of the engine. Be-
tween each such two combustion processes, the injection time and ignition
time parameters need to be determined for the next combustion process.

To achieve the latter in all cases, the following timing requirements are
formulated:

1. The calculation of a new value for the total fuel mass per stroke (basis
for injection time) shall take at maximum 10ms. This is expressed by

τMassAirFlow → TotalFuelMassPerStroke ≤ 10ms

2.+3. A new value for the total fuel mass per stroke shall be provided every
10ms. This translates into an effective actuation interval of 10ms. A
deviation of 1ms is acceptable. This also requires that the current
mass air flow is sampled every 10ms. Here, a deviation of 1ms is also
acceptable. These timing requirements are expressed by

hsampling
MassAirFlow → TotalFuelMassPerStroke = 10ms ± 1ms

for the nominal sampling interval, and

hactuationMassAirFlow → TotalFuelMassPerStroke = 10ms ± 1ms
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for the nominal effective actuation interval.

Note that the timing requirements are more strict than what would be
required: effective sampling and actuation intervals of 20ms would be suf-
ficient. The more strict timing requirements, however, guarantee that an
up-to-date value for the injection time actuation value is always available.

3.3.3 Ignition System

Overview

The ignition system calculates the ignition angle that determines the
point in time when an ignition spark is produced to ignite the air/fuel mixture
in the combustion chamber. This is based on the mass air flow and the current
speed of the engine.

The ignition system is subdivided into several elementary functions that
capture input values from the mass air flow sensor (function MassAir-
FlowSensor), determine the mass air flow rate (function AirMassFlow), and
determine the ignition time based on the mass air flow rate and the engine
speed (function IgnitionTiming).

The determined ignition time applies for the combustion processes in all
cylinders (i.e., as the injection time, it is not determined on a cylinder-specific
basis in our engine control application). The actuation of the calculated
ignition time is performed by the injection time and ignition time actuation
system upon cylinder-specific requests.

Figure 16 depicts an overview of the ignition system.

Figure 16: Overview of the ignition system
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Signal Paths and Timing Requirements

Figure 17 depicts the signal path that can be identified in the ignition
system for the calculation of the ignition time based on the mass air flow.

Figure 17: Signal path from input signal MassAirFlow to intermediate signal
IgnitionTime and associated timing requirements

As with the signal path in the fueling system, the signal path in the
ignition system is associated with timing requirements that are derived from
the operation of the engine at its highest speed. The timing requirements are
the same as for the fueling system, however, they refer to a different signal
path:

1. The calculation of a new value for the ignition time shall take at max-
imum 10ms. This is expressed by

τMassAirFlow → IgnitionTime ≤ 10ms

2.+3. A new value for the ignition time shall be provided every 10ms. This
translates into an effective actuation interval of 10ms. A deviation of
1ms is acceptable. This also requires that the mass air flow is sampled
every 10ms. Here, a deviation of 1ms is also acceptable. These timing
requirements are expressed by

hsampling
MassAirFlow → IgnitionTime = 10ms ± 1ms

for the nominal sampling interval, and

hactuationMassAirFlow → IgnitionTime = 10ms ± 1ms

for the nominal effective actuation interval.
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3.3.4 Injection Time and Ignition Time Actuation System

Overview

The injection time and ignition time actuation system delivers the latest
values of the two parameters to the respective actuators upon a cylinder
specific request. The calculation of the two parameters is decoupled from the
actuation as the parameters are pre-calculated for all cylinders (sequential
injection).

The injection time and ignition time actuation system is subdivided into
two elementary functions that

• each evaluate the cylinder number for which the injection time or igni-
tion time parameter is requested,

• update the output value for the respective actuator with the latest
value that has been determined for the injection time (function Injec-
tionTimeActuation),

• update the output value for the respective actuator with the latest
value that has been determined for the ignition time (function Igni-
tionTimeActuation).

Figure 18 depicts an overview of the injection time and ignition time
actuation system.

Figure 18: Overview of the injection time and ignition time actuation system
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Signal Paths and Timing Requirements

Figure 19 depicts the chains of cause-and-effect from the input signal
CylinderNumber, determining the cylinder for which the injection time and
ignition time parameter are requested, to the cylinder-specific output signals
InjectionTime and IgnitionTime. As the engine control application under
consideration controls the combustion processes in an eight-cylinder engine,
there are eight chains of cause-and-effect each from the signal CylinderNum-
ber to the signals InjectionTime[1..8] and IgnitionTime[1..8]. Furthermore,
the timing requirements that are associated with the chains of cause-and-
effect are shown.

Figure 19: Chain of cause-and-effect from stimulus signal CylinderNumber
to cylinder-specific response signals InjectionTime[1..8] / IgnitionTime[1..8]
and associated timing requirements

For the injection time and ignition time actuation, the following timing
requirements apply:

1. The latency between a cylinder-specific request and the update of the
injection time and ignition time values for the respective actuators must
be less than 1ms. This is expressed by

dCylinderNumber → InjectionTime[1..8] ≤ 1ms
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and
dCylinderNumber → IgnitionTime[1..8] ≤ 1ms

As the latency between two cylinder-specific requests for the injection
time and ignition time parameters depends on the current speed of the engine
(see section 2.3), the following engine-speed dependent timing requirements
apply:

2.+3. A combustion process performed according to the four-stroke cycle
takes 720◦CA, i.e., two engine revolutions (2 [rev/min]). At a specific

engine speed N [rev/min], N [rev/min]
2 [rev]

combustion processes take place per

minute. This translates to N [rev/min]
2 [rev]

1 [min]
60 [s]

= N
120 [s]

combustion processes

taking place per second. The reciprocal 120 [s]
N

determines the time be-
tween two consecutive combustion processes. It is thus required that
at a specific engine speed N [rev/min], the latency between two consec-
utive cylinder-specific requests for the injection time and ignition time
parameters is exactly 120

N
[s]. Consequently, the latency between two

consecutive updates of the injection time or ignition time parameter
for a specific cylinder must also be exactly 120

N
[s]. This is expressed by

hstimulus
CylinderNumber → InjectionTime =

120

N
s

for the nominal interval between consecutive stimuli, and

hresponseCylinderNumber → IgnitionTime =
120

N
s

for the nominal interval between consecutive responses.

For example, at a specific engine speed of 2000rpm, the time between two
cylinder-specific requests is 120

2000
[s] = 0.06s = 60ms.

Figure 19 shows the signal paths from the input signals CylinderNumber
to the output signals InjectionTime[1..8] and IgnitionTime[1..8], respectively.
Furthermore, the timing requirements which are associated with these signal
paths are shown.
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3.4 Summary and Conclusion

The objective of the engine control application under consideration is to con-
trol the combustion processes in the single cylinders of an air-flow controlled,
intake manifold fuel injected eight-cylinder engine in order to deliver a driv-
ing torque that corresponds to the drivers wish. At first, an overview on the
functionalities of our engine control application has been given (section 3.2).
For the purposes of our case study, we focus on its basic functionalities. Four
different functionalities have been distinguished. These are the control of the
air-flow via the throttle (air system), the calculation of injection times and
the ignition times (fueling system and ignition system), and the timely deliv-
ery of the latter upon cylinder-specific requests (injection time and ignition
time actuation system). Section 3.3 has then given more detailed descrip-
tions of the elementary functions they are composed of, the important signal
paths and chains of cause-and-effect that can be identified and the timing
requirements that can be associated with these.

In the following section, the AUTOSAR-compliant software architecture
that has been developed for the engine control application is described.

4 AUTOSAR Software Architecture and

ECU System

4.1 Introduction

In order to demonstrate the applicability of the concepts of the Timing Model
for AUTOSAR and the RTE Tracing approach, at first, an AUTOSAR-
compliant software architecture needs to be developed for the engine control
application.

The engine control application of the ETAS DemoCar project ([8], [9])
has already been re-engineered towards an AUTOSAR-compliant ECU sys-
tem in the course of several previously conducted works ([3], [5], [6], [11],
[12]). The AUTOSAR software architecture described in the following is an
advancement of the previous works. Several modifications have been made
as improvements (e.g., renaming of signals, restructuring of functions, etc.)
in order to adequately apply the developed concepts of the Timing Model for
AUTOSAR and the RTE Tracing approach.

In the following, the AUTOSAR software architecture is described. At
first, the design decisions that have been taken for which AUTOSAR concepts
have been applied in the development of an AUTOSAR-compliant software
architecture are described (section 4.2). Section 4.3 then gives an overview
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of the AUTOSAR-compliant software architecture for the engine control ap-
plication. In section 4.4, excerpts of the software architecture are discussed
which correspond to the individual functionalities of the engine control ap-
plication. Furthermore, it is explained how the signal paths that have been
described in section 3.3 for the basic functionalities of the engine control
application are represented in the AUTOSAR-compliant software architec-
ture. In order to realize the engine control application as single ECU system,
several steps need to be taken according to the AUTOSAR methodology.
These are the steps of the system configuration and the subsequent ECU
configuration. These are described in section 4.5.

4.2 Description of Employed of AUTOSAR Concepts

The following design decisions have been taken with respect to the application
of the AUTOSAR concepts for the specification of the application software
architecture of the engine control application:

Single RunnableEntity per AtomicSoftwareComponentType: Each
AtomicSoftwareComponentType is specified such that there is only a
single RunnableEntity in its InternalBehavior. When being triggered,
the RunnableEntity reads the values of the DataElementPrototypes,
performs a data transformation of this input data to output data,
and writes the output values onto the DataElementPrototypes in the
PPortPrototypes.

No Client/Server communication Client/Server communication is not
employed as the engine control application does not contain service-
oriented parts.

Employment of Sender/Receiver communication: In order to avoid
any data consistency problems due to (quasi-)parallel execution of
RunnableEntities, implicit Sender/Receiver communication is em-
ployed for the continuous synchronous real-time functionalities. In
those parts where the focus is on the reactivity to an external event
(injection time and ignition time actuation), explicit Sender/Receiver
communication is employed (reactive real-time functionalities).

Flat component hierarchy: To ease readability, only a single component
hierarchy level is used. I.e., only one CompositionType is employed in
which all AtomicSoftwareComponentTypes of the different functionali-
ties are instantiated to ComponentPrototypes and where the data flow
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between the components is established through AssemblyConnector-
Prototypes. This CompositionType is the top-level composition repre-
senting the overall engine control application.

Single instantiation of AtomicSoftwareComponentTypes: The dif-
ferent AtomicSoftwareComponentTypes are each instantiated only
once in the overall application software. In fact, the engine control
application contains no parts where multiple instantiation could be di-
rectly applied without further modifications of the original algorithms.

Furthermore, the following specifics apply for the engine control applica-
tion: In the technical setup that is used for RTE Tracing experiments with
the AUTOSAR-compliant engine control application, no real engine is em-
ployed, and also no hardware for the sensors and actuators is employed (see
section 6). To stimulate the inputs of the engine control application and pro-
vide adequate input values, and to also process its computed output values
adequately, a simulation model is used that simulates the processes in an
engine and also includes a virtual driver. The simulation model is executed
on a real-time simulation hardware that is coupled to the target hardware
with the AUTOSAR-compliant engine control application. The coupling is
established via a CAN bus.

In contrast to that, in a real AUTOSAR-compliant ECU, sensor and ac-
tuator hardware devices are connected via the microcontroller peripherals.
The latter are accessed in software through drivers that belong to the plat-
form software (basic software modules of the microcontroller abstraction layer
(MCAL), ECU abstraction layer and services layer as well as complex device
drivers). The basic software modules in general provide access to the sensors
and actuators by means of Client/Server communication, i.e., in the form of
a service that can be called by the sensor or actuator software components.

In our case study, however, system input signals and system output sig-
nals are communicated by means of Sender/Receiver communication. Sensor
software components have an RPortPrototype from which the input signal
of a sensor is read; analogously, actuator software components have a PPort-
Prototype onto which the output signal for an actuator is writte. This eases
the definition of remote communication via the employed CAN bus.

4.3 Overview of AUTOSAR Software Architecture

Figure 20 (see next page) depicts an overview of the developed AUTOSAR
software architecture of the engine control application.
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The AUTOSAR software architecture of the engine control application
is represented by the CompositionType EngineControlApplication that is re-
ferred to as top-level composition in the AUTOSAR system specification. It
contains 13 ComponentPrototypes that are all instances of a distinct Atomic-
SoftwareComponentType or SensorActuatorSoftwareComponentTypes. The
data-flow from system inputs to system outputs is established by means of
AssemblyConnectorPrototypes.

Note that

• only those software components are shown that belong to one of the
basic functionalities that are considered in our case study; the engine
control application consists of several more software components that
are not in the focus of our case study.

• only those PortPrototypes are shown that are relevant for later describ-
ing signal paths and timing requirements by means of the concepts of
the Timing Model for AUTOSAR; the software components have sev-
eral more PortPrototypes, however, these are not in the focus of our
case study.

In the following, excerpts of the AUTOSAR software architecture are
presented and discussed that correspond to the basic functionalities of the
engine control application.
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4.4 Detailed Description of Basic Functionalities

4.4.1 Air System

The functionality of the air system is realized by five software components.
Each software component realizes one or more functions that have been de-
scribed in section 3.3.1.

Figure 21 shows the excerpt from the AUTOSAR software architecture
for the air system of the engine control application.

Figure 21: Excerpt from the AUTOSAR software architecture for the air
system

In the following, the software components are described:

AcceleratorPedalSensorSWC This software component is a SensorAc-
tuatorSoftwareComponentType that realizes the function Accelerator-
PedalSensor. The APedSensorRunnableEntity captures the current ac-
celerator pedal position in terms of a voltage value delivered by the sen-
sor and translates it to the corresponding accelerator pedal position in
terms of a percentage value. For this, it reads the input values from the
respective DataElementPrototypes (APedSensor1Voltage and APedSen-
sor2Voltage), performs the voltage-to-percentage transformation, and
writes the output values on the DataElementPrototypes of the RPort-
Prototype PAPedPosition (APedPosition1 and APedPosition2). As the
E-GAS concept prescribes to employ redundant sensors, the voltage
values of the two distinct accelerator pedal sensors are captured and
translated to respective percentage values one by one.
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Figure 22 depicts the graphical representation for AcceleratorPedalSen-
sorSWC.

Figure 22: AcceleratorPedalSensorSWC

Note that

• the APedSensorRunnableEntity is triggered by a TimingEvent at a
5ms rate

• the accelerator pedal sensor voltage signals are clustered to a
single Sender/Receiver interface which types the RPortPrototype
RAPedSensorVoltages

• the APedSensorRunnableEntity can perform read actions on the
accelerator pedal sensor voltage signals by means of the implicit
Sender/Receiver communication pattern

• the accelerator pedal position signals are also clustered to a single
Sender/Receiver interface; this is used to type the PPortPrototype
PAPedPositions

• the APedSensorRunnableEntity can perform write actions on the
accelerator pedal position signals by means of the implicit
Sender/Receiver communication pattern.

AcceleratorPedalVoterSWC This software component is an AtomicSoft-
wareComponentType that realizes the function AcceleratorPedalVoter.
The APedVoterRunnableEntity reads the accelerator pedal positions de-
livered by the AcceleratorPedalSensorSWC and computes a voted accel-
erator pedal position.
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Figure 23 depicts the graphical representation for AcceleratorPedalVot-
erSWC.

Figure 23: AcceleratorPedalVoterSWC

Note that

• the APedVoterRunnableEntity is triggered by a TimingRequirement
at a 10ms rate

• the APedVoterRunnableEntity can access the required and provided
DataElementPrototypes by means of implicit Sender/Receiver
communication

ThrottleSensorSWC This software component is a SensorActuatorSoft-
wareComponentType that realizes the function ThrottleSensor. The
ThrottleSensorRunnableEntity captures the current throttle position
from the two redundant sensors by means of voltage values, transforms
them to percentage values and computes a voted throttle position value.

Figure 24 depicts the graphical representation for ThrottleSensorSWC.

Figure 24: ThrottleSensorSWC
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Note that

• the ThrottleSensorRunnableEntity is triggered by a Timing-
Requirement at a 5ms rate

• the ThrottleSensorRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication

ThrottleControllerSWC This software component is an AtomicSoftware-
ComponentType that realizes the functions PedalFeel and Throttle-
Controller. In a first step, the ThrottleControllerRunnableEntity deter-
mines the size of the desired throttle position based on the voted pedal
position (function PedalFeel). It then determines the size of the new
throttle position to be set based on the desired throttle position and the
current throttle position (function ThrottleController). The throttle
controller is realized as a PIDT1 controller without taking a potential
time delay into account.

Figure 25 depicts the graphical representation for ThrottleController-
SWC.

Figure 25: ThrottleControllerSWC

Note that

• the ThrottleControllerRunnableEntity is triggered by a Timing-
Requirement at a 10ms rate

• the ThrottleControllerRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication
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ThrottleActuatorSWC This software component is a SensorActuator-
SoftwareComponentType that realizes the function ThrottleActuator.
The ThrottleActuatorRunnableEntity takes the determined new throttle
position as a percentage value and transforms it to a voltage value.

Figure 26 depicts the graphical representation for ThrottleActuatorSWC.

Figure 26: ThrottleActuatorSWC

Note that

• the ThrottleActuatorRunnableEntity is triggered by a Timing-
Requirement at a 10ms rate

• the ThrottleActuatorRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication
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4.4.2 Fueling System

Figure 27 shows the excerpt from the AUTOSAR software architecture for
the fueling system of the engine control application.

Figure 27: Excerpt from the AUTOSAR software architecture for the fueling
system

In the following, the software components are described:

MassAirFlowSensorSWC This software component is a SensorActuator-
SoftwareComponentType that realizes the function MassAirFlowSen-
sor. The MassAirFlowSensorRunnableEntity captures the current mass
air flow in terms of a voltage value delivered by the sensor and trans-
lates it to the model value (unit kg/h).

Figure 28 depicts the graphical representation for MassAirFlowSensor-
SWC.

Figure 28: MassAirFlowSensorSWC

Note that

• the MassAirFlowSensorRunnableEntity is triggered by a
TimingEvent at a 5ms rate
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• the MassAirFlowSensorRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication

BaseFuelMassSWC This software component is an AtomicSoftwareCom-
ponentType that realizes the functions AirMassFlow and BaseFuel-
Mass. In a first step, the BaseFuelMassRunnableEntity reads the current
mass air flow provided by the MassAirFlowSensorSWC and determines
the mass air flow per stroke. In a second step, the base fuel mass
per stroke is determined based on the mass air flow per stroke by the
BaseFuelMassRunnableEntity.

Figure 33 depicts the graphical representation for BaseFuelMassSWC.

Figure 29: BaseFuelMassSWC

Note that

• the BaseFuelMassRunnableEntity is triggered by a TimingEvent at
a 10ms rate

• the BaseFuelMassRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication

TransientFuelMassSWC This software component is an AtomicSoftware-
ComponentType that realizes the function TransientFuelingCompensa-
tion. The TransientFuelMassRunnableEntity reads the determined base
fuel mass per stroke provided by the BaseFuelMassSWC and adds an
additional mass of fuel to compensate for specific wall-wetting effects in
the intake system. It then writes the so-called transient fuel mass per
stroke that the TransientFuelMassSWC provides on a PPortPrototype.
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Figure 30 depicts the graphical representation for TransientFuel-
MassSWC.

Figure 30: TransientFuelMassSWC

Note that

• the TransientFuelMassRunnableEntity is triggered by a
TimingEvent at a 10ms rate

• the TransientFuelMassRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication

TotalFuelMassSWC This software component is an AtomicSoftwareCom-
ponentType that realizes the function TotalFueling. The TotalFu-
elMassRunnableEntity reads the determined transient fuel mass per
stroke provided by the TransientFuelMassSWC and determines the to-
tal fuel mass per stroke.

Figure 31 depicts the graphical representation for TotalFuelMassSWC.

Figure 31: TotalFuelMassSWC
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Note that

• the TotalFuelMassRunnableEntity is triggered by a TimingEvent at
a 10ms rate

• the TotalFuelMassRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication

4.4.3 Ignition System

Figure 32 shows the excerpt from the AUTOSAR software architecture for
the ignition system of the engine control application.

Figure 32: Excerpt from the AUTOSAR software architecture for the ignition
system

In the following, the software components are described:

MassAirFlowSensorSWC This software component is a SensorActuator-
SoftwareComponentType that realizes the function MassAirFlowSen-
sor. It is the same software component that is also part of the fueling
system where it has been already described.

BaseFuelMassSWC This software component is an AtomicSoftwareCom-
ponentType that realizes the functions AirMassFlow and BaseFuel-
Mass. It is the same software component that is also part of the fueling
system, however, for the ignition time computation, a different output
signal is relevant: the mass air flow rate. In a first step, the BaseFu-
elMassRunnableEntity reads the current mass air flow provided by the
MassAirFlowSensorSWC and determines the mass air flow per stroke. In
a second step, the mass air flow rate is determined based on the mass
air flow per stroke by the BaseFuelMassRunnableEntity.

51



Figure 33 depicts the graphical representation for BaseFuelMassSWC.

Figure 33: BaseFuelMassSWC

Note that

• this software component is also part of the fueling system

• the BaseFuelMassRunnableEntity is triggered by a TimingEvent at
a 10ms rate

• the BaseFuelMassRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication

IgnitionTimingSWC This software component is an AtomicSoftwareCom-
ponentType that realizes the function IgnitionTiming. The Ignition-
TimingRunnableEntity reads the determined mass air flow rate provided
by the BaseFuelMassSWC and determines the optimal ignition time for
a combustion process. It then writes the ignition time value onto the
DataElementPrototype IgnitionTime that the IgnitionTimingSWC pro-
vides on a PPortPrototype.

Figure 34 depicts the graphical representation for IgnitionTimingSWC.

Note that

• the IgnitionTimingRunnableEntity is triggered by a TimingEvent at
a 10ms rate

• the IgnitionTimingRunnableEntity can access the required
and provided DataElementPrototypes by means of implicit
Sender/Receiver communication
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Figure 34: IgnitionTimingSWC

4.4.4 Injection Time and Ignition Time Actuation System

Figure 35 shows the excerpt from the AUTOSAR software architecture for
the injection time and ignition time actuation system of the engine control
application.

Figure 35: Excerpt for injection time and ignition time actuation system
from AUTOSAR software architecture of the engine control application

The injection time and ignition time actuation is decoupled from the
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calculation of the two parameters; this is performed by the fueling system and
the ignition system. Actuation is performed upon cylinder-specific requests
that depend on the speed of the engine. In order to detect if a new request for
a cylinder-specific actuation is made, a specific mechanism is employed that
is realized in software in our case study. The mechanism works as follows:

The input signal CylinderNumber is provided from a simulation model of
the engine which is outside the engine control application. The value of the
signal CylinderNumber determines the cylinder for which the injection time
and ignition time parameters are requested.

Whenever the parameters for a combustion process are requested, the
cylinder number changes. The change of the CylinderNumber is detected by
the software component CylNumObserverSWC. The contained RunnableEn-
tity is triggered upon the reception of a new CylinderNumber signal. It
analyzes the value of the CylinderNumber signal and compares it with the
value that has previously been sent. If a change is detected, then a request
is being made, and the value of the CylinderNumber is written to the output
signal TriggeredCylinderNumber. This will then trigger the RunnableEnti-
ties of the InjectionTimeActuationSWC and IgnitionTimeActuationSWC.
In the following, the software components are described:

CylNumObserverSWC This software component is an AtomicSoftware-
ComponentType. It evaluates a received signal CylinderNumber and de-
termines if a request for the injection time and ignition time parameters
are made by a specific cylinder. If this is the case, it writes the cylinder
number onto the DataElementPrototype TriggeredCylinderNumber that
is provided by the CylNumObserverSWC.

Figure 36 depicts the graphical representation for CylNumObserverSWC.

Figure 36: CylNumObserverSWC
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Note that

• the CylNumObserverRunnableEntity is triggered by a DataRe-
ceivedEvent from the DataElementPrototype CylinderNumber in
RPortPrototype RCylinderNumber

• the CylNumObserverRunnableEntity can access the required
and provided DataElementPrototypes by means of explicit
Sender/Receiver communication

InjectionTimeActuationSWC This software component is an Atomic-
SoftwareComponentType that realizes the function InjectionTimeAc-
tuation. When being triggered, the InjectionTimeActuationRunnableEn-
tity reads the pre-calculated total fuel mass per stroke provided by the
TotalFuelMassSWC, transforms it to the corresponding injection time
value and writes the latter onto a DataElementPrototype Injection-
Time[1..8] that the InjectionTimeActuationSWC provides on a PPortPro-
totype. The DataElementPrototype InjectionTime[1..8] is determined
based on the received DataElementPrototype TriggeredCylinderNumber.

Figure 37 depicts the graphical representation for InjectionTimeActua-
tionSWC.

Figure 37: InjectionTimeActuationSWC

Note that

• the InjectionTimeActuationRunnableEntity is triggered by a
DataReceivedEvent of the DataElementPrototype TriggeredCylin-
derNumber in RPortPrototype RTriggeredCylinderNumber

• the InjectionTimeActuationRunnableEntity can access the required
and provided DataElementPrototypes by means of explicit
Sender/Receiver communication
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IgnitionTimeActuationSWC This software component is an AtomicSoft-
wareComponentType that realizes the function IgnitionTimeActua-
tion. When being triggered, the IgnitionTimeActuationRunnableEn-
tity reads the pre-calculated ignition time value provided by the Ig-
nitionTimingSWC and writes it onto a DataElementPrototype Ignition-
Time[1..8] that the IgnitionTimingSWC provides on a PPortPrototype.
The DataElementPrototype IgnitionTime[1..8] is determined based on
the TriggeredCylinderNumber.

Figure 38 depicts the graphical representation for IgnitionTimeActua-
tionSWC.

Figure 38: IgnitionTimeActuationSWC

Note that

• the IgnitionTimeActuationRunnableEntity is triggered by a DataRe-
ceivedEvent of the DataElementPrototype TriggeredCylinderNum-
ber in RPortPrototype RTriggeredCylinderNumber

• the IgnitionTimeActuationRunnableEntity can access the required
and provided DataElementPrototypes by means of explicit
Sender/Receiver communication

4.5 Description of System Configuration and ECU Ba-
sic Software Configuration

4.5.1 System Configuration

The engine control application is realized as a single ECU system. This
means that the system topology consists of exactly one ECU instance. All
software components that together constitute the engine control application
are deployed onto that ECU instance.
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Figure 39 depicts an overview of the AUTOSAR system after the system
configuration.

Figure 39: Overview of the AUTOSAR system after system configuration
(excerpt)

The system configuration is established in the following steps:

• The CompositionType EngineControlApplicationAppSW is referred as
the top-level composition by the AUTOSAR system. It thus represents
the software architecture of the engine control application.

• The SystemTopologyType SingleECUSystemTopology is referred as the
system topology instance by the AUTOSAR system. It comprises a
single ECU instance EngineControlECU that is of type TC1796ECUType.
A CANBus PowerTrainCanBus is specified over which CAN frames with
input and output signals are sent and received by the engine control
application.

• The link between the logical software architecture and the system topol-
ogy instance is established by the system mappings. This comprises the
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software-to-ECU mapping of the top-level composition to the single
ECU instance of the system topology and the entailed data-mappings.
The latter are required in order to send and receive the system output
and input signals, i.e. the values of the DataElementPrototypes of the
unconnected PortPrototypes, over the CAN bus.

With respect to the data-mappings, the following configuration decisions
are of importance:

• Each DataElementPrototype of a PortPrototype that is not connected
internally within the application software of the engine control applica-
tion is a system input or a system output signal. In our technical setup
for RTE Tracing experiments (see section 6), these need to be sent
and received via the CAN bus to the real-time simulation hardware on
which the simulation model of the engine is executed.

• The injection time and ignition time parameters that are requested
by the engine and determined by the engine control application are
grouped to a single PDUType on a cylinder-specific basis. This PDU-
Type is assigned 1:1 to a CANFrame. I.e., for each cylinder, a request
for the two parameters results in the transmission of a single CAN
frame.

The result of the system configuration is the ECU extract for the one ECU
of our AUTOSAR system. In order to build the ECU software of that ECU,
the basic software needs to be configured and generated. This is described
in the next section.

4.5.2 ECU Basic Software Configuration

The ECU basic software configuration of our AUTOSAR-compliant engine
control application comprises the configuration of the operating system and
the COM stack. In the following, we focus on the configuration decisions of
the operating system as this has main influence on the execution of the engine
control application. For the COM stack, it can be assumed that the basic
software modules COM, PDU-R, CAN-IF and CAN-DRV are adequately
configured.

Configuration of Operating System

Four OS-tasks are defined in order to execute the RunnableEntities of the
application software:
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Task5ms This OS-task is responsible for executing the RunnableEntities
that belong to software components which read inputs from the sen-
sors. These are the ThrottleSensorSWC, the AcceleratorPedalSensor-
SWC and the MassAirFlowSensorSWC. The respective RunnableEnti-
ties are assigned to this OS-task in the following order: 1. APedSen-
sorRunnable 2. ThrottleSensorRunnableEntity 3. MassAirFlowSen-
sorRunnableEntity.

Task10ms This OS-task is responsible for executing the RunnableEnti-
ties that belong to software components of the air system, the fu-
eling system and the ignition system. These are the Accelerator-
PedalVoterSWC, the ThrottleControllerSWC and the ThrottleActu-
atorSWC for the air system; the BaseFuelMassSWC, TransientFuel-
MassSWC and the TotalFuelMassSWC for the fueling system; and the
BaseFuelMassSWC and the IgnitionTimingSWC for the ignition sys-
tem. The respective RunnableEntities are assigned to this OS-task in
the following order: 1. APedVoterRunnableEntity 2. ThrottleCon-
trollerRunnableEntity 3. ThrottleActuatorRunnableEntity 4. BaseFu-
elMassRunnableEntity 5. TransientFuelMassRunnableEntity 6. Total-
FuelMassRunnableEntity 7. IgnitionTimingRunnableEntity.

TaskCylNum This OS-task is responsible for executing the RunnableEn-
tity that belongs to the CylNumObserverSWC of the injection time
and ignition time actuation system. I.e., only one RunnableEntity,
CylNumObserverRunnableEntity, is assigned to this OS-task. As the
CylNumObserverRunnableEntity is triggered upon the reception of a
new CylinderNumber signal via COM, it makes sense to assign it to an
own OS-task.

TaskInjIgnActuation This OS-task is responsible for executing the
RunnableEntities that belongs to the the InjectionTimeActuationSWC
and the IgnitionTimeActuationSWC of the injection time and ignition
time actuation system. The respective RunnableEntities are assigned
to this OS-task in the following order: 1. InjectionTimeActuation-
RunnableEntity 2. IgnitionTimeActuationRunnableEntity.

In order to execute the OS-tasks by the operating system, configuration
parameters for these must be provided.

Figure 40 (see next page) depicts the overview of the AUTOSAR soft-
ware of the engine control application. In the figure, the assignment of the
RunnableEntities to the OS-tasks is shown, including the sequence in which
the RunnableEntities are executed within the OS-tasks.
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4.6 Summary

In this section, the AUTOSAR-compliant software architecture that has been
developed from the legacy engine control application of the DemoCar project
([8], [9]) has been presented.

At first, the design decisions that were taken for which AUTOSAR con-
cepts are to be applied in the development of an AUTOSAR-compliant soft-
ware architecture have been described (section 4.2). Section 4.3 then gave
an overview of the AUTOSAR-compliant software architecture for the en-
gine control application. In section 4.4, excerpts of the software architecture
have been discussed which correspond to the individual functionalities of the
engine control application.

In order to realize the engine control application as single ECU system,
several steps needed to be taken according to the AUTOSAR methodology.
These are the steps of the system configuration and the subsequent ECU
configuration. These have been described in section 4.5.

In the next section, it is described how the concepts of the Timing Model
for AUTOSAR are applied for (i) the specification of the signal paths of
the engine control application in the AUTOSAR-compliant software archi-
tecture, and (ii) the assignment of the latter with application-specific timing-
requirements.
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5 Application of Concepts from Timing

Model for AUTOSAR

5.1 Introduction

In order to specify the signal paths of the different functionalities of the engine
control application and to describe the timing requirements we employ the
concepts of the Timing Model for AUTOSAR [4].

For this the following modeling steps are performed:

• In a first step, the relevant ObservableEvents within the con-
text of the individual AtomicSoftwareComponentTypes are identi-
fied and described by means of AUTOSAR-specific ObservableEvents
(RTEAPIEvents). These are then concatenated to AtomicEventChain-
Types in the context of the AtomicSoftwareComponentTypes.

• In a second step, the AtomicEventChainTypes are instantiated and
aggregated to CompositeEventChainTypes in the context of the Com-
positionType that represents the software architecture of the engine
control application. These CompositeEventChainTypes are then the
PathSpecifications for the functionalities of the engine control applica-
tion which are associated with the application-specific timing require-
ments. The latter have been described in section 3.3.

In order to perform RTE Tracing experiments based on the PathSpecifica-
tions, the latter need to be first flattened and then augmented with additional
ObservableEvents (OSTaskEvents) based on information stemming from the
basic software configuration of the involved ECUs.

In the following, the specification of the signal paths for the different func-
tionalities of the engine control application are described (section 5.2). This
is followed by a description of the preparations for the RTE Tracing exper-
iments in section 5.3. The latter includes the description of the augmented
PathSpecifications with additional OSTaskEvents.

5.2 Specification of Signal Paths for Basic Functional-
ities and Association with Timing Requirements

5.2.1 Air System

As described in section 4.4.1, the AUTOSAR software architecture for the
engine control application comprises five AtomicSoftwareComponentTypes
which together constitute the functionality of the air system. The signal
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paths that are conceptually contained in the air system have been described
in section 3.3.1. In the following, these signal paths are described in the
AUTOSAR software architecture of the engine control application by means
of the concepts of the Timing Model for AUTOSAR.

ObservableEvents and AtomicEventChainTypes

AcceleratorPedalSensorSWC Figure 41 depicts the AtomicSoftware-
ComponentType AcceleratorPedalSensorSWC where the implicit read
and write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataImplicitEvent and SendDataIm-
plicitEvent).

(a) RTEAPIEvents and AtomicEventChainType for first signal path

(b) RTEAPIEvents and AtomicEventChainType for second signal path

Figure 41: AcceleratorPedalSensorSWC with RTEAPIEvents and Atomic-
EventChainTypes

Two AtomicEventChainTypes are specified for the Accelerator-
PedalSensorSWC (AcceleratorPedalSensorSWC ECType1 and Accelera-
torPedalSensorSWC ECType2). Each AtomicEventChainType specifies
that the ReceiveDataImplicitEvent must occur before the SendDataIm-
plicitEvent such that a data transformation of the accelerator pedal
sensor voltage value read by the APedSensorRunnableEntity into an ac-
celerator pedal position percentage value that is written by the APed-
SensorRunnableEntity can be observed.
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Note that the difference between the two AtomicEventChainTypes is
that they refer to different ReceiveDataImplicitEvents.

AcceleratorPedalVoterSWC Figure 42 depicts the AtomicSoftwareCom-
ponentType AcceleratorPedalVoterSWC where the implicit read and
write actions to the DataElementPrototypes have been marked.

(a) RTEAPIEvents and AtomicEventChainType for first signal path

(b) RTEAPIEvents and AtomicEventChainType for second signal path

Figure 42: AcceleratorPedalVoterSWC with RTEAPIEvents and Atomic-
EventChainTypes

Two AtomicEventChainTypes are specified for the AcceleratorPedalVot-
erSWC (AcceleratorPedalVoterSWC ECType1 and AcceleratorPedalVoter-
SWC ECType2).

Note that the difference between the two AtomicEventChainTypes is
that they refer to different ReceiveDataImplicitEvents. Furthermore,
the SendDataImplicitEvent VotedApedPositionWriteEvent is specified
once and used twice in the two distinct AtomicEventChainTypes; this
shows that the description of an ObservableEvent can be reused for the
specification of different event chains.
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ThrottleSensorSWC Figure 43 depicts the AtomicSoftwareComponent-
Type ThrottleSensorSWC where the implicit read and write actions to
the DataElementPrototypes have been marked by RTEAPIEvents (a
ReceiveDataImplicitEvent and a SendDataImplicitEvent).

Figure 43: ThrottleSensorSWC with RTEAPIEvents and AtomicEvent-
ChainType (first signal path)

The second signal path is modeled analogously, however, the Read-
DataImplicitEvent refers to the read action to the second DataEle-
mentPrototype (ThrottleSensor2Voltage).

ThrottleActuatorSWC Figure 44 depicts the AtomicSoftwareCom-
ponentType ThrottleActuatorSWC where the implicit read and
write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataImplicitEvent and SendDataIm-
plicitEvent).

Figure 44: ThrottleActuatorSWC with RTEAPIEvents and AtomicEvent-
ChainType
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ThrottleControllerSWC Figure 45 depicts the AtomicSoftwareCom-
ponentType ThrottleControllerSWC where the implicit read and
write actions to the DataElementPrototypes have been marked by
RTEAPIEvents (a ReceiveDataImplicitEvent and a SendDataIm-
plicitEvent).

(a) RTEAPIEvents and AtomicEventChainType for first signal path

(b) RTEAPIEvents and AtomicEventChainType for second signal path

Figure 45: ThrottleControllerSWC with RTEAPIEvents and AtomicEvent-
ChainTypes

66



CompositeEventChainTypes and TimingRequirements

Figure 46 depicts the relevant excerpt of the AUTOSAR software archi-
tecture for the air system of the engine control application. Furthermore,
the PathSpecification for the signal path from the input signal ThrottleSen-
sor1Voltage to the output signal DesiredThrottlePositionVoltage is shown,
including its associated timing requirements.

Figure 46: Excerpt for the air system with PathSpecification and associated
timing requirements

The nominal feedback path delay is specified by means of a PathDelayRe-
quirement. The nominal effective sampling and actuation rates are specified
by means of an InputIntervalDelayRequirement and an OutputIntervalDe-
layRequirement.

Figure 47 depicts the flattened PathSpecification.

Figure 47: Flattened PathSpecification for the signal path from ThrottleSen-
sor1Voltage to DesiredThrottlePositionVoltage

The description of the signal path from ThrottleSensor2Voltage to De-
siredThrottlePositionVoltage is analogous.
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Figure 48 depicts the relevant excerpt for the air system of the AUTOSAR
software architecture of the engine control application, including the Path-
Specifiation for the signal path from APedSensor1Voltage to DesiredThrot-
tlePositionVoltage and its associated timing requirements.

Figure 48: Excerpt for the air system with PathSpecification and associated
timing requirements

The latency for the influence of the first accelerator pedal sensor on the ac-
tuated desired throttle position is specified by means of a PathDelayRequire-
ment. The nominal effective sampling and actuation intervals are specified
by means of an InputIntervalDelayRequirement and an OutputIntervalDe-
layRequirement.

Figure 49 depicts the flattened PathSpecification.

Figure 49: Flattened PathSpecification for the signal path from APedSen-
sor1Voltage to DesiredThrottlePositionVoltage

The description of the signal path from APedSensor2Voltage to De-
siredThrottlePositionVoltage is analogous.
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Figure 50 depicts the relevant excerpt for the air system of the AUTOSAR
software architecture. Furthermore, the two event chains that specify the sig-
nal paths from ThrottleSensor1Voltage and ThrottleSensor2Voltage to De-
siredThrottlePositionVoltage are shown.

Figure 50: Excerpt for the air system with PathSpecification and associated
timing requirements

The common JoinEvent is the ThrottlePositionWriteEvent which marks
the implicit write action of the ThrottleSensorRunnableEntity to the merged
signal ThrottlePosition. For each the two PathSpecifications, the respective
JoinPathSegments that contain the ObservableEvents to be synchronized
(StartEvent) and the common ObservableEvent with respect to which the
synchronization is measured (JoinEvent) is described. The InputSynchro-
nizationTimingRequirement refers to the two JoinPathSegments such that
the synchronization of the input signals ThrottleSensor1Voltage and Throt-
tleSensor2Voltage can be specified.

Figure 51 depicts the flattened PathSpecification.

Figure 51: Flattened PathSpecification for the signal paths from APedSen-
sor1Voltage and APedSensor2Voltage to DesiredThrottlePositionVoltage

The description of the InputSynchronizationTimingRequirement for the
two input signals APedSensor1Voltage and APedSensor2Voltage is analo-
gous.



5.2.2 Fueling System

As described in section 4.4.2, the AUTOSAR software architecture for the
engine control application comprises four AtomicSoftwareComponentTypes
which together constitute the functionality of the fueling system. The signal
path that is conceptually contained in the fueling system has been described
in section 3.3.2. In the following, this signal path is described and associated
with timing requirements.

ObservableEvents and AtomicEventChainTypes

MassAirFlowSensorSWC Figure 58 depicts the AtomicSoftwareCom-
ponentType MassAirFlowSensorSWC where the implicit read and
write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataImplicitEvent and SendDataIm-
plicitEvent).

Figure 52: MassAirFlowSensorSWC with RTEAPIEvents and AtomicEvent-
ChainTypes

BaseFuelMassSWC Figure 59 depicts the AtomicSoftwareComponent-
Type BaseFuelMassSWC where the implicit read and write actions to
the DataElementPrototypes have been marked by RTEAPIEvents (Re-
ceiveDataImplicitEvent and SendDataImplicitEvent).

Figure 53: BaseFuelMassSWC with RTEAPIEvents and AtomicEventChain-
Types



TransientFuelMassSWC Figure 54 depicts the AtomicSoftwareCom-
ponentType TransientFuelMassSWC where the implicit read and
write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataImplicitEvent and SendDataIm-
plicitEvent).

Figure 54: TransientFuelMassSWC with RTEAPIEvents and AtomicEvent-
ChainTypes

TotalFuelMassSWC Figure 55 depicts the AtomicSoftwareComponent-
Type TotalFuelMassSWC where the implicit read and write actions to
the DataElementPrototypes have been marked by RTEAPIEvents (Re-
ceiveDataImplicitEvent and SendDataImplicitEvent).

Figure 55: TotalFuelMassSWC with RTEAPIEvents and AtomicEvent-
ChainTypes
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CompositeEventChainTypes and TimingRequirements

Figure 56 depicts the relevant excerpt of the AUTOSAR software archi-
tecture for the fueling system of the engine control application.

Figure 56: Excerpt for the fueling system with PathSpecification and asso-
ciated timing requirements

Figure 57 depicts the flattened PathSpecification.

Figure 57: Flattened PathSpecification for the signal path from MAFSensor-
Voltage to TotalFuelMassPerStroke

The nominal path delay is specified by means of a PathDelayRequire-
ment. The nominal effective sampling and actuation rates are specified by
means of an InputIntervalDelayRequirement and an OutputIntervalDelayRe-
quirement.
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5.2.3 Ignition System

As described in section 4.4.3, the AUTOSAR software architecture for the
engine control application comprises three AtomicSoftwareComponentTypes
which together constitute the functionality of the ignition system. The signal
path that is conceptually contained in the ignition system has been described
in section 3.3.3. In the following, this signal path is described and associated
with timing requirements.

ObservableEvents and AtomicEventChainTypes

MassAirFlowSensorSWC Figure 58 depicts the AtomicSoftwareCom-
ponentType MassAirFlowSensorSWC where the implicit read and
write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataImplicitEvent and SendDataIm-
plicitEvent).

Figure 58: MassAirFlowSensorSWC with RTEAPIEvents and AtomicEvent-
ChainTypes

BaseFuelMassSWC Figure 59 depicts the AtomicSoftwareComponent-
Type BaseFuelMassSWC where the implicit read and write actions to
the DataElementPrototypes have been marked by RTEAPIEvents (Re-
ceiveDataImplicitEvent and SendDataImplicitEvent).

Figure 59: BaseFuelMassSWC with RTEAPIEvents and AtomicEventChain-
Types



IgnitionTimingSWC Figure 60 depicts the AtomicSoftwareComponent-
Type IgnitionTimingSWC where the implicit read and write actions to
the DataElementPrototypes have been marked by RTEAPIEvents (Re-
ceiveDataImplicitEvent and SendDataImplicitEvent).

Figure 60: IgnitionTimingSWC with RTEAPIEvents and AtomicEvent-
ChainTypes

CompositeEventChainTypes and TimingRequirements

Figure 61 depicts the relevant excerpt of the AUTOSAR software archi-
tecture for the fueling system of the engine control application.

Figure 61: Excerpt for the ignition system PathSpecification and associated
timing requirements

The nominal path delay is specified by means of a PathDelayRequire-
ment. The nominal effective sampling and actuation rates are specified by

74



means of an InputIntervalDelayRequirement and an OutputIntervalDelayRe-
quirement.

Figure 62 depicts the flattened PathSpecification.

Figure 62: Flattened PathSpecification for the signal path from MAFSensor-
Voltage to IgnitionTiming

5.2.4 Injection Time and Ignition Time Actuation System

As described in section 4.4.4, the AUTOSAR software architecture for the
engine control application comprises three AtomicSoftwareComponentTypes
which together constitute the functionality of the injection time and ignition
time actuation system. The signal paths that are conceptually contained in
the injection time and ignition time actuation system have been described in
section 3.3.4. In the following, these signal paths are described by means of
event chains.

ObservableEvents and AtomicEventChainTypes

CylNumObserverSWC Figure 63 depicts the AtomicSoftwareCom-
ponentType CylNumObserverSWC where the implicit read and
write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataExplicitEvent and SendDataEx-
plicitEvent).

Figure 63: CylNumObserverSWC with RTEAPIEvents and AtomicEvent-
ChainTypes
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InjectionTimeActuationSWC Figure 64 depicts the AtomicSoftware-
ComponentType InjectionTimeActuationSWC where the implicit read
and write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataExplicitEvent and SendDataEx-
plicitEvent).

Figure 64: InjectionTimeActuationSWC with RTEAPIEvents and Atomic-
EventChainTypes

IgnitionTimeActuationSWC Figure 65 depicts the AtomicSoftware-
ComponentType IgnitionTimeActuationSWC where the implicit read
and write actions to the DataElementPrototypes have been marked
by RTEAPIEvents (ReceiveDataExplicitEvent and SendDataEx-
plicitEvent).

Figure 65: IgnitionTimeActuationSWC with RTEAPIEvents and Atomic-
EventChainTypes
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CompositeEventChainTypes and TimingRequirements

Figure 66 depicts the relevant excerpt of the AUTOSAR software archi-
tecture for the fueling system of the engine control application.

Figure 66: Excerpt for the injection time and ignition time actuation system
with PathSpecification and associated timing requirements



Figure 67 depicts the flattened PathSpecification.

Figure 67: Flattened PathSpecification for the signal path from Cylinder-
Number to InjectionTime1

The nominal path delay is specified by means of a PathDelayRequire-
ment. The nominal effective sampling and actuation rates are specified by
means of an InputIntervalDelayRequirement and an OutputIntervalDelayRe-
quirement.

The PathSpecifications for the other InjectionTime actuations are analo-
gous.

78



Figure 68 depicts the relevant excerpt of the AUTOSAR software archi-
tecture for the fueling system of the engine control application.

Figure 68: Excerpt for the injection time and ignition time actuation system
with PathSpecification and associated timing requirements



Figure 69 depicts the flattened PathSpecification.

Figure 69: Flattened PathSpecification for the signal path from Cylinder-
Number to IgnitionTime1

The nominal path delay is specified by means of a PathDelayRequire-
ment. The nominal effective sampling and actuation rates are specified by
means of an InputIntervalDelayRequirement and an OutputIntervalDelayRe-
quirement.

The PathSpecifications for the other IgnitionTime actuations are analo-
gous.

5.3 Preparations for RTE Tracing Experiments

In order to conduct an RTE Tracing experiment with the AUTOSAR-
compliant engine control application, an instrumentation for the RTE of
the single-ECU system is required. This can be obtained either manually or
automatically by implementing the VFB Trace hook functions with functions
to log the occurrences of ObservableEvents with a current time stamp.

For our case study, the RTE Tracing instrumentation has automatically
been generated with the help of a prototype tool. The prototype tool builds
upon the textual description language for AUTOSAR (ARDSL) that has
been developed to model AUTOSAR systems.

From the textual ARDSL specifications for the AUTOSAR compliant en-
gine control application and the PathSpecifications for the different function-
alities, an RTE Tracing instrumentation is generated. To log the occurrences
of the ObservableEvents, trace-points are generated for the logic analysis tool
RTA-TRACE.

Figure 70 depicts an overview of the layered ECU software architecture
for the engine control application. The target platform is an evaluation board
with Infineon TriCore1796 microcontroller. The RTE Tracing instrumenta-
tion is also shown.
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Figure 70: Overview of AUTOSAR compliant ECU software architecture,
including RTE Tracing instrumentation

6 Technical Setup for RTE Tracing Experi-

ments

6.1 Introduction

In order to conduct an RTE Tracing experiment with the engine control
application, a technical setup is required where the application is executed
on a platform that is close to the real-world target, where the inputs are
adequately provided or stimulated, and where the outputs are adequately
processed. At the same time, timing data in the form of the occurrences
of relevant ObservableEvents need to be captured in order to determine the
timing properties.

For this purpose, we have designed a hardware-in-the-loop (HiL) test
setup where the AUTOSAR-compliant engine control application is realized
as a single ECU system and operated against a simulated plant model.

Figure 71 depicts an overview of the technical setup employed to perform
RTE Tracing experiments in order to obtain meaningful timing data.
In the following, the different parts of the setup are explained:

• The engine control application is realized as a single ECU system with

81



Figure 71: Overview of the technical setup for RTE Tracing experiments:
the AUTOSAR-compliant engine control application is operated in-the-loop
with a simulated model of the engine, driver and environment

an AUTOSAR-compliant ECU software architecture. The platform
software is constituted by the mandatory operating system (OS) mod-
ule and modules that form a communication stack with a CAN driver
(COM, PDUR, CAN). The application software of the engine control
application is executed on top of a runtime-environment (RTE).

• The inputs and outputs of the engine control application are sent over a
CAN bus to the plant model that is executed on a real-time simulation
hardware.

• To conduct RTE Tracing experiments it is necessary to instrument the
RTE. For this purpose, an RTE Tracing instrumentation has automati-
cally been generated from the ARDSL description of the engine control
application. For our experiments, the RTE Tracing instrumentation is
based on all PathSpecifications that have been defined for the different
functionalities. I.e., timing data for all PathSpecifications for which
timing requirements have been defined is captured at the same time.
Alternatively, we could also focus on an individual PathSpecification
or only a subset of PathSpecifications.

• The plant model is executed on a real-time simulation hardware (ES900
from ETAS). The latter provides excessive computing power (800MHz
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floating-point CPU) and memory (512 MB Flash) such that the com-
plex plant model can be executed in real-time.

• The plant model simulation is operated from an operational PC with a
real-time simulation experimentation environment. The real-time sim-
ulation hardware is under control of the operational PC. The software
allows the configuration of the parameters of the plant model for the
simulation experiment and to display the values of measurement data
(value domain) by means of a set of configurable instruments.

• The RTE of the AUTOSAR-compliant engine control application is
equipped with an instrumentation for RTE Tracing. During runtime,
timing data in the form of occurrences of ObservableEvents is produced
and captured. This timing data needs to be collected and transferred
to a PC in order to be analyzed. For this purpose, a state-of-the-art
logic analyzer (RTA-TRACE [2] from ETAS) is employed. The RTA-
TRACE application is executed on a PC which is connected to the
target hardware through a in-circuit debugger (ICD). The ICD serves
as timing data acquisition device. During runtime, the timing data
that is produced by the RTE Tracing instrumentation is collected and
uploaded to the PC where it is processed and displayed by the logic
analyzer application (time-domain).

6.2 Description of the Plant Model

The gasoline engine vehicle model (GEVM) [7] from ETAS is used in HiL
environments to test the functionality of engine control units. It is a Mat-
lab/Simulink based model containing subsystems mainly to simulate the
physical processes in a gasoline engine (combustion processes, air-flow re-
lated processes in the intake system, ignition system, etc.). Furthermore,
it contains the model of a vehicle and its driving environment in order to
simulate different kinds of driving scenarios. To perform automatic tests, it
also contains the model of a virtual test driver. Through this, automatic
tests can be performed by selecting one of the provided standard drive cycles
([7]).
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6.3 Results from In-The-Loop Experiments

In the following, the results from an example closed-loop operation of our
AUTOSAR-compliant engine control application against the simulated envi-
ronment are discussed.

It will be shown that the engine control application operates as desired in
the value domain, i.e., it performs all its operations as desired and delivers
adequate outputs to provided inputs. This is then the basis for the con-
duction of RTE Tracing experiments in order to obtain meaningful timing
data.

6.3.1 Development of Input Signals for Engine Control Applica-
tion

The following figures depict the development of certain signals as they are
delivered by the simulated plant as inputs to the engine control application.

Figure 72 depicts the development of the accelerator pedal position as
it is provided by the two simulated accelerator pedal sensors in the plant
model.

Figure 72: Accelerator pedal position
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Figure 73 depicts the development of the accelerator pedal positions4 in
relation to the the development of the clutch position and the selected gear
at the given point in time. The clutch and gear selection are also operated
by the virtual driver.

Figure 73: Accelerator pedal position in relation to clutch position and se-
lected gear

Note that the clutch position and the selected gear are not input sig-
nals for our engine control application. They are provided here for better
understandability of the other input signals and their development during
acceleration.

The accelerator pedal position shows how the virtual driver accelerates in
the course of the drive cycle. When the engine speed reaches approximately
4500rpm, the virtual driver shifts one gear up. From the relation between the
accelerator pedal and the clutch positions it can be seen how the virtual driver
performs a shifting process: the accelerator pedal is released, the clutch is
pushed, the gear is changed, and the clutch is released again. After that, the
accelerator pedal is pushed again, the engine speed increases and the vehicle
accelerates. Note that right after the start, the clutch is released rather
smoothly; during the following shifting processes, the clutch is pressed and
released faster.

4the accelerator pedal positions overlap
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Figure 74 depicts the speed of the simulated vehicle as provided by the
simulated plant.

Figure 74: Vehicle speed

Figure 75 depicts the development of the engine speed as provided by the
engine speed sensor in the plant model.

Figure 75: Engine speed

The development of the engine speed shows how the engine behaves dur-
ing acceleration. The gear shifting processes can be easily identified as the
effect is a decrease of the engine speed. The development of the vehicle speed
shows that the vehicle is accelerating from zero to over 100 km/h in the mea-
sured time frame. Here, the gear shifting processes can also be identified as
irregularities in the development of the vehicle speed signal.
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Figure 76 depicts the development of the throttle angle as it is provided
by the two simulated throttle sensors in the plant model. Figure 77 depicts
the development of the mass air flow as provided by the simulated mass air
flow sensor in the plant model.

Figure 76: Throttle angle

Figure 77: Mass air flow

The curves of the throttle angle look very akin to the curves of the ac-
celerator pedal position. This is due to the fact that the throttle position
is directly influenced by the latter. The value range of the throttle angle
is between 0◦ and 80◦. The mass air flow depends on the position of the
throttle and is measured in kg/h. When the throttle has a wider opening
angle, more air can flow through the intake system and thus the measured
mass air flow is higher. Due to the dynamics of the air in the intake system,
the air flow increases slower than the throttle opens.
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Figure 78 depicts the sequence in which the engine requests injection
time and ignition time parameters for the combustion processes in the single
cylinders.

Figure 78: Cylinder-specific requests for injection time and ignition time
parameters (cylinder number)

As can be seen in the figure, the eight cylinders of the engine perform
requests in a sequential order, i.e., starting from the first cylinder to the 8th
cylinder and then starting over again. The combustion processes are thus
arranged as described in section 2.2 (see figure 2).

With increasing engine speed, the temporal distance between two
cylinder-specific requests decreases. The relation between the engine speed
and the temporal distance between two consecutive combustion processes
has been explained in section 2.2. This, however, can only be seen from the
density of the curve.

Figure 79 shows a magnified excerpt from the previous figure (time be-
tween 0 and 2s). The sequence of cylinder-specific requests can clearly be
identified.

Figure 79: Cylinder-specific requests for injection time and ignition time
parameters (cylinder number) (magnified excerpt)
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6.3.2 Development of Output Signals from Engine Control Appli-
cation

The following figures depict the development of the output signals calculated
by the engine control application as they are delivered to the simulated plant.
The output signals are based on the input signals that were delivered to the
engine control application.

Figure 80(a) and 80(b) show the development of the injection times and
ignition times of the distinct cylinders.

(a) Injection times (in µs) (b) Ignition times (in ◦crankshaft (◦CA) rela-
tive to basic angle of 54◦CA from TDC)

Figure 80: Injection times and ignition times

The calculated injection time values are within a plausible value range be-
tween 3.5ms and 20ms [13, page 153]. The peak value is reached shortly after
gear shift process.
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Figure 81 shows the development of the desired throttle position that
is determined by the engine control application. It is based on the current
throttle position and the accelerator pedal position.

Figure 81: Desired throttle position

6.3.3 Summary

As can be seen from the figures with the development of the input and output
signals, the engine control application operates as intended (i.e., the values
are all plausible). The engine control application is capable of controlling the
combustion processes in the cylinders as desired. The HiL setup can thus be
used to perform RTE Tracing experiments and to obtain meaningful timing
data.

7 Results from RTE Tracing Experiments

7.1 Introduction

In order to evaluate the degree of fulfillment of the timing requirements, an
RTE Tracing experiment has been conducted based on the setup described
in section 6.

In the RTE Tracing experiment, the AUTOSAR-compliant engine con-
trol application is operated in closed-loop against the simulated engine model
on the real-time simulation hardware. A multitude of ObservableEventIn-
stances have been captured through the RTE Tracing instrumentation and
uploaded with the help of the logic analyzer that is connected to the tar-
get hardware of the AUTOSAR-compliant engine control application. These
ObservableEventOccurrences have then been analyzed with the help of the
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path specifications, and the timing properties of the different paths have been
determined.

7.2 Limitations of the RTE Tracing experiment

There are two limitations that should be mentioned with respect to the con-
ducted RTE Tracing experiment.

• In order to ease the interpretation of the timing properties that depend
on the speed of the engine, a constant engine speed of 2000rpm has
been chosen. This has the effect that the inter-arrival rate of cylinder-
specific requests for injection time and ignition time parameters is fixed.
This allows the determination of concrete values for the engine-speed
dependent timing requirements.

• Due to the limited amount of memory reserved for capturing timing
data on the target hardware, and due to the fact that the software
execution on the target hardware must be stopped for the upload of
the timing data to the host PC, consistent timing data can only be
captured for a time frame of approximately 800ms for our AUTOSAR-
compliant engine control application. Timing data captured over longer
time frames result from multiple independent uploads where the target
hardware has been stopped and restarted in between. This has lead
to discontinuities in the captured timing data which makes the data
inconsistent for our analyses. For our analyses, we thus focus on con-
sistent sets of data only. This has lead to a considered time frame of
approximately 800ms.

In the following, the timing properties that have been determined based
on the captured ObservableEventInstances for the signal paths of the different
functionalities are presented. Furthermore, the degree of fulfillment of the
timing properties is discussed.

7.3 Timing Properties of the Air System

As described in section 3.3.1, the air system contains four signal paths that
are of interest.

These are the signal paths from the input signals delivered by the throttle
sensors and the accelerator pedal sensors, respectively, to the output signal
representing the desired throttle position for the throttle actuator.
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7.3.1 Timing Properties for Signal Paths from AcceleratorPedal-
Position[1/2] to DesiredThrottlePosition

There are two signal paths from the input signals delivered by the accelerator
pedal sensors to the output signal representing the calculated desired throttle
position for the throttle actuator.

Path Delays

Figure 82 depicts the Timing Oscilloscope Diagrams for the PathDelays
from AcceleratorPedalPosition1 and AcceleratorPedalPosition1, respectively,
to DesiredThrottlePosition.

(a) PathDelays from AcceleratorPedalPosition1 to DesiredThrottlePosition

(b) PathDelays from AcceleratorPedalPosition2 to DesiredThrottlePosition

Figure 82: Timing Oscilloscope Diagrams for PathDelays from Accelerator-
PedalPosition1 and AcceleratorPedalPosition2 to DesiredThrottlePosition

The timing requirements that are formulated towards the signal paths
express that the path delay should be minimized to 0ms whereby a deviation
of 1ms is acceptable (PathDelayRequirement with nominal value of 0ms and
jitter value of 1ms).
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The following observations can be made:

• The PathDelays vary around a mean value of 5ms.

• There is a sudden rise of the PathDelays from 3.5ms to 5ms at the
beginning.

• The PathDelayRequirements are not satisfied.

The rationale for the PathDelayRequirements not being satisfied cannot
be seen from the Timing Oscilloscope Diagrams.

Input Interval Delays

Figure 83 depicts the Timing Oscilloscope Diagrams with the InputInter-
valDelays for the signal paths from AcceleratorPedalPosition1 and Accelera-
torPedalPosition2 to DesiredThrottlePosition.

(a) InputIntervalDelays for signal path from AcceleratorPedalPosition1 to De-
siredThrottlePosition

(b) InputIntervalDelays for signal path from AcceleratorPedalPosition2 to De-
siredThrottlePosition

Figure 83: Timing Oscilloscope Diagrams for InputIntervalDelays

93



The following observations can be made:

• The InputIntervalDelays vary around a mean value of 10ms, meaning
that the effective sampling rate is 10ms.

• There is a temporary deviation of the InputIntervalDelays from the
mean at the beginning. The InputIntervalDelays start at 10.9ms, then
fall to 8.5ms until they settle at around 10ms. Although the InputIn-
tervalDelayRequirement is formally violated, the deviation is tolerable
as it only spans over two effective samples.

Output Interval Delays

Figure 84 depicts the Timing Oscilloscope Diagrams with the OutputIn-
tervalDelays for the signal paths from AcceleratorPedalPosition1 and Accel-
eratorPedalPosition2 to DesiredThrottlePosition.

(a) InputIntervalDelays for signal path from AcceleratorPedalPosition1 to De-
siredThrottlePosition

(b) InputIntervalDelays for signal path from AcceleratorPedalPosition2 to De-
siredThrottlePosition

Figure 84: Timing Oscilloscope Diagrams for OutputIntervalDelays
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The following observations can be made:

• The OutputIntervalDelays are constant at 10ms.

• There is a temporary deviation of the OutputIntervalDelays at the be-
ginning of the measurement. The OutputIntervalDelays start at 11ms
and then settle at 10ms. The temporary deviation is within the toler-
ance range of the OutputIntervalDelayRequirement.

• The OutputIntervalDelayRequirements are satisfied.

Input Synchronization Intervals

Figure 85 depicts the Timing Oscilloscope Diagram for the InputSynchro-
nizationIntervals for the two join path segments.

Figure 85: Latency of join path segments from input signals Accelerator-
PedalPosition[1/2] to common intermediate signal VotedPedalPosition

The following observations can be made:

• The input signals AcceleratorPedalPosition1 and AcceleratorPedalPo-
sition2 are closely synchronized as the curves for the path delays of the
respective join path segments in the Timing Oscilloscope Diagram are
close to each other.

• The path delays of the join path segments are constantly over the
demanded size for the input synchronization interval. Thus, the timing
requirement is formally violated.

Der Grund für die Verletzung des Timing Requirements liegt daran, dass
die Latenz entlang der einzelnen Join-Path-Segments zu lang ist und nicht
dass die Signale unsynchron verarbeitet werden.
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7.3.2 Timing Properties for Signal Path from ThrottlePosi-
tion[1/2] to DesiredThrottlePosition

Path Delays

Figure 86 depicts the Timing Oscilloscope Diagrams for the PathDelays
from ThrottlePosition1 and ThrottlePosition2, respectively, to DesiredThrot-
tlePosition.

(a) PathDelays from ThrottlePosition1 to DesiredThrottlePosition

(b) PathDelays from ThrottlePosition2 to DesiredThrottlePosition

Figure 86: Timing Oscilloscope Diagrams for PathDelays from ThrottlePo-
sition1 and ThrottlePosition2 to DesiredThrottlePosition
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Input Interval Delays

Figure 87 depicts the Timing Oscilloscope Diagrams with the InputInter-
valDelays for the signal paths from ThrottlePosition1 and ThrottlePosition2
to DesiredThrottlePosition.

(a) InputIntervalDelays for signal path from ThrottlePosition1 to DesiredThrottle-
Position

(b) InputIntervalDelays for signal path from ThrottlePosition2 to DesiredThrot-
tlePosition

Figure 87: Timing Oscilloscope Diagrams for InputIntervalDelays for the
signal paths from ThrottlePosition1 and ThrottlePosition2 to DesiredThrot-
tlePosition
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Output Interval Delays

Figure 88 depicts the Timing Oscilloscope Diagrams with the OutputIn-
tervalDelays for the signal paths from ThrottlePosition1 and ThrottlePosi-
tion2 to DesiredThrottlePosition.

(a) InputIntervalDelays for signal path from AcceleratorPedalPosition1 to De-
siredThrottlePosition

(b) InputIntervalDelays for signal path from AcceleratorPedalPosition2 to De-
siredThrottlePosition

Figure 88: Timing Oscilloscope Diagrams for OutputIntervalDelays for the
signal paths from ThrottlePosition1 and ThrottlePosition2 to DesiredThrot-
tlePosition
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Input Synchronization Intervals Delays

Figure 89 depicts the Timing Oscilloscope Diagram for the InputSynchro-
nizationIntervals for the two join path segments.

Figure 89: Latency of join path segments from input signals ThrottlePosi-
tion[1/2] to common intermediate signal VotedPedalPosition

7.4 Timing Properties of Fueling System

For the injection time (or fuel mass per stroke) calculation, timing require-
ments in the form of a PathDelayRequirement, an InputIntervalDelayRe-
quirement and an OutputIntervalDelayRequirement have been formulated.
In the following, the corresponding timing properties, i.e., PathDelays, In-
putIntervalDelays and OutputIntervalDelays, that have been determined are
described.

7.4.1 Path Delays

Figure 90 depicts the Timing Oscilloscope Diagrams with the PathDelays of
the injection time calculation.
The following observations can be made:

• The PathDelays vary irregularly between a minimum and a maximum
value.

• The PathDelayRequirement is satisfied
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Figure 90: Timing Oscilloscope Diagram for PathDelays of injection time
calculation

7.4.2 Input Interval Delays

Figure 91 depicts the Timing Oscilloscope Diagrams with the InputInter-
valDelays of the injection time calculation.

Figure 91: Timing Oscilloscope Diagram for InputIntervalDelays

The following observations can be made:

• The InputIntervalDelays vary irregularly between a minimum and a
maximum value and around a mean value.

• The InputIntervalDelayRequirement is violated.
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7.4.3 Output Interval Delays

Figure 92 depicts the Timing Oscilloscope Diagrams with the OutputInter-
valDelays of the injection time calculation.

Figure 92: Timing Oscilloscope Diagram for OutputIntervalDelays

The following observations can be made:

• The OutputIntervalDelays are constant at 10ms after a temporary de-
viation at the beginning.

• The OutputIntervalDelayRequirement is satisfied

7.5 Timing Properties of Ignition System

For the ignition time calculation, timing requirements in the form of a
PathDelayRequirement, an InputIntervalDelayRequirement and an Out-
putIntervalDelayRequirement have been formulated. In the following, the
corresponding timing properties, i.e., PathDelays, InputIntervalDelays and
OutputIntervalDelays, that have been determined are described.

7.5.1 Path Delays

Figure 93 depicts the Timing Oscilloscope Diagrams with the PathDelays of
the ignition time calculation.
The following observations can be made:

• The PathDelays vary irregularly between a minimum and a maximum
value.

• The PathDelayRequirement is satisfied
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Figure 93: Timing Oscilloscope Diagram for PathDelays

7.5.2 Input Interval Delays

Figure 94 depicts the Timing Oscilloscope Diagrams with the InputInter-
valDelays of the ignition time calculation.

Figure 94: Timing Oscilloscope Diagram for InputIntervalDelays

The following observations can be made:

• The InputIntervalDelays vary irregularly between a minimum and a
maximum value and around a mean value.

• The InputIntervalDelayRequirement is satisfied
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7.5.3 Output Interval Delays

Figure 95 depicts the Timing Oscilloscope Diagrams with the OutputInter-
valDelays of the ignition time calculation.

Figure 95: Timing Oscilloscope Diagram for OutputIntervalDelays

The following observations can be made:

• The OutputIntervalDelays are constant at 10ms after a temporary de-
viation at the beginning.

• The OutputIntervalDelayRequirement is satisfied

7.6 Timing Properties of Injection Time and Ignition
Time Actuation System

For the actuation of the calculated injection time and ignition time
parameters upon a cylinder-specific request, timing requirements in the form
of ReactionTimeRequirements have been formulated. In the following, the
corresponding timing properties, i.e., the ReactionTimes, that have been de-
termined are described.

Furthermore, InputIntervalDelays and OutputIntervalDelays have also
been determined. These are interpreted as latencies between consecutive
effective injection time/ignition time requests (consecutive effective stimuli)
and consecutive effective injection time/ignition time actuations (consecutive
effective responses), respectively.
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7.6.1 Injection Time Actuation

Reaction times for injection time actuations

Figure 96 depicts the ReactionTimes for the cylinder-specific injection
time actuations.

(a) Cylinder number 1 (b) Cylinder number 2

(c) Cylinder number 3 (d) Cylinder number 4

(e) Cylinder number 5 (f) Cylinder number 6

(g) Cylinder number 7 (h) Cylinder number 8

Figure 96: Timing Oscilloscope Diagrams for ReactionTimes of cylinder-
specific injection time actuations 104



Latencies between consecutive effective injection time actuation
requests

Figure 97 depicts the latencies between consecutive effective injection
time requests (consecutive effective stimuli).

(a) Cylinder number 1 (b) Cylinder number 2

(c) Cylinder number 3 (d) Cylinder number 4

(e) Cylinder number 5 (f) Cylinder number 6

(g) Cylinder number 7 (h) Cylinder number 8

Figure 97: Timing Oscilloscope Diagrams for latencies between consecutive
effective injection time requests
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Latencies between consecutive effective injection time actuations

Figure 98 depicts the latencies between consecutive effective injection
time actuations (consecutive effective responses).

(a) Cylinder number 1 (b) Cylinder number 2

(c) Cylinder number 3 (d) Cylinder number 4

(e) Cylinder number 5 (f) Cylinder number 6

(g) Cylinder number 7 (h) Cylinder number 8

Figure 98: Timing Oscilloscope Diagrams for latencies between consecutive
effective injection time actuations
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The following observations can be made and conclusions can be drawn:

• The latencies between consecutive effective injection time requests are
approximately 60ms for all cylinders. This corresponds to an engine
speed of 2000ms. This is the engine speed at which the RTE Tracing
experiments have been conducted. It can be concluded that there are
no misses in the injection time calculations.

• The latencies between consecutive effective injection time actuations
are approximately 60ms for all cylinders. This again corresponds to an
engine speed of 2000ms, the engine speed at which the RTE Tracing
experiments have been conducted. From the plots it can be concluded
that there are no misses in the injection time actuations.
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7.6.2 Ignition Time Actuation

Reaction times for ignition time actuations

Figure 99 depicts the ReactionTimes for the cylinder-specific ignition time
actuations.

(a) Cylinder number 1 (b) Cylinder number 2

(c) Cylinder number 3 (d) Cylinder number 4

(e) Cylinder number 5 (f) Cylinder number 6

(g) Cylinder number 7 (h) Cylinder number 8

Figure 99: Timing Oscilloscope Diagrams for ReactionTimes of cylinder-
specific ignition time actuations 108



Latencies between consecutive effective ignition time actuation re-
quests

Figure 100 depicts the latencies between consecutive effective ignition
time requests (consecutive effective stimuli).

(a) Cylinder number 1 (b) Cylinder number 2

(c) Cylinder number 3 (d) Cylinder number 4

(e) Cylinder number 5 (f) Cylinder number 6

(g) Cylinder number 7 (h) Cylinder number 8

Figure 100: Timing Oscilloscope Diagrams for latencies between consecutive
effective ignition time requests
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Latencies between consecutive effective ignition time actuations

Figure 101 depicts the latencies between consecutive effective ignition
time actuations (consecutive effective responses).

(a) Cylinder number 1 (b) Cylinder number 2

(c) Cylinder number 3 (d) Cylinder number 4

(e) Cylinder number 5 (f) Cylinder number 6

(g) Cylinder number 7 (h) Cylinder number 8

Figure 101: Timing Oscilloscope Diagrams for latencies between consecutive
effective ignition time actuations
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7.7 Summary and Conclusion

In this section, the results from the RTE Tracing experiments with the
AUTOSAR-compliant engine control application have been presented. The
determined timing properties for the signal paths of the air system, fueling
system, ignition system and the injection time and ignition time actuation
system have been shown by means of Timing Oscilloscope Diagrams. It has
been shown that the timing requirements that have been formulated towards
these functionalities of the engine control application are only partly satisfied.
The reason for non-satisfied timing requirements lies in the coupling of the
AUTOSAR-compliant engine control application and the simulation hard-
ware with the engine simulation via a CAN bus. The CAN bus is inadequate
for a constant provision of input data with low delays.

The RTE Tracing experiments have been conducted for a scenario with a
constant engine speed of 2000rpm. This has allowed to evaluate the correct-
ness of consecutive effective injection time and ignition time actuations. For
other engine speeds, similar results can be obtained.

8 Summary

This report has presented the case study of an engine control application
to which the concepts of our Timing Model for AUTOSAR and the RTE
Tracing approach have been applied [4]. Section 2 gave a brief introduction
into the working principles of internal combustion engines and the require-
ments towards an engine control application for controlling the combustion
processes in the cylinders of an engine.

Section 3 then gave a more detailed overview of the basic functionalities of
the engine control application under consideration as case study object. This
also included a description of the most relevant signal paths for the different
functionalities as well as the timing requirements which can be associated
with the signal paths.

As our case study object is based on a legacy, non-AUTOSAR-compliant
engine control application to which the concepts of our Timing Model for
AUTOSAR could not be directly applied, the engine control application was
first reengineered to an AUTOSAR-compliant system. Section 4 described
the AUTOSAR compliant software architecture of the reengineered engine
control application and the important configurations for its realization as
AUTOSAR-compliant single-ECU system.

Section 5 then described the application of the concepts of our Timing
Model for AUTOSAR. The signal paths of the different functionalities that
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were identified have been modeled by means of PathSpecifications and asso-
ciated with application-specific timing requirements. The objective was then
to conduct RTE Tracing experiments to determine the timing properties and
to evaluate the degree of fulfillment of the timing requirements. For this, an
RTE Tracing instrumentation was generated and integrated with the ECU
software.

The technical setup used for RTE Tracing experiments was described
in section 6. A hardware-in-the-loop (HIL) setup was designed where the
relevant signals between the AUTOSAR-compliant engine control applica-
tion being realized as single-ECU system and a simulated environment are
exchanged over a CAN bus. During an RTE Tracing experiment, timing
data (i.e., time-stamps for the occurrences of AUTOSAR-specific Observ-
ableEvents) was captured by means of a state-of-the-art logic analyzer. The
timing data was then analyzed in order to obtain the timing properties re-
sults.

Section 7 discussed the results from the conducted RTE Tracing exper-
iments. The determined timing properties of the AUTOSAR-compliant en-
gine control application were presented, and the degree of fulfillment of the
timing requirements was discussed based on the introduced visualization
means, i.e., Timing Oscilloscopes Diagrams. It could be shown that the
timing requirements are only partly satisfied in the analyzed scenario from
the RTE Tracing experiment. Some timing requirements could not be sat-
isfied. This is mainly due to the asynchronous delivery of input signals via
the CAN bus.

The case study shows that the concepts of our Timing Model for AU-
TOSAR are applicable to real-time applications realized in terms of an AU-
TOSAR system. Together with the AUTOSAR-specific ObservableEvents,
the concepts for hierarchical event chain provide the necessary means for
the description of signal paths in AUTOSAR systems such that application-
specific timing requirements can adequately be expressed. By means of RTE
Tracing, it is possible to determine timing properties that correspond to the
application-specific timing requirements such that the degree of fulfillment
of the timing requirements can be evaluate.
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