

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Object-aware Business Processes:

Properties, Requirements, Existing Approaches

Vera Künzle, Barbara Weber, Manfred Reichert

Ulmer Informatik-Berichte
Nr. 2010-06

August 2010

1

Object-aware Business Processes:
Properties, Requirements, Existing Approaches

Vera Künzle1, Barbara Weber2, and Manfred Reichert1

1Institute of Databases and Information Systems, Ulm University, Germany

{vera.kuenzle,manfred.reichert}@uni-ulm.de
2Institute of Computer Science, University of Innsbruck, Austria

{barbara.weber}@uibk.ac.at

Abstract. Despite the increasing maturity of process management technology not all busi-
ness processes are adequately supported by it. In particular, support for unstructured and
knowledge-intensive processes is missing, especially since they cannot be straight-jacketed
into predefined activities. A common characteristic of these processes is the role of busi-
ness objects and data as drivers for process modeling and enactment. This paper elicits fun-
damental requirements for effectively supporting such object-aware processes; i.e., their
modeling, execution and monitoring. Based on these requirements, we evaluate imperative,
declarative, and data-driven process support approaches and investigate how well they sup-
port object-aware processes. We consider a tight integration of process and data as major
step towards further maturation of process management technology.

Keywords: Process-aware Information Systems, Object-aware Process Management, Data-
driven Process Execution

1. Introduction

Business Process Management provides generic methods, concepts and techniques for de-
signing, configuring, enacting, monitoring, and diagnosing business processes [AHW03,
HBR10, MRB08, WRWR09]. When using existing process management systems (PrMS) a
business process is typically defined as set of activities representing business functions and
having a specific ordering. What is done during activity execution is out of the control of
the PrMS. Most PrMS consider activities as black-boxes in which application data is man-
aged by invoked application components (except routing data and process variables).
Whether an activity becomes activated during runtime depends on the state of other activi-
ties. Generally, a process requires a number of activities to be accomplished in order to
terminate successfully. For end-users, PrMS provide process-oriented views (e.g., work-
lists) to assign upcoming activities to authorized users [RiRe07, RiRe09].

Generally, PrMS comprise generic runtime functions for interpreting process models, as-
signing human tasks to users and invoking application components. As a pre-requisite for
the latter, for each activity a corresponding application component must be provided. Exist-
ing PrMS have been primarily designed for highly structured, repetitive processes. By con-
trast, for unstructured and semi-structured processes existing PrMS do not provide suffi-
cient support [Sil09]. In particular, these processes are driven by user decisions and are
knowledge-intensive; i.e., they cannot be expressed as a set of activities with specified order
and work cannot be straight-jacketed into activities [AWG05]. Another limitation of PrMS
is their insufficient process coordination support; i.e., process instances cannot be synchro-
nized at a higher-level of abstraction. Consequently, all behavior relevant in a given context
must be defined within one process model [ABEW00, MRH07]. This, in turn, leads to a
"contradiction between the way processes can be modeled and preferred work practice"
[SOSS05]. Finally, since application data is managed within black-box activities, integrated

2

access on business processes and data cannot be provided. Due to these limitations many
business applications (e.g. ERP systems) do not rely on PrMS, but are hard-coding process
logic instead. Resulting applications are both complex to design and costly to maintain, and
even simple process changes require costly code adaptations and testing efforts.

To better understand which processes are handled well by existing PrMS and for which
support is unsatisfactory, we conducted several case studies. Amongst others we analyzed
business applications with hard-coded process logic; e.g., the processes as implemented in
the human resource management system Persis and the reviewing system Easychair
[KüRe09A, KüRe09B, KüRe09C, KüRe10]. Processes similar to the ones we evaluated can
be found in many other fields like healthcare [LeRe07, RHD98], software engineering
[GOR10] and release management [MHHR06]. A major finding of all case studies was that
data objects act as major driver for process specification and enactment. Consequently,
process support requires object-awareness; i.e., business processes and business objects
cannot be treated independently from each other. This has implications on the whole proc-
ess lifecycle since PrMS should consider both object types and their inter-relations. Regard-
ing its execution, on the one hand an object-aware process must be closely linked to rele-
vant object instances; i.e., object attributes must process specific values to invoke certain
activities or terminate process execution. On the other hand, an object-aware process does
not only require certain data for executing a particular activity; i.e., it should be also able to
dynamically react on data changes and newly emerging data at any point in time. Conse-
quently, process progress needs to be aligned with available object instances and their at-
tribute values at runtime.

Regarding end-user functions provided by hard-coded business applications, in addition to
a process-oriented view there often exists a data-oriented view for managing and accessing
data at any point in time. This includes overview tables (e.g., on object instances) as well as
activities that can be optionally executed. The latter are realized based on forms which can
be invoked by authorized users to access or change object attributes regardless whether the
respective activity is expected to happen during process execution. Form-based activities
therefore constitute an important part for object management and process execution. In the
application systems we analyzed about eighty-five percent of all activities were form-based.

Our overall vision is to enable the modeling, execution and monitoring of object-aware
business processes, which provide integrated access to business processes, data and appli-
cation functions. We aim at the automated and model-driven generation of data-oriented
views, process-oriented views and form-based activities at runtime. We also support the in-
tegration of arbitrary application components.

Based on the results of our case studies, we have already reported on fundamental chal-
lenges [KüRe09A, KüRe09B, KüRe09C, KüRe10] and properties of PrMS integrating
processes, data and users to provide the needed flexibility. In this paper, we elicit these
properties in detail and introduce the requirements for effectively supporting object-aware
processes. We then evaluate existing process support paradigms along these requirements
and discuss which properties are well supported and in which cases additional research is
needed to better capture the role of data as driver for process modeling and enactment.
Overall, we believe that more profound research on object-aware processes will contribute
to overcome some of the fundamental limitations known from existing PrMS.

The remainder of this paper is organized as follows. In Section 2 we introduce fundamental
properties of object-aware processes and elaborate on the role of data for process enactment
in more detail. In Section 3 we discuss major requirements to support object-aware process
management along a realistic example. Section 4 discusses the outcomes we obtained when
applying imperative, declarative, and current data-driven modeling approaches to tackle the
identified requirements. We close with a summary and outlook in Section 5.

3

2. Properties of Object-aware Business Processes

We first describe fundamental properties of object-aware business processes and discuss
why objects are the driver for modeling, executing and monitoring these processes. We first
introduce an example of an object-aware process. As illustrated by Fig. 1, we use a (simpli-
fied) scenario from our case study in the area of human resource management [KüRe10].

initiate
initiate

initiate

initiate

Marla Sun

Hans Manz
invite

many skills

announce

Init

fill in

decide

fill

engineer
01 | 01 | 2010

software

Ulm

fill in

fill in

fill in

decide

fill in

Willi Ohr

Init

Mila Fun

initiate

Fritz Maier

Hilde Moore

Franz Hahn

Lola Fee

Max Sun
Hans Manz

hm@web.de

12|12|1970

Ulm

Fig. 1: Example of a recruitment process from the human resource domain

Recruitment process: In the context of recruitment applicants may apply for job vacan-

cies via an Internet online form. Before an applicant can send her application to the re-
spective company, specific information (e.g., name, e-mail address, birthday, residence)
must be provided. Once the application has been submitted, the responsible personnel

officer in the human resource department is notified. The overall process goal is to decide
which applicant shall get the job. Since many applicants may apply for a vacancy, usu-
ally, different personnel officers handle the applications.

If an application is ineligible, the applicant is immediately rejected. Otherwise, person-
nel officers may request internal reviews for each applicant. Depending on the con-
cerned functional divisions, the concrete number of reviews may differ from applica-

tion to application. Corresponding review forms have to be filled by employees from

functional divisions until a certain deadline. Employees may either refuse or accept the
requested review. In the former case, they must provide a reason. Otherwise, they make a

proposal on how to proceed; i.e., they indicate whether the applicant shall be invited for
an interview or be rejected. In the former case an additional appraisal is needed.

After the employee has filled the review form, she submits it to the personnel officer. In
the meanwhile, additional applications may have arrived; i.e., different reviews may be
requested or submitted at different points in time. In this context, the personnel officer

may flag already evaluated reviews. The processing of the application proceeds while
corresponding reviews are created; e.g., the personnel officer may check the CV and
study the cover letter of the application. Based on the incoming reviews he makes his

4

decision on the application or initiates further steps (e.g., interviews or additional re-
views). Further, he does not have to wait for the arrival of all reviews; e.g., if a particular

employee suggests hiring the applicant.

In the following we discuss fundamental properties of object-aware business processes
along this realistic example. Thereby, we focus on the categories Data, Activities, Proc-
esses, User Integration, and Monitoring.

2.1 Data

All scenarios we analyzed in our case studies are characterized by a tight integration of
process and data: i.e., besides a process-oriented view (e.g., worklists) there exists a data-
oriented view that enables end-users to access data at any point in time given the required
authorizations. As illustrated in Fig. 2a, data is managed based on object types which are
related to each other. Each object type comprises a set of attributes. Object types, their at-
tributes, and their inter-relations form a data structure.

At runtime the different object types comprise a varying number of inter-related object in-
stances, whereby the concrete number can be restricted by lower and upper bounds (i.e.,
cardinalities). Furthermore, object instances of the same object type may differ in both
their attribute values and relations to each other (cf. Fig. 2b); e.g., for one application two
reviews and for another one three reviews might be requested. We denote an object instance
which is directly or transitively referenced by another one as higher-level object instance
(e.g., an application is a higher-level object instance of a set of reviews). By contrast, an ob-
ject instance which directly or transitively references another object instance is denoted as
lower-level object instance (e.g., reviews are lower-level object instances of to an applica-
tion object).

Fig. 2: Data structure at build- and runtime

2.2 Activities

Activities can be divided into form-based and black-box activities. In object-aware proc-
esses typically, during activity execution, the values of object attributes can be accessed.
While form-based activities provide input fields (e.g., text-fields or checkboxes) for writing
and data fields for reading selected attribute values of object instances, black-box activities
enable complex computations or integration of advanced functionalities (e.g., sending e-
mails or invoking web services).

Form-based activities can be further divided into instance-specific activities, batch activities
and context-specific activities depending on the number of object instances they apply to.

5

Instance-specific activities correspond to exactly one object instance (cf. Fig. 3a). When
executing such activity, attributes of that object instance can be read, written or updated us-
ing a form (e.g., the form an applicant can use for entering his application data). A con-
text-sensitive activity additionally includes fields corresponding to higher-level or lower-
level object instances (cf. Fig. 3b). When integrating lower-level object instances, usually, a
collection of object instances is considered. For example, when an employee fills in a re-
view, additional information about the corresponding application should be provided
(i.e., attributes belonging to the application for which the review is requested). Further-
more, employees may change the value for attribute comment of the application object in-
stance. Finally, batch activities allow users to change a collection of object instances in one
go, i.e., attribute values are assigned to all selected object instances using one form (cf. Fig.
3c); e.g., a personnel officer might want to flag a collection of reviews as "evaluated" in
one go. Or as soon as an applicant is hired for a job, for all other applications value re-
ject should be assignable to attribute decision by filling one form.

Fig. 3: Basic types of form-based activities

Object-aware processes provide a process-oriented view in which mandatory activities are
assigned to responsible users at the right point in time as well as a data-oriented view in
which object instances can be accessed at any point in time using optional activities. Both
form-based and black-box activities may either be optional or mandatory. In the latter case,
their execution is required for process execution.

2.3 Processes

In addition to the structure of object types (i.e., their attributes and inter-relations), their
behavior needs to be considered. Basically, object behavior determines in which order and
by whom object attributes have to be (mandatorily) written, and what valid attribute set-
tings are. Thereby, for each object type a set of states needs to be defined of which each
postulates specific attribute values to be set. More precisely, a state can be expressed in
terms of a particular data condition referring to a number of attributes of the respective ob-
ject type. As example consider object type review and its states as depicted in Fig. 4. In
state accepted a value for attribute appraisal must be assigned and the value of attribute

proposal must either be set to 'reject' or 'invite'. Further, object behavior restricts possible
state sequences using transitions. In particular, for each state possible successor states are
defined. Consider the processing of a review in Fig. 4c: First, the review must be initi-

ated by a personnel officer. Following this, the employee may either refuse or accept

the review. In the latter case, he submits the review back to the personnel officer.

6

Fig. 4: Object behavior defined based on states and transitions

At runtime, for each object type multiple object instances may exist (cf. Fig. 5a). Generally,
the exact number of instances to be processed for a particular object type is not always
known at build-time. These object instances may be created or deleted at arbitrary points in
time; i.e., the data structure dynamically evolves depending on the type and number of cre-
ated object instances as well as on their relations. Consequently, the individual object in-
stances may be in different states at a certain point in time; e.g., several reviews may be re-
quested for a particular applicant. While one of them might be in state initiated, others
might have already reached state submitted. Taking the behavior of individual object in-
stances into account, we obtain a complex process structure in correspondence to the given
data structure (cf. Fig. 5b).

Fig. 5: Data structure and corresponding process structure

Generally, complex processes result from the interactions between instances of different
object types:

Object interactions within the recruitment process (cf. Fig. 6): A personnel officer

announces a job. Following this, applicants may init applications for this job. After
submitting an application, the personnel officer requests internal reviews for it. If an

employee acting as referee proposes to invite the applicant the personnel officer con-

7

ducts an interview. Based on the results of reviews and interviews the personnel offi-

cer decides in the application. In case of acceptance the applicant is hired.

Fig. 6: Process definition based on object interactions

As can be seen from this scenario, behavior of individual object instances (of same and of
different type) needs to be coordinated considering their inter-relations as well as their
asynchronous execution. In this context, the dynamic number of object instances must be
taken into account (cf. Fig. 7); e.g., a personnel officer is not allowed to read the result
of a review before the employee has submitted it. Further, the personnel officer may
only reject an application immediately if all reviewers propose its rejection.

Fig. 7. Process structure at build- and runtime

Activity execution depends on the behavior of the processed object instances as well as on
their inter-relations and thus requires modeling at two abstraction levels.

2.4 User Integration

Taking the data-oriented view users may optionally access object instances at any point in
time and create, read and write them (i.e., executing optional activities). The process-
oriented view, in turn, provides worklists; i.e., it allows assigning mandatory (form-based
and black-box) activities to the right users at the right point in time. If mandatorily required
information is missing during process execution, a form-based activity is automatically
generated by the system and added to the worklist of the responsible user; e.g., if a review

needs to be filled out by an employee a form-based activity with input fields for attributes

proposal and appraisal is generated.

8

2.5 Monitoring

The overall state of the process, which is defined in terms of interactions between object in-
stances, should be made transparent. Generally, monitoring the overall process state should
provide an aggregated view on the corresponding object instances (cf. Fig. 8). Since each
object instance may be in a different state, object behavior of each involved object instance
needs to be considered in a fine-grained manner.

announce Init make

Fig. 8: Aggregated view

2.6 Summary

Altogether, for many process-aware business applications, objects act as driver for process
modeling and execution. Thus, process modeling must consider object types, attributes and
relations, while process execution depends on the processed object instances and their indi-
vidual state, which reflects the progress of corresponding object behavior. To achieve tight
synchronization between object and process state, it is not sufficient to model processes
only in terms of black-box activities. Instead, for each process step, pre-conditions regard-
ing object attribute values exist. However, if such conditions are not met during runtime,
process execution must not be blocked; i.e., it is not sufficient to only postulate certain at-
tribute values, but it also becomes necessary to dynamically react on available data at any
point in time. In particular, activation of an activity does not directly depend on the comple-
tion of other activities, but on changes of object attribute values. Note that this is a funda-
mental difference when compared to activity-centric approaches.

9

3. Requirements for the IT Support of Object-aware Processes

This section elicits fundamental requirements for the support of object-aware processes. We
gathered these requirements in three case studies in which we analyzed processes and ob-
jects of applications from human resource management, paper reviewing and healthcare.
Though these requirements are not complete in the sense that they cover all aspects of the
object and process lifecycle, their fulfilment is indispensable for enabling the aforemen-
tioned properties as well as the automatic generation of runtime components like worklists,
overview lists and form-based activities. Fig. 9 gives an overview of these requirements.
They are described in detail in the following subsections.

Fig. 9: Fundamental requirements for object-aware processes

3.1 Data

R1 (Data integration). Data should be managed in terms of object types comprising object
attributes and relations to other object types.

Example 1: For each job a set of applications may be created. For each application, in
turn, several reviews may exist, each having attributes like application, employee, remark,

proposal and appraisal.

R2 (Access to data). Access to data should be granted at any point given the required au-
thorizations; i.e., not only during the execution of a particular activity.

Example 2: The personnel officer should be allowed to access an application even if
no activity is contained in his worklist. Furthermore, if an applicant contacts him to
change her address, he should be allowed to update corresponding attributes.

R3 (Cardinalities). It should be possible to restrict relations between object instances
through cardinality constraints; i.e., through the minimal and maximal number of object in-
stances which may be created in the given context.

Example 3: For each application at least one and at most five reviews may be requested.
While for an application two reviews exists, for another one three reviews may be re-
quested.

R4 (Mandatory information). To reach a particular object instance state from the current
one, certain attribute values must be set. For this, a form-based activity with mandatory in-
put fields needs to be assigned to the worklists of authorized users. When executing it, spe-
cific input fields referring to mandatorily required attributes have to be filled. Other input
fields may be optionally set.

10

Example 4: The mandatory form-based activity for requesting a review is accomplished by
a personnel officer. When working on this activity, values for object attributes applica-

tion and employee are mandatory, while other attributes (e.g., remark) are optional.

3.2 Activities

R5 (Form-based activities). A form-based activity comprises a set of atomic actions. Each
of them corresponds to either an input field for writing or a data field for reading the value
of an object attribute. Which attributes may be written or read in a particular form-based ac-
tivity may depend on the user invoking this activity and the state of the object instance.
Consequently, a high number of form variants exists. Since it is costly to implement them
all, it should be possible to automatically generate form-based activities at runtime.

Example 5: An employee needs a form-based activity to edit a review; i.e., to assign val-
ues to attributes proposal and appraisal. In addition, she can access attributes of the ap-

plication to which the review refers. As soon as she has submitted her review she may
only read attributes proposal and appraisal. If the responsible personnel officer wants
to edit the review at the same point in time, he may only write attribute remark.

R6 (Black-box activities). To ensure proper execution of black-box activities, we need to
be able to define pre-conditions on attribute values of processed object instances. If their
input parameters belong to different object instances, their inter-relationships should be
controllable. Opposed to form-based activities, which should be automatically generated by
the runtime system (cf. R5), for each black-box activity an implementation is required.

Example 6: Consider a black-box activity which compares the skills of an applicant

with the requirements of the job. This activity requires input parameters referring to (ob-
jects) application, skills, job, and job requirements. It should be ensured that the job

is exactly the one for which the applicant applies. Finally, the requirements must comply
to the ones of the job and the skills relate to the ones of the applicant.

R7 (Variable granularity). As discussed, support for instance-specific, context-sensitive,
and batch activities is required (cf. Section 2). Regarding instance-specific activities, all ac-
tions refer to attributes of one particular object instance, whereas context-sensitive activities
comprise actions referring to different, but related object instances (of potentially different
type). Since batch activities involve several object instances of the same type, for them
each action corresponds to exactly one attribute. Consequently, the attribute value must be
assigned to all referred object instances. Depending on their preference, users should be al-
lowed to freely choose the most suitable activity type for achieving a particular goal. Fi-
nally, executing several black-box activities in one go should be supported.

Example 7: An employee may choose a context-sensitive activity to edit a review; i.e., to
write attributes proposal and appraisal) and to read attributes of the application. A per-

sonnel officer, in turn, may choose a batch activity to update several reviews in one go;
e.g., to set attribute evaluated for all reviews relating to an application.

R8 (Mandatory and optional activities). Depending on the state of object instances cer-
tain activities are mandatory for progressing with the control-flow. At the same time, users
should be allowed to optionally execute additional activities (e.g., to write certain attributes
even if they are not required at the moment). It must be possible for users to clearly distin-
guish between these two types.

11

Example 8a (Mandatory activity): After a review has been initiated by a personnel of-

ficer, the assigned employee either must provide or refuse the review; i.e., a form-based
activity needs to be mandatorily performed.

Example 8b (Optional activity): After a review request has been triggered by the person-

nel officer (i.e., attributes application and employee are set), he should be further al-
lowed to update object attribute remark. Generally, he may update certain object attributes,
while an employee fills in a review.

R9 (Control-flow within user forms). Whether certain object attributes are mandatory
when processing a particular activity might depend on other object attribute values; i.e.,
when filling a form certain attributes might become mandatory on-the-fly.

Example 9: When an employee receives a review request, she either fills the review form
as requested by the personnel officer or refuses this task. Consequently, a value needs to
be assigned to at least one of the two attributes proposal or refusal. If the employee de-
cides to set attribute proposal, additional object attributes will become mandatory; e.g., if
she wants to invite the applicant for an interview she has to set attribute appraisal as
well. This is not required if she assigns value reject to attribute proposal.

3.3 Processes

R10 (Object behavior). It should be possible to determine in which order and by whom
object attributes have to be (mandatorily) written, and what valid attribute value settings
are. In addition, when executing black-box activities the involved object instances need to
be in certain states. Consequently, for each object type its behavior should be definable in
terms of states and transitions. In particular, it should be possible to drive process execution
based on data and to dynamically react upon attribute value changes. Therefore, it is crucial
to map states to attribute values.

Example 10: An employee may only provide a review for a particular application if the
state of the review is initiated. This state is automatically entered as soon as values for at-
tributes employee and application are assigned.

R11 (Object interactions). Generally, a process deals with a varying number of object in-
stances of the same and of different object types. In addition, for each processed object in-
stance its behavior must be considered. In this context, it should be possible to process in-
stances in a loosely coupled manner, i.e., concurrently to each other and to synchronize
their execution where needed. More precisely, any process modeling paradigm should al-
low defining processes with a dynamic number of object instances. First, it should be pos-
sible to make the creation of a particular object instance dependent on the state of the re-
lated higher-level object instance (creation dependency). Second, during the execution of a
higher-level object instance, aggregated information from its lower-level object instances
should be accessible; amongst others this requires the aggregation of attribute values from
lower-level object instances (aggregative information) [ABEW00]. Third, the executions of
different process instances may be mutually dependent [MRH07, ABEW00]; whether an
object instance may switch to a certain state depends on the state of another object instance
and vice versa (execution dependency). Consequently, processes should be defined in terms
of object interactions. Additionally, the integration of black-box activities should possible.

12

Example 11: We consider the different kinds of synchronization dependencies in the con-
text of our example: A personnel officer must not initiate any review as long as the cor-
responding application has not been finally submitted by the applicant (creation de-
pendency). Further, individual review process instances are executed concurrently to each
other as well as to the application process instances; e.g., the personnel officer may
read and change the application while the reviews are processed. Further, reviews be-
longing to a particular application can be initiated and submitted at different points in
time. Besides this, a personnel officer should be able to access information about submit-
ted reviews (aggregative information); i.e., if an employee submits her review recommend-
ing to invite the applicant for an interview, the personnel officer needs this information
immediately. Opposed to this, when proposing rejection of the applicant, the personnel

officer should only be informed when other initiated reviews are submitted. Finally, if the

personnel officer decides to hire one of the applicants, all others must be rejected (exe-
cution dependency). In this context, black-box activities become relevant as well (e.g.,
sending an acknowledgement to an applicant after rejecting his application or comparing
the skills of the applicant with the requirements of the job before reviews are initi-

ated.

R12 (Process-oriented view). During process execution some activities must be mandato-
rily executed by responsible users while others are optional. To ensure that mandatory ac-
tivities are executed at the right point in time, they must be assigned to the worklists of au-
thorized users.

Example 12: When a review enters state accepted (i.e., its request was accepted by an em-

ployee), a workitem is added to her worklist. When processing it, she has to mandatorily
set attributes proposal and appraisal. Furthermore, a personnel officer may optionally
change attribute remark of the review. Consequently, access this object instance must be
coordinated.

R13 (Flexible process execution). While optional activities can be applied to change ob-
ject attribute values at any point in time, mandatory activities are bound to certain object in-
stance states. In particular, mandatory activities are obligatory for process execution; i.e.,
they enforce the setting of object attribute values as required for progressing with the proc-
ess. In principle, respective attributes can be also set up front by executing optional activi-
ties; i.e., before the mandatory activity normally writing this attribute becomes activated. In
the latter case, the mandatory activity can be automatically skipped when it is activated.

Example 13: After the personnel officer has set values for object attributes application

and employee, a mandatory activity for filling the review form is assigned to the specified

employee. Even if the personnel officer has not completed this review request (i.e., he
has specified the respective employee, but not the corresponding application), the selected

employee may optionally edit certain attributes of the review. For example, he may refuse

the review and set object attribute comment. If the personnel officer has assigned the ap-
plication, the mandatory activity for providing the review is automatically skipped due to
the up front provision of the required data.

R14 (Re-execution of activities). While in many cases mandatory activities shall be auto-
matically skipped if related attribute values are set prior to the execution of these activities,
other scenarios require that users explicitly commit completion of such activities even if all
mandatory information is available; i.e., to explicitly approve the values assigned to manda-
tory object attributes. In particular, users should be allowed to re-execute a particular activ-

13

ity (i.e., to update its attributes), even if all mandatory object attributes have been already
set.

Example 14: An employee may change his proposal arbitrarily often until he explicitly
agrees to submit the review to the personnel officer.

R15 (Explicit user decisions). Generally, different ways for reaching a process goal may
exist. Usually, the selection between such alternative execution paths is based on history
data; i.e., on completed activities and available process-relevant data. In our context, this
selection might be also based on explicit user decisions.

Example 15: A personnel officer may decide whether reviews are requested for a par-
ticular application. Only if a review is initiated, a mandatory activity for finalizing the

reviews is invoked; i.e., execution of the second activity depends on user a decision.

3.4 User Integration

R16 (Data authorization). To provide access to data at any point in time, we need to de-
fine permissions for creating and deleting object instances as well as for reading/writing
their attributes. However, attribute changes contradicting to object behavior should be pre-
vented. For this, the progress of the process has to be taken into account when granting
permissions to change objects attributes [Bot02, WSML02]. Otherwise, if committed at-
tribute values were changed afterwards, object instance state would have to be adjusted to
cope with dirty reads. Generally, data permissions should be made dependable on the states
as captured by object behavior. This is particularly challenging for context-sensitive and
batch activities, since attribute changes have to be valid for all selected instances. Alto-
gether, the execution of optional activities cannot be treated independently from normal
process execution.

Example 16: After submitting her review, the employee still may change her comment.

However, attribute proposal must not be changed anymore. The personnel officer might
have already performed the proposed action. Further, using a batch activity, he may flag
several reviews in one go (i.e., assign value true to object attribute evaluated). Finally, it
must be ensured that the employee can only access reviews she submitted before.

R17 (Process authorization). For each mandatory activity required for process execution
at least one user or user role should be assigned to it at runtime. Regarding a form-based ac-
tivity, each user who may execute it must have the permissions for reading/writing corre-
sponding attribute values [Bot02].

Example 17: An employee who has to fill a review also needs the permissions to set attrib-
utes proposal, appraisal, refusal, and appraisal.

R18 (Differentiating authorization and user assignment). When executing mandatory
activities particular object attributes have to be set. To determine which user shall execute a
pending mandatory activity, her permissions for writing object attributes need to be evalu-
ated. While certain users must execute an activity mandatorily in the context of a particular
object instance, others might be authorized to optionally execute this activity; i.e., manda-
tory and optional permissions should be distinguishable. In particular, a mandatory activity
should be only added to the worklists of users having "mandatory permissions". Users with

14

"optional permissions", in turn, may change the corresponding attributes when executing
optional activities.

Example 18: An employee must write attribute proposal if she has accepted the review re-
quest. However, her manager may optionally set this attribute as well. The mandatory activ-
ity for filling the review form, in turn, should be only assigned to the employee.

R19 (Vertical authorization and user assignment). Usually, human activities are associ-
ated with actor expressions (e.g., user roles). We denote this as horizontal authorization.
Users who may work on respective activities are determined at runtime based on these ex-
pressions. For object-aware processes, however, the selection of potential actors should not
only depend on the activity itself, but also on the object instance processed by it. We denote
this as vertical authorization.

Example 19: A personnel officer may perform activity make decision only for applica-

tions for which the name of applicants starts with a letter between 'A' and 'L', while an-
other officer may perform this activity for applicants whose name starts with a letter be-
tween 'M' und 'Z'.

3.5 Monitoring

R20 (Aggregated View). A complex process, which integrates several object instances of
the same and of different type, can be defined based on the interactions between these ob-
ject instances (i.e., each process step refers to one interaction dependency). Corresponding
to this, a process monitoring component should provide aggregated views of all involved
object instances. In particular, individual object instances are executed concurrently to each
other and to corresponding higher-level as well as lower-level object instances. This leads
to the asynchronous execution of different parts of the process. Process monitoring should
provide an aggregated view of all object instances involved in a process as well as their in-
terdependencies.

Example 20: Consider the decision about a particular application as expressed with at-
tribute decision (based on the results of the reviews). While some reviews might have
been already submitted, others might be still processed by an employee. Further, additional
reviews might be requested at a later point in time.

15

4. Evaluating Existing Process Support Paradigms

We evaluate existing approaches along the requirements introduced in Section 3. We focus
on imperative, declarative and data-driven process support paradigms. Other approaches,
which are related to our requirements, constitute extensions of these paradigms. In addi-
tion, there are approaches allowing for the partial support of certain requirements based on
workarounds. As illustrated in Fig. 10, only limited support is provided in respect to the
support of object-aware processes.

Fig. 10: Evaluating of existing approaches

4.1 Imperative Approaches

There is a long tradition of modeling business processes in an imperative way. Process lan-
guages supporting this paradigm include BPMN and BPEL. Usually, processes are speci-
fied as directed graphs [WRR08]. Process steps correspond to different activities [TRI09]
which are connected to express precedence relations (cf. Fig. 11). For control flow model-
ing a number of patterns exists, e.g., sequential, alternative and parallel routing, and loop
backs [AHKB03].

16

Fig. 11: Imperative modeling approach

Imperative approaches only provide limited support regarding the requirements raised by
object-aware processes. In the following, we discuss the imperative approach along its main
characteristics: hidden information flows (A), flow-based activation of activities (B), actor
expressions (C), fixed activity granularity (D), and arbitrary process granularity (E). We
evaluate the requirements along these characteristics (cf. Fig. 12).

Fig. 12: Evaluating the imperative approach

Hidden information flows (A)

Usually, imperative approaches enable the explicit definition of data flows between activi-
ties based on atomic data elements. The latter are connected with activities (and their pa-
rameters) or with routing conditions (cf. Fig. 11). Activities themselves are regarded as
black-boxes; i.e., application data is usually managed within invoked applications. In par-
ticular, there is no explicit link between activities and the object instances they manipulate
(and object attributes respectively). Consequently, it remains hidden which data is actually
accessed or changed during activity execution. Altogether, this characteristic affects re-
quirements of categories Data, Activities, User Integration, and Monitoring.

17

Data. Data integration based on object types, attributes and relations is not supported (i.e.,
R1 is not met); i.e., the PrMS is unaware of the object instances being accessed during
process execution. Further, it cannot control whether required data changes are actually ac-
complished; i.e., mandatory information cannot be realized (i.e., R4 is not met).

Activities. A particular activity usually requires data that has to be provided by preceding
activities. Ideally, this is accomplished according to the modeled data flow. If accessed data
elements are not written by previous activities, process execution might be blocked. Op-
posed to this, if consumed data is not explicitly considered in the modeled data flow, the
process instance might proceed though required data is missing. Consequently, it is not
possible to automatically invoke a form-based activity for requesting missing data from us-
ers. Furthermore, the internal control-flow of a form-based activity cannot be expressed
(i.e., R5 and R9 are not met). Regarding black-box activities, in turn, different parameters
may belong to attributes of different object instances. However, we cannot control the rela-
tions between the object instances to which the parameters of an activity refer (i.e., R6 is
not fully supported).

User integration. It cannot be guaranteed that users who own the permission for executing
an activity are also authorized to read/write attributes processed by this activity. Thus,
process authorization is only enabled at activity level (i.e., R17 is not fully met). Vertical
authorization (i.e., assigning different permissions for the same activity depending on the
state of the processed object instance) is not supported (i.e., R19 is not met).

Monitoring. There exist sophisticated approaches for enabling the monitoring of impera-
tive processes [BBR06, BRB05]. However, due to the hidden information flows one cannot
provide an aggregated view on processed object instances (i.e., R20 is not met).

Flow-based activation of activities (B)

Each process step corresponds to one activity being mandatory for process execution (ex-
cept it is contained in a conditional path not chosen for execution). Moreover, activity acti-
vation depends on the state of preceding activities, i.e., a particular activity becomes en-
abled if its preceding activities are completed or cannot be executed anymore (except loop
backs). This characteristic affects requirements of categories Data, Activities, Processes
and User Integration.

Data. Data access is only possible when executing activities according to the defined con-
trol-flow; i.e., data cannot be accessed independently from process execution (i.e., R2 is not
fully met).

Activities. There is no support for optional activities enabling data access at any point in
time (i.e., R8 is not met). However, such data access can be simulated using the following
workaround.

Workaround 1 (Optional activities). “Optional” activities can be added as conditional
branches in different regions of a process model (cf. Fig. 13). As a drawback, end-users
cannot distinguish between optional and mandatory work items emerging in their work-
lists. Furthermore, complex and difficult to maintain spaghetti-like process models might
result.

18

Fig. 13: A workaround ”simulating” optional activities

Processes. Since the activation of an activity solely depends on the completion of other ac-
tivities, flexible process execution (e.g., skipping certain activities if required output data is
already available) is not explicitly supported (i.e., R13 is not met).

Workaround 2 (Flexible process execution). Process data elements could be evaluated
using XOR-splits before and after activity execution (cf. Fig. 14a). If required object at-
tribute values have already become available before activity execution, the process model
can simulate the skipping of the respective activity by embedding it in an alternative path.

Note thate there also exist approaches like ADEPT2 [RHD98, Rei00, RRKD05, RD09],
which enable process flexibility by supporting dynamic process changes (e.g., to add or
move activities) during runtime. However, issues related to such dynamic process changes
are outside the scope of this paper (see [RRD09, WRR08, WSR09] for recent surveys).

There is no direct support for re-executing an activity as long as the user does not commit
its completion (i.e., R14 is not met). Since activity activation only depends on the comple-
tion of other activities there is no explicit support for user decisions (i.e., R15 is not met).

Workaround 3 (Re-execution and user decisions). User decisions and commitments are
encapsulated within black-box activities which write certain data elements as specified
within the data flow (cf. Fig. 14b). These data elements are then evaluated using an XOR-
split to decide whether to proceed with process execution or to initiate a backward jump
using a loop.

Fig. 14: Workarounds for flexible process execution, re-execution and user decisions

Opposed to object-aware processes, in which flexible process execution, activity re-
execution and user decisions may take place at arbitrary points in time, the described work-
arounds are restricted to predefined points during process execution. Consequently, these
workarounds can lead to spaghetti-like models being by orders of magnitudes more com-
plex than the real world scenario they actually cover.

User integration. Since data can only be accessed when executing mandatory activities,
imperative approaches lack sophisticated support for coordinating processed data and exe-
cuted processes. Thus, neither proper data authorization (i.e., R16 is not met) nor the dis-
tinction between process and data authorization are considered (i.e., R18 is not met).

19

Actor expressions (C)

Human activities are associated with actor expressions (e.g., roles). Based on these expres-
sions activities can be assigned to authorized users at runtime, which enables process coor-
dination among users. Further, when a human activity becomes enabled, a corresponding
work item is added to worklists of authorized users. This property affects a requirement of
category User Integration.

User Integration. A process-oriented view is provided enabling the execution of activities
by the right users at the right point in time (i.e., R12 is met).

Fixed activity granularity (D)

Activities are associated with a specific business function implemented at buildtime, thus
having a fixed granularity. This property affects a requirement of category Activities.

Activities. Support of different work practices by enabling instance-specific, context-
sensitive and batch activities is not provided; i.e.; a variable granularity of activities is not
possible (i.e., R7 is not met).

Arbitrary process granularity (E)

Imperative approaches do not distinguish between the behavior of individual object in-
stances and the processes coordinating them. Business functions associated with the activi-
ties of a process model can be implemented at different levels of granularity. While certain
activities are only processing one object instance, others may process several object in-
stances of same/different type. Generally, there exists no elaborated modeling methodology
giving advice on the number of object types to be handled within one process definition.
Consequently, a process is either defined at a coarse- or fine-grained level. This has ef-
fects on requirements of categories Data and Processes.

Data. When applying a coarse-grained process modeling style, an activity may be linked
to several object types. Since object flows are hidden, it is difficult to ensure consistency
between process and data modeling. In particular, when modeling a process the creation of
object instances cannot be restricted to a varying and dynamic number of object instances
based on cardinalities (i.e., R3 is not fully met).

Activities. When applying a fine-grained process modeling style, activity execution is as-
sociated with exactly one process instance. Consequently, only instance-specific activities
can be realized, but no context-sensitive or batch activities. Further, it is not possible to
automatically generate a form-based activity if required data is missing (i.e., R5 is not met).

Processes. When choosing a fine-grained modeling style each process definition is
aligned with exactly one object type. This way one can ensure that corresponding process
instances access one particular object instance of the respective object type at runtime. For
this purpose, either one data element for routing the object-ID or several data elements (of
which each relates to one attribute) are added to the process model. The activity-centred
paradigm of imperative approaches is not appropriate for supporting object behavior (i.e.,
R10 is not fully met). Hidden information flows and the flow-based activation of activities
inhibit the dynamic adaptation of the control-flow based on available data. Further, interde-
pendencies between process models cannot be expressed and process instances are executed
in isolation to each other. Thus, the definition of interactions between object instances is
not captured (i.e., R11 is not met).

20

To deal with these requirements the following extensions exist:

Extension 1 (Proclets). Proclets enable process communication and asynchronous process
coordination based on message exchanges [ABEW00]. Using Proclets, however, process
coordination cannot be explicitly based on the underlying data structure or on specific data
element values. Further, messages can only be exchanged at specific points during process
execution (e.g., based on send/receive activities).

Extension 2 (Data-driven process structures). In Corepro, the coordination of processes
instances can be based on the relations between involved object instances [MRH07,
MRHP07]. Thereby, synchronization constraints are defined based on object states
[MRH06, MRH07, MRH08]. However, states are not connected to object attributes. Fur-
ther, each invoked process is defined imperatively. This leads to the discussed disadvan-
tages like hidden information flows, fixed activity granularity, and arbitrary process granu-
larity.

A coarse-grained modeling style, in turn, prohibits fine-grained control in respect to ob-
ject type behavior (i.e., R10 is not met). Processes are only defined based on activities and
interactions between object instances are not considered (i.e., R11 is not met). An interest-
ing extension are object life cycles.

Extension 3 (Object life cycles). To integrate object behavior with processes, an exten-
sion of the imperative approach based on object life cycles (OLC) has been proposed
[BHS09, GeSu07, KRG07, RDHI07, RDHI10, NiCa03, LBW07]. In particular, the intro-
duction of OLCs target at consistency between process models and process data. For this
purpose, an OLC defines the states of an object and the transitions between them in a
separate model. Activities, in turn, are associated with pre-/post-conditions in relation to
objects states. However, states are not mapped to attribute values. Consequently, if certain
pre-conditions cannot be met during runtime, it is not possible to dynamically react to this;
i.e., process execution is blocked. Neither relations between object types nor the varying
number of object instances are considered at runtime.

Process support involving different object instances can be provided by using sub-
processes. Thereby, a sub-process is associated with an activity of the higher-level process
instance. However, it is not possible to define relations and synchronization dependencies
between different sub-process definitions of the same level. Consequently, processes which
are defined based on object interactions are not supported (i.e., R11 is not met). This limi-
tation can be addressed by multiple-instantiation patterns [AHKB03, RiRe06], which allow
specifying the number of instances for a respective activity either at build- or runtime.

Extension 4 (Multiple-instantiation patterns). Regarding multiple-instance activity pat-
terns, new sub-process instances can only be created as long as subsequent activities have
not been started; e.g., additional reviews can be instantiated as long as the corresponding
application is not further processed. Thus, lower-level process instances (i.e., sub-
process instances) can only be created at a specific point during the execution of the
higher-level process instance. Furthermore, except for one variant of the multiple-
instantiation pattern, sub-process instances cannot be executed asynchronously to the
higher-level process instance. Using multiple-instantiation patterns with synchronization
(cf. Fig. 15a), each sub-process instance must either be completed or skipped before sub-
sequent activities of the higher-level process instance can be triggered. Using multiple-
instantiation without synchronization, in turn, the results of these sub-process executions

21

are not relevant for progressing the higher-level process instance (cf. Fig. 15b). Finally, in-
terdependencies between sub-processes, which are executed asynchronously to each other
(cf. Fig. 15c), cannot be taken into account.

Fig. 15: Sub-process execution based on multiple-instantiation

4.2 Declarative Approaches

Declarative approaches suggest a fundamentally different way of describing business proc-
esses [AaPe06, APS09]. While imperative models specify how things have to be done, de-
clarative approaches only focus on the logic that governs the interplay of actions in the
process by describing (1) the activities that can be performed and (2) the constraints pro-
hibiting undesired behavior. In the example from Fig. 16, activities A2 and A3 can only be
executed after finishing A1. Finally, A2 and A3 are mutually exclusive.

Fig. 16: Declarative modeling approach [Pes08]

Declarative approaches provide limited support for object-aware processes. Many of their
characteristics correspond to the ones of imperative approaches: hidden information flows
(A), actor expressions (C), fixed activity granularity (D), and arbitrary process granularity
(E). However, they differ in respect to activity activation. While imperative approaches
pursue a flow-based activation, declarative approaches rely on a constraint-based activation
(B) (cf. Fig. 17). This leads to better support of optional activities in comparison to impera-
tive approaches. However, the extensions introduced for imperative approaches are not ap-
plicable to declarative ones. To avoid redundancies, we only discuss the main differences
between imperative and declarative approach.

22

Fig. 17: Evaluating the declarative approach

Constraint-based activation of activities (B)

Imperative models take an "inside-out" approach by requiring all execution alternatives to
be explicitly specified in the model. Declarative models, in turn, take an "outside-in" ap-
proach: constraints implicitly specify execution alternatives as all valid alternatives have to
satisfy the constraints [Pes08]. Adding more constraints means discarding some execution
alternatives. This results in a coarse up-front specification of a process, which can be re-
fined iteratively during runtime. Typical constraints can be roughly divided into three
classes [SSO05,AaPe06,APS09]: constraints restricting the selection of activities (e.g.,
minimum/maximum occurrence of activities, mutual exclusion), the ordering of activities
and the use of resources (e.g., execution time of activities, time difference between activi-
ties, etc.). This property affects requirements of categories Activities and Processes.

Activities. Adequate support for optional activities is provided, i.e., activities can be con-
sidered as optional as long as no constraint enforces their execution (i.e., R8 is met).

Processes. The declarative approach does not directly support flexible process execution,
i.e., mandatory activities cannot be skipped if the required data are already available (i.e.,
R13 is not met). However, the following workaround is conceivable:

Workaround 4 (Flexible process execution). Specific data constraints could be intro-
duced to check whether all required data are available and to prohibit activity execution
for this case.

23

Like in imperative approaches, activities cannot be re-executed based on user commitments
(i.e., R9 is not met).
Workaround 5 (Re-execution of activities). Using a specific constraint, re-execution of a
particular activity is possible as long as another activity that captures the user commitment
has not been executed.

Similar to imperative approaches, such workarounds lead to models which are difficult to
comprehend and to maintain.

Arbitrary process granularity (E)

Partial support for integrating process instances can be achieved based on sub-processes.
This affects one requirement of category Processes.

Processes. Since most declarative approaches do not support multiple instantiations, cardi-
nalities to higher-level process definitions cannot be expressed (i.e., R3 is not met). It is
further not possible to define processes based on object interactions (i.e., R11 is not met).

Extension 5 (State-oriented business process modeling). In the state-based extension
provided by [Bid02] a state does not necessarily correspond to an object instance. Instead,
it rather belongs to a process instance comprising a set of atomic attributes or repeated
groups (e.g., lists). States are used to specify the activities which should, can or must be
executed; i.e., opposed to declarative modeling, conditions for executing activities are de-
fined based on states rather than on activities. The disadvantages known from declarative
approaches still hold: hidden information flows, fixed activity granularity, and arbitrary
process granularity. Finally, this approach focuses on modeling functionalities without de-
fining operational semantics; i.e., models cannot be generated.

4.3 Data-driven Approaches

There exist several approaches which support a tighter integration of processes and data
[RLA03, VRA08, MRH06,MRH07,AWG05]. Since Case Handling (CH) [AWG05,
GRA08] satisfies the requirements for object-aware processes best, we focus on CH when
evaluating data-driven approaches. Additionally, we refer to the Flower CH tool [PA02] in
the context of our evaluation. Compared to imperative and declarative approaches the main
differences lie in the integration of application data (A), the data-driven execution paradigm
(B), and the advanced role concept (C). Like in imperative/declarative approaches, proc-
esses can be defined at arbitrary level of granularity (E) (cf. Fig. 18). In the following we
discuss CH along these characteristics.

Data Integration (A)

Opposed to activity-centric approaches, CH enables a tighter integration of processes, ac-
tivities and data [MWR08, WMR10]. Thereby, CH differentiates between free, restricted
and mandatory data elements (cf. Fig. 19). Based on free data elements, business data not
directly relevant for process control or activity inputs can be added to the process model.
Free data elements are assigned to the case description (i.e., process model) and can be
changed at any point in time while modeling the case (i.e., the process instance). All other
data elements are associated with one or more activities, and are further subdivided into two
categories. Restricted data elements can only be written in the context of the activities they
are assigned to. Mandatory data elements require a value to complete the activity to which
they belong. This affects requirements of categories Data, Activities, User Integration and
Monitoring.

24

data integration

cardinalities

object behavior

mandatory information

form-based activities
black-box activities

mandatory and optional activities
control-flow within user forms

object interactions
process-oriented view
flexible process execution
re-execution of activities
explicit user decisions

data authorization
process authorization
differentiation of auth. and user assign.

aggregated view

access on data

variable granularity

vertical authorization

Fig. 18: Evaluating the data-driven approach

Fig. 19: Data-driven modeling approach - Case Handling [AWG05]

25

Data. CH only provides atomic data elements; data integration in terms of object types and
their inter-relations is not considered (i.e., R1 is not fully met). All users involved in a case
are allowed to read its data elements. Based on a query mechanism, users may access active
and completed cases. This enables access to data at any point in time. However, the com-
position of atomic data elements to object types is not considered (i.e., R2 is not fully met).
By specifying certain data elements as mandatory, mandatory information is supported
(i.e., R4 is met).

Activities. Form-based activities can be explicitly defined. However, provided form fields
cannot be made dependent on the current process state and user (i.e., R5 is not fully met).
Besides this, CH fosters application integration of black-box activities [PA02]. However, if
activity input parameters refer to different object instances their inter-relations cannot be
controlled (i.e., R6 is not fully met). Free data elements enable optional activities, but one
cannot define specific optional activities for different user roles; i.e., the same optional ac-
tivity is provided to all users (i.e., R8 is not fully met). Since dependencies between fields
cannot be expressed, no support for controlling the control-flow within a form exists (i.e.,
R9 is not met)

User Integration. Regarding data authorization, it is not possible to define different access
rights for a particular user depending on the progress of the case (i.e., R16 is not met).

Monitoring. Since neither object types/instances nor the relations between them are con-
sidered, aggregated views cannot be provided (i.e., R20 is not met).

Data-driven activation of activities (B)

Imperative and declarative approaches are both activity-centric, i.e., activation of an activ-
ity depends on the completion of preceding activities. In data-driven approaches (like CH),
activities become enabled when data changes. An activity is completed if all mandatory
data elements have assigned values; i.e., mandatory information is provided. This affects
one requirement of the category Processes.

Processes. Activities can be automatically skipped at runtime if their data elements are
provided by other activities; i.e., mandatory data elements are provided by preceding activi-
ties. This, in turn, enables flexible process execution (i.e., R13 is met). In addition, user de-
cisions are supported [PA02] (i.e., R15 is met).

Advanced Role Concept (C)

CH allows to define who shall work on an activity and who may redo or skip it; for this
purpose separate roles exist. Using the redo-role, for example, CH allows actors to execute
activities multiple times. This affects requirements of categories Processes and User Inte-
gration.

Processes. Based on the execute-role, like in imperative and declarative approaches, actors
can be assigned to human activities. Further, users may select all cases for which they have
to perform an activity. This enables a process-oriented view (i.e., R12 is met).

User Integration. Since the data elements that are processed during an activity execution
are known, fine-grained process authorization at the level of single data elements becomes
possible (i.e., R17 is met). Despite the introduction of the redo-role, re-executing activities
arbitrarily often is not possible (i.e., R9 is not fully met). Consider the following example.

Example 21 (Re-execution). As illustrated in Fig. 20, role R1 may execute or redo activ-
ity A1. If all mandatory data elements of a particular activity are available, subsequent ac-
tivities become enabled immediately. Regarding our example (cf. Fig 20b) as long as A2 is

26

not completed (i.e., a value for data element D2 is not set), R1 may redo activity A1.
However, after completing subsequent activity A1, redo is only possible if the user is au-
thorized to redo A2 (cf. Fig. 20c). Otherwise, A1 cannot be redone any longer.

A1 – redo not possibleA1 – redo possibleA1 executable

A1

D1

R1

A

D

R

mandatory activity

data element

role

mandatory

A2

D2

mandatory

R2

A1

D1

R1

mandatory

A2

D2

mandatory

R2

A1

D1

R1

mandatory

A2

D2

mandatory

R2
execute
redo

execute
redo

execute
redo

execute execute execute

A

D

R

mandatory activity completed

data element with assigned value

role enabled for activity execution

a b c

Fig.: 20: Re-execution of activities in CH

Regarding mandatory activities, any user owning the execution-role for such activity must
execute it mandatorily; i.e., no differentiation between authorization and user assignment is
made (i.e., R18 is not met). Finally, vertical authorization based on data element values is
not provided (i.e., R19 is not met).

Fixed activity granularity (D)

Like in activity-centric approaches, In CH each activity belongs to exactly one process in-
stance, and the granularity of activities is fixed at build-time. This affects one requirement
of category Activities.

Activities. Users cannot access data element values of other relating cases; i.e., a variable
granularity of activities to support preferred work practices (e.g., context-sensitive vs.
batch activities) is not supported (i.e., R7 is not met).

Arbitrary process granularity (E)

CH allows to model processes at arbitrary level of granularity. When described at a coarse-
grained level, a case definition includes data elements corresponding to different objects.
Interdependencies between different cases can be defined based on sub-cases. Further, CH
supports multiple-instantiation patterns through dynamic sub-plans (i.e., sub-process in-
stances) [PA02]. This enables instantiation of a dynamically fixed number of sub-process
instances. Alternatively, when processes are described at a fine-grained level, a "case" can
be manually treated in tight accordance with an "object". This affects requirements of cate-
gories Data and Processes.

Data. Using multiple-instantiation patterns as extension, cardinalities between higher-level
and lower-level process instances can be taken into account. However, it cannot be ensured
that the correct number of sub-processes instances is actually created at runtime; i.e., that
their quantity lies between the minimal and maximal cardinality (i.e., R3 is not fully met).
Processes. Modeling processes in a fine-grained manner means we need to consider each
case as object type. This enables support of object behavior (i.e., R10 is met). Even if ob-
ject behavior is not considered in terms of states and transitions, the data-driven execution
allows to dynamically react to data changes. As limitation activities always refer to the exe-

27

cution of one particular case. Thus, only instance-specific activities can be realized, but no
varying granularity; i.e., users cannot choose their preferred work practice (i.e., R7 is not
met). Further, we cannot define interactions between object instances (i.e., R11 is not met).
When modeling processes at a coarse-grained level, similar restrictions for the asynchro-
nous coordination of sub-process instances hold as for imperative approaches. Compared to
imperative approaches CH additionally allows users to access data from multiple instances
through data containers with a variable number of data elements. Taking literature we can-
not conclude that these data enable the data-driven execution of activities that belong to the
higher-level process instance; i.e., interdependencies between asynchronously executed ob-
ject instances are not fully supported (i.e., R11 is not fully met).

4.4 Further approaches

Some approaches apply an object-oriented paradigm for modeling processes. The object-
process methodology (OPM) [Dor02], considers object types and their inter-relations. Fur-
thermore, object behavior can be defined in terms of states and processes enable transitions
between them; i.e., states are used as pre-/post-conditions for process execution. However,
states are not mapped to individual attribute values what leads to hidden information flows.
OPM further allows for different levels of aggregation using zooming functions. There ex-
ists no methodology to define the resulting abstraction layers in correspondence to the data
structure; i.e., each layer can be defined at an arbitrary level of granularity. In addition, the
granularity of activities is fixed. Though OPM considers some properties of object-aware
processes, it is not suitable for their support. It is also not appropriate for defining opera-
tional semantics based on which data- and process-oriented views as well as form-based ac-
tivities can be automatically generated.
Finally, there exist goal-based [SoWa05], decision-oriented, and conversation-oriented
process modeling approaches [Nur08] which are outside the scope of our evaluation.

5. Summary and Outlook

We discussed fundamental requirements in respect to the provision of an integrated view on
processes and data. Such integration is needed for many applications like enterprise re-
source planning and customer relationship management. Further, we showed that the iden-
tified requirements go beyond the features of existing modeling approaches. Especially ac-
tivity-centric approaches show an inherent weakness in respect to object-aware process
management. Data-driven approaches, in turn, are more expressive, but have not reached
the required maturity level yet. To our knowledge, there exists no approach which provides
a well-defined modeling methodology for defining object behavior and interactions. Re-
garding behavior, object states must be mapped to attribute values and inter-relations must
be considered.

To tackle the discussed challenges and requirements, in the PHILharmonic Flows1 project
we target at a framework that enables tight integration of business processes, business data,
and users. We denote such paradigm as Object-aware Process Management and consider
related research as fundamental for the further maturation of process management technol-
ogy. We believe that a better understanding of object-aware process management will
stimulate other research activities on, for example, integrated process and data mining,
data-centred process monitoring, and business process compliance. Finally, a well-defined
granularity of processes in respect to data constitutes the basis for any modeling methodol-
ogy as well as for ensuring consistency between process and data evolution.

1 Process, Humans and Information Linkage for harmonic Business Flows

28

References

[ABEW00] W.M.P. van der Aalst, P. Barthelmess, C. Ellis, J. Wainer (2000). Workflow
Modeling using Proclets. In Proc. CoopIS'00, LNCS 1901, pp. 198-209.

[AHKB03] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A. Barros
(2003). Workflow Patterns. Distributed & Parallel Databases, 14(1):5-51.

[AHW03] W.M.P. van der Aalst, A.H.M. ter Hofstede, M. Weske (2003). Business
Process Management: A Survey. In Proc. BPM'03, LNCS 2678, pp.1-12.

[AaPe06] W.M.P. van der Aalst, M. Pesic (2006). DecSerFlow: Towards a Truly Dec-
larative Service Flow Language. In Proc. Dagstuhl Seminar, pp.1-23.

[APS09] W.M.P. van der Aalst, M. Pesic, H. Schonenberg (2009). Declarative
Workflows: Balancing between Flexibility and Support, Computer Science –
R & D, 23(2):99-113.

[AWG05] W.M.P. van der Aalst, M. Weske, D. Grünbauer (2005). Case Handling: A
new Paradigm for Business Process Support. Data and Knowledge Engi-
neering, 53(2):129-162.

[BBR06] R. Bobrik, T. Bauer, M. Reichert (2006). Proviado – Personalized and Con-
figurable Visualizations of Business Processes. In Proc. EC-WEB'06, LNCS
4082, pp. 61-71.

[BHS09] K. Bhattacharya, R. Hull, J. Su (2009). A Data-Centric Design Methodology
for Business Processes, In Handbook of Research on Business Process Man-
agement.

[Bid02] I. Bider (2002). State-oriented Business Process Modeling: Principles, The-
ory and Practice. PhD thesis, Royal Institute of Technology, Stockholm.

[Bot02] R.A. Botha (2002). CoSAWoE - A Model for Context-sensitive Access Con-
trol in Workflow Environments. PhD thesis, Rand Afrikaans University.

[BRB05] R. Bobrik, M. Reichert, T. Bauer (2005). Requirements for the Visualization
of System-Spanning Business Processes. In Proc. BPMPM'05, pp. 948-954.

[Dor02] D. Dori (2002). Object-Process Methodology. Springer.

[DaRe09] P. Dadam, M. Reichert (2009). The ADEPT Project: A Decade of Research
and Development for Robust and Flexible Process Support - Challenges and
Achievements. In Computer Science – Res. & Development, 23(2): 81-97.

[GOR10] G. Grambow, R. Oberhauser, M. Reichert (2010) Semantic Workflow Adap-
tion in Support of Workflow Diversity. In Proc. SEMAPRO'10.

[GRA08] C.W. Guenther, M. Reichert, W.M.P. van der Aalst (2008). Supporting Flex-
ible Processes with Adaptive Workflow and Case Handling. In Proc.
WETICE'08.

[GeSu07] C.E. Gerede, J. Su (2007). Specification and Verification of Artifact Behav-
iors in Business Process Models. Proc. ICSOC'07, LNCS 4749, pp.181-192.

29

[HBR10] A. Hallerbach, T. Bauer, M. Reichert (2010). Capturing Variability in Busi-
ness Process Models: The Provop Approach. In Software Process: Im-
provement and Practice (to appear).

[KüRe09A] V. Künzle, M. Reichert (2009). Towards Object-aware Process Management
Systems: Issues, Challenges, Benefits. In: Proc. BPMDS'09, LNBIP 29, pp.
197-210.

[KüRe09B] V. Künzle, M. Reichert (2009). Integrating Users in Object-aware Process
Management Systems: Issues and Challenges. In Proc. BPM'09 Workshops,
LNBIP 43, pp. 29-41.

[KüRe09C] V. Künzle, M. Reichert (2009). Herausforderungen auf dem Weg zu daten-
orientierten Prozess-Management-Systemen. EMISA Forum, 29(2): 9-24.

[KüRe10] V. Künzle, M. Reichert (2010). Herausforderungen bei der Integration von
Benutzern in Datenorientierten Prozess-Management-Systemen. EMISA Fo-
rum, 30(1):11-28.

[KRG07] J. Küster, K. Ryndina, H. Gall (2007). Generation of Business Process Mo-
dels for Object Life Cycle Compliance. In Proc. BPM'07, LNCS 4714, pp.
165 -181.

[LBW07] R. Liu, K. Bhattacharya, F.Y. Wu (2007). Modeling Business Contexture
and Behavior Using Business Artifacts. In Proc. CAiSE'07, LNCS 4495, pp.
324-339.

[LeRe07] R. Lenz, M. Reichert (2007). IT Support for Healthcare Processes - Premis-
es, Challenges, Perspectives. Data and Knowledge Engineering, 61(1):39-
58.

[MHHR06] D. Müller, J. Herbst, M. Hammori, M. Reichert (2006). IT Support for Re-
lease Management Processes in the Automotive Industry. In: Proc. BPM'06,
LNCS 4102, pp. 368-377.

[MRB08] B. Mutschler, M. Reichert, J. Bumiller (2008). Unleashing the Effectiveness
of Process-oriented Information Systems: Problem Analysis, Critical Suc-
cess Factors and Implications. IEEE Transactions on Systems, Man, and Cy-
bernetics (Part C), 38(3): 280-291.

[MRH06] D. Müller, M. Reichert, J. Herbst, Joachim (2006). Flexibility of Data-
Driven Process Structures. In Proc. BPM'06 Workshops, LNCS 4103, pp.
181-192.

[MRH07] D. Müller, M. Reichert, J. Herbst (2007). Data-driven Modeling and Coordi-
nation of Large Process Structures. In Proc. CoopIS'07, LNCS 4803, pp.
131-149.

[MRH08] D. Müller, M. Reichert, J. Herbst (2008). A New Paradigm for the Enact-
ment and Dynamic Adaptation of Data-driven Process Structures, In Proc.
CAiSE '08, LNCS 5074, pp.48-63.

[MRHP07] D. Müller, M. Reichert, J. Herbst, F. Poppa (2007). Data-driven Design of
Engineering Processes with COREPRO-Modeler. In Proc. WETICE’07, pp.
376-378.

[MWR08] B. Mutschler, B. Weber, M. Reichert (2008). Workflow Management versus
Case Handling: Results from a Controlled Software Experiment. In Proc.

30

SAC'08, pp. 82-89.

[NiCa03] A. Nigam, N.S. Caswell (2003). Business Artifacts - An Approach To Op-
erational Specification. IBM Systems Journal, 42(3), 428-445.

[Nur08] S. Nurcan (2008). A Survey on the Flexibility Requirements Related to
Business Processes and Modeling Artifacts. In Proc. HICSS'08 (pp.378).

[PA02] Pallas Athena. (2002). Flower User Manual. Pallas Athena BV, Apeldoorn,
The Netherlands.

[Pes08] M. Pesic (2008). Constraint-Based Workflow Management Systems: Shifting
Control to Users. PhD thesis, Eindhoven University of Technology.

[RDHI07] G. Redding, M. Dumas, A.H.M. ter Hofstede, A. Iordachescu (2008). Trans-
forming Object-oriented Models to Process-oriented Models. In Proc.
BPM'07 Workshops, LNCS 4928, pp. 132-143.

[RDHI10] G. Redding, M. Dumas, A.H.M. ter Hofstede, A. Iordachescu (2010). A
flexible, object-centric approach for business process modelling. In Service
Oriented Computing and Applications (to appear)

[Rei00] M. Reichert (2000). Dynamische Ablaufänderungen in Workflow-
Management-Systemen. PhD Thesis, University of Ulm, Germany.

[RHD98] M. Reichert, C. Hensinger, P. Dadam (1998). Supporting Adaptive
Workflows in Advanced Application Environments. In Proc. EDBT Work-
shop on Workflow Management Systems, pp. 100-109.

[RiRe06] S. Rinderle, M. Reichert (2006). Data-driven Process Control and Exception
Handling in Process Management Systems. In Proc. CAiSE'06, LNCS 4001,
pp. 273-287.

[RiRe07] S. Rinderle-Ma, M. Reichert (2007). A Formal Framework for Adaptive Ac-
cess Control Models. Journal on Data Semantics IX, LNCS 4601, 82-112.

[RiRe09] S. Rinderle-Ma, M. Reichert (2009). Comprehensive Life Cycle Support for
Access Rules in Information Systems: The CEOSIS Project. In Enterprise
Information Systems, 3(3): 219-251.

[RLA03] H.A. Reijers, S. Liman, W.M.P. van der Aalst (2003). Product-based Work-
flow Design. Management Information Systems, 20(1):229-262.

[RRD09] M. Reichert, S. Rinderle-Ma, P. Dadam (2009). Flexibility in Process-aware
Information Systems. Transactions on Petri Nets and Other Models of Con-
currency, LNCS 5460, 2:115-135.

[RRKD05] M. Reichert, S. Rinderle, U. Kreher, P. Dadam (2005). Adaptive Process
Management with ADEPT2. In Proc. ICDE'05, pp. 1113-1114.

[Sil09] B. Silver (2009). Case Management: Addressing Unique BPM Require-
ments. In Industry Trend Reports, BPMS Watch.

[SOSS05] S. Sadiq, M.E. Orlowska, W. Sadiq, K. Schulz (2005). When Workflows
will Not Deliver: The Case of Contradicting Work Practice. In Proc. BIS'05.

[SSO05] S. Sadiq, W. Sadiq, M.E. Orlowska (2005). A Framework for Constraint
Specification and Validation in Flexible Workflows. Inf. Sys., 30(5):349-78.

[SoWa05] P. Soffer, Y. Wand (2005). On the Notion of Soft-goals in Business Process
Modeling. Business Process Management Journal, 11(6):663-679.

31

[TRI09] L. Thom, M. Reichert, C. Iochpe (2009). Activity Patterns in Process-aware
Information Systems: Basic Concepts and Empirical Evidence. In Int J Busi-
ness Process Integration and Management, 4(2):93-110.

[VRA08] I. Vanderfeesten, H.A. Reijers, W.M.P. van der Aalst (2008). Product-based
Workflow Support: Dynamic Workflow Execution. In Proc. CAiSE '08,
LNCS 5074, pp. 571-574.

[WMR10] B. Weber, B. Mutschler, M. Reichert (2010). Investigating the Effort of Us-
ing Business Process Management Technology: Results from a Controlled
Experiment. Science of Computer Programming, 75(5): 292-310.

[WRR08] B. Weber, M. Reichert, S. Rinderle-Ma (2008). Change Patterns and Change
Support Features - Enhancing Flexibility in Process-Aware Information Sys-
tems. Data and Knowledge Engineering, 66(3):438-466.

[WRWR09] B. Weber, M. Reichert, W. Wild, S. Rinderle-Ma (2009). Providing Inte-
grated Life Cycle Support in Process-Aware Information Systems. In Int'l
Journal of Cooperative Information Systems, 18(1):115-165.

[WSML02] S. Wu, A. Sheth, J. Miller, Z. Luo (2002). Authorization and Access Control
of Application Data in Workflow-Systems. In JIIS, 18(1):71-94.

[WSR09] B. Weber, S. Sadiq, M. Reichert (2009). Beyond Rigidity - Dynamic Process
Lifecycle Support: A Survey on Dynamic Changes in Process-aware Infor-
mation Systems. In Computer Science – R & D, 23(2): 47-65.

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPT

flex
 - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support - Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines
Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Beth, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02 Ulrich Kreher, Manfred Reichert

Speichereffiziente Repräsentation instanzspezifischer Änderungen in Prozess-
Management-Systemen

2010-03 Patrick Frey

Case Study: Engine Control Application

2010-04 Matthias Lohrmann und Manfred Reichert
Basic Considerations on Business Process Quality

2010-05 HA Kestler, H Binder, B Lausen, H-P Klenk, M Schmid, F Leisch (eds):

Statistical Computing 2010 - Abstracts der 42. Arbeitstagung

2010-06 V. Künzle, B. Weber, M. Reichert:
Object-aware Business Processes: Properties, Requirements, Existing Approaches

Ulmer Informatik-Berichte

ISSN 0939-5091

Herausgeber:

Universität Ulm

Fakultät für Ingenieurwissenschaften und Informatik

89069 Ulm

