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Abstract

An inherent general problem is that systems become more complex.
This problem is exacerbated by the use of additional interaction concepts
like multimodality.
Interactive systems are widespread and often apply advanced interaction
concepts to ease use and enhance user experience. Touch interaction and
multimodality are concepts that are on the rise and are already offered
by many commercial products. For example, user interfaces of the info-
tainment equipment in current premium cars provide speech interaction,
especially to increase operational safety.
A common state-of-the-art approach to master complexity comprising all
phases of software development is Model-Driven Development. Modeling
raises the level of abstraction by using (mainly graphical) models to
bridge the gap between specification and implementation.
The Unified Modeling Language (UML) is the de facto standard mode-
ling language. Although UML has proven itself in practice, it does not
support modeling of interactive systems and their user interfaces so far.
We present an approach to extend UML for modeling interactive systems.
We emphasize on modeling multimodality by using and extending UML
state diagrams, by creating UML compliant extensions based on UML
profiles, and by defining formal semantics for our extensions including
behavioral aspects by means of Abstract State Machines.
We propose an architecture using separate state diagrams for each moda-
lity. These state diagrams are synchronized by a common system model.
The suitability, usability, and applicability of our approach is reviewed
by means of an expert evaluation.
Our approach enables modeling multimodal interactive systems with one
formalism. Thus, it supports an integrated kind of modeling as well as
separation of different concerns of multimodality. The provided formal
semantics for our UML profile enables automated processing of our models
including comprehensive tool support for simulation and code generation.
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1 Introduction

Interactive systems are a part of our daily life. An example are mobile phones
which rapidly evolve and usually offer more than just telephone functions, like
being a personal digital assistant and providing entertainment features.

As a consequence, user interfaces (UIs) of mobile phones have significantly
changed. A large number of phones provide multimodal UIs for input and
output, e. g. touchscreens in combination with speech recognition and synthesis.

Another example of evolution of current UIs is given by premium cars. New
features often aim only to improve the needs of comfort, entertainment, and
information [6]. The UI of current cars is extended to include speech recognition
and synthesis and furthermore offers new options for haptic interaction. This
extension is necessary to fulfill the demands of customers and simultaneously
ensure the safety of passengers.

These examples comply with Balzert’s statement [1] that users ask for sy-
stems providing comfortable and intuitive UIs while desiring more functionality.
The complexity of systems and their UIs increases steadily. Thus, development
of interactive systems is becoming more complicated.

In this technical report, we provide a modeling approach for multimodal
interactive systems, taking into account some hypotheses (cf. Sect. 2.2 based
on our current results [42]. We analyze alternatives for Unified Modeling
Language (UML) extensions (cf. Sect. 2.3) and provide a UML profile for
modeling multimodal interactive systems (cf. Sect. 3 and 4) with a formally
defined semantics (cf. Sect. 5).

As a proof of concept, we present results of a case study (cf. Sect. 7.1) for
validation before discussing an expert evaluation of our modeling approach
(cf. Sect. 7.2). We conclude by outlining general ideas for improvements of
our approach and sketch how a foundation for UML profile modeling can be
achieved, which could solve the problem of integrating formal semantics of
profiles into UML’s semantics (cf. Sect. 5.2).

2 Formalisms and Methodology

In this section we motivate our approach (Sect. 2.1), before we outline our
view of Model-Driven Development (MDD) (Sect. 2.2). We introduce UML for
interactive systems, discuss related approaches (Sect. 2.3), and briefly introduce
how to extend UML using profiles (Sect. 2.4).

As our approach incorporates topics of different domains, we provide some
links to basic literature which might be useful to understand this report:

• Software Engineering [48]

• The UML Reference Manual [44]

• Foundations of Multimodal Dialogue Systems [51]

• Abstract State Machines [5]
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2.1 Software Engineering for Interactive Systems

In software engineering (SE), mutual combinations of formalisms, methods,
and tools are provided to ease the development of applications. The integration
of all of those aspects on a common theoretical basis is a crucial issue, since
none of them really makes sense without any of the others [42].

Interactive systems like phone navigation systems or in-car entertainment
systems also put high demands on SE. Currently, different aspects like the
interaction between users and the system, dialogs, multimodality, interfaces,
and architecture, can only be described by using an adequate combination of
formalisms. Hence, using a set of different formalisms results in some negative
consequences: The process is highly dependent on the used formalisms and
architecture; Usually, there is no integrated tool support. Proposed solutions
focus heavily on the integration of graphical aspects and pay little attention
to multimodality, if at all.

A major challenge is to provide a SE-approach for interactive systems that
covers all aforementioned aspects and supports all phases of development of
interactive systems in a consistent way.

Therefore, formalisms, methods and tools on a common theoretical basis
have to be provided. MDD is a typical instance of our view of SE, as it comprises
all those facets. We describe our view of MDD (cf. Sect 2.2, according to [42])
by identifying the main problems of current MDD approaches, thereof deducing
major hypotheses and providing solutions for some of the identified problems.

2.2 MDD for Interactive Systems

A state-of-the-art proposal to SE is to use MDD [42]. It raises the level of
abstraction by using (mainly graphical) models instead of natural language spe-
cifications and conventional programming languages to bridge the gap between
specification and implementation. Therefore, appropriate model transformati-
ons or direct generation of code out of models can be seen as an integrated
part of a development process.

Although MDD is a step into the right direction, we identified some major
difficulties and deducted the following hypotheses as a basis for our MDD
approach (for details see [42]): base on established formalisms and on formal
semantics, consider high quality of models as soon as possible, provide integrated
tool support, and keep adaptability to specific domains in mind, if needed. These
hypotheses are mostly motivated by pragmatic considerations — in particular,
to build on existing good ideas and approaches rather than to reinvent them.

Our vision of an integrated, tool-supported MDD approach bases on the
above mentioned hypotheses. Although this vision has not yet successfully
been achieved, we have made substantial progress for some important aspects:
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• a semantics foundation [32] for UML using Abstract State Machines
(ASMs), which are an established formalism

• support for different kinds of quality assurance including comprehensive
tool support [18], in particular extensive, automatic code generation
(according to the formal semantics) [19, 20]

2.3 Modeling Interactive Systems with UML

Since modeling Human-Computer Interaction (HCI) has been a topic for many
years, there already exist some diverse approaches for modeling HCI systems
(ConcurrTaskTree (CTT) [43], UsiXML [34], UMLi [8], UWE [27], XIS [47],
WISDOM [37], . . . ). However, we observe that there is currently no preferred
approach, neither for developing nor for modeling HCI.

De Melo [13] gives a comprehensive overview and analyzes relevant ap-
proaches regarding appropriateness, expressive power, extendibility for multi-
modality, universality, distribution, understandability, and tool support. He
concludes that UML provides the most benefits.

Some other HCI researchers promote UML for modeling interactive systems,
too, e. g. Nunes and Cunha [37], Hennicker and Koch [27], and Silva and Paton
[8]. It is commonly agreed that extending UML would be valuable to support
HCI modeling.

Recent introductions of UI aspects into UML mostly focus on static aspects
like structuring presentation elements of interactive systems, e. g. by using class
stereotypes for WISDOM [37] or by concentrating on aspects of conceptual,
navigation and presentation design, e.g as UWE [27]. Both approaches use
UML profiles to model tasks and to describe graphical elements of UIs, but do
not take into account multimodality. Nóbrega et al. [36] deal with behavioral
aspects and demonstrate that UML provides the same expressiveness as CTT
[43] by mapping its concepts to UML activities.

We are not aware of any UML-based HCI approach defining a formal
semantics for its behavioral models. Since long, it has commonly been agreed
that formal semantics is required and indispensable for automatic processing
of models [41], e. g. for simulation or code generation.

In particular, UML state diagrams, which are an extension of statecharts
[26], provide the basis for our multimodal HCI extension. An important argu-
ment for this decision is the characteristic behavior of UIs which is perfectly
reflected by state diagrams: A dialog between the user and a system consists of
several steps between dialog states. A dialog state holds until a user or system
interaction occurs. Analogously, a transition originating from a UML state
only occurs if an event triggers any of the outgoing transitions of that state.
Both, dialogs as well as state diagrams, can be seen as reactive systems.

Some concepts of state diagrams can be directly used to model some aspects
of interactive applications: Transitions are branched or merged using junctions
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or decisions. This enables modeling alternatives within a dialog or joining
different paths of a dialog. Histories facilitate to restore previously interrupted
dialogs: Sub states, which were active at the time of exiting a state, are
reactivated on re-entering this state over its history pseudo state. Entry points
and exit points define an interface of a state, e. g. to define dialog modules.
Forks and joins can be used to enter or exit orthogonal states, i. e. states with
multiple regions. They enable to model different variants to initialize or end a
sub dialog.

The appropriateness of approaches for modeling speech dialogs [29] and
multimodal dialogs [23], [46] with state diagrams has already been demonstra-
ted. They differ in several aspects of our approach [10], which introduces some
extensions.

Kölzer [29, 30] adapt statecharts [26] to model speech dialogs with changing
initiative. Both, notation and semantics of statecharts, are substantially redefi-
ned to match the requirements of modeling speech dialogs. This redefinition
means that the resulting behavior significantly depends on the dialog system
processing the model.

Goronzy et al. [22, 23] propose a concept to model multimodal interaction
using UML state diagrams. The implementation of the concept is not consi-
stently UML compliant. In consequence, some advantages arising from the use
of UML are lost, for example the exchange of models with other UML tools
is difficult. The introduced concepts are not integrated into UML as UML
extensions and their semantics is implicitly given by the implemented tool.
As a consequence, even UML experts have to learn the concepts and their
semantics depending on the provided tool.

Modeling multimodal dialogs is restricted in a way, that speech dialogs and
graphic-haptics dialogs have to be strictly separated in different state diagrams.
The supported formalisms are predefined, so that it is not possible to adapt or
exchange formalisms with respect to the target system. For instance, a fixed
set of widgets – elements of a graphical user interface (GUI) – implemented
in Java is provided by the tool. Similar to our approach, grammars can
be dynamically derived from states to sub states. Dynamic composition of
graphical representations depending on the state hierarchy is not supported.

Task modeling is preceded by modeling the multimodal interactive applica-
tion. Therefore, UML can be used for modeling tasks as well, as pointed out
by de Melo [13]. He argues that a hierarchical task analysis as with CTT is
still possible. Moreover, using a combination of different UML diagrams (e. g.
use case, activity, and state machines) may enable stronger cohesiveness of
the task model and the dialog model.

Some approaches define UML profiles with stereotypes for concrete widgets
to model graphical representations (similar to Hennicker and Koch [28], Martins
and Silva [35]). However, such an approach has some drawbacks. The graphical
representation is limited to elements which are part of the profile and its
stereotypes, e. g. combo boxes or text fields.
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The concepts of our approach are specialization of the formalisms chosen for
describing the modality specific contents. Depending on the chosen formalism, a
widget can be implemented with its individual level of abstraction and interface,
e. g. a clock widget containing the behavior of the clock. Using stereotypes for
describing widgets is just one example for an appropriate formalism.

2.4 Extending UML

In principle there are two options for extending UML: Extending the metamodel
or using profiles and stereotypes.

Metamodel extension by using inheritance and adding new classes in fact
means to create a new language.

In contrast to this, “A profile defines limited extensions to a reference
metamodel with the purpose of adapting the metamodel to a specific platform
or domain.” [38, p. 184]. Therefore, our interest with respect to domain-specific
languages (DSLs) is focused on extension by UML profiles.

Pardillo [41] gives a systematic review of research papers describing ap-
proaches which use UML profiles. It includes 63 approaches from the most
relevant conferences in the 11-year period of 1999–2009. Amongst these are UI
related approaches like the aforementioned Nunes and Cunha [37], Hennicker
and Koch [27], and Silva and Paton [8]. The abstract definition of profiles and
quality of presentation of 39 of these approaches are analyzed considering 26
variables in seven categories. Pardillo [41] states that “the definition of the
profile formal semantics is very rare”, and reasons that “this pattern also seems
natural since UML itself has no formal semantics for their meta classes (which
are described in natural language), whereas behavioral modeling needs to be
supported by their formal semantics to be useful”.

According to our hypotheses (cf. Sect. 2.1) we decided to use profiles for
extensions to overcome the aforementioned limitations and problems of existing
approaches. Thereby, we investigate how a formal semantics for extensions
can be defined and seamlessly integrated into an existing UML semantics
(cf. Sect. 5).

In the following, we give a brief technical introduction to UML profiles. A
profile coexists beside UML itself and is therefore an independent extension
that can dynamically be replaced by other profiles or even reused for a different
application [39, 38]. The semantics of a profile is not allowed to be in conflict
with UML semantics. A profile can group the following elements:

• Stereotypes (define an extension referring to an element of the metamodel)

• Extensions (enable different kinds of relations between elements, e. g.
stereotypes and metamodel elements)

• Constraints (define formal constraints on elements of a profile)

• Textual annotations (describe the semantics of a profile and contain
further annotations as prose text)
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Fuentes-Fernández and Vallecillo-Moreno [17] describe how UML profiles
can be created step by step. However, the topic of how to define a profile’s
semantics is not covered.

3 Extending UML for Multimodality

As a basis for modeling multimodal interactive systems using state machines,
we introduce a UML profile and define stereotypes for speech dialogs as well
as graphic-haptic dialogs.

We analyzed common use cases (UCs) of HCI and derived relevant problems
for modeling multimodality, e. g. synchronization during multimodal dialogs.
Thus, we identified static and dynamic aspects for defining our UML extension.

A concrete UC, which is used for our expert evaluation (cf. Sect. 7.2), is
unlocking a mobile phone while driving a car (cf. Sect. 6.1). Further UCs are
extensions of current in-car dialogs to introduce new concepts, e. g. multimodal
or barge-in functions. The used interaction concepts affect different multimodal
elements: speech dialog, haptic interaction, and graphical representation.

3.1 Defining the UML profile

In this section, we define our UI profile consisting of the stereotypes �GUI�,
�Grammar�, and �Prompt� used to extend UML state machines and its
notation with static as well as dynamic aspects.

Static aspects are related to the UI description, e. g. a representation of the
UI at a certain time, a specific utterance for speech synthesis, and a grammar
for speech recognition.

Dynamic (behavioral) aspects concern the dialog between a user and the
system. They are defined as changing static aspects over time as a consequence
of evaluating a user (or system) action in its temporal and situational context.

The stereotype �GUI� enables adding widgets (cf. sect. 3.1) to states
and computing current screen representations. The stereotype �Grammar� is
used to support speech recognition and the stereotype �Prompt� implements
system’s speech output. All those stereotypes are applied by adding one to a
state and assigning values to its related properties.

Static Aspects

The static aspects of the stereotypes enable modeling of graphic-haptic as well
as speech dialogs (see Fig. 1(a)). Each stereotype extends the class State of the
UML metamodel. Their properties and associations reference modality–specific
contents of each stereotype, e. g. grammar and behavior.

Using state diagrams to describe interaction is very common (cf. Sect. 2.3)
and as we think intuitive, because a state symbolizes an invariant of an
interaction, i. e. there is no change of state until a user action occurs or a
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(a) UML metamodel of our UI profile

(b) Stereotypes to integrate multimodal UI aspects to UML state (left
to right): graphical elements (�GUI�), speech grammar (�Grammar�)
and system prompts (�Prompt�) into states.

Figure 1 Our UI profile in Fig. 1(a) and an example of its application in
Fig. 1(b), which is from Dausend and Poguntke [10], but slightly differs.

running system activity is finished. In case of a state with a �GUI� stereotype,
the referenced GUI element, e. g. a list, remains in the current UI representation
until its state is exited, e. g. by selecting an item in the list.

We implement the stereotype �GUI� for the graphical representation of an
UI element by introducing the property gui description of GUI Component
(see Fig. 1(a)). The formal description of a GUI element is given by a spe-
cification (cf. property specification). Since we assume data binding, all be-
havior relevant properties of the specification form a list of properties. A
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gui configuration is used to assign a concrete value to every property of a
component. A �GUI� stereotype refers to exactly one viewState, i. e. des-
cribing a current representation of its GUI Component by referring one
GUI ComponentConfiguration. Furthermore, internalBehavior can be
used to promote modeling with predefined behavior of a GUI Component,
e. g. the behavior of a clock. Each GUI Component can have sub components
(cf. subComponents).

We use indirections to link data to stereotypes and to allow different
formalisms because this yields at least two advantages: 1) every graphical
representation, grammar, or prompt needs to be defined only once and each
state can create and use its own instance; 2) the complete graphics of one
application can be exchanged or a different localization can be. Additionally,
we do not preset formalisms for describing modality specific content so that
these can be freely chosen.

For example, A GUI Component does not contain the information of it
representation itself, but only references to a File. Thus, a file can be easily
exchanged in order to use different localization.

Modeling speech as a second modality requires speech grammars for speech
input and prompts for speech output.

The stereotype �Grammar� (see Fig. 1(a)) enables speech recognition
support. It refers to a speech grammar by property grammar, which can be
commonly defined, e. g. as Speech Recognition Grammar Specification [50]. We
decided to use Extended Backus–Naur Form (EBNF) and therefore define the
property ebnfGrammar of GrammarData. Each grammar has to be named
uniquely (cf. property id) by choosing an intuitive identifier to simplify reuse.
Complex grammars can easily be constructed by nesting existing grammars
using containedGrammar. In Fig. 1(b), the complex grammar phone cmds
is referenced by the property grammar and inherits enter pin, make a call,
dial number, and redial number.

Prompts are defined analogously to grammar specifications. We introduce
the stereotype �Prompt� and its related class PromptData with a property
id and a prompt phrase text. Figure 1(b) gives an example for a state with a
�Prompt� stereotype.

We prefer a preview of a graphical representation of a �GUI� stereotype
(see Fig. 1(b)) to enhance readability of state diagrams instead of showing
property values.

Dynamic Aspects

As a basis to formally define our profile’s semantics, we clarify its intended
meaning. First, we determine the temporal aspects of each stereotypes’ behavior,
second, we determine the relationship between multiple stereotypes, e. g. if
extending identical meta classes, and last, we describe the relations between
stereotypes’ semantics and the semantics of UML state diagrams.
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Figure 2 Process of a transition execution in temporal order (left to right)
compliant to UML (upper comments) and process extensions by our UI profile
(lower comments).

Figure 2 shows the different actions initiated during a state transition. The
actions Exit, Effect, Entry, and Do reflect the UML semantics [39]. We define
the semantics of each stereotype by introducing a corresponding static behavior
(see Fig. 1(a), properties ui behavior).

In the following, we refer to the behavior of each stereotype as follows:
the behavior of GUI with LoadViewState, the behavior of Grammar with
LoadGrammar, and the behavior of Prompt with PlayPrompt. LoadViewState
starts after entering a state and PlayPrompt starts after the UML behavior
Entry and both other stereotype behaviors have been completed. This last
condition implies that the actions LoadGrammar and LoadViewState are
concurrent behaviors.

A state is exited when its contained Do activity is completed, only if a state
has an outgoing transition with neither a guard nor a trigger. This condition
should be extended, so that both behaviors, Do and PlayPrompt, have to be
completed before the state is exited.

4 Methodology

In this section, we explain some significant aspects of modeling concrete
multimodal dialogs by applying the stereotypes of our UI profile. De Melo
introduced modeling of abstract modality independent dialogs [13].

4.1 Graphical User Interface

Modeling graphic-haptic interaction using state diagrams is enhanced by our
stereotype �GUI�. This extension supports dynamic composition of screens
at run-time. This stereotype mainly exploits two concepts of state diagrams:

• Composing state diagrams in a hierarchical manner

• Using parallelism to support active state configurations
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Figure 3 Alternative representations of �GUI� states.

The value of gui description references a formal specification of the GUI
and the value viewState references a widget specification of the gui description.

Instead of showing a textual notation of the stereotype �GUI� inside
its state, a graphical representation is used to ease readability and to assist
intuitive understanding of multimodal state diagrams (see Fig. 3).

A foundational concept of state diagrams is hierarchical structuring of
states by nesting. A state can be refined by adding regions with sub states.
A graphical representation usually is a composition of different widgets, e. g.
menus or popups, which are allowed to overlap or lay on top of each other.

Modeling dialogs of interactive systems in a hierarchical manner enables
structuring dialogs in terms of tasks, or encapsulates them for re-use. This is
for example useful for confirmation dialogs.

By taking into account the hierarchic level of each �GUI� state, the overall
screen representation of an application is generated by composing the referenced
widgets.

Figure 4 Composition of a screen from a stereotyped state diagram (from
Dausend and Poguntke [11]).

Figure 4 illustrates how both concepts, UML state diagram hierarchy and
overlay of widgets, are taken into account to compose the current screen
representation of an application. The state hierarchy (see Fig. 4 - left) with
its active �GUI� states (see Fig. 4 - middle) is the basis for generating the
current screen representation (see Fig. 4 - right).
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All active states of the state diagram are traversed starting from the topmost
state of the state diagram down to the innermost active states. Starting from
the topmost state, every widget of an active �GUI� state is laid on top of its
parent state widget. In our example, the Application Background widget is
overlaid by the File Browser widget followed by the File Menu widget and
finally the Load File Confirm widget.

As a supplement to hierarchical composition, state diagrams offer the
concept of orthogonal states to model concurrency. Screens often comprise
multiple widgets at a time, which are independent with respect to hierarchy.

/home/user

..

.
docs
pictures
share

<<GUI>>
Directory Tree

readme manual

examp..

releas.. todo_n..

<<GUI>>
File Table

File Browser

orthogonal state 
(state with parallel regions)

/home/user

..

.
docs
pictures
share

readme manual

examp..

releas.. todo_n..

<<GUI>>
File Browser

simple state

Figure 5 Compositing a screen from a state diagram with orthogonal states
(from Dausend and Poguntke[11]).

Figure 5 demonstrates how the File Browser widget can be modeled
alternatively using orthogonal states. Hence, the File Browser is decomposed
into two meaningful components, i. e. a File Tree and a File Table view. Both
parts are independent from each other and therefore can be specified own their
own. Thus, the level of modularization of graphical components can freely be
chosen for each graphical component as well as their behavior can specified
on its own. Common behavior of both widgets is modeled at the level of their
parent state.

Concurrency is a key concept for modeling multimodal interactive applica-
tions because it enables separate modeling of modality-specific aspects in a
common model (cf. Sect. 7; [10]).

4.2 Speech User Interface

The speech user interface is the second important modality we take into account
for modeling multimodal interactive systems. Considering input and output,
the speech user interface is usually composed of speech recognition results as
input and speech synthesis as output.

State-of-the-art dialog systems mainly use speaker independent speech
recognition. Regarding the interaction context, the vocabulary for recognition
is reduced to assure a optimal recognition rate. The speech recognition is
continuously adjusted respecting the context of use represented by the overall
system state. Adjusting means including or excluding vocabulary from the
recognizer, e. g. some words or whole sentences.
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Mapping this concept to UML state diagrams means that the context is
given by an active state configuration. A simple state represents the smallest
unit of a context. An active simple state with the stereotype �Grammar� ex-
tends the vocabulary of speech recognition with the referenced grammar. The
concept for modeling speech recognition is closely connected to the modeling
concept for GUIs.

The current vocabulary of an interactive application is composed by con-
junction of all grammars of an active state configuration, i. e. all states with
stereotype �Grammar�. Thereby, grammars can be excluded from the voca-
bulary, so that the overall grammar is reduced by difference with excluded
grammars (see Fig. 1(a)). The vocabulary is computed top down. In conse-
quence, the innermost states can redefine the vocabulary (they gain higher
priority than their parent states).

The stereotype �Prompt� is used to define output phrases for the speech
synthesis. This stereotype extends the behavior of its state by extending its
do–activity. Unlike other stereotypes, �Prompt� neither influences the active
state configuration nor is influenced by it.

4.3 Multimodal Interaction

In the following, we demonstrate how multimodal interactive applications,
including graphic-haptic as well as speech control, can be modeled using our
prior introduced stereotypes.

Stereotypes according to UML can be freely combined with each other
under two conditions: 1) The semantics of a stereotypes must not be in conflict
with UML semantics; 2) The semantics of an applied stereotype must not be in
conflict with semantics of other stereotypes applied to the same UML element.

For example, a state can be extended by both stereotypes �GUI� and
�Grammar�. This combination of stereotypes implements a special speech
dialog concept, like it is used by some car manufactures: Whilst a speech dialog,
a graphical representation showing a list of possible utterances is displayed to
support the user to ease speech input.

Another dialog concept realized by combination of stereotypes is barge-in: It
allows users to interrupt a system prompt by speech input. For implementation,
both stereotypes �Grammar� and �Prompt� have to be applied to a same
state. First, on entering such a state, the related grammar is included into the
current speech recognition grammar (see Fig. 2). Next, the state’s do activity
is executed and its prompt is played. Here, the grammar is still active at this
time. In consequence, an utterance of the user can cause exiting the state. In
this case, both, execution of the do activity as well as playing the prompt, are
interrupted in the course of leaving the state.
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5 Formal Semantics of Profile Behavior

Before we describe the semantics of the profile, we explain its foundations.
Next, we formally define the behavior, i. e. dynamic aspects, of the UI profile.
The major idea is to use and pragmatically extend an existing operational
semantics for state diagrams (cf. Sect. 5.1). In Sect. 5.2, we outline a more
general solution for integrating the semantics of profiles and their behavior
into UML in an abstract-oriented fashion.

Because “UML itself has no formal semantics for their metaclasses” [41],
we base on Kohlmeyer [31], who clarifies many significant ambiguities of UML
and provides a formally defined semantics. He incorporates formal semantics
of state diagrams by Börger and Cavarra [4] as well as Dausend [9]. Moreover,
Kohlmeyer’s formal semantics includes major parts of the UML language units
<Common Behaviors>, <Actions>, <Activities>, <Interactions>, <Communica-
tion> and <Use Case> of the UML to define a common semantics.

Like Kohlmeyer [31], we define the semantics of our UI profile by using
ASMs [24]. Although other formal semantics exist, e. g. for UML state diagrams
[16], we prefer ASMs mainly for two reasons: First, its notation is similar to
pseudo-code and therefore easy to understand and second it can be directly
executed, e. g. using CoreASM [15].

ASMs can be read as “pseudo-code over abstract data” [5] and comprise
transition rules operating on a state composed of functions defined over a
base set.

The update rule f (s1 , . . . , sn) := t modifies the value of f at (s1 , . . . , sn) to t .
Further constructs include abstraction using let . . . in, multi-way, conditionals,
and rule calls with call-by-name semantics. Updates accumulated by rules are
performed in parallel unless using seq .

We represent individual executions of a behavior by different agents. Their
interaction and signal handling is modeled using (shared) ASM domains and
functions [31]. The UML semantics is formally defined by ASM rules acting on
these elements. Rules, which are executed by particular agents. Full details of
this approach are described in [45] and [31].

According to [31], any model execution is started by an initial agent execu-
ting a rule called StartNewBehaviorExecution in a particular context.
This context, a BehavioredClassifier, is instantiated simultaneously and inclu-
des all necessary information for the execution of a behavior. Depending on
the kind of behavior to execute, e. g. StateMachine, a corresponding rule is
executed, i. e. StartStateMachineExecution. This rule instantiates a new
agent for every region of a state diagram, because the behavior of different
regions is performed concurrently within the same context.

The current dispatchedEvent is chosen from the eventPool of the context
by the top-level agent (TLA) of a state machine execution. Each of its sub
agents continuously looks for a dispatchedEvent or completionEvent and a
corresponding transition to take.
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1 PerformTransition ≡
2 if Continue then
3 case self . currentTask of
4 e x i t :
5 Exit ( self . currState )
6 e f f e c t :
7 Effect( t r a n s i t i o n )
8 entry :
9 LoadViewState( self . tLA )

10 LoadGrammar( self . tLA )
11 Entry( self . currState )
12 do :
13 PlayPrompt( self . currState )
14 Do( self . currState )
15 f i n i s h :
16 Finish ( t r a n s i t i o n )
17 else . . .

Listing 1 ASM rule PerformTransition which defines the formal semantics
of processing a transition between two states. This rule includes ASM rule calls
implementing the semantics of the UI profile.

If an agent finds such a transition, this agent executes PerformTransiti-
on (see Lst. 1). If Continue evaluates to true, the case-statement is executed.
The predicate Continue is used to guarantee that the next behavior in a
state transition only starts if the previous behavior was been completed. The
updates of currentTask, the currently executed state currState, and the
predicate Continue are computed by executing agent self and result in the
same update set as the concurrently executed rule PerformTransition.

The standard UML transition is reflected in corresponding ASM rules Exit,
Effect, Entry, Do, and Finish (cf. Lst. 1, ll. 5, 7, 11, 14, and 16). These rules
are described in detail by [31]. The Finish rule completes the computation
and has no analogous UML element.

5.1 Direct extension of UML semantics

In order to implement the desired behavior of our UI profile (see Fig. 2), we
introduce the rules LoadViewState, LoadGrammar, and PlayPrompt
(cf. Lst. 1, ll. 9, 10, and 13). These rules implement the static behavior of
each stereotype referenced by its properties ui behavior. LoadViewState as
well as LoadGrammar calculate the graphical representation and the active
grammar of TLA’s current active state configuration of the currently executed
state. Therefore, the parameter for both rules is self .tLA. PlayPrompt
implements a local behavior for the current state, so that its parameter is
self .currState.
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On entering a �Grammar� state the referenced grammar has to be loaded
into the speech recognizer, that has to be activated as well. This has to happen
in parallel to the entry behavior so that a coexisting viewState can be displayed
simultaneously. We add the rule LoadGrammar to the case-block entry as
well as LoadViewState so that they are performed in parallel with the rule
Entry.

We utilize the hierarchy of state diagrams in the implementation of the ASM
rules LoadViewState and LoadGrammar to formally define the semantics
for the case of multiple active states containing UI profile’s stereotypes.

If more than one state associated with �GUI� is active during a state
diagram execution, the current graphical UI representation is composed by at
least two viewStates (cf. Sect. 4.1). The hierarchy level of a state (incrementing
from zero starting with the root state) indicates the z-ordering of its UI element
inside the overall representation. Additionally, the temporal order of state
activation is used to solve the problem of displaying content of orthogonal
states on the same level of the state diagram hierarchy.

In the following, we illustrate the rule LoadViewState (cf. Lst. 2) imple-
menting the behavior of the �GUI� stereotype.

LoadViewState

The rule LoadViewState (cf. Lst. 2) makes use of the rules GetWidget,
Compose, and Render. These rules define an abstract interface to our execu-
tion environment. GetWidget instantiates and returns a widget viewState
from a given specification gui description. Compose creates and returns a
list of widgets where a one list of widgets (first parameter) is laid on top of a
second list of widgets (second parameter). The rule Render passes the given
resulting list of widgets to the simulation component.

LoadViewState is called with tLA as parameter. First, some local varia-
bles are declared and instantiated:

• screen — resulting list of composed widgets

• listOfWidgets — intermediately stores composed widgets

• children — sequence of direct sub states of an active states

• activeStates — sequence of current states during collection

The collecting of widgets from states with stereotypes �GUI� is processed
as breadth-first search through the current active state configuration of the
tLA. Therefore, iterate is executed for each level of the tree of active states.
For every set of activeStates every state st with �GUI� stereotype is accessed
within the forall. For these states, an instance of their widgets is stored in the
listOfWidgets. Furthermore, all children of a state st are assigned to activeStates
for the next iteration. Therefore, a case-by-case analysis is necessary to take
into account that direct sub states of st can be owned by either the same agent
as st or its sub agents.
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1 LoadViewState( tLA ) ≡
2 local s c r e e n := undefined , l i s tO fW i d g e t s := [ ] ,

c h i l d r e n := {} ,
3 a c t i v e S t a t e s :=
4 { s | s in tLA . currState with
5 s . upState . region = tLA . region }
6 in
7 /** breadth-first search over all active states */
8 iterate
9 forall s t in a c t i v e S t a t e s do

10 /** get widget from specification */
11 if GUI ∈ s t . appliedStereotypes then
12 widget := GetWidget( s t . gui_description ,

s t . viewState )
13 add widget to l i s tO fW i d g e t s
14 seq
15 c h i l d r e n := {}
16 seq
17 /** get children of current state */
18 if s t . I sS imple then skip
19 else if | s t . region | = 1 then
20 choose ds t in s t . agentInState . currState
21 with ds t . upState = s t
22 add ds t to c h i l d r e n
23 else
24 forall agent in s t . agentInState . subAgents

do
25 choose ds t in agent . currState
26 with ds t . upState = s t
27 add ds t to c h i l d r e n
28 endforall
29 seq
30 a c t i v e S t a t e s := c h i l d r e n
31 enditerate
32 seq
33 /** compose widgets to screen */
34 iterate
35 s c r e e n := Compose( l i s tO fW i d g e t s . head , s c r e e n )
36 remove l i s tO fW i d g e t s . head from l i s tO fW i d g e t s
37 enditerate
38 seq
39 /** display screen */
40 Render( s c r e e n )

Listing 2 ASM rule LoadViewState

After all states are processed, the listOfWidgets is used to Compose the
screen associated with the current active state configuration in FiFo-order.
Last, Render is used display the screen.
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LoadGrammar

In LoadGrammar, we compute the current grammar of an active state
configuration similarly to the current graphical representation. It is constructed
by union (if adding vocabulary) and difference (if excluding vocabulary) of all
grammars referenced by active states using the stereotype �Grammar�. If a
sub state with this stereotype is entered, its grammar is added to or removed
from the current grammars, respectively.

An example, comprising the computation of a current graphical representa-
tion and grammars for an active state configuration, is given in Sect. 7.2.

PlayPrompt

The semantics of �Prompt� defines when a prompt has to be played and, if
necessary, interrupted. As intended, a prompt has to be played after all entry
behaviors of a state are finished. Therefore, a prompt extends the Do activity
of a state by playing the referenced prompt. Thus the ASM rule PlayPrompt
(cf. Lst. 1, l. 13) has to start its own agent for playing the prompt.

If a default transition exists, i. e. a state has an outgoing transition with
neither a trigger nor a guard, this state has to be exited as soon as both agents
executing the rules PlayPrompt as well as Do (cf. Lst. 1, ll. 13 and 14) have
been finished. Therefore, the ASM rule NextTask of their parent agent have
been modified to consider that both agents have to be finished before shifting
self .currentTask to finish and setting Continue to true.

This pragmatic approach of defining a profiles semantics works but results
in changes in the original UML semantics of [31]. It does not support an
independent definition of the UML semantics on the one hand, and a profiles
semantics on the other. In case of changes to the UML semantics, it is entirely
unclear how the semantics of an extension should be adjusted. A direct embed-
ding of the semantics description of a profile in the UML semantics relieves
only the initial consistent construction of a common behavior.

5.2 Aspect-oriented extension of UML semantics

Instead of directly changing the UML semantics of Kohlmeyer [31], there are
other options to achieve a more general solution. We consider the following two
alternatives: 1) defining Points in the UML semantics (like anchors), where
it can be extended by including additional behavioral semantics. 2) At any
time while interpreting the UML semantics it has to be reviewed, whether a
profile implements a semantics that must be executed at the current state.
The second alternative can be understood in the sense of aspect-oriented UML
extension. Since we conclude that the second approach offers a more general
solution, we focus on this approach.

Aspect-oriented programming has been described first in the late 1980s and
is still being developed. The most prominent implementation based on Java is
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AspectJ [49], but there are also other implementations for different languages.
Regarding UML, there is some work on model-driven, aspect-oriented software
development [33, 2, 7]. However, to our knowledge there are no approaches
using aspect-orientation in order to extend UML behavior by profiles.

A program flow is determined by sequences of expressions and jumps. An
aspect can be seen as a template that adds additional instructions and jumps to
such a specific program flow without changing the original program. Therefore,
four components are mandatory in aspect-oriented programs: 1) aspects, 2)
join-points, 3) pointcuts, and 4) advices.

A join point is a well defined point of a program execution. This can be
a writing or reading access to a variable, a method call, a method execution,
etc. A set of join points is called a pointcut. Advices define statements that
are executed if a pointcut is reached during program execution. Statements
of an advice, i. e. additional code, can be executed before, around, or after a
pointcut is executed (where around means instead of the pointcut).

The central idea of aspect-orientation is the separation of concerns. The
original program and its extension by aspects are separately implemented and
later woven into a combined program. Weaving means, that a given program
is analyzed for matching pointcuts for a set of aspects. If a pointcut is found,
the statements of its corresponding aspect’s advice are inserted as required by
the advice, e. g. before the corresponding join point.

In our approach we use an aspect-oriented operational description of the
specification of the semantics of a given behavior and its extensions. This se-
mantics should be executable by its own without weaving a new combined ASM
specification. Therefore, UML semantics [31] is modified to enable extensions
to UML behavior in an aspect-oriented manner.

Since we have to detect join points during interpretation, e. g. finding
method calls which usually are detected by the weaver, we make all join points
explicit in our ASM specification. We do this by introducing an indirection
rule for each kind of join point.

In the following, we explain our aspect-oriented approach for UML extension
by means of our running example: the UI profile.

The implementation of our UI profile (cf. Sec. 3.1) requires method call join
points, i. e. rule calls in ASM. Therefore, we replace each rule call in our ASM
specification with rule calls of the form: CallJP(OriginalRule, [arg1, . . . ,
argn]), where the list arg1 to argn is the signature of the OriginalRule.

Next, we introduce four ASM domains and functions according to the
components of aspect-oriented programs consisting with [25] (cf. Lst. 3): Aspect,
JoinPoint, Pointcut, and Advice. We define the static structure for aspects-
oriented programs in ASM as follows:

Each aspect of the corresponding domain will be assigned a name and also
join points, pointcuts, and advices as shared functions (cf. Lst. 3, ll. 3–5).
The ∗ operator indicates a list of elements of a given domain.
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1 domain Aspect
2 shared name : Aspect → STRING
3 shared join_points : Aspect → JoinPoint∗

4 shared pointcuts : Aspect → Pointcut∗

5 shared advices : Aspect → Advice∗

6

7 domain Pointcut
8 shared name : Pointcut → STRING
9 shared join_points : Pointcut → JoinPoint∗

10

11 enum JoinPointType = { cal lJP , execJP , . . . }
12

13 domain JoinPoint
14 shared name : JoinPoint → STRING
15 shared type : JoinPoint → JoinPointType
16 shared signature : JoinPoint → FILE∗

17

18 enum AdviceType = {before , concurrent , . . . , a f t e r }
19

20 domain Advice
21 shared name : Advice → STRING
22 shared pointcuts : Advice → Pointcut∗

23 shared type : Advice → AdviceType
24 shared statement : Advice → RULE

Listing 3 Static structure of aspect-oriented operational semantics

A pointcut comprehends one or more join points as alternatives. Hence, a
pointcut is relevant for executing an aspect if one of its join points is reached
during program execution.

Join points are of a given type, e. g. callJP. Its signature defines a pattern
to decide if a called function of a program matches a join point.

The domain Advice’s function pointcuts is mandatory for the execution
of the Rule assigned to the function statement. This ASM rule has to be
executed at a certain time of program execution depending on the advice’s
function type. We consider the advice types before, concurrent, and after,
whereas the type around is not taken into account, as it means executing an
advice’s statement instead of a rule call of the UML semantics. Thus, the
semantics of UML is changed improperly, which is forbidden by using the
profile mechanism (cf. Sect. 2.4).

The original rule and its signature are assigned as parameters par rule and
par sig to the rule call CallJP (Lst. 4, l. 5) to implement indirection of rule
calls. CallJP compares the given signature with the signatures of each join
point of the domain JoinPoint. If both signatures match, the rule Execution
is called to execute the corresponding advices of the matching aspects.

A join point defines a pattern as a list [arg1, . . . , argn]. Each entry of the
list is either a concrete value or undefined, where undefined stands for any
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value. Therefore, two corresponding entries of the signature and the pattern
match if they are equal or if the entry of the pattern is undefined.

1 rule CallJP( p a r r u l e , p a r s i g ) ≡
2 seq
3 j p t s :={}
4 forall j p t ∈ JoinPoint do
5 if match ( p a r s i g , j p t . signature ) then
6 forall asp ∈ Aspect with
7 ∃ j p t ∈ j o i n p o i n t ( asp ) do
8 add j p t to j p t s
9 endforall

10 endforall
11 next
12 Execution ( findAdvices ( findPointcuts ( j p t s ) ) ,

p a r r u l e , p a r s i g )

Listing 4 The ASM rule CallJP is called for each rule of a ASM program

Lst. 5 shows the derived function match . It constructs a set of matching
pairs of signatures and patterns by set comprehension, and returns true if this
set is not empty and false otherwise.

1 derived function match ( p a r s i g n a t u r e , p a r p a t t e r n ) =
2 if {matches i s {( s , p ) } |
3 i ∈ [ 1 . . p a r s i g n a t u r e . length ] ,
4 s ∈ p a r s i g n a t u r e , p ∈ p a r p a t t e r n :
5 p a r s i g n a t u r e . length = p a r p a t t e r n . length ∧
6 p a r s i g n a t u r e [ i ] = s ∧
7 p a r p a t t e r n [ i ] = p ∧
8 ( s = p ∨ p = undefined ) } 6= {}
9 then r e s u l t := true

10 else r e s u l t := f a l s e

Listing 5 Predicate rule indicating a match of a rule’s signature with a join
point’s pattern.

We collect matching join points of any aspect (cf. Lst. 4) in the set jpts.
Relevant pointcuts and advices are computed by set comprehensions (cf. Lst. 6).

1 derived function findPointcuts ( j p t s ) =
2 { p t c s i s ptc | ptc ∈ Pointcut , j p t ∈ j p t s
3 with j p t ∈ ptc . j o i n p o i n t }
4

5 derived function findAdvices ( p t c s ) =
6 { advs i s adv | adv ∈ Advice
7 with ∀ ptc ∈ adv . po intcut : ptc ∈ p t c s }

Listing 6 Derived functions using set comprehension to find relevant
pointcuts/advices for a given set of join points/pointcuts.
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The rule Execution (cf. Lst. 7) calls each statement of the given advices
p1 advs at the right time, based on each advice’s type. Since,advices can only
have local effects, i. e. within the current update set [5], we insert additional
ASM rules by using sequential blocks to implement aspects with the types
before, concurrent and after. Using sequential blocks enables extending an
ASM specification in a way that the ordering of original and introduced rules
is taken into account and however all effects result in the same update set of
the current step of the executing agent.

1 rule Execution ( par advs , p a r r u l e , p a r s i g ) ≡
2 seq
3 self . mode := before
4 next
5 iterate
6 /** execute advice’s statement */
7 forall adv in pa r adv s with
8 adv . type = self . mode do
9 adv . statement

10

11 /** execute original rule */
12 if self . mode = concurrent then
13 p a r r u l e ( p a r s i g )
14

15 /** set next mode for agent self */
16 NextAdviceMode( self )
17 enditerate
18

19 rule NextAdviceMode( pa r ag en t ) ≡
20 case pa r ag en t . mode of
21 before : pa r ag en t . mode := concurrent
22 concurrent : pa r ag en t . mode := a f t e r
23 a f t e r : skip
24 endcase

Listing 7 Executing advices’ statements and its corresponding original rule.

Initially, the mode of the executing ASM agent is set to before (cf. Lst. 7,
l. 3). Next, inside the iterate-block, three actions are considered in parallel:

• The statement of any advice in par advs is called if its advice type equals
the current mode of the executing agent (cf. Lst. 7, ll. 7–9).

• The rule par rule is executed if the mode of the executing agent is con-
current (cf. Lst. 7, ll. 12–13).

• the rule NextAdviceMode (cf. Lst. 7, l. 19–24) with the executing
agent as parameter is called, which sets the mode of this agent to the
next mode (cf. Lst. 7, l. 16).
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In the case of executing NextAdviceMode with self .mode equals after,
skip is executed, i. e. an empty update rule. Since all new updates are empty,
the iterate block is be finished.

The rule Execution (see Lst. 7) modifies the update set caused by the
original rule depending on an advice’s type and its statement as follows: The
modified update set is computed by applying the definition in Tab. 1 to the
rule Execution. If there exists any advice with type before, the update U is
a result of the advices’ statements which are a part of P . In the next iteration
step (cf. Lst. 7) Q yields V where Q is a composition of statements for all
advices of type concurrent and the original rule.

Table 1 Definition of the semantics of ASM sequential rules from Börger and
Stärk [5, p. 74]

yields(P,A,ς,U) yields(Q,A+U,ς,V )
yields(P seq Q,A,ς,U⊕V ) if U is consistent.

where

U ⊕ V = V ∪ {(l, v) ∈ U | there is no w with (l, w) ∈ V }

is a composition of update sets.

yields(P,A,ς,U)
yields(P seq Q,A,ς,U) if U is inconsistent.

The definition can be applied on the advices of type after just as it was
shown in the previous case.

Since the definition (cf. Tab. 1) requires both sets to be consistent, we can
guarantee that the updates caused by the original rule are not contradicted by
any of the advices’ statements.

Although we introducing indirections CallJP we guarantee that each of
the original ASM rules is performed at the right time (cf. Lsts.4, 7) and we
do not rewrite any original rule. So we guarantee that the semantics of the
extension does not contradict the UML semantics in the current update step
under the following confinement: However, the UML semantics can be harmful
interfered by changing some of its shared functions. Thus changing one of those
shared functions, any extension of UML has to guarantee by itself that UML
semantics is just extended and not changed leading to contradictions between
semantics of UML and its extension.

Listing 8 shows the definition of our UI extension based on the aspect-
oriented approach in contrast to our direct approach in Sec. 5.1. Our UI
extension is modeled as one Aspect containing advices and pointcuts with join
points to extend the UML and its semantics by our aspect-oriented extension.

The rules LoadGUI, LoadGrammar, and LoadPrompt are omitted.
They implement the semantics as explained in Sec. 5.1. For example, the rule
LoadGUI is similar to the rule LoadViewState (cf. Lst. 2).
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1 Initialize ≡
2 seq
3 JoinPoint ( jp-entry ) := true
4 name ( jp-entry ) := Entry
5 type ( jp-entry ) := ca l lJP
6 args ( jp-entry ) := undefined
7

8 JoinPoint ( jp-do) := true
9 name ( jp-do) := Do

10 type ( jp-do) := ca l lJP
11 args ( jp-do) := undefined
12

13 Pointcut (pc-gui) := true
14 name (pc-gui) := PoCuGUI
15 add jp-entry to j o in−po in t s (pc-gui)
16

17 Pointcut (pc-grammar ) := true
18 name (pc-grammar ) := PoCuGrammar
19 add jp-entry to j o in−po in t s (pc-grammar )
20

21 Pointcut (pc-prompt) := true
22 name (pc-prompt) := PoCuPrompt
23 add jp-do to j o in−po in t s (pc-prompt)
24

25 Advice (ad-gui) := true
26 name (ad-gui) := Ad−GUI
27 pointcuts (ad-gui) := pc-gui
28 type (ad-gui) := before
29 statement (ad-gui) := LoadGUI
30

31 Advice (ad-grammar ) := true
32 name (ad-grammar ) := Ad−Grammar
33 pointcuts (ad-grammar ) := pc-grammar
34 type (ad-grammar ) := before
35 statement (ad-grammar ) := LoadGrammar
36

37 Advice (ad-prompt) := true
38 name (ad-prompt) := Ad−Prompt
39 pointcuts (ad-prompt) := pc-prompt
40 type (ad-prompt) := concurrent
41 statement (ad-prompt) := PlayPrompt
42 next
43 Aspect (asp-ui) := true
44 name (asp-ui) := Asp−GUI
45 add ad-gui to advices (asp-ui)
46 add pc-gui to pointcuts (asp-ui)
47 add ad-grammar to advices (asp-ui)
48 add pc-grammar to pointcuts (asp-ui)
49 add ad-prompt to advices (asp-ui)
50 add pc-gprompt to pointcuts (asp-ui)

Listing 8 ASM rule to initialize the aspect-oriented UI extension.
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6 Application: Multimodal PIN Entry

In this section, we give an example of applying our modeling approach for
multimodal interactive systems. First, we describe a UC. Then we will explore
how the dialogue provided by this UC can be modeled with our approach.

6.1 Introducing the Use Case

Our UC takes place in an in-car scenario. The vehicle provides a numeric
keypad for manual interaction as part of its onboard infotainment system
as well as some buttons on the steering wheel. One of the keys called Push-
to-Activate (PTA) can be used to activate a speech dialog. This enables
multimodal interaction.

The scenario can be summed up from the viewpoint of the system as follows:
1. A phone is being inserted, 2. the system waits for PIN entry, 3. the entered
PIN is checked, 4. the phone is activated (if the PIN is correct). From the user
point of view, the PIN can be entered via the numeric keypad or a speech
dialog. In the following, we assume a special UC: Entering the first two digits
of the PIN by hand and continuing pin entry by speech dialog, because of a
significant change of the driving situation.

6.2 Modeling Multimodal PIN Entry

The pin entry scenario starts after the mobile phone is plugged into a cradle,
but the phone is still locked. The system model (see Fig. 6(a)) contains all states
of the system, transitions and events, which are relevant for the HCI of the UC
described in section 6.1. The transition from the state PHONE LOCKED into
PHONE CHECK PIN is executed if the event SYNC PHONE CHECK PIN
is dispatched. The diagram will be left by an exit point, if the pin is correct.

The multimodal model is structured into parallel regions, one for each
modality and one for the system model. A screen sequence (see Fig. 6 (b)) and
the diagrams according to our pin entry UC are shown in Fig. 6 ((a), (c) &
(d)).

The graphic-haptic part of the dialog comprises the states ENTER PIN
and CHECKING PIN, both extended by a �GUI� stereotype. Their related
UI element is displayed while they are active. The sub state of ENTER PIN
describes the input of numbers via the keypad of the car.

The multimodal dialog starts with activating the state ENTER PIN, inclu-
ding its �GUI� stereotype and its sub states. Now, the user enters the first
two digits by hand using the numeric keypad.

Next, the speech dialog is activated using the PTA-button on the steering
wheel and the state SPEAK PIN is entered (see Fig. 6 (d)). This state contains
all kinds of stereotypes from our UI profile. According to our formal semantics
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(a) relevant part of the system model

(b) display (c) haptic interaction (d) speech interaction

Figure 6 (a): part of the common system model; (b): screen sequence of an
interaction sequence for pin entry; (c): model of the haptics dialog for pin entry;
(d): model of the speech dialog for pin entry. (from Dausend and Poguntke [10])

(cf. Sect. 5), the viewState — a so called Teleprompter1 — is shown on a z-level
above the viewState of ENTER PIN. Furthermore, the grammar is loaded and
the speech recognizer is started. When, loading the screen and grammar, are
completed, the prompt “Please enter the PIN digits.” is played.

The user says the missing numbers and confirms his input by saying
“okay”, which forces the state SPEAK PIN to be exited. Its exit action is
executed, firing the event SYNC PHONE CHECK PIN and deactivating the
Teleprompter. Afterwards the state WAIT FOR PIN CHECK is entered.

The system model (see Fig. 6(a)) receives the synchronization event
SYNC PHONE CHECK PIN, which triggers the transition into the state
PHONE CHECK PIN.

1a screen used by Mercedes Benz to visualize help, e. g. possible speech commands.
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By entering this state, the guard [inState(PHONE CHECK PIN)] (see
Fig. 6(c)) becomes true. This guard ensures that the system model is in
the state PHONE CHECK PIN and triggers the necessary transition into
CHECKING PIN. The “inState” construct is defined in the Object Constraint
Language [40].

After checking the PIN, the system model changes its state, if the PIN is cor-
rect, into the state PHONE ACTIVE whereupon both models are synchronized
executing their transition towards their exit states.

7 Validation of the Modeling Concept

The validation of our modeling approach consists of two parts. The first part
is conducted by case studies during the development process (cf. Sect. 3)
and the second part is an expert evaluation which has been performed after
development had reached a solid basis.

First, we have implemented models for selected UCs for different interaction
aspects of multimodality as a proof of concept. Thereby, we compared two
different kinds of modeling HCI with a focus on the synchronization between
modalities. The implementation has been supported by our own modeling tool
and interpreter based on our formal semantics.

The second part of our validation is an expert evaluation. This evaluation
answers the question in terms of an qualitative analysis:“How can a user-
friendly method for the specification of multimodal interaction be achieved?”.
We will describe the scenario used in our expert evaluation as an example of
an application of our approach which is based on the aforementioned use case
(cf. Sect. 6.1).

7.1 Case study

The case study consists of several proofs of concept. We use real parts of
dialogs of the recent Mercedes Benz C-Class for validation. We have modeled a
large part of the telephone application for graphic-haptic operation and speech
operation, checked its UML conformity and simulated its behavior as well as
its UI. This simulation is facilitated by our own interpreter, which supports
modeling, UML conformance checking, and executing models including its
resulting UIs by simulation of UML state diagrams and our UI profile.

As mentioned above, [23] provides a proof of concept for modeling multi-
modal dialogs using state machines with events for synchronization between
different modalities. This method limits extensibility, because the number
of events needed for a single synchronization corresponds to the number of
modalities, which need to be synchronized. Moreover, it has to be considered
in which state and under what condition a modality should be responsible for
a particular synchronization event.
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In order to improve this situation, we have analyzed two principal ap-
proaches to model multimodality: First, modeling one abstract dialog and
integrating speech and graphic-haptic dialogs into it. Second, separate modeling
of each modality based on a common system model for synchronization.

We favor the second method: The modeling method follows the model
view controller (MVC) architecture, so that system model (model), modalities
(controller), and its representation (view) are decoupled from each other.

This modeling strategy leads to some redundancy, because modalities follow
the same abstract dialog. This strategy otherwise facilitates flexibility regarding
extensibility of functions as well as modalities.

In the following, we present some data of our most comprehensive case
study, using a common system model for synchronization: 158 viewStates
were defined in total, including 29 prompts as well as grammars for speech
operation of the telephone associated functions. Three kinds of state diagrams
were modeled: 16 for graphic-haptic operation, 4 for modeling of UI relevant
system parts and 19 for speech operation. The model contains 206 states in
total (without pseudo states) and 546 transitions.

As a result of this case study we have got extensive collection of state
diagrams and their UML model including our stereotypes from the UI profile.
The behavior specified by our model as well as simulation of the UI is similar
to the Mercedes C-Class. We so far see no problems where modeling interaction
scenarios of current in-car dialogs may fail in principle with our approach.
However, we think that the modularization of models is very important for
different aspects like readability, understandability, and reusability.

7.2 Expert Evaluation

In this section, we present results of our expert evaluation [10]. In this eva-
luation, we have answered the following research question: “How can a user
friendly methodology for specification of multimodal interaction be achieved?”
We have formulated further detailed questions regarding appropriateness and
usability:

Appropriateness

• Are UML state diagrams extended with stereotypes appropriate to model
interactive applications?

• Is the synchronization of modalities by using a common system model
appropriate to model multimodality?

Usability

• Is our approach effective, efficient, easy to learn and less error-prone?

• Are the resulting models of our approach easy to read and understand?
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Methodology

Based on our research question, we have refined questions related to appro-
priateness of the UML approach, our extensions using profiles and stereotypes,
and synchronization of modalities using a common system model. Furthermore
we want to gain knowledge about ergonomic aspects like effectiveness, effi-
ciency, learn-ability, and error rate. The questions are answered by an expert
evaluation.

We have chosen the following participants to ensure that all experts have
knowledge of UML as well as HCI: Scientific staff of the Institute of Software
Engineering and Compiler Construction and the Institute of Media Informatics,
both of Ulm University, and employees of Daimler AG R&D in Ulm.

We decided for an oral interview without predetermined answers to receive
detailed comments, suggestions and personal statements of each participant.
The resulting non numeric material, the interview protocols, provide more
details than a quantitative reading/measurement would contain. Furthermore
for analysis we profit from content-diversity of individual answers [3]. Based
on [12] and [14], we expected high effectiveness of this elicitation method for
our purpose.

Experiment Design

The evaluation starts with collecting personal data: age, gender, profession or
job, and knowledge of UML and HCI. Second, we introduced all participants to
our interaction scenario. Last, we interviewed every participant and transcribed
their thoughts, questions, comments, and remarks said aloud.

After collecting the personal data, the evaluation starts with a short
introduction of each participant to our scenario, its environment, and interaction
opportunities. We choose an in-car multimodal phone dialog where the goal
of this scenario is to unlock a mobile phone via the car’s user interface (see
Sect. 6.2).

The scenario was explained by means of a presentation whereas modeling
the scenario was explained by using printouts. Next, the participants were
given 10 minutes time to model an extension of the scenario on paper using
the newly learned concepts. They were asked to express their thoughts loudly.

The participants should supplement the model by an incoming call, accep-
ting the incoming call, as well as retrieving caller information. Therefore, we
gave each participant a presentation of the extended UC, the corresponding
system model, fixed parts of the two models for voice control and graphic-haptic
operation, as well as the necessary stereotypes. Finally, an interview of 10 to
15 minutes was conducted.



32 Technical Report

Expert Evaluation Results

The summary of our main results is categorized as follows: UML and multimo-
dality and general user-friendliness.

The participants of our study have been in the age of 23 to 33 years. Of
the 11 participants, eight are male and three are female. Four are graduates
of computer science, five are graduates of engineering, and two are advanced
computer science students. The number of participants is sufficient, because
analyzing expert opinions does not require any quantitative analysis.

To determine the experience with UML and HCI every participant is
interviewed and classified by us on a Likert-scale from one to seven, where one
means “no experience” and seven means “very much experience”. All except
two participants self-estimate their knowledge of UML as well as HCI at least
as respective, most of them assert to have above average experience.

For the extraction of results from our protocols, the qualitative content
analysis was chosen because it is especially suitable for the evaluation of
the available interviews [21]. This systematic procedure means searching on
the protocols with an analytical grid for relevant information. The resulting
information is processed as far as possible independently from the protocols to
answer the research question.

The analysis grid in the present investigation includes the topics and aspects
from Sect. 7.2. Also, all protocols have been analyzed with regard to proposals
for improvements of our approach.

UML and Multimodality

All participants accepted UML for modeling multimodality without hesitation.
Six participants state that the modality independent system model is appropria-
te. Two participants highlight clearness and understandability, four comment
positively, but have minor remarks for improvements. The introduction to the
model is quite difficult and a more sophisticated model could be hard to model.
As an example, participant H cites the destination entry for navigation. A
problem might also arise if system conditions that are used only for specific
modalities would be needed. A majority of nine participants believe that the
system model should be present as a basis for modeling multimodality. A
parallel creation is possible for professionals. Alternatively, a modality could
first be specified from which the system model can be partly derived. And
participant F remarks that he had initially not fully understood the system
model.

Six participants state that the stereotypes are simple to understand, easy
to use, good to illustrate dialogs and that they can be used in a modular
way. Four participants had problems with the grammar stereotypes. Using the
grammar requires profound knowledge of its semantics. Participant F thought,
that the grammar stereotype has to be applied to the destination state of a
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speech dialog transition. Three participants have not taken into account the
semantics of the stereotypes or the semantics was overall not clear for them.

Seven participants estimate that the concept is extensible for further
modalities. Participant B states that he has no idea how to model multimodality
more easily. Participant H perceives that he sees no solution for modeling
combined modality input like: “Go there!” with simultaneous pointing gesture.
Participant G anticipates that it could be problematic if modality-specific
dialogs have different numbers of steps.

Ease of Use

The statements relating to the general user experience were classified into the
categories of effectiveness and efficiency, possibility of errors and learning. Six
participants confirm with the studied modeling approach multimodality can
be effectively specified. Participant K admits that it is possible, if one has
previously dealt with UML and the extended syntax. Participant A affirms
efficiency of the approach and its intuitive usability. Participant D, however,
criticizes the partial redundancy between modalities. Participant C can hardly
imagine multimodality, in case of modeling both modalities at the same time.

Recommendations for Improvements

A total of seven participants want tool support to ensure consistency between
the system model and the modalities and moreover provide automation, for
example by offering auto-completion. Three Participants propose support by
simulation of the models as well as the user interface to simulate multimodality,
to get help in determining the active grammars and to compare the model
effectively with present requirements. Two Participants express that the parts
referring to the system model also should be highlighted in the modality-related
diagrams in a different color in order to increase readability.

8 Discussion and Conclusion

Starting from the challenges for modeling multimodal interactive systems,
we address the following issue: “How can a user-friendly method for the
specification of multimodal interaction be achieved?”. The hypotheses from
Sect. 2.2 are the basis for the discussion of the presented approach. Additionally,
we consider the results of the validation (cf. Sect. 7) to add some remarks.

UML is an established formalism in SE which is also used in the HCI com-
munity. In contrast to other approaches (cf. Sect. 2), which aim for preferably
extensive support for design of interactive system, we concentrate on defining
a formal semantics for our UML profile to support MDD and simultaneously
take into account conformity with UML. The independence of the modalities
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and the synchronization using a common system model is a great advantage,
especially if dialogs of different modalities consist of different numbers of steps.

The formal semantics of our extension (cf. Sect. 5) is based on an existing
semantics for UML behavior using ASMs. Our approach can easily be extended
for other diagrams, e. g. activity diagrams, because they are already part of
the semantics we build on. By providing formal semantics, we fulfill a major
claim for defining UML profiles for modeling behavioral aspects (cf. Sect. 2.4).

On this basis, we try to assure high quality of models. Therefore, we provide
tool support to define and apply profiles, e. g. the UI profile, to state diagrams.
Other current tools allow the definition and usage of UML profiles, but only
on the level of notation, i. e. diagrams. We further introduced in our tool some
additional constraints to the UML constraints for state diagram models to
guarantee computability of our models. The behavior of models of multimodal
interactive systems as well as the representation of the UI related to an active
state configuration (cf. Sect. 7) can be simulated. This makes the approach
applicable to early phases of system development, e. g. to compare different
multimodal interactions.

Code generation based on the formal semantics is possible, but is only used
for simple models without concurrency and history states.

Introducing our UI profile and defining its formal semantics in an direct
way is a good example for extending UML (cf. Sect. 3). Being inspired by real
needs, it makes pros and cons of UML profiles in general evident.

Our aspect-oriented approach to extend UML semantics can be conferred
to other extending ASM specifications. Currently, we analyze different kinds of
ASM specifications to find out which requirements such an ASM specification
should satisfy to properly fit to our aspect-oriented extension approach and
how our approach can be enhanced.

The validation (cf. Sect. 7) confirms that our approach meets both goals:
modeling multimodality while keeping general user-friendliness. The tool, which
was not part of the expert evaluation, can help to overcome most of the problems
mentioned, e. g. difficulties in understanding the profile’s semantics in specific
situations.
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tensbeschreibungen in der UML 2. PhD thesis, Universität Ulm, 2009.

[32] J. Kohlmeyer and W. Guttmann. Unifying the Semantics of UML 2 State,
Activity and Interaction Diagrams. Perspectives of Systems Informatics,
5947:206–217, 2010.

[33] R. P. Laurence, L. Duchien, G. Florin, F. Legond-aubry, L. Seinturier,
and L. Martelli. A UML Notation for Aspect-Oriented Software Design.
In Workshop on Aspect-Oriented Modeling with UML, 2002.



38 Technical Report

[34] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, M. Florins, and
D. Trevisan. Usixml: A user interface description language for context-
sensitive user interfaces. In K. Luyten, M. Abrams, Q. Limbourg, and
J. Vanderdonckt, editors, Proceedings of the ACM AVI 2004 Workshop
’Developing User Interfaces with XML: Advances on User Interface Des-
cription Languages’, pages 55–62, Gallipoli, 2004. ACM.

[35] C. Martins and A. Silva. Modeling User Interfaces with the XIS UML Pro-
file. In Proc. Ninth Int. Conf. Enterprise Information Systems, number 9,
Funchal, Portugal, 2007. ICEIS, Springer.
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