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Abstract. Nowadays, saturation-based reasoners for the OWL EL profile are
able to handle large ontologies such as SNOMED very efficiently. However,
saturation-based reasoning procedures become incomplete if the ontology is ex-
tended with axioms that use features of more expressive Description Logics, e.g.,
disjunctions. Tableau-based procedures, on the other hand, are not limited to a
specific OWL profile, but even highly optimised reasoners might not be efficient
enough to handle large ontologies such as SNOMED. In this paper, we present
an approach for tightly coupling tableau- and saturation-based procedures that
we implement in the OWL DL reasoner Konclude. Our detailed evaluation shows
that this combination significantly improves the reasoning performance on a wide
range of ontologies.

1 Introduction

The current version of the Web Ontology Language (OWL 2) [33] is based on the very
expressive Description Logic (DL) SROIQ [9]. To handle (standard) reasoning tasks,
sound and complete tableau algorithms are typically used, which are easily extensible
and adaptable. Moreover, the use of a wide range of optimisation techniques allows for
handling many expressive, real-world ontologies. Since standard reasoning tasks for
SROIQ have N2EXPTIME-complete worst-case complexity [15], it is, however, not
surprising that larger ontologies easily become unpractical for existing systems.

In contrast, the OWL 2 profiles define language fragments of SROIQ for which
reasoning tasks can be realised efficiently, e.g., within polynomial worst-case complex-
ity. For many of these language fragments specialised reasoning procedures have been
developed, which are often based on a variant of saturation. For example, the OWL 2 EL
profile is based on the DL EL++ which can be very efficiently handled by completion-
based and consequence-based reasoning procedures [2,16]. These saturation algorithms
have been further pushed to more expressive Description Logics (e.g., Horn-SHIQ
[16]) for which they are often also able to outperform the more general tableau algo-
rithms. In particular, they often allow a one-pass handling of several reasoning tasks
such as classification (i.e., the task of arranging the classes of an ontology in a hier-
archy), which makes these saturation-based procedures very fast. However, saturation
algorithms have not yet been extended to very expressive DLs such as SROIQ, mainly
due to difficulties caused by the complete handling of cardinality restrictions.



Unfortunately, due to their different nature, it is not easily possible to combine tab-
leau algorithms and saturation procedures. Hence, ontology engineers have to decide
whether they only use the restricted features of certain language fragments such that
their ontologies can be handled by specialised reasoners or they have to face possible
performance losses by using more general reasoning systems. This is especially un-
favourable if such language features are only required for few axioms in the ontologies,
because then the completeness is not further ensured for the specialised procedures and
the fully-fledged reasoners, which are typically based on tableau algorithms, are possi-
bly not efficient enough to handle such ontologies in practice. Obviously, for such cases,
reasoning systems with better pay-as-you-go behaviours are required, where the part of
the ontology that is not affected by the axioms outside the traceable fragment can still
be handled efficiently.

Recently, new approaches have been proposed to improve the reasoning perfor-
mance for ontologies of more expressive Description Logics by combining saturation
procedures and fully-fledged reasoners in a black box manner [1,25]. These approaches
try to delegate as much work as possible to the specialised and more efficient reasoner,
which allows for reducing the workload of the fully-fledged tableau algorithm, and of-
ten results in a better pay-as-you-go behaviour than using a tableau reasoner alone.

In this paper, we present a much tighter coupling between saturation and tableau al-
gorithms, whereby further performance improvements are achieved. After introducing
some preliminaries (Section 2), we present a saturation procedure that is adapted to the
data structures of a tableau algorithm (Section 3). This allows for easily passing infor-
mation between the saturation and the tableau algorithm within the same reasoning sys-
tem. Moreover, the saturation partially handles features of more expressive Description
Logics in order to efficiently derive as many consequences as possible (Section 3.1).
We then show how parts of the ontology can be identified for which the saturation
procedure is possibly incomplete and where it is necessary to fall-back to the tableau
procedure (Section 3.2). Subsequently, we present several optimisations that are based
on passing information from the saturation to the tableau algorithm (Section 4) and
back (Section 5). Finally, we discuss related work (Section 6) and present the results of
a detailed evaluation including comparisons with other approaches and state-of-the-art
reasoners (Section 7) before we conclude (Section 8).

2 Preliminaries

Since our approach aims at assisting fully-fledged reasoners which are usually based on
tableau calculi for SROIQ, we first give a brief introduction into the DL SROIQ (see
[3] for a detailed introduction into DLs), and then we describe a tableau algorithm as it
is typically used by reasoning systems (see [9] for details).

2.1 The Description Logic SROIQ

We first define the syntax of roles, concepts, and individuals, and then we go on to
axioms and ontologies/knowledge bases. Additionally, we define typically used restric-
tions for the combination of the different axioms, which are necessary to ensure the
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decidability for many inference problems of SROIQ. Subsequently, we define the se-
mantics of these components.

Definition 1 (Syntax of SROIQ). Let NC, NR, and NI be countable, infinite, and pair-
wise disjoint sets of concept names, role names, and individual names, respectively. We
call Σ = (NC,NR,NI) a signature. The set Rols(Σ) of SROIQ-roles over Σ (or roles
for short) is NR ∪ {r− | r ∈ NR}, where a role of the form r− is called the inverse role of
r. Since the inverse relation on roles is symmetric, we can define a function inv, which
returns the inverse of a role and, therefore, we do not have to consider roles of the from
r−−. For r ∈ NR, let be inv(r) = r− and inv(r−) = r.

The set of SROIQ-concepts (or concepts for short) over Σ is the smallest set built
inductively over symbols from Σ using the following grammar, where a ∈ NI , n ∈
IN0, A ∈ NC, and r ∈ Rols(Σ):

C ::= > | ⊥ | A | {a} | ¬C | C1 uC2 | C1 tC2 | ∀r.C | ∃r.C | ∃r.Self | >n r.C | 6n r.C.

We use roles, concepts and individuals to build axioms of ontologies as follows:

Definition 2 (Syntax of Axioms and Ontologies). For C,D concepts, a general con-
cept inclusion (GCI) axiom is an expression C v D. A finite set of GCIs is called a
TBox. A general role inclusion (GRI) axiom is an expression of the form u v r, where r
is a role and u is a composition of roles, i.e., u = s1 ◦ . . . ◦ sn with the roles s1, . . . , sn

and n ≥ 1. For r, s roles, a general role assertion (GRA) axiom is of the form Disj(r, s) or
Refl(r). An RBox is a finite set of GRIs and GRAs. An (ABox) assertion is an expression
of the form C(a) or r(a, b), where C is a concept, r is a role, and a, b ∈ NI are individual
names. An ABox is a finite set of assertions. A knowledge base K is a tuple (T , R,A)
with T a TBox, R an RBox, andA an ABox.

Note, it is also possible to allow other kinds of GRAs in the RBox, e.g., axioms
that specify roles as transitive, symmetric, or irreflexive. However, such axioms can be
indirectly expressed in other ways and, therefore, we omit their presentation here. Anal-
ogously, we only allow the most frequently used ABox assertions since, in the presence
of nominals, all ABox assertion can also be expressed with GCIs, which we will also
utilise below to eliminate all ABox assertions. Furthermore, SROIQ usually allows the
usage of the universal role U, but U can also be simulated by a fresh transitive, reflexive,
and symmetric super role, i.e., this role is implied by all other roles. In the following,
we will use K also as an abbreviation for the collection of all axioms in the knowledge
base. For example, we write C v D ∈ K instead of C v D ∈ T and T ∈ K .

As mentioned, if we arbitrarily combine the axioms of Definition 2, then we easily
run into decidability issues. In order to ensure termination for standard reasoning tasks
such as satisfiability testing for concepts, we have to restrict the role inclusion axioms
to be regular and, in addition, we allow some concept expressions only in combination
with simple roles, which is described below in more detail.

Definition 3 (Regularity of Role Inclusion Axioms). A set of GRIs is regular if the
used role names can be sorted in a strict partial order and all GRIs are regular. Let ≺
be a strict partial order on role names, then for the role names r, s1, . . . , sn, the GRI
axiom u v r is regular if
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1. u = r ◦ r, or
2. u = r−, or
3. u = s1 ◦ . . . ◦ sn and si ≺ r for all 1 ≤ i ≤ n, or
4. u = r ◦ s1 ◦ . . . ◦ sn and si ≺ r for all 1 ≤ i ≤ n, or
5. u = s1 ◦ . . . ◦ sn ◦ r and si ≺ r for all 1 ≤ i ≤ n.

Now, we can define simple and complex roles and, in order to ensure decidability,
we only allow simple roles in concepts of the form > n r.C, 6 n r.C, and ∃r.Self. In
addition, we require that all Disj(r, s) axioms are only using simple roles.

Definition 4 (Simple and Complex Roles). For a set of GRI axioms, we call a role
simple if it is not complex. A role r is called complex w.r.t. a set of GRIs if

1. its inverse role is complex, or
2. it occurs on the right-hand side of a GRI axiom of the form s1 ◦ . . . ◦ sn v r and si

is complex for 1 ≤ i ≤ n or n > 1.

In the remainder of the paper, we assume that all knowledge bases comply the pre-
sented restrictions on regularity and simple roles.

Given a set of role inclusion axioms (e.g., in form of an RBox), we use v∗ as the
transitive-reflexive closure over all r v s and inv(r) v inv(s) axioms in the RBox. We
call a role r a sub-role of s and s a super-role of r if r v∗ s.

Next, we define the semantic of concepts and then we go on to the semantics of
axioms and ontologies/knowledge bases.

Definition 5 (Semantics of SROIQ-concepts). An interpretation I = (∆I, ·I) consists
of a non-empty set ∆I, the domain of I, and a function ·I, which maps every concept
name A ∈ NC to a subset AI ⊆ ∆I, every role name r ∈ NR to a binary relation rI ⊆
∆I × ∆I, and every individual name a ∈ NI to an element aI ∈ ∆I. For each role name
r ∈ NR, the interpretation of its inverse role (r−)I consists of all pairs 〈δ, δ′〉 ∈ ∆I × ∆I

for which 〈δ′, δ〉 ∈ rI.
For any interpretation I, the semantics of SROIQ-concepts over a signature Σ is

defined by the function ·I as follows:

>I = ∆I ⊥I = ∅ ({a})I = {aI}
(¬C)I = ∆I \CI (C u D)I = CI ∩ DI (C t D)I = CI ∪ DI

(∃r.Self)I = {δ ∈ ∆I | 〈δ, δ〉 ∈ rI}
(∀r.C)I = {δ ∈ ∆I | if 〈δ, δ′〉 ∈ rI, then δ′ ∈ CI}
(∃r.C)I = {δ ∈ ∆I | there is a 〈δ, δ′〉 ∈ rI with δ′ ∈ CI}

(6n r.C)I = {δ ∈ ∆I | ]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rIand δ′ ∈ CI} ≤ n}
(>n r.C)I = {δ ∈ ∆I | ]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rIand δ′ ∈ CI} ≥ n},

where ]M denotes the cardinality of the set M.

Finally, we can define the semantics of ontologies/knowledge bases.

Definition 6 (Semantics of Axioms and Ontologies). Let I = (∆I, ·I) be an interpre-
tation, then I satisfies a TBox/RBox axiom or ABox assertion α, written I |= α if
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1. α is a GCI C v D and CI ⊆ DI, or
2. α is a GRI s1 ◦ . . . ◦ sn v r and sI1 ◦ . . . ◦ sIn ⊆ rI, where ◦ denotes the composition

of binary relations for sI1 ◦ . . . ◦ sIn , or
3. α is a GRA of the form Disj(r, s) and all rI ∩ sI = ∅, or
4. α is an ABox assertion C(a) and aI ∈ CI, or
5. α is an ABox assertion r(a, b) and 〈aI, bI〉 ∈ rI.

I satisfies a TBox T (RBox R, ABox A) if it satisfies each GCI in T (each GRI/GRA
axiom in R, each assertion in A). We say that I satisfies K if I satisfies T , R, and A.
In this case, we say that I is a model of K and we write I |= K . We say that K is
consistent if K has a model.

2.2 Normalisation

For ease of presentation, we assume in the remainder of the paper that all concepts are in
negation normal form (NNF). Each concept can be transformed into an equivalent one in
NNF by pushing negation inwards, making use of de Morgan’s laws and the following
equivalences that exploit the duality between existential and universal restrictions, and
between at-most and at-least cardinality restrictions [12]:

¬(∀r.C) ≡ ∃r.¬C ¬(∃r.C) ≡ ∀r.¬C

¬(6n r.C) ≡> (n + 1) r.C ¬(>0 r.C) ≡ ⊥
¬(>k r.C) ≡6 (k − 1) r.C,

where k ∈ IN and n ∈ IN0. For C a concept possibly not in NNF, let nnf(C) be the
equivalent concept to C in NNF.

In the following, we also assume that all ABox axioms are “internalised” into the
TBox of a knowledge base, which can be easily realised in the presence of nominals,
e.g., by expressing a concept assertion C(a) (role assertion r(a, b)) as {a} v C ({a} v
∃r.{b}). Moreover, since the tableau algorithm only supports TBox axioms of the form
(A1 u A2) v C and H v C with H = A, H = {a}, or H = >, all GCIs that do not
match these forms have to be “internalised”. A not supported GCI C v D ∈ T can be
internalised by adding the axiom > v nnf(¬C t D) to T , which can then be handled
by the tableau algorithm. Obviously, such an internalisation creates (possibly many)
disjunctions of the form C tD, which causes non-determinism in the tableau algorithm
and easily decreases the reasoning performance. To counteract this, a preprocessing
step called absorption is often used (see Section 2.4), which significantly reduces the
number of concepts that has to be internalised.

Moreover, we assume that all universal restrictions that occur in a knowledge base
K are normalised such that complex role inclusion axiom of the form s1 ◦ . . . ◦ sn v r
with n > 1 are implicitly handled by additional axioms. Hence, we do not require further
adjustments in the tableau algorithm to handle propagations over complex roles.

Definition 7 (Normalisation of Universal Restrictions). Let K be a knowledge base
that contains the set of GRIs R. For A, B, F1, . . . , Fn, F′1, . . . , F

′
n atomic concepts, we say
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a knowledge baseK contains all propagation axioms for an axiom of the form A v ∀r.B
w.r.t. the role name r if for every GRI u v r ∈ R the following conditions holds:

1. if u = r ◦ r, then B v A ∈ K;
2. if u = r−, then K contains all propagation axioms for A v ∀r−.B;
3. if u = s1 ◦ . . .◦ sn, thenK contains axioms of the form A v F1, F′1 v F2, . . . , F′n−1 v

Fn, F′n v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for which also all
propagation axioms are contained by K;

4. if u = r ◦ s1 ◦ . . . ◦ sn, then K contains axioms of the form B v F1, F′1 v
F2, . . . , F′n−1 v Fn, F′n v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K;

5. if u = s1 ◦ . . . ◦ sn ◦ r, then K contains axioms of the form A v F1, F′1 v
F2, . . . , F′n−1 v Fn, F′n v A, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K .

Analogously for inverse roles, we say that K contains all propagation axioms for
an axiom of the form A v ∀r−.B w.r.t. the role name r if for every GRI u v r ∈ R the
following conditions holds:

1. if u = r ◦ r, then B v A ∈ K;
2. if u = r−, then K contains all propagation axioms for A v ∀r.B;
3. if u = s1 ◦ . . .◦ sn, thenK contains axioms of the form A v Fn, F′n v Fn−1, . . . , F′2 v

F1, F′1 v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for which also all
propagation axioms are contained by K;

4. if u = r ◦ s1 ◦ . . . ◦ sn, then K contains axioms of the form A v Fn, F′n v
Fn−1, . . . , F′2 v F1, F′1 v A, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K;

5. if u = s1 ◦ . . . ◦ sn ◦ r, then K contains axioms of the form B v Fn, F′n v
Fn−1, . . . , F′2 v F1, F′1 v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K .

For a possibly inverse role r and a concept C, let ∀r.C (∃r.¬C) be a universal
(existential) restriction that occurs in a knowledge baseK . We say that ∀r.C (∃r.¬C) is
normalised w.r.t. K if

• C is an atomic concept, ∀r.C (∃r.¬C) occurs only in axioms of the form A v ∀r.C,
and K contains all propagation axioms for A v ∀r.C, or

• K contains axioms of the form ∀r.C v A, A v ∀r.B, B v C, where A, B are atomic
concepts, and K contains all propagation axioms for A v ∀r.B.

Obviously, the normalisation of a knowledge base K with respect to the universal
restrictions that occur inK (possibly in negated form) can be generated with a recursive
function that introduces the propagation axioms with fresh atomic concepts over com-
plex roles as defined above (under the assumption that the role inclusion axioms of K
are regular). Note, the normalisation of universal restrictions might exponentially blow
up the knowledge base. Although such a blow up cannot be avoided in the worst-case
[15], it is usually not a problem for real-world ontologies. Nevertheless, many reason-
ing systems create the required concepts and axioms only on demand, i.e., only if these
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concepts are used by the tableau algorithm, which is for example possible by using an
automata approach [9]. In practice, the normalisation of universal restrictions is often
further optimised. For example, it is obviously not necessary to normalise universal
restrictions for simple roles.

In the remainder of the paper, we assume that all knowledge bases are normalised,
i.e., all concepts occurring in the knowledge base are in NNF, all universal restrictions in
these concepts are normalised and not supported axioms are internalised. For a concept
C, which is possibly not normalised, we use norm(C) to get the normalised concept
of C. Note, the normalisation of universal restrictions possibly introduces new axioms,
but the knowledge base can be easily fixed by creating this normalisation for all concept
that possibly occur in the tableau algorithm in a preprocessing step.

2.3 Tableau Algorithm for SROIQ

Model construction calculi, such as tableau, decide the consistency of a knowledge
base K by trying to construct an abstraction of a model for K , a so-called “completion
graph”.

Definition 8 (Completion Graph). For a concept C, we use sub(C) to denote the set
of all sub-concepts of C (including C). LetK be a normalised SROIQ knowledge base
and let consK be the set of concepts occurring in the TBoxT ofK , i.e., consK = {C,D |
C v D ∈ T }. We define the closure clos(K) of K as:

clos(K) = {sub(C) | C ∈ consK } ∪ {norm(¬C) | C ∈ sub(D),D ∈ consK }.

A completion graph for K is a directed graph G = (V, E,L, ,̇). Each node v ∈ V is
labelled with a set L(v) ⊆ fclos(K), where

fclos(K) = clos(K) ∪ {6m r.C |6n r.C ∈ clos(K) and m ≤ n}.

Each edge 〈v, v′〉 ∈ E is labelled with the set L(〈v, v′〉) ⊆ Rols(K), where Rols(K)
are the roles occurring in K . The symmetric binary relation ,̇ is used to keep track of
inequalities between nodes in V.

In the following, we often use r ∈ L(〈v1, v2〉) as an abbreviation for 〈v1, v2〉 ∈ E and
r ∈ L(〈v1, v2〉).

Definition 9 (Successor, Predecessor, Neighbour). If 〈v1, v2〉 ∈ E, then v2 is called a
successor of v1 and v1 is called a predecessor of v2. Ancestor is the transitive closure of
predecessor, and descendant is the transitive closure of successor. A node v2 is called
an s-successor of a node v1 if r ∈ L(〈v1, v2〉) and r is a sub-role of s; v2 is called an
s-predecessor of v1 if v1 is an s-successor of v2. A node v2 is called a neighbour (s-
neighbour) of a node v1 if v2 is a successor (s-successor) of v1 or if v1 is a successor
(inv(s)- successor) of v2.

For a role r and a node v ∈ V, we define the set of v’s r-neighbours with the concept
C in their label, mneighbs(v, r,C) as {v′ ∈ V | v′ is an r-neighbour of v and C ∈ L(v′)}.
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To test the consistency of a knowledge base, the completion graph is initialised for
the tableau algorithm by creating one node for each individual/nominal in the input
knowledge base. If v1, . . . , v` are the nodes for the individuals a1, . . . , a` of K , then we
create an initial completion graph G = ({v1, . . . , v`}, E,L, ∅) and add for each individual
ai the nominal {ai} and the concept > to the label of vi, i.e., L(vi) = {{ai},>} for all
1 ≤ i ≤ `.

Note, many inference problems for the DL SROIQ can be easily reduced to con-
sistency checking. For example, in order to test the satisfiability of a concept C, we
introduce a fresh individual a for which we assert the concept C by an axiom of the
form {a} v C.

The tableau algorithm works by decomposing concepts in the completion graph
with a set of expansion rules (see Table 1). Each rule application can add new concepts
to node labels and/or new nodes and edges to the completion graph, thereby explicating
the structure of a model for the input knowledge base. The rules are repeatedly applied
until either the graph is fully expanded (no more rules are applicable), in which case
the graph can be used to construct a model that is a witness to the consistency of K , or
an obvious contradiction (called a clash) is discovered (e.g., both C and ¬C in a node
label), proving that the completion graph does not correspond to a model. The input
knowledge base K is consistent if the rules (some of which are non-deterministic) can
be applied such that they build a fully expanded and clash-free completion graph.

Definition 10 (Clash). A completion graph G = (V, E,L, ,̇) for a knowledge base K
contains a clash if there are the nodes v and w such that

1. ⊥ ∈ L(v), or
2. {C, norm(¬C)} ⊆ L(v) for some concept C, or
3. v is an r-neighbour of v and ¬∃r.Self ∈ L(v), or
4. Disj(r, s) ∈ K and w is an r- and an s-neighbour of v, or
5. there is some concept 6 n r.C ∈ L(v) and {w1, . . . ,wn+1} ⊆ mneighbs(v, r,C) with

wi,̇w j for all 1 ≤ i < j ≤ n + 1, or
6. there is some {a} ∈ L(v) ∩ L(w) and v,̇w.

Unrestricted application of the ∃-rule and >-rule can lead to the introduction of
infinitely many new tableau nodes and, thus, prevent the calculus from terminating.
To counteract that, a cycle detection technique called (pairwise) blocking [10] is used
that restricts the application of these rules. To apply blocking, we distinguish blockable
nodes from nominal nodes, which have either an original nominal from the knowledge
base or a new nominal introduced by the calculus in their label.

Definition 11 (Pairwise Blocking). A node is blocked if either it is directly or indi-
rectly blocked. A node v is indirectly blocked if an ancestor of v is blocked; and v with
predecessor v′ is directly blocked if there exists an ancestor node w of v with predeces-
sor w′ such that

1. v, v′,w,w′ are all blockable,
2. w,w′ are not blocked,
3. L(v) = L(w) and L(v′) = L(w′),
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Table 1. Tableau expansion rules for normalised SROIQ knowledge bases

v1-rule if H ∈ L(v), H v C ∈ K with H = A, or H = {a}, or H = >, C < L(v), and
v is not indirectly blocked

then L(v) = L(v) ∪ {C}
v2-rule if {A1, A2} ⊆ L(v), (A1 u A2) v C ∈ K , C < L(v), and v is not indirectly blocked

then L(v) = L(v) ∪ {C}
u-rule if C1 uC2 ∈ L(v), v is not indirectly blocked, and {C1,C2} * L(v)

then L(v) = L(v) ∪ {C1,C2}

t-rule if C1 tC2 ∈ L(v), v is not indirectly blocked, and {C1,C2} ∩ L(v) = ∅

then L(v′) = L(v′) ∪ {H} for some H ∈ {C1,C2}

∃-rule if ∃r.C ∈ L(v), v is not blocked, and v has no r-neighbour v′ with C ∈ L(v′)
then create a new node v′ and an edge 〈v, v′〉 with L(v′) = {>,C} and L(〈v, v′〉) = {r}

Self-rule if ∃r.Self ∈ L(v) or Refl(r) ∈ K , v is not blocked, and v is no r-neighbour of v
then create a new edge 〈v, v〉 with L(〈v, v〉) = {r}

∀-rule if ∀r.C ∈ L(v), v is not indirectly blocked, and
there is an r-neighbour v′ of v with C < L(v′)

then L(v′) = L(v′) ∪ {C}
ch-rule if 6n r.C ∈ L(v), v is not indirectly blocked, and

there is an r-neighbour v′ of v with {C, norm(¬C)} ∩ L(v′) = ∅

then L(v′) = L(v′) ∪ {H} for some H ∈ {C, norm(¬C)}
>-rule if 1. >n r.C ∈ L(v), v is not blocked, and

2. there are not n r-neighbours v1, . . . , vn of v with C ∈ L(vi) and vi,̇v j

for 1 ≤ i < j ≤ n
then create n new nodes v1, . . . , vn with L(〈v, vi)〉 = {r}, L(vi) = {>,C} and vi,̇v j

for 1 ≤ i < j ≤ n.
6-rule if 1. 6n r.C ∈ L(v), v is not indirectly blocked,

2. ]mneighbs(v, r,C) > n and there are two r-neighbours v1, v2 of v with
C ∈ (L(v1) ∩ L(v2)) and not v1,̇v2

then a. if v1 is a nominal node, then merge(v2, v1)
b. else if v2 is a nominal node or an ancestor of v1, then merge(v1, v2)
c. else merge(v2, v1)

o-rule if there are two nodes v, v′ with {a} ∈ (L(v) ∩ L(v′)) and not v,̇v′

then merge(v, v′)
NN-rule if 1. 6n r.C ∈ L(v), v is a nominal node, and there is a blockable

r-neighbour v′ of v such that C ∈ L(v′) and v is a successor of v′,
2. there is no m such that 1 ≤ m ≤ n, (6m r.C) ∈ L(v),

and there exist m nominal r-neighbours v1, . . . , vm of v
with C ∈ L(vi) and vi,̇v j for all 1 ≤ i < j ≤ m

then 1. guess m with 1 ≤ m ≤ n and L(v) = L(v) ∪ {6m r.C}
2. create m new nodes v′1, . . . , v

′
m with L(〈v, v′i〉) = {r},

L(v′i ) = {>,C, {ai}} with each ai ∈ NI new in G and K , and
v′i ,̇v′j for 1 ≤ i < j ≤ m.
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4. L(〈v′, v〉) = L(〈w′,w〉).

In this case, we say that w directly blocks v and w is the blocker of v.

During the expansion it is sometimes necessary to merge two nodes or to delete
(prune) a part of the completion graph. When a node w is merged into a node v (e.g.,
by an application of the 6-rule), we “prune” the completion graph by removing w and,
recursively, all blockable successors of w to prevent a further rule application on these
nodes.

Intuitively, when we merge a node w into a node v, we add L(w) to L(v), “move”
all the edges leading to w so that they lead to v and “move” all the edges leading from w
to nominal nodes so that they lead from v to the same nominal nodes; we then remove
w (and blockable sub-trees below w) from the completion graph.

Definition 12 (Pruning, Merging). Pruning a node w in the completion graph G =

(V, E,L, ,̇), written prune(w), yields a graph that is obtained from G as follows:

1. for all successors v′ of w, remove 〈w, v′〉 from E and, if v′ is blockable, prune(v′);
2. remove w from V.

Merging a node w into a node v in G = (V, E,L, ,̇), written merge(w, v), yields a graph
that is obtained from G as follows:

1. for all nodes v′ such that 〈v′,w〉 ∈ E
(a) if {〈v, v′〉, 〈v′, v〉} ∩ E = ∅, then add 〈v′, v〉 to E and set L(〈v′, v〉) = L(〈v′,w〉),
(b) if 〈v′, v〉 ∈ E, then set L(〈v′, v〉) = L(〈v′, v〉) ∪ L(〈v′,w〉),
(c) if 〈v, v′〉 ∈ E, then set L(〈v, v′〉) = L(〈v, v′〉) ∪ {inv(r) | r ∈ L(〈v′,w〉)}, and
(d) remove 〈v′,w〉 from E;

2. for all nominal nodes v′ such that 〈w, v′〉 ∈ E
(a) if {〈v, v′〉, 〈v′, v〉} ∩ E = ∅, then add 〈v, v′〉 to E and set L(〈v, v′〉) = L(〈w, v′〉),
(b) if 〈v, v′〉 ∈ E, then set L(〈v, v′〉) = L(〈v, v′〉) ∪ L(〈w, v′〉),
(c) if 〈v′, v〉 ∈ E, then set L(〈v′, v〉) = L(〈v′, v〉) ∪ {inv(r) | r ∈ L(〈w, v′〉)}, and
(d) remove 〈w, v′〉 from E;

3. L(v) = L(v) ∪ L(w);
4. add v,̇v′ for all v′ such that w,̇v′; and
5. prune(w).

Note, in order to ensure termination of the tableau algorithm, it is in principle nec-
essary to apply certain “crucial” rules with a higher priority. For example, the o-rule is
applied with the highest priority and the NN-rule has to be applied before the 6-rule.
The priority of other rules is not relevant as long as they are applied with a lower prior-
ity than for these crucial rules. In addition, it is necessary to associate a level with those
nominal nodes that are newly created by the NN-rule and to apply the crucial rules
first to nominal nodes with lower levels. Basically, we define the level of a nominal
node as the length of the shortest path to a node that contains a nominal for an original
individual in its label.

Definition 13 (Level of Nominal Nodes). Let a1, . . . , an be all individuals of a knowl-
edge base K . The level of a nominal node v in a completion graph G for K is defined
as
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• 0 if {ai} ∈ L(v) with 1 ≤ i ≤ n, or
• i + 1 if v has a neighbour node v′ that has the level i and there is no neighbour node

with a level below i.

2.4 (Binary) Absorption

Absorption is used as a preprocessing step in order to reduce the non-determinism in the
tableau algorithm. Basically, axioms are rewritten in possibly several simpler concept
inclusion axioms for which the lazy unfolding rules v1 and v2 can be used in the tableau
algorithm and, therefore, internalisation is not required. Algorithms based on binary ab-
sorption [14] allow and create axioms of the form (A1 u A2) v C, whereby also more
complex axioms can be absorbed. A binary absorption axiom (A1uA2) v C can be effi-
ciently handled by adding C only to node labels if A1 and A2 are already present, which
is realised by the v2-rule of our tableau algorithm. More sophisticated absorption algo-
rithms, such as partial absorption [26,27], are further improving the handling of knowl-
edge bases for more expressive Description Logics since the non-determinism that is
caused by disjunctions on the right-hand side of axioms is further reduced. Roughly
speaking, the non-absorbable disjuncts are partially used as conditions on the left-hand
side of additional inclusion axioms such that the processing of the disjunctions can
further be delayed.

Many state-of-the-art reasoning systems are at least using some kind of binary ab-
sorption, which makes the processing of simple ontologies (e.g., EL ontologies) also
with the tableau algorithm deterministic. In the following, we assume that knowledge
bases are, at least, preprocessed with a variant of binary absorption and we also use the
syntax of binary absorption axioms to illustrate the algorithms and examples. However,
for our optimisations, a detailed understanding of a (binary) absorption algorithm is not
necessary and, therefore, we only present its principle in the following example.

Example 1. For the TBox T1 = {A1 v A2 u ∃r.A3, A3 v A1, A2 u ∃r.A1 v B}, all of
the axioms except the GCI A2 u ∃r.A1 v B are of the form A v C and, therefore, they
can be efficiently handled in the tableau algorithm by the v1-rule. In contrast, the GCI
A2 u ∃r.A1 v B would, without absorption, be handled as > v ¬A2 t ∀r.¬A1 t B and,
as a consequence, the tableau algorithm would have to process the obtained disjunction
for every node in the completion graph. The absorption rewrites A2 u ∃r.A1 v B into
the axioms A1 v ∀r−.F1 and (A2 u F1) v B, where F1 is a fresh atomic concept that is
used to preserve the semantics of the original axiom. In principle, the absorption recur-
sively generates simple concept inclusion axioms that imply a fresh atomic concept if a
(sub-)concept of the left-hand side of an axiom is satisfied. For example, F1 is implied
if ∃r.A1 is satisfied. This is continued until the complete left-hand side is absorbed and
the right-hand side of the axiom can be implied by the last axiom generated with the
absorption algorithm. Hence, from the absorption of T1, we obtain a new TBox T ′1 con-
sisting of the axioms A1 v A2 u∃r.A3, A3 v A1, A1 v ∀r−.F1 and (A2 u F1) v B, which
can now be deterministically handled in the tableau algorithm by lazy unfolding rules.
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3 Saturation Compatible with Tableau Algorithms

In this section, we describe a saturation method that is an adaptation of the completion-
based procedure [2] such that it generates data structures that are compatible for further
usage within a fully-fledged tableau algorithm for more expressive Description Log-
ics. Roughly speaking, the saturation approximates completion graphs in a compressed
form and, therefore, it directly allows the extraction and transfer of results from the
saturation to the tableau algorithm. To be more precise, we ensure that the saturation
generates nodes that are, similarly to the nodes in the completion graph, labelled with
sets of concepts. The saturated labels can then be used to initialise the labels of new
nodes in the completion graph or to block the processing of successors. Moreover, in
some cases, it is directly possible to extract completion graphs from the data structures
of the saturation, which makes the model construction with the tableau algorithm un-
necessary.

Note, the adapted saturation method is not designed to cover a certain OWL 2 profile
or a specific Description Logic language. In contrast, we saturate those parts of knowl-
edge bases that are easily supportable with an efficient algorithm (see Section 3.1), i.e.,
we simply ignore unsupported concept constructors, and afterwards (see Section 3.2)
we dynamically detect which parts have not been completely handled by the saturation.
Hence, the results of the saturation are possibly incomplete, but since we know how and
where they are incomplete, we can use the results from the saturation appropriately.

As mentioned, the saturation is intended to generate compatible node labels to avoid
conversions and, therefore, it has to operate on the same representation of the knowl-
edge base, i.e., the saturation as well as the tableau algorithm have to apply rules on
concepts and axioms that are obtained with the same normalisation and preprocessing
approach. In principle, the saturation as well as the tableau algorithm can be adapted to
the commonly used representation of the other approach. However, since tableau algo-
rithms are usually equipped with a wide range of optimisations, we prefer a saturation
method that is compatible to the commonly used knowledge base representation for
tableau calculi. This allows for integrating the saturation optimisations into the often
more complex reasoning systems for expressive Description Logics based on tableau
algorithms with only minor modifications.

As hitherto, we assume for the presentation of the saturation procedure that the
knowledge bases are preprocessed as shown in Section 2 for the introduced tableau al-
gorithm. In particular, this means that all concepts are in NNF and all universal restric-
tions are normalised such that complex roles are considered without the introduction of
adjusted rules in the reasoning procedures. Although absorption is not a prerequisite for
the saturation procedure (and in principle also not for the tableau algorithm), we assume
that all GCIs are absorbed as good as possible. Since the absorption rewrites axioms
such that the non-determinism is reduced and the saturation only handles deterministic
parts of the knowledge base, a good absorption algorithm significantly improves the
presented approach. To be more precise, in the following, we assume that the knowl-
edge bases are at least absorbed with binary absorption (see Section 2.4), which allows
for a deterministic handling of EL ontologies.

12



Table 2. Basic saturation rules

v1-rule: if H ∈ L(v), H v C ∈ K with H = A, or H = {a}, or H = >, and C < L(v),
then L(v) −→ L(v) ∪ {C}

v2-rule: if {A1, A2} ⊆ L(v), (A1 u A2) v C ∈ K , and C < L(v),
then L(v) −→ L(v) ∪ {C}

u-rule: if C1 uC2 ∈ L(v) and {C1,C2} * L(v),
then L(v) −→ L(v) ∪ {C1,C2}

∃-rule: if ∃r.C ∈ L(v) and r < L(〈v, vC〉),
then L(〈v, vC〉) −→ L(〈v, vC〉) ∪ {r}

∀-rule: if ∀r.C ∈ L(v), there is an inv(r)-predecessor v′ of v , and C < L(v′),
then L(v′) −→ L(v′) ∪ {C}

3.1 Saturation based on Tableau Rules

The adapted saturation method generates so-called saturation graphs, which approxi-
mate completion graphs in a compressed form (e.g., it allows for “reusing” nodes).

Definition 14 (Saturation Graph). A saturation graph for K is a directed graph S =

(V, E,L) with the nodes V ⊆ {vC | C ∈ fclos(K)}. Each node vC ∈ V is labelled with
a set L(v) ⊆ fclos(K) such that L(vC) ⊇ {>,C}. We call vC the representative node for
the concept C. Each edge 〈v, v′〉 ∈ E is labelled with a set L(〈v, v′〉) ⊆ Rols(K).

Obviously, a saturation graph is a data structure that is very similar to a completion
graph. A major difference is, however, the missing ,̇ relation, which can be omitted
since the saturation is not designed to completely handle cardinality restrictions and,
therefore, we also do not need to keep track of inequalities between nodes in the satu-
ration graph. Furthermore, each node in the saturation graph is the representative node
for a specific concept, which allows for “reusing” nodes as successors. For example, in-
stead of creating new successors for existential restrictions, we reuse the representative
node for the existentially restricted concept as a successor.

In principle, the nodes, edges and labels are identically used as in completion graphs
and, therefore, we also use the (r-)neighbour, (r-)successor, (r-)predecessor, ancestor
and descendant relations analogously. However, please note that a node in the saturation
graph can have several predecessors due to the reuse of nodes.

We initialise the saturation graph with the representative nodes for all concepts that
have to be saturated. For example, if the satisfiability of the concept C has to be tested,
then we are also interested in the saturation of the concept C and, therefore, we add
the node vC with the label L(vC) = {>,C} to the saturation graph. Note that we only
build one saturation graph, i.e., if we are later also interested in the saturation of a
concept D that is not already saturated, then we simply extend the existing saturation
graph by vD. For knowledge bases that contain nominals, we also add a node v{a} with
L(v{a}) = {>, {a}} for each nominal {a} occurring in the knowledge base.

For the initialised saturation graph, we apply the saturation rules depicted in Ta-
ble 2. Note that if a saturation rule refers to the representative node for a concept C
and the node vC does not yet exist, then we assume that the saturation graph is auto-
matically extended by this node. Although the saturation rules are very similar to the
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Table 3. Extended saturation rules

t-rule: if C1 tC2 ∈ L(v), there is some D ∈ L(vC1 ) ∩ L(vC2 ), and D < L(v),
then L(v) −→ L(v) ∪ {D}

>-rule: if >n r.C ∈ L(v) with n ≥ 1 and r < L(〈v, vC〉),
then L(〈v, vC〉) −→ L(〈v, vC〉) ∪ {r}

Self-rule: if ∃r.Self ∈ L(v) or Refl(r) ∈ K and v is not an r-successor of v,
then L(v) −→ L(〈v, v〉) ∪ {r}

o-rule: if {a} ∈ L(v), there is some D < L(v), and
D ∈ L(v{a}) or there is a descendant v′ of v with {{a},D} ⊆ L(v′),

then L(v) −→ L(v) ∪ {D}
⊥-rule: if ⊥ < L(v), and

1. {C,¬C} ⊆ L(v), or
2. v is an r-successor of v and ¬∃r.Self ∈ L(v), or
3. v′ is an r-successor of v with {a} ∈ L(v) ∩ L(v′) and
¬∃r.Self ∈ L(v) or ¬∃r−.Self ∈ L(v), or

4. {>nr.C,6m s.D} ⊆ L(v) with n > m, r v∗ s and D ∈ L(vC), or
5. >nr.C ∈ L(v) with n > 1, and {a} ∈ L(vC), or
6. v′ is an r-successor of v and r v∗ s and Disj(r, s) ∈ K , or
7. v′ is an r-successor of v and v′′ is an s-successor of v and
{a} ∈ L(v′) ∩ L(v′′) and Disj(r, s) ∈ K , or

8. there exist a successor node v′ of v with ⊥ ∈ L(v′), or
9. there exist a node v{a} with ⊥ ∈ L(v{a}),

then L(v) −→ L(v) ∪ {⊥}

corresponding expansion rules in the tableau algorithm, there are some differences. For
example, the number of nodes is limited by the number of (sub-)concepts occurring
in the knowledge base due to the reuse of nodes for satisfying existentially restricted
concepts. Consequently, the saturation is terminating since the rules are only applied
when they can add new concepts or roles to node or edge labels. Moreover, a cycle
detection such as blocking is not required, which makes the rule application very fast.
Note also that the ∀-rule propagates concepts only to the predecessors of a node, which
is necessary in order to allow the reuse of nodes for existentially restricted concepts. If
the concepts were also propagated into the successor direction, then we would have to
create and saturate new nodes that differ by the propagated concepts. Furthermore, in
the presence of cyclic concepts, it would be necessary to use an appropriate blocking
condition such that the creation of new nodes can be stopped. Hence, due to the omitted
propagation to successors, we obtain a faster saturation procedure, but the supported
expressiveness slips to a subset of the DL Horn-ALCHI. To be more precise, if exis-
tential restrictions with inverse roles or universal restrictions are used in the knowledge
base such that they can propagate concepts to successors for any node in the saturation
graph, then our procedure is possibly incomplete. However, this is still sufficient for the
DL EL and several of its extensions. In principle, the reuse of nodes is also possible in
algorithms for more expressive Description Logics, but then only in a non-deterministic
way [20].

To improve the saturation support for more expressive Description Logics, e.g,. the
DL SROIQ, the saturation rules can be extended by the rules of Table 3. Again, the
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primary objective of our saturation is to efficiently derive as many sound inferences as
possible and afterwards we check where the saturation graph is possibly incomplete.
Although there are often several ways to integrate the support of more expressive con-
cept constructors, we chose a simple one that only allows a partial saturation, but still
can be implemented very efficiently. For instance, the t-rule adds only those concepts
that are implied by both disjuncts. Obviously, the addition of concepts by this rule is
sound, but the handling of disjunctions of the form C1tC2 is often incomplete, since the
t-rule application does usually not directly add a disjunct and the disjuncts are possibly
also not added in other ways. Similarly to the ∃-rule, we build the edges to (possibly
reused) successor nodes for at-least cardinality restrictions. Thereby, the cardinality is
ignored by the >-rule, which possibly causes incompleteness if also at-most cardinality
restrictions for related super-roles are in the same label.

In order to (partially) handle a nominal {a} in the label of a node v, we use an o-
rule that adds those concepts that are derived for v{a} or for descendant nodes that also
have {a} in their label (instead of merging such nodes as in tableau procedures). As a
consequence, the unsatisfiability of concepts of the form ∃r.(A u {a}) u ∃r.(¬A u {a})
cannot be discovered with the saturation. However, the implementation is very simple
and does not require the repeated saturation of the same concepts extended by small
influences from the nominals. Of course, there are extensions possible that still enable
a polynomial saturation algorithm with nominals, e.g., reasoning procedures for the DL
EL++ [17], but, as of now, many less expressive ontologies are using the nominals in
such a simple way that this o-rule is already sufficient (e.g., by using nominals only in
concepts of the form ∃r.{a}), and for many more expressive ontologies, the saturation is
also in other ways incomplete. The support for ∃r.Self concepts is straightforward by
simply adding a Self-rule that makes the corresponding node to an r-successor of itself.

In contrast to tableau algorithms, we also need a⊥-rule. This is typical for saturation
procedures since we are interested in associating clashes with specific nodes instead of
entire completion graphs. As a consequence, the saturation allows for handling several
independent concepts in a one-pass manner within the same saturation graph and to,
nevertheless, distinguish unsatisfiable nodes from nodes that are (possibly) still satisfi-
able. The ⊥-rule adds the concept ⊥ to the label of those nodes for which a clash can
be discovered. Furthermore, it propagates ⊥ to the ancestor nodes and, in case ⊥ is in
its label of a node that represents an nominal, then the knowledge base is inconsistent
and ⊥ is also propagated to every other node label in the saturation graph.

The rules also include a⊥-rule, which adds the concept⊥ to the label of those nodes
for which a clash can be discovered. Furthermore, it propagates⊥ to the ancestor nodes.
In case ⊥ occurs in the label of a representative node for a nominal, the knowledge base
is inconsistent and⊥ is propagated to every node label in the saturation graph; otherwise
⊥ in the label of a node vC indicates the unsatisfiability of C. The conditions that trigger
the ⊥-rule application are very similar to the clash conditions for completion graphs
for the DL SROIQ (cf. Definition 10). However, since the saturation graph does not
contain an ,̇ relation, we do not have conditions for clashes related to differently stated
individuals by the ,̇ relation (e.g., for combinations with nominals). In addition, the
detection of clashes for combinations with Disj(r, s) axioms is more difficult due to the
reuse of nodes. For example, a node vC can be an r- and an s-successor if the concepts
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∃r.C and ∃s.C are in the label of the same node. Therefore, we have some modified
clash conditions for combinations with Disj(r, s) axioms. Note, the saturation does not
merge nodes with the same nominals in their label. However, since the merging of
such nodes is in principle required, we are, at least, interested in the detection of some
obvious clashes that would be discovered for the merging of these nodes. In particular,
the merging of nominal nodes also merges the labels of the edges from and to these
nodes and, for the DL SROIQ, this can cause clashes due to concepts of the form
¬∃r.Self and Disj(r, s) axioms. Basically, if a node v has an r-successor v′ and both
nodes have the same nominal in their label, then the merging of these nodes would
replace the r-edge between the nodes with an r-loop, i.e., v would be an r-successor
of itself. If concepts of the form ¬∃r.Self or ¬∃r−.Self are in the label of v, then the
merging of v and v′ would cause a clash, which is considered with Condition 3 in
the ⊥-rule. In addition, clashes caused by the merging of an r-successor node v with
an s-successor node v′, where {a} ∈ L(v) ∩ L(v′), are considered by Condition 7 of
the ⊥-rule. Although it is in principle possible to detect also several other kinds of
clashes for the incompletely handled parts in the saturation (e.g., for a concept C that
has to propagated to a successor node v, where v has already the negation of C in its
the label), but the presented conditions of the ⊥-rule are already sufficient to show the
completeness. Hence, we omitted further clash conditions for ease of presentation.

Example 2. Let us assume that the TBox T2 contains the following axioms:

A1 v ∃s−.A2 A1 v A2 t {a} A2 v B A2 v ∃s.{a}

A2 v61 s.B {a} v B {a} v>2 r.A2

For a saturation graph that is initialised with the representative node for the concept A1,
the application of the rules of Table 2 and 3 generates a saturation graph as depicted
in Figure 1. Note, the saturation procedure starts the rule application on node vA1 and
creates other nodes on demand, e.g., for the processing of nominals, disjunctions, exis-
tential restrictions, and at-least cardinality restrictions. Although the concept B is added
to node labels, a node for B is not created since B is not used in a way that requires this..
Also note that the t-rule application adds the concept B to the label of vA1 , because B
is in the label of the representative nodes for both disjuncts of the disjunction A2 t {a}
(i.e., B ∈ L(vA2 ) ∩ L(v{a})).

With a suitable absorption technique, the saturation is usually able to derive and
add the majority of those concepts that would also be added by the tableau algorithm
for an equivalent node. This is especially the case for ontologies that primarily use fea-
tures of the DL EL++. Since EL++ covers many important and often used constructors
(e.g., u,∃), the saturation does already the majority of the work for many ontologies (as
confirmed by our evaluation in Section 7).

In the remainder of the paper, we simply use the saturate function to denote the sat-
uration of an initial saturation graph S , i.e., we assume that saturate creates and returns
a new saturation graph S ′ from S , where the rules of Table 2 and 3 are exhaustively
applied. We call a saturation graph S fully saturated if all the rules of Table 2 and 3 are
not further applicable.
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Fig. 1. Generated saturation graph for testing the satisfiability of A1 for Example 2

3.2 Saturation Status Detection

Similarly to other saturation procedures, the presented method in Section 3.1 easily
becomes incomplete for more expressive Description Logics. In order to nevertheless
gain as much information as possible from the saturation, we would like to detect more
precisely which nodes are critical, i.e., for which nodes the saturation was possibly in-
complete. In principle, this can be easily approximated by testing for which nodes the
actual tableau expansion rules are still applicable. However, since we also saturate some
more expressive concept constructors partially, this approach is often too conservative.
For example, for at-least cardinality restrictions of the form >n r.C with n ≥ 1, the sat-
uration already creates or reuses a successor node with the concept C and, therefore, all
consequences that are propagated back from this successor node are also considered.
Nevertheless, the tableau expansion rule for this at-least cardinality restriction is still
applicable, since we have not created n successors that are stated as pairwise differ-
ent. This is, however, only relevant if there are some restrictions that limit the number
of allowed r-successors with the concept C in their label. For the DL SROIQ, such
limitations are only possible with nominals and at-most cardinality restrictions. There-
fore, it is sufficient to check for such limitations instead of testing whether the tableau
expansion rules are applicable. Similar relaxations are also possible for other concept
constructors.

In the following, we use the rules of Table 4 and 5 to detect a saturation status, where
incompletely handled nodes are identified and other relevant information is extracted for
the assistance of the tableau algorithm. To be more precise, the rules are applied to a
saturation graph and collect the nodes in the sets So, S! and S?, where So identifies
nodes that depend on nominals, S! identifies nodes with tight at-most restrictions, and
S? identifies critical nodes that are potentially not completely handled by the saturation.
In order to facilitate the handling of at-most cardinality restrictions that are possibly not
completely handled, we define the number of merging candidates as follows:

Definition 15 (Merging Candidates). Let S = (V, E,L) be a saturation graph and
v ∈ V a node. For a role s and a concept D, the number of merging candidates for v
w.r.t. s and D, written as the function ]mcands(v, s,D), is defined as

∑
>n r.C∈L n with

L ={>n r.C ∈ L(v) | r v∗ s and D ∈ L(vC)}∪
{>1 r.C | ∃r.C ∈ L(v), r v∗ s and D ∈ L(vC)}.

For an at-most cardinality restriction 6m s.D in the label of a node v, the merging
candidates are those s-successors that have the concept D in their label. This is used

17



Table 4. Rules for detecting relevant information in the saturation graph

Ro-rule: if v < So, and {a} ∈ L(v) or v has a successor node v′ with v′ ∈ So

then So −→ So ∪ {v}
R!-rule: if v < S!, 6m s.D ∈ L(v), and ]mcands(v, s,D) = m

then S! −→ S! ∪ {v}

by the R!-rule (see Table 4) to identify nodes with tight at-most restrictions, which is
the case for a node v with an at-most cardinality restriction 6 m s.D in its label if the
number of merging candidates for v w.r.t. s and D is m, i.e., m = ]mcands(v, s,D). For
such nodes, it is still not necessary to merge some of the merging candidates, but every
additional candidate might require merging and, therefore, these nodes cannot be used
arbitrarily. The Ro-rule adds all nodes that directly or indirectly depend on nominals to
the set So, i.e., it identifies all nodes that directly have a nominal in their label or have
a descendant node with a nominal in its label.

Now, the rules of Table 5 are used to identify critical nodes for which the saturation
procedure might be incomplete, i.e., these nodes are added to the set S? as follows:

• The R∀- and Rt-rule identify nodes as critical for which the ∀- or the t-rule of
the tableau algorithm is applicable. Note, for the R∀-rule it is only necessary to
check whether the concepts can be propagated to the successor nodes since the
propagation to predecessors is ensured by the saturation procedure.

• The R6-rule checks for every node v whether there is a not satisfied at-most cardi-
nality restriction of the form 6m s.D in the label of v, i.e., ]mcands(v, s,D) > m.
Analogously to the ch-rule in the tableau algorithm, we use the Rch-rule to identify
nodes as incompletely handled if they have s-successor nodes, where neither D nor
norm(¬D) is in their label. In addition, we have to consider that the successors may
have to be merged into a predecessor. Of course, this has to be checked from the per-
spective of the predecessors due to the reuse of nodes. Therefore, we check with the
R↓6- and R↓ch-rule on a node v whether there exists an inv(s)-successor node v′ that
has a tight at-most restriction for s, i.e., 6m s.D ∈ L(v′) and ]mcands(v, s,D) = m.
If v is a merging candidate, i.e., D ∈ L(v), or it would be necessary to apply the
ch-rule for v, then we consider v as critical.

• We also need several rules for the detection of incompleteness related to nominals.
First, we check with the Roo-rule whether there are two nodes in the saturation
graph that have the same nominal but different concepts in their label. If this is
the case, then the handling of the nominals is possibly incomplete since the merg-
ing of these nodes would make all concepts on both places available. Of course,
if we saturate several independent concepts in the same saturation graph, then it is
not necessarily the case that all nodes with the same nominal in their label have
to be merged. However, less expressive ontologies are often using nominals only
in very simple ways and, therefore, a more exact analysis is usually not necessary
and is often also less efficient. In addition, if a node v is nominal dependent, i.e.,
it has a descendant node with a nominal in its label, then other individuals can in
principle propagate consequences to v. This also means that v has to be added to
S? (which is realised by the Ro?-rule) if there is a node for an individual, which
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Table 5. Rules for detecting incompleteness in the saturation graph

R∀-rule: if v < S?, ∀r.C ∈ L(v), there is an r-successor v′ of v, and C < L(v′)
then S? −→ S? ∪ {v}

Rt-rule: if v < S?, C t D ∈ L(v), and {C,D} ∩ L(v) = ∅

then S? −→ S? ∪ {v}
R6-rule: if v < S?, 6m s.D ∈ L(v), and ]mcands(v, s,D) > m

then S? −→ S? ∪ {v}
Rch-rule: if v < S?, 6m s.D ∈ L(v), there is an s-successor v′ of v, and

L(v′) ∩ {D, norm(¬D)} = ∅

then S? −→ S? ∪ {v}
R↓6-rule: if v < S?, D ∈ L(v), v′ is an inv(s)-successor of v, 6m s.D ∈ L(v′), and

]mcands(v′, s,D) = m
then S? −→ S? ∪ {v}

R↓ch-rule: if v < S?, v′ is an inv(s)-successor of v, 6m s.D ∈ L(v′), and
L(v) ∩ {D, norm(¬D)} = ∅

then S? −→ S? ∪ {v}
Roo-rule: if v < S?, {a} ∈ L(v), {a} ∈ L(v′), and L(v) * L(v′)

then S? −→ S? ∪ {v}
Ro?-rule: if v < S?, v ∈ So, and there exist some node v{a} ∈ S?

then S? −→ S? ∪ {v}
Ro6-rule: if v < S?, v′ is an inv(s)-successor of v, {a} ∈ L(v′), and 6m s.D ∈ L(v′)

then S? −→ S? ∪ {v}
R↑-rule: if v < S?, there is a successor v′ of v, and v′ ∈ S?

then S? −→ S? ∪ {v}

could not be completely handled by the saturation. Next, we need a rule that checks
interaction between nominals and at-most cardinality restrictions. The tableau al-
gorithm applies the NN-rule for a nominal with an at-most cardinality restriction
and a blockable predecessor in order to fix the number of overall neighbour nodes
for this nominal. This cannot be easily handled by the saturation and, therefore, we
use the Ro6-rule to identify such predecessors as critical by adding them to S?.

• Finally, the R↑-rule marks all predecessors of critical nodes also as critical, i.e., it
adds a node v to S? if a successor of v is in the set S?.

The sets So, S!, and S? are now used to define the saturation status of a saturation
graph as follows:

Definition 16 (Saturation Status). The saturation status S of a saturation graph S =

(V, E,L) is defined as the tuple (So,S!,S?). We use status as the function that creates
S from S by the exhaustive application of the rules of Table 4 and 5.

Let v ∈ V be a node in the saturation graph S . With respect to S and S , we call n
clashed if ⊥ ∈ L(v). Furthermore, we say v is critical if v ∈ S?, nominal dependent if
v ∈ So, and we say v has tight at-most restrictions if v ∈ S!.

A concept C is obviously unsatisfiable if its representative node vC is clashed,
whereas the satisfiability of C can only be guaranteed (for the general case) if vC is
not critical, vC does not depend on a nominal and the knowledge base is consistent.
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Consistency is explicitly required, because a concept is defined as satisfiable only if
the knowledge base is consistent, which, however, cannot always be determined by the
saturation procedure since it might not be able to completely handle all representative
nodes for individuals. Of course, if the inconsistency of the knowledge base can be
detected during the saturation, i.e., a representative node for an individual is clashed,
then the ⊥-rule propagates the unsatisfiability also to all other nodes. In contrast, if
the saturation graph contains a critical node that represents an individual, then only the
nominal dependent nodes are also marked as critical. Thus, for the remaining nodes, we
have to require that the knowledge base is consistent in order to be able to guarantee
the satisfiability of their associated concepts.

In addition, if a node is nominal dependent, then the consequences that are prop-
agated to this node obviously depend on the concepts in the labels of the dependent
representative nodes for these nominals. Therefore, we cannot generally guarantee the
satisfiability of such a node without knowing the status of the representative nodes for
those nominals on which vC depends.

Please also note that a critical node for an individual makes also all nominal de-
pendent nodes critical, which can obviously be very problematic in practice. However,
we can improve the saturation graph after the initial consistency check with the tab-
leau algorithm (see Section 5 for details) by simply replacing the node labels in the
saturation graph for all individuals with the ones from the obtained completion graph.
Of course, we have to distinguish deterministically and non-deterministically derived
concepts in these labels, but in principle we know that they correspond to a clash-free
and fully expanded completion graph and, therefore, we can consider them as not criti-
cal. Hence, the critical propagated status due to a critical node for an individual is only
during the actual consistency check problematic since, afterwards, the saturation status
can be updated with completely handled nodes for individuals.

Example 3. By applying the rules of Table 4 and 5 to the saturation graph that is de-
picted in Figure 1, we obtain So = {v{a}, vA1 , vA2 }, S! = {vA2 } and S? = {vA1 }. Note,
vA1 is critical in two ways. On the one hand, the concept ∃s−.B2 is problematic because
it connects vA2 with vA1 for the role s. Since the at-most cardinality restriction 6 1 s.B
is in the label of vA2 and the number of merging candidates for vA2 w.r.t. s and B is 1,
i.e., ]mcands(vA2 , s, B) = 1, every additional s-neighbour would cause merging. On the
other hand, none of the disjuncts of the disjunction A2 t {a} is added to the node vA1 .
However, all nodes except vA1 are completely handled by the saturation.

3.3 Correctness

It is clear that the saturation rules of Table 2 and 3 only produce sound inferences. In
particular, the saturation rules add only those concepts to a label of a node which are also
added by the tableau algorithm in an equivalently labelled node in the completion graph.
Also, the termination of the saturation rules is obviously ensured since the number of
nodes is limited by the concepts occurring in the knowledge base and the rules are only
applied if they add new facts in the saturation graph. Analogously, the application of the
rules of Table 4 and 5 for the generation of a saturation status is terminating, because
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each rule application adds the node to a corresponding set (either S?, S!, or S?) and the
rules are only applicable if the node does not already belong to the corresponding set.

It remains to show the completeness, i.e., we have to show that as long as the
nodes are not identified as critical, then the presented saturation indeed infers all conse-
quences, i.e., it is possible to extract a fully expanded and clash-free completion graph
from the saturation graph. Since the tableau algorithms for the DL SROIQ are sound
and complete, this obviously also shows the correctness of the presented saturation.
Note, we also use the critical nodes for the assistance of the tableau algorithm, but we
consider such nodes as possibly incomplete (e.g., by only using the inferred conse-
quences) and, therefore, we can ignore the critical nodes for the proofs.

A direct conversion of the saturation graph into a completion graph is not possible
since the reuse of nodes in the saturation graph possibly causes problems with certain
features of SROIQ. For example, we can have a node v′ in the saturation graph that is
an r- and an s-successor of a node v for an axiom Disj(r, s) in the knowledge base if s
is not a super role of r. Obviously, this would be identified as a clash in the completion
graph. As a consequence, it is necessary to recursively rebuild the successors with new
nodes in the completion graph until we reach nominal nodes or the nodes are blocked
(e.g., by ancestors with the same label). Moreover, for at-least cardinality restrictions,
we have to create several successors that are stated as pairwise different with the ,̇
relation, whereas the same successor node is reused in the saturation graph.

To be more precise, a saturation graph S = (V, E,L) that shows the satisfiability of a
concept C can be transformed into a completion graph G = (V ′, E′,L′, ,̇) as described
below. For this, let a1, . . . , a` be all individuals in the knowledge base, Then, we ini-
tialise G with the nominal nodes w1, . . . ,w` and we also create a new root node w0 for
the node vC . Subsequently, we recursively build the successors of these nodes by using
the function extr, which is defined as follows.

Definition 17 (Extraction). Let S = (V, E,L) be a saturation graph for the concept C
w.r.t.K and G = (V ′, E′,L′, ,̇) a completion graph. For v ∈ V and w ∈ V ′, the function
extrS

G(v,w) recursively extracts and rebuilds v and the successors of v for the node w in
the completion graph with the following steps:

1. If there is a nominal {ak} ∈ L(v) and w < {wk, . . . ,w`} with w1, . . . ,w` the nominal
nodes for the individuals a1, . . . , a` in G, then prune w from G (i.e., remove w from
V ′) and return.

2. Add every concept C ∈ L(v) to L′(w).
3. Return if w is blocked by an ancestor node of w.
4. For all ∃r.Self ∈ L′(w), add the edge 〈w,w〉 to E′ and r to L′(〈w,w〉).
5. For all ∃r.D ∈ L′(w) and >1 r.D ∈ L′(w) for which there is a nominal {ak} ∈ L(vD)

but no nominal {a j} ∈ L(vD) with j > k, add 〈w,wk〉 to E′ and r to L′(〈w,wk〉),
where wk is the nominal node for the individual ak in the completion graph G.

6. For all ∃r.D ∈ L′(w), for which there is no nominal {a} ∈ L(vD), create a new
node w′ and add the edge 〈w,w′〉 to E′ and r to L′(〈w,w′〉), then recursively call
extrS

G(vD,w′).
7. For all >n r.D ∈ L′(w), for which there is no nominal {a} ∈ L(vD), create the new

nodes w1, . . . ,wn, add the edges 〈w,w1〉, . . . , 〈w,wn〉 to E′, add r toL′(〈w,w1〉), . . . ,
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L′(〈w,wn〉), and add wi,̇w j for all 1 ≤ i < j ≤ n, then recursively call extrS
G(vD,wk)

for all 1 ≤ k ≤ n.

In order to completely build the completion graph G, we call extrS
G(v{ak},w

k) for
all individuals ak with 1 ≤ k ≤ ` in the knowledge base and extrS

G(vC ,w0) for the
concept C with the root node w0. Note, instead of creating new successor nodes with
nominals in their label, the rebuild reuses the nominal nodes that have been added for
the representation of the individual (w1, . . . ,w`). This is easily possible since all nodes
with the same nominal have exactly the same labels (otherwise the Roo-rule would have
identified the nodes as critical). In addition, if several nominals are in the label of a
successor node, then the rebuild creates only an edge to those nominal node wk with the
greatest k that also has the same nominals in its label (see Step 5 of the extr function
in Definition 17). Moreover, we only keep a nominal node wk for an individual ak if
wk does not contain a nominal {a j} in its label for which j > k (see Step 1 of the extr
function in Definition 17). Thus, each nominal occurs only in the label of one nominal
node in the completion graph G.

We can now show that the expansion rules of the tableau algorithm for SROIQ (cf.
Table 1) are not applicable to G and that G does not contain clashes for the Descrip-
tion Logic SROIQ (cf. Definition 10). Hence, we can prove the completeness of the
approach.

Lemma 1 (Completeness) Let S = (V, E,L) be a fully saturated saturation graph
for the concept C w.r.t. K and vC is not critical, then a fully expanded and clash-free
completion graph for C w.r.t. K can be extracted from S .

Proof. As mentioned, we extract from S = (V, E,L) for C a fully expanded and clash-
free completion graph G = (V ′, E′,L′, ,̇) that shows the satisfiability of the concept C.
We initialise G, as described above, with the nominal nodes w1, . . . ,w` for the individ-
uals a1, . . . , a` occurring inK and with a new root node w0 for vC . Then, we build G by
calling extrS

G(vC ,w0) and extrS
G(v{ak},w

k) for 1 ≤ k ≤ `. Now, we have to show that G is
clash-free and fully expanded, i.e., the tableau expansion rules are not applicable. First,
let us consider the clash conditions for the completion graph (cf. Definition 10):

• Since the nodes in the saturation graph are not clashed, Clash Condition 1 is obvi-
ously not satisfied.

• Clash Condition 2 is the same as Condition 1 in the ⊥-rule and, since we only
use the labels from the saturation graph without adding additional concepts, this
condition is obviously also not satisfied in the completion graph.

• Condition 2 of the ⊥-rule is similar to the Clash Condition 3 for completion graphs
and, therefore, Clash Condition 3 cannot be satisfied for blockable nodes, other-
wise the nodes in the saturation graph would be clashed, which contradicts our
assumption. However, since we only use one nominal node for each nominal in the
completion graph, we possibly have to merge the nodes from the saturation graph
that have the same nominal in their label. Thus, the extraction possibly creates new
edges between nominal nodes and other nodes, but new loops can only be created
by merging two nominal nodes from the saturation that are already neighbours.
Hence, we have to show that we do not build a (merged) nominal node wk which
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is an r-successor of itself and ¬∃r.Self ∈ L′(wk). However, this is excluded by
Condition 3 of the ⊥-rule.

• Analogously to Clash Condition 3, the Clash Condition 4 is not satisfied for block-
able nodes (ensured by Condition 6 of the ⊥-rule) and also not for (merged) nomi-
nal nodes (guaranteed by Condition 7 of the ⊥-rule).

• Clash Condition 5 is obviously not satisfied in G, because we have ensured with
the number of merging candidates that no at-most cardinality restriction is violated
even if for every existential and at-least cardinality restriction all the successors
are separately created. Note, the number of neighbour nodes can be increased for
nominal nodes in the completion graph, but the Ro6-rule does not allow (successor)
nodes with at-most cardinality restrictions as well as nominals in their label (other-
wise the nodes would be identified as critical). Therefore, the nominal nodes in the
completion graph for which we can add new blockable neighbour nodes does not
have at-most restrictions.

• For Clash Condition 6, we have to show that there are not two nodes w and w′ in
the completion graph, where {a} ∈ L′(w) ∩ L′(w′) and w,̇w′. Since the saturation
does not use the ,̇ relation and the extraction uses ,̇ only to state that the successors
of at-least cardinality restrictions are pairwise different, Clash Condition 6 would
only have been satisfied if the successors of al-least cardinality restrictions (with
cardinalities greater than 1) had nominals in their label. However, this is already
excluded by Condition 5 of the ⊥-rule.

Next, we prove that the expansion rules of the tableau algorithm (cf. Table 1) are not
applicable:

• The u-, ∃-, Self-, and >-rules are obviously not applicable, since we have added
the corresponding concepts, roles and successors already with saturation rule in
the saturation graph and the subsequent extraction has added the concepts to the
completion graph.

• The t-, ∀-, and ch-rules are also not applicable, because otherwise the correspond-
ing incompleteness detection rules (Rt, R∀, Rch, and R↓6) would have identified the
nodes as critical.

• Analogously to clashes related to at-most cardinality restrictions, the 6-rule is not
applicable since the R6- and R↓6-rule guarantees that every blockable node has
not more merging candidates than allowed by the at-most cardinality restrictions
(otherwise the node would be identified as critical). Again, since the nodes are not
critical, it is also guaranteed by the Ro6-rule that nominal nodes (which are used as
successors) do not have at-most cardinality restrictions in their labels.

• Although the saturation graph possibly has several nodes with the same nominals
in their label, the o-rule is not applicable in the completion graph, because we only
transferred the nodes for the individuals. Furthermore, if the nominal nodes for the
individuals have also other nominals in their label, then we pruned the nominal
nodes for the other individuals from the completion graph (see Step 1 of the extr
function in Definition 17).

• The NN-rule is obviously also not applicable, because the Ro6-rule guarantees that
nominal nodes, which are used as successors, do not have at-most cardinality re-
strictions in their labels.
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Hence, the completion graph that is extracted from the saturation graph for the concept
C is fully expanded and clash-free. ut

4 Assisting Tableau Algorithms

In this section we present a range of optimisations to directly and indirectly assist
the reasoning with tableau algorithms for the DL SROIQ. As already mentioned,
reasoning systems for more expressive Description Logics are usually very complex
and they contain many sophisticated optimisations which are necessary to make rea-
soning for many real world ontologies practicable. As a consequence, it is important
for the development of new optimisations to consider the interaction with already ex-
isting techniques. For example, a very important and well-known optimisation tech-
nique is dependency directed backtracking which allows for evaluating only relevant
non-deterministic alternatives with the tableau algorithm. A typical realisation of de-
pendency directed backtracking is backjumping where every fact that is added to the
completion graph is labelled with those non-deterministic branches on which the fact
depends on [3,32]. If a clash is discovered, then we can jump back to the last non-
deterministic decision that is referenced by the clashed facts in the completion graph.
More sophisticated implementations are further saving which other facts in the comple-
tion graph are the cause of the newly added ones. Hence, these dependencies between
the facts in the completion graph can be used for a more exact backtracking, especially
in combinations with other optimisations such as caching [28]. Thus, for new optimi-
sation techniques that manipulate the completion graph it is important to also add these
dependencies correctly, otherwise dependency directed backtracking cannot be com-
pletely supported in the presence of these optimisations.

The optimisation techniques, which we present in this section, are fully compatible
with dependency directed backtracking and, to the best of our knowledge, they also do
not negatively influence other well-known optimisations. Moreover, since the saturation
optimisations allow for doing a lot of reasoning work very efficiently, they often reduce
the effort for other optimisation techniques. For example, these optimisations directly
perform many simple expansions in the completion graph and, therefore, the effort for
conventional caching methods is significantly reduced.

4.1 Transfer of Saturation Results to Completion Graphs

Since the presented saturation method uses compatible data structures, we can directly
transfer the saturation results into the completion graph. This improves the tableau al-
gorithm by a faster clash detection and optimises the building of the completion graph.
For example, we can directly use unsatisfiability information that is detected by the
⊥-rule in the saturation. If the application of a tableau expansion rule adds a concept C
to the completion graph, then we can check the saturation status of vC and, in case it is
clashed, we can immediately initiate the backtracking with the dependencies from the
unsatisfiable concept C in the completion graph. Analogously, we can also utilise other
derived consequences form the saturation. For instance, if an expansion rule adds a con-
cept C to a label of a node in the completion graph, then we can also add all concepts
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of L(vC) to the same label. Of course, in order to further support dependency directed
backtracking, we also have to add the correct dependencies. However, since all concepts
of L(vC) are deterministic consequences of C, we can simply use the dependency that
D deterministically depends on C for every additionally added concept D ∈ L(vC).

As a nice side effect, the addition of the concepts from the saturation also improves
the backtracking and processing of disjunctions. Basically, the t-rule from the satura-
tion extracts common (super-)concepts from all disjuncts of a disjunction. For example,
for the disjunction A1 t A2 and the axioms A1 v B and A2 v B, we derive with the
saturation that L(vA1tA2 ) ⊆ {A1 t A2, B}, i.e., B is a common concept of both disjuncts
and we can add it as a deterministic consequence of the disjunction A1 t A2. Although
we still have to process the disjunction, we can add some of the consequences deter-
ministically. Hence, the backtracking does not identify the processing of alternatives
of a disjunction as relevant if only such deterministic consequences are involved in the
creation of a clash.

In practice, it is often wise to add the consequences from the saturation only in
special situations in order to avoid that we possibly try to frequently add the same con-
sequences. Very suitable situations are the creation of new successor nodes and the
addition/processing of disjunctions. The latter one adds the common disjunct concepts,
which is usually very helpful since it possibly reduces the non-determinism. Analo-
gously, the creation of a new successor node v for an existential restriction of the form
∃r.C adds C to the label of v and the addition of all other concepts from L(vC) in
this initialisation step enforces that the majority of the concepts are already added to
its label (under the assumption that the saturation already derives the majority of all
consequences for a concept). Since newly created successor nodes are initialised only
once, we can add the consequences from the saturation without running into the risk
that another kind of inefficiency is added to the tableau algorithm. In contrast, if several
concepts, say C1, . . . ,Cm, are independently added to the label of a node in separate
steps (e.g., due to propagations from neighbour nodes or non-deterministic decisions)
and their labels L(vC1 ), . . . ,L(vCm ) from the saturation have a huge overlap, then we
frequently try to add the same concepts to the label, which is obviously not very effi-
cient.

The transfer of derived consequences is helpful in several ways. First, the appli-
cation of expansion rules from the tableau algorithms might become unnecessary. For
example, if a disjunct of a disjunction has already been added, then it is not necessary
to apply the t-rule. Second, if specific concepts are in the label of a node, then, at
least for some expansion rules of the tableau algorithm, optimised rule applications are
possible. For instance, if the concepts ∃r.C, ∃r.D and 6 1 r.> are in the label of the
same node, then the second application of the ∃-rule by the tableau algorithm can di-
rectly add the existentially restricted concept to the already present r-successor instead
of creating a new one that has to be merged afterwards. Since the transfer of derived
consequences already adds the majority of all concepts, the likelihood that the rules can
be applied in such an optimised way is significantly higher. Third, since the majority of
all concepts are added with the transfer of derived consequences in one step, the current
processing node for which the tableau algorithm applies expansion rules does not have
to be changed as often as in the case where the concepts are added separately (e.g., by
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separate propagations back from successor nodes). This speeds up the construction of
the completion graph, because practically used tableau algorithms typically have to do
some initialising tasks when switching the current processing node. Moreover, if con-
cepts are propagated back to ancestor nodes, then it is again necessary to check whether
one of these ancestor nodes is blocked before the rules in descendant nodes can be ap-
plied. Again, due to the transfer of derived consequences, the majority of all concepts
that are propagated back are added in one step and, therefore, the amount of blocking
tests is significantly reduced. Last but not least, the transfer of derived consequences
also allows for blocking much earlier. Blocking of a node v is usually only possible
if a node could be replaced by another non-blocked node from the completion graph
that does not influence any ancestor of v. A simple blocking condition that guarantees
completeness for more expressive Description Logics is pairwise blocking. However,
pairwise blocking can be refined to achieve more precise blocking conditions that pos-
sibly allow for blocking earlier [11]. Since the majority of the concepts that are propa-
gated back from successors are added by the transfer of derived consequences from the
saturation, the creation of new successor nodes likely does not influence any ancestor
node. As a result, the node can be blocked even before the creation and processing of
successor nodes.

In principle, it would also be possible to saturate every combination of concepts
that occurs in the completion graph, i.e., after adding a new concept to a label, e.g.,
by adding a disjunct of a disjunction, we can saturate a node that is initialised with
the concepts of this label. Obviously, we would get a fast estimation whether such a
combination of concepts is unsatisfiable. However, if the saturation cannot discover a
clash for this combination, then the results from the saturation are not really helpful. On
the one hand, we cannot use the derived consequences since we do not know the correct
dependencies for them and we are not interested in saving such dependencies in the
saturation procedure, because this would multiply the memory usage for the saturation
graph. On the other hand, a saturated combination of concepts is possibly only required
once and, therefore, it would require memory in the saturation graph although it is never
used again.

Besides the transfer of derived consequences, it is, in some cases, also possible to
directly block the processing of successor nodes in the completion graph. For this, the
node in the completion graph, say v, has to be labelled with the same concepts as a
node v′ in the saturation graph and v′ must neither be clashed, critical nor nominal
dependent. If there exists such a v′, then the processing of the successors of v can be
blocked since v could be expanded in the same way as v′ in the saturation graph. Al-
though the consistency of the knowledge base is necessary to guarantee the satisfiability
of the saturated concepts, we can use the nodes also in the consistency check since the
problematic individuals are also tested in this step. Obviously, we have to enforce that
v′ is not nominal dependent, because a dependent nominal could be influenced in the
completion graph such that new consequences are propagated back to v′ and this would
not be considered if the processing of successor nodes is blocked. Furthermore, it is in-
deed necessary to create the successors before blocking the processing of them, because
they may have to be merged into the ancestor node. However, if the saturation node v′

does not have a tight at-most restriction, i.e., for each at-most cardinality restriction

26



6m r.C ∈ L(v′), v′ has at most m−1 r-successors that have not norm(¬C) in their label,
then also the creation of successor nodes can be blocked, because every at-most cardi-
nality restriction in the label of the node allows at least one additional neighbour before
some nodes have to be merged. In principle, it would be also possible to detect more
precisely whether there is a thigh at-most restriction for a role that is in the label of the
edge between v and its ancestor. However, this would make the generation of the suc-
cessors dependent on the roles in this edge label, which is much more problematic for
implementations since roles can be added to such an edge label without influencing the
node labels and, therefore, possibly many and more complicated checks are necessary
to decide whether the creation of successor can be blocked or has to be reactivated after
the roles have changed. Thus, only checking whether v′ has tight at-most restrictions is
a simplification, which is, for many cases, sufficient and cannot negatively influence the
performance due to costly checks.

Since nodes can easily have a large number of successor node (e.g., due to at-least
cardinality restrictions with big cardinalities), the blocked creation of successors can be
a significant improvement in terms of memory consumption and building time of the
completion graph. Of course, if new concepts are propagated to v such that the label of v
differs from v′, then the blocking becomes invalid and the processing of the successors
has to be reactivated or we have to find another compatible blocker node.

4.2 Subsumer Extraction

In tableau-based reasoning systems many higher level reasoning task are often reduced
to consistency checking. For example, a very naive classification algorithm tests the
satisfiability of all classes and then checks the pairwise subsumption relations between
these classes (which are also reduced to satisfiability tests) in order to build the class
hierarchy of an ontology. In practice, the number of required satisfiability tests can be
significantly reduced by optimised classification approaches such as enhanced traversal
[4] or known/possible set classification [6]. Therefore, these optimised classification al-
gorithms use an intelligent testing order and exploit information that can be extracted
from the constructed models. To optimise their testing order, the algorithms are usually
initialised with told subsumptions, i.e., with the subsumption relations that can be syn-
tactically found in the ontology axioms, and, typically, the more told subsumers can be
extracted, the bigger is the benefit for the classification algorithms. However, a more
detailed extraction of told subsumers from the ontology axioms is usually less efficient
than a simple one. For instance, the ontology axioms A1 v ∃r.C u D and ∃r.C v A2
imply that A2 is a subsumer of A1, but this can only be detected, when parts of axioms
are compared with each other.

With the saturation we can significantly improve the told subsumers for the ini-
tialisation of the classification algorithm since also (some) semantic consequences are
considered by the saturation. As new and more accurate told subsumers, we can sim-
ply use all the classes in L(vA) for each class A that has to be classified. Moreover, if
vA is clashed, then we know that A is unsatisfiable without performing a satisfiability
test. Analogously, if vA is neither clashed nor critical and the knowledge base is con-
sistent, we know that A is satisfiable and that L(vA) contains all subsumers. It is not
even relevant whether vA depends on nominals or not, because subsumers and possible
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subsumers can be extracted from a satisfiability test, where nominals are not further in-
fluenced by additional assertions (like it is the case for instance tests, where we have to
check whether an individual is an instance of a specific concept). If all nodes of an on-
tology are not critical, we already get all subsumers from the saturation and, therefore,
only a transitive reduction is necessary to build the class hierarchy. Thus, with a pre-
ceded saturation we automatically get a one-pass classification for simple ontologies.

4.3 Model Merging

Many ontologies contain axioms of the form C ≡ D, which can be seen as an abbre-
viation for C v D and D v C. Treating axioms of the form A ≡ D with A an atomic
concept as A v D and D v A can, however, downgrade the performance of tableau
algorithms since absorption might not apply to D v A, i.e., the axiom is internalised
into > v norm(¬DtA). To avoid this, many implemented tableau algorithms explicitly
support A ≡ D axioms by an additional unfolding rule, where the concept A in the label
of a node is unfolded to D and ¬A to norm(¬D) (exploiting that D v A is equivalent
to ¬A v norm(¬D)) [13].3 Unfortunately, using such an unfolding rule also comes at
a price since the tableau algorithm is no longer forced to add either A or norm(¬D) to
each node in the completion graph, i.e., we might not know for some nodes whether
they represent instances of A or ¬A. This means that we cannot exclude A as possi-
ble subsumer for other (atomic) concepts if the nodes in the completion graph do not
contain A, which is an important optimisation for classification procedures.

To compensate this, we can create a “candidate concept” A+ for A, for example by
partially absorbing D, which is then automatically added to a node in the completion
graph if the node is possibly an instance of A. Hence, if A+ is not added to a node label,
then we know that A is not a possible subsumer of the concepts in the label of this node.

Although the candidate concepts already allow a significant pruning of subsumption
tests, there are still ontologies where we have to add these candidate concepts to many
node labels, especially if only a limited absorption of D for an A ≡ D axiom is possible.
Hence, A can still be a possible subsumer for many concepts. The saturation graph can,
however, again be used to further improve the identification of (more or less obvious)
non-subsumptions. Basically, if a candidate concept A+ for A ≡ D is in the label of
a node v in the completion graph, then we test whether the merging with the saturated
node vnorm(¬D) is possible. Since D is often a conjunction, we can also try to merge v with
the representative node for a disjunct of norm(¬D). If the “models” can be “merged” as
defined below, then v is obviously not an instance of A.

Definition 18 (Model Merging). Let S = (V, E,L) be a fully saturated saturation
graph and G = (V ′, E′,L′, ,̇) be a fully expanded and clash-free completion graph
for a knowledge base K . A node v ∈ V is mergeable with a node w ∈ V ′ if

• v is not critical, not nominal dependent, and not clashed,
• L(v) ∪ L′(w) does not contain {C, norm(¬C)},

3 Note that this only works as long as there are no other axioms of the form A v D′ or A ≡ D′

with D′ , D in the knowledge base.
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• L(v)∪L′(w) does not contain the concepts A1 and A2 such that (A1uA2) v C ∈ K
and C < (L(v) ∪ L′(w)),

• w is not an r-neighbour of w for a concept ¬∃r.Self ∈ L(v),
• v is not an r-successor of v for a concept ¬∃r.Self ∈ L′(w),
• if ∀r.C ∈ L(v) (6m r.C ∈ L(v)), then C ∈ L′(w′) (norm(¬C) ∈ L′(w′)) for every

r-neighbour w′ of w;
• if ∀r.C ∈ L′(w) (6m r.C ∈ L′(w)), then C ∈ L(v′) (norm(¬C) ∈ L′(v′)) for every

r-successor v′ of v.

Obviously, the conditions that guarantee that the models are mergeable can be
checked very efficiently. Of course, it is also possible to relax some of the conditions.
For instance, it is not necessary to enforce that v is not nominal dependent. In princi-
ple, we only have to ensure that there is no interaction with the generated completion
graph, which can, for example, also be guaranteed if the completion graph does not use
nominals. Moreover, if there are concepts in the completion graph that possibly have an
interaction with the merged node in saturation graph, then we can extend the saturation
with a new node, where also these concepts are considered, and test the model merging
again. For instance, if a node w in the completion graph is not mergeable with a node v
in the saturation graph due to an r-successor v′ of v and a concept ∀r.C in the label of w
for which C < L(v′), then we can saturate a new node v′′ withL(v′′) ⊇ L(v)∪{∀r.C} and
check whether v′′ is mergeable. Especially with this extension, we can identify many
non-instances for nodes in the completion graph also for more expressive ontologies.

In contrast, if there are interactions in the completion graph with concepts from the
saturation, then it is often not easily possible to extend the model merging approach such
that the non-subsumption can be guaranteed. Basically, we do not want to modify the
completion graph since it also has to be used for other model merging tests. In addition,
a recursive model merging test, where we check whether the neighbours of a node in the
completion graph are mergeable with propagated concepts from the saturation, is non-
trivial since we have to exclude interactions with already tested nodes. For example,
if a node w in the completion graph is not mergeable with a node v in the saturation
graph due to an r-neighbour w′ of w and a concept ∀r.C in the label of v for which
C < L(w′), then a recursive model merging could test whether w′ is mergeable with vC .
However, it would also be necessary to exclude that the merging of w′ with vC causes
new consequences that are propagated back to w, which is especially non-trivial if there
are several universal restrictions in the label of v that would affect w′.

Note, although other proposed (pseudo) model merging techniques [8] work in prin-
ciple very similar, there are also some significant differences. For example, the pre-
sented merging test is only applied if corresponding candidates concepts are in the label
of nodes, which already reduces the number of tests. In addition, we test the merging
against the saturation graph and, therefore, we do not have any significant overhead. In
contrast, for other approaches it is often necessary to build separate completion graphs
for those concepts to which the model merging must be tested. Moreover, the presented
approach is easily applicable to very expressive Description Logics such as SROIQ.
Admittedly, very expressive Description Logics may produce more critical nodes, nev-
ertheless it is not necessary to deactivate the model merging if certain language features
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are used and, thus, this model merging approach has a very good pay-as-you-go be-
haviour.

5 Saturation Improvements

Obviously, the assistance of the tableau algorithm with the saturation works better when
as few nodes as possible are marked as critical. However, since our saturation proce-
dure does not completely support all language features, we easily get critical nodes
even when the unsupported language features are only rarely used in the knowledge
base. This is especially problematic if the critical nodes are referenced by many other
nodes, whereby they also have to be considered as critical. In the following, we present
different approaches how the saturation can be improved such that the number of crit-
ical nodes can be reduced. As a result, a better assistance of the tableau algorithm is
possible.

5.1 Extending Saturation to more Language Features

Obviously, the presented saturation procedure can be extended to more language fea-
tures. For example, to completely cover the DL EL++, it would be necessary to integrate
a more sophisticated handling of nominals into the presented saturation procedure. In
principle, this is possible by saving, for every node v and every nominal {a}, which de-
scendants of v are using the nominal {a}, i.e., if a descendant of v has a nominal {a} in
its label, then we save for v that the nominal {a} is used by this descendant. If we find
a node v, where we have saved that a nominal {a} is used by several descendant nodes,
say v1, . . . , vn, then we create a new node u where the labels of v1, . . . , vn are merged,
and we “reproduce” the paths of predecessors from the merged nodes up to v such that
the new consequences can also be propagated to v. To be more precise, if w1, . . . ,wm

represent the path of predecessors for one merged node w ∈ {v1, . . . , vn} up to the node
v, then we copy these nodes to new nodes w′1, . . . ,w

′
m such that they represent a new

path of predecessors from the new node u up to v. Obviously, we only have to repro-
duce predecessors if they are influenced by new consequences from the new node with
the merged label. Furthermore, if a nominal is used by a node v and by a descendant v′

of v, then we add all concepts from the label of v′ to v and we again reproduce the path
of all predecessors from the descendant node v′ to v for the node v. Thus, this approach
has still a very good pay-as-you-go behaviour if nominals are used as allowed by the
OWL 2 EL profile. However, as of now, EL ontologies often only use nominals in much
simpler ways for which the presented saturation procedure is often still sufficient.

As known from literature, the saturation can also be extended to more expressive
Horn Description Logics, e.g., Horn-SHIQ [16] or even Horn-SROIQ [21]. Although
such extended saturation procedures are obviously very efficient for ontologies in these
fragments, it is not clear how they perform for other ontologies, for example, in combi-
nation with our approach. In particular, the worst-case complexity for such procedures
is not polynomial and, therefore, they can easily cause the construction of very large
saturation graphs. However, some of the features of these Horn-languages can easily
be supported and, in practical implementations, we can simply limit the number of the
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nodes that are processed by the saturation and by marking the remaining nodes as crit-
ical. For example, it is very interesting to consider the propagation of new concepts to
successors for universal restrictions of the form ∀r.C. Of course, we are not allowed to
directly modify existing r-successors, but we can easily create a new r-successor that
we extend by the propagated concept C. Furthermore, the previous r-successor has to
be removed from a node v such that the incompleteness detection rule R∀ for the con-
cept ∀r.C does not mark the node v as critical, which is obviously not the case if now all
newly connected r-successors also include the concept C and are completely handled.
Note, the extension of nodes can be implemented very efficiently. Basically, we first ap-
ply the default saturation rules and, afterwards, we extend only those successors where
the saturation has not already added the concept C. In addition, we can use, for each
node that has to be extended, a mapping for the concepts, for which the node has to
be extended, to other nodes, whereby we can save and reuse the extended nodes. Thus,
if several predecessors propagate the same concepts to the same successors, then we
create a node with the corresponding extension only once. Obviously, this approach can
further be improved by using suitable orders for the nodes and the concepts that have to
be used for the extensions.

In principle, the support for at-most restrictions of the form 6 1r.> is analogously
possible. At least, the labels of the r-successors can easily be merged into a new node,
which can then be used to replace the other r-successors. Again, we can use a mapping
such that the merging of certain successors always results in the same (possibly new)
node. If there is a remaining r-successor v′ that also has to be merged to a predecessor
v′′ for a node v, then we add all the concepts in the label of v′ to the label of v′′, we
reproduce v as a successor of v′′ and we connect v′′ as an r-successor of the node that
we have reproduced for v. Again, the reproducing of v is necessary, because we are
not allowed to directly modify the successors, which would, however, be the case if
we connect v′′ as an r-successor of v. Thus, Horn-SHIF can be almost completely
supported with rather small extensions of the presented saturation procedure.

Saturation procedures can further be extended beyond Horn Description Logics, for
instance, for the DLALCH [22]. Therefore, they also have to handle non-determinism
which is, for example, caused by disjunctions. Since the dependencies are usually not
tracked by the saturation algorithm, such extensions can easily become inefficient when
all alternatives of concepts have to be saturated. Although this approach still works well
for a range of ontologies, it is also possible to construct examples, where this approach
is no longer efficient. Hence, it is possibly better to keep the basic saturation algorithm
deterministic and to process the remaining parts with the tableau algorithm, which in-
tegrates several optimisations (e.g., semantic branching, boolean constant propagation,
dependency directed backtracking, caching) to efficiently handle non-determinism.

5.2 Improving Saturation with Results from Completion Graphs

As already mentioned, even if there is only one node for an individual that is criti-
cal, then the presented saturation procedure also marks all nominal dependent nodes as
critical. This easily limits the improvement from the saturation for ontologies that are
intensively using nominals. Analogously, if there are few nodes with incompletely han-
dled concepts (e.g., disjunctions) and these nodes are referenced by many other nodes,
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Fig. 2. Saturation graph for testing the satisfiability of A1

then also all these other nodes are critical although they do not necessarily have con-
cepts in their label that cannot be handled completely. Both issues are also illustrated in
the following example:

Example 4. Let us assume that the TBox T4 contains the following axioms:

A1 v ∃s.A2 A2 v ∃s.{b} A2 v ∃r.A3 A2 v A1 t A3

A3 v ∃s.{c} B v ∀s−.B

{a} v B {b} v ∃r.{a} {b} v ∃r.{c} {b} v61r.>

For testing the satisfiability of the concept A1 w.r.t. TBox T4, we generate the saturation
graph that is depicted in Figure 2. Note, the node v{b} for the individual b cannot be
completely handled by the saturation due to the concept 6 1r.> in the label of v{b},
which would require that v{a} and v{c} are merged. Therefore, v{b} is critical and we
also have to consider all nodes as critical that refer to such critical nodes, which is, for
example, the case for the node vA2 . Moreover, since one node for an individual is critical,
we cannot exclude that more consequences are propagated to other individuals and,
therefore, possibly also to other nominal dependent nodes. For instance, the merging
of v{a} and v{c} would propagate the concept B to the label of vA3 . Thus, also vA3 is
critical although it does not directly contain a concept that cannot be handled by the
saturation. Analogously, the label of vA2 contains the disjunction A1 t A3, which is also
not completely processed by the saturation and, therefore, we have to mark all ancestor
nodes of vA2 as critical (if this is not already the case), even if they do not contain
problematic concepts. As a consequence, we obtain a saturation status S = (So,S!,S?),
where v{b} has a tight at-most restrictions, i.e., S! = {v{b}}, and all nodes are nominal
dependent as well as critical, i.e., So = S? = {v{a}, v{b}, v{c}, vA1 , vA2 , vA3 }.

Of course, the saturation can be extended in several ways for a better support of
the features of more expressive Description Logics (see Section 5.1), but, to the best
of our knowledge, there exists no saturation algorithm that completely covers all the
features of very expressive Description Logics such as SROIQ. Hence, if a knowledge
base uses some of the unsupported features, then we easily run into the problem that
the saturation becomes incomplete and we possibly get many critical nodes.
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An approach to overcome the issues with critical nodes is to update the saturation
graph with results from fully expanded and clash-free completion graphs that are gen-
erated for consistency or satisfiability checks. Roughly speaking, we replace the labels
of critical nodes in the saturation graph with corresponding labels from the comple-
tion graphs, for which we know that they are completely handled by the tableau algo-
rithm. Then, we apply the saturation rules again and we update the saturation status,
which hopefully results in an improved saturation graph with less critical nodes. How-
ever, since the completion graph contains deterministically and non-deterministically
derived concepts, we also have to distinguish them for the saturation. An interesting
way to achieve this is to simultaneously manage two saturation graphs: one where
only the deterministically derived concepts are added and a second one where also
the non-deterministically derived concepts and consequences are considered. If the
non-deterministic consequences have only a locally limited influence, i.e., the non-
deterministically added concepts propagate new consequences only to a limited number
of ancestor nodes, then, by comparing both saturation graphs, we can possibly iden-
tify not further influenced ancestor nodes, which can then be considered as not criti-
cal. Thus, this approach allows to further improve the construction of new completion
graphs by transferring new and more results from the updated saturation. In the follow-
ing, we present this approach in a way, where the saturation graphs for the deterministic
and the non-deterministic consequences are implicitly managed as the extensions of the
original saturation graph, which simplifies the update process.

First, we define a saturation patch, which is the data structure for managing the
information that is necessary for the extension of a saturation graph.

Definition 19 (Saturation Patch). Let fclos(K) (Rols(K)) denote the concepts (roles)
that possibly occur in the completion graph for the knowledge base K as defined in
Definition 8. A saturation patch P for a saturation graph S = (V, E,L) w.r.t. K is a
tuple P = (PV , PLd, PLn, Pmc, Pnd), where

• PV ⊆ V denotes the set of patched nodes in the saturation graph,
• PLd : PV → 2fclos(K) is the mapping of patched nodes to a set of deterministically

derived concepts,
• PLn : PV → 2fclos(K) is analogously the mapping of patched nodes to a set of non-

deterministically derived concepts,
• Pmc : PV ×Rols(K)× fclos(K)→ IN0 is the mapping of at-most cardinality restric-

tions of the form 6m r.C on patched nodes (represented as a tuple of the node v, the
role r, and the qualification concept C) to the number of merging candidates, and

• Pnd ⊆ PV denotes the patched nodes that are nominal dependent.

Given two saturation patches P = (PV , PLd, PLn, Pmc, Pnd) and P′ = (PV
′, PLd

′, PLn
′,

Pmc
′, Pnd

′), the saturation patch P ◦ P′ is defined as the tuple consisting of

• PV ∪ PV
′,

• PLd ∪ {v 7→ C | v 7→ C ∈ PLd
′ and v < PV },

• PLn ∪ {v 7→ C | v 7→ C ∈ PLn
′ and v < PV },

• Pmc ∪ {〈v, s,C〉 7→ n | 〈v, s,C〉 7→ n ∈ Pmc
′ and v < PV }, and

• Pnd ∪ (Pnd
′ \ PV ).
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Obviously, a saturation patch P = (PV , PLd, PLn, Pmc, Pnd) has to identify the nodes
that have to be patched, which is realised with the set PV . Moreover, we have mappings
for deterministic (PLd) and non-deterministic (PLn) sets of concepts that describe how
these nodes can be extended such that they do not have to be considered as critical. We
also have to store the number of merging candidates (Pmc) and the nominal dependency
(Pnd) for the patched nodes, because this information is required for the generation of
an updated saturation status. Note, although we distinguish deterministically and non-
deterministically derived concepts, we consider the mapping for the number of merging
candidates and the mapping for nominal dependency as non-deterministic information
since it is often not possible to correctly extract the corresponding deterministic in-
formation from completion graphs. For example, state-of-the-art reasoners are usually
searching blocker nodes by checking more detailed conditions as defined for pairwise
blocking, whereby a node can possibly also be blocked if the label is a subset of the
label from the blocker node [11]. If the blocker node is directly or indirectly using
nominals, i.e., it is nominal dependent, then also the blocked node has to be considered
as nominal dependent. Basically, we have to consider the nominal dependency as non-
deterministic information since the labels do not have to be identical and the nominal
dependency could be caused by a concept that is in the label of the blocker node but not
in the label of the blocked one.

Especially the root nodes of constructed completion graphs for satisfiability and
consistency tests are very suitable for the extraction of patches. For instance, if the
tableau algorithm creates a fully expanded and clash-free completion graph for testing
the satisfiability of a concept C, then a patch for the node vC can be extracted from
the root node for which the concept C is asserted. In contrast, the completion graph
of the consistency check can be used to patch representative nodes for nominals. Of
course, for the patching of nominal dependent nodes, we have to ensure some kind of
consistency, i.e., the dependent nominals have to be compatible with the representative
nodes of these nominals in the saturation graph and the already applied patches for these
nodes.

In principle, it would be possible to extract patches also from other nodes, but this
would require a more detailed analysis of the completion graph. For example, the tab-
leau algorithm does not apply the ∃-rule for a concept ∃r.C in the label of a node v if v
already has an r−-predecessor v′ with C in its label. Hence, if the ancestor v′ directly or
indirectly uses nominals, then also v has to be considered as nominal dependent. More-
over, for other nodes in the completion graph it is often not clear which concepts have to
be considered as non-deterministically derived consequences. For instance, if we create
for the concepts ∃r.C and ∀r.D in the label of a node v the r-successor v′ and we extract
a patch for vC from v′, then D has to be identified as a non-deterministically derived
concept. For this, it is in principle necessary to track and analyse the dependencies be-
tween facts and their causes in the completion graph. If this is efficiently supported by a
reasoning system, then the extraction of patches can also be extended to other nodes in
the completion graph. However, if it is difficult to extract a certain kind of information,
then we simply restrict the patch creation appropriately.

Note that we can combine several patches into one with the ◦-operator. However, if
both patches contain information about the same node, then we keep the information for
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this node only from one patch instead of mixing the information. Thus, the information
from the other patches gets lost for all common nodes.

The saturation patches are applied to a saturation graph as follows:

Definition 20 (Patch Application). Let S = (V, E,L) be a saturation graph and P =

(PV , PLd, PLn, Pmc, Pnd) a saturation patch for S . We call S [P] the application of the
patch P to the saturation graph S .

The deterministic saturation graph that is associated with a patch application S [P]
is the fully saturated saturation graph S ′ = saturate((V, E,L′)), where L′ is the exten-
sion of L by the concepts from PLd, i.e., L′(v) = L(v) ∪ PLd(v) for each v ∈ E.

Let S ′ = (V ′, E′,L′) be the deterministic saturation graph that is associated with
S [P], where P = (PV , PLd, PLn, Pmc, Pnd), then the non-deterministic saturation graph
that is associated with S [P] is the saturation graph S ′′ = saturate\PV ((V ′, E′,L′′)),
where L′′ is the extension of L′ by the concepts from PLn, i.e., L′′(v) = L′(v) ∪ PLn(v)
for each v ∈ V ′, and saturate\V , with the set of nodes V, is a modified version of the
saturate function such that only the ∀-rule is applied to the nodes in V and the ∀-rule
does not propagate new concepts to nodes in V.

In order to extend a patch application S [P] with a new patch P′, we combine the
patches such that we keep all information from the new patch, i.e., S [P′ ◦ P]. This al-
lows for updating already patched nodes, whereby the associated saturation graphs can
be further improved. Each patch application S [P] implicitly represents a deterministic
saturation graph, where only the deterministic consequences from the applied patch P
are considered in an extension of S , and a non-deterministic saturation graph, where
also the non-deterministic consequences are considered.

Note, in order to saturate the non-deterministic saturation graph, we use the slightly
modified saturateV function, where the modification of the patched nodes by the sat-
uration rules is avoided. The standard saturation rules possibly propagate new conse-
quences also to patched nodes, which is unfavourable if these consequences are derived
from the processing of different non-deterministic alternatives. Basically, if a node v
and an ancestor of v are patched, then the standard saturation rules might propagate
new consequences that are obtained from the patching of v up to the ancestors. If the
ancestor is, however, patched with concepts from another completion graph where dif-
ferent non-deterministic alternatives are processed, then we possibly mix consequences
of different alternatives in the saturation graph, which easily limits the effectiveness of
our approach. For example, if v contains the disjunction ∀r.A t ∀r.¬A, and we patch
v with the non-deterministic extension ∀r.A, then the patching of the r−-predecessor v′

of v with the non-deterministic extension ¬A allows the application of the ∀-rule for
the concept ∀r.A in the label of the node v such that the concept A is propagated to
v′. As a consequence, we would infer with the saturation that v′ is (possibly) clashed
since A and ¬A are in its label. Since all (new) consequences in the non-deterministic
saturation graph are also considered to be non-deterministic, this does not produce in-
correct results. In order to, nevertheless, avoid such unfavourable interactions, we use
the modified saturation saturate\V (S ′) function, where only the ∀-rule is applied to the
nodes in V and the ∀-rule is modified such that it does not propagate concepts to a node
v ∈ V . Although the saturation rules can possibly also influence patched nodes in the
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deterministic saturation graph, this is not problematic since all consequences are indeed
deterministic consequences.

Note, for practical implementations, it is not necessary to rebuild the determinis-
tic and non-deterministic saturation graphs from scratch after the application of new
patches. In principle, we can incrementally update the last created versions of the de-
terministic and non-deterministic saturation graphs, which is especially trivial for the
deterministic one since all information from new patches can be used to extend the
previous version of the graph. Furthermore, we can obviously reuse the data of the pre-
vious saturation graph for all nodes that are not influenced by the patches. Also, since
the non-deterministic consequences only influence ancestor nodes, we can use the last
created non-deterministic saturation graph, apply the new patches, and then we succes-
sively update the ancestors of the newly patched nodes until we reach ancestors that are
not further influenced by consequences of the new patches, i.e., their labels are identical
to the labels of the corresponding nodes in the last non-deterministic saturation graph.
Hence, also the construction of the non-deterministic saturation graph is usually not a
significant overhead, especially if the non-deterministically added consequences only
have a locally limited influence. In practice, it can be useful to further limit the number
of ancestors that are updated for the new non-deterministic consequences. If the limit
is reached, then the remaining ancestors are simply marked as critical. This allows for
guaranteeing a limited overhead for the management of the non-deterministic saturation
graph.

In order to further enable the usage of patched saturation graphs for the assistance of
the tableau algorithm, e.g., for the transfer of result into the completion graphs, we have
to update the saturation statuses after the application of the patches. Similarly to the
rule application of the non-deterministic saturation graph, we do not want to propagate
a status to a patched node from the successors. Therefore, we use a modified status\V

function instead of status, which applies the rules of Table 4 and 5 only to nodes that
are not in V . Obviously, we also have to use a modified ]mcands′ function in status\V

since we have to use the information from the patch for the patched nodes. To be more
precise, when Pmc denotes the mapping to the number of merging candidates in the
considered patch, then ]mcands′(v, s,D) has to return Pmc(〈v, s,D〉) if v is a patched
node, and ]mcands(v, s,D) otherwise.

In addition, we have to initialise the sets S!, So, and S? for the patched nodes with
the information from the applied patch. For this, we use the initStatus function (cf.
Algorithm 1), which is parametrised by the saturation patch, for which we create the
initial status, and the deterministic flag that determines whether the status is build for
the deterministic or non-deterministic saturation graph. Basically, if for a patched node
is known that it has a tight at-most restriction, then initStatus adds this node to S!.
Analogously, the initStatus function adds a patched node v to So if the patch contains
the information that v is nominal dependent, i.e., v ∈ Pnd. The patched nodes in the
non-deterministic saturation graph are obviously not critical since their labels are di-
rectly extracted from fully expanded and clash-free completion graphs, i.e., we have
already shown that these nodes are satisfiable. However, in the deterministic saturation
graph we consider only deterministic consequences and, therefore, we have to mark all
patched nodes, which are also associated with non-deterministically consequences, as
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Algorithm 1 initStatus(P, deterministic)
Output: Creates and returns an initial status for the patch P
1: (PV , PLd, PLn, Pmc, Pnd)← P
2: (S!,So,S?)← (∅, ∅, ∅)
3: for v ∈ PV do
4: if there exists 6m r.C ∈ (PLd ∪ PLn) such that Pmc(〈v, r,C〉) = m then
5: S! ← S! ∪ {v}
6: end if
7: if v ∈ Pnd then
8: So ← So ∪ {v}
9: end if

10: if deterministic = true and PLn(v) , ∅ then
11: S? ← S? ∪ {v}
12: end if
13: end for
14: return (S!,So,S?)

critical, i.e., these nodes are added to the set S? if deterministic is set to true. In order
to generate the actual saturation status for the deterministic and non-deterministic satu-
ration graphs, we initialise the status sets by calling initStatus for the applied patch and
the corresponding value for the parameter deterministic. Then, the function status\PV

is called with the initial saturation status and the corresponding saturation graph, where
PV denotes the set of patched nodes in the applied patch.

Analogously to the deterministic and non-deterministic saturation graphs, every
new saturation status can be incrementally updated from the last generated status for
the last saturation graphs by sequentially updating the ancestors for the newly patched
nodes. Hence, also the generation of new saturation statuses is not causing a significant
overhead in practice.

The patching of saturation graphs enables a more sophisticated assisting of tableau
algorithms. In order to describe the changes and enhancements for the transfer of satura-
tion results into completion graphs, let (Sd

! ,S
d
o,S

d
? ) ((Sn

! ,S
n
o,S

n
?)) denote the saturation

status of the deterministic (non-deterministic) saturation graph S d (S n) of a patch ap-
plication S [P]. Obviously, we can still directly add inferred consequences from a node
vC of the deterministic saturation graph S d to a node v in the completion graph if C is in
the label of v. Also, the processing of successors can still be blocked if the node v in the
completion graph has a label that is identical to the label of a node v′ in the deterministic
saturation graph S d and v′ is neither critical nor nominal dependent, i.e., v′ < (Sd

? ∪S
d
o).

In addition, we can now also search v′ in the non-deterministic saturation graph S n.
Thus, the processing can also be blocked if there are descendant nodes that cannot be
completely handled by the saturation, e.g., descendants for which non-deterministic rule
applications are necessary, but the (ancestor) nodes that are used for blocking are not
further critical in the non-deterministic saturation graph S n due to the applied patches.
Obviously, it is very beneficial when patches add non-deterministic consequences that
have only a local impact, i.e., the patches propagate only concepts to a certain number
of ancestors, and, then, the labels in the deterministic and non-deterministic saturation
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graphs are identical. We know for these ancestors that they are not further influenced by
non-deterministic consequences and, therefore, they can also be directly used for block-
ing. In particular, since the labels of these ancestor nodes are identical to corresponding
labels in the deterministic saturation graph, we can establish the blocking analogously
to the blocking with nodes from the deterministic saturation graph S d, i.e., already with
the creation and initialisation of new nodes in the completion graph, which makes an
explicit search for a blocker node unnecessary.

We still have the unfavourable condition that the nodes in the saturation graph are
not allowed to be nominal dependent for the blocking. However, also this restriction
can be relaxed such that it works well for many real world ontologies. Basically, we
patch all nodes that represent individuals in the saturation graph after the consistency
check with the corresponding nodes in the fully expanded and clash-free completion
graph. Furthermore, we ensure, on the one hand, that each subsequent saturation patch
is also compatible to this initial patch, i.e., we only create patches for nominal depen-
dent nodes if all the labels of the nodes for the individuals in a completion graph are
identical or subsets to the corresponding labels of the initial completion graph from
the consistency check. On the other hand, we do not create patches for nodes if they
depend on new nominals, i.e., on nominals that are introduced by the NN-rule. This
ensures that the nodes in the saturation graphs can be used for blocking as long as we
expand the nodes for the individuals in the same way as in the initial completion graph.
Thus, if nominal dependent nodes are used for blocking, we collect the blocked nodes
in a queue and we reactive these nodes if it becomes necessary to expand the nodes for
the individuals in another way as in the completion graph for the consistency check. Of
course, with a more exact tracking of the dependent nominals, e.g., by exactly saving on
which nominals a node possibly depends on, we can refine and improve this technique
significantly. Obviously, if we use a node for blocking for which it is exactly known on
which nominals it depends on, then we only have to reactivate the processing of this
node if the nodes for the corresponding individuals are expanded differently. Note, this
approach also keeps the patching of the saturation graphs consistent with respect to the
individuals that are used as nominals.

Due to the non-deterministic decisions of the tableau algorithm, a critical node in
the saturation graph can be patched in several ways. Moreover, we can patch an already
patched node to (hopefully) improve the non-deterministic saturation graph, i.e., we
try to reduce the number of nodes that are influenced by the non-deterministic conse-
quences and/or marked as critical. Thus, we need a strategy that decides for which nodes
we have to extract patches from a fully expanded and clash-free completion graph such
that the non-deterministic saturation graph can be improved. As already described, we
can only extract patches from nodes for which all information can be safely extracted
and they do not make the non-deterministic saturation graph inconsistent. In addition,
the strategy has to keep the number of patches as small as possible since we have to
update the data structures for every patch.

A simple example for such a strategy is to create only patches when they reduce
the number of non-deterministic propagation concepts for the patched nodes. With
this strategy we would prefer a patch that adds the non-deterministic set of concepts
{∀r.C, A1, A2} in comparison with a patch with the non-deterministic extension {∀s.D,∀t.D}.
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At least, this strategy ensures that we do not create arbitrary patches, which avoids
an oscillation between different possibilities, and we clearly favour the creation of
patches that do not influence other nodes. However, we cannot guarantee that the non-
deterministic saturation graph is actually improved. For example, the concept ∀r.C
could propagate C to several predecessors and also the processing of C could fur-
ther influence many ancestors, whereas the patch with {∀s.D,∀t.D} might only influ-
ence few predecessors. Therefore, if the node is already patched with {∀s.D,∀t.D} and
we create a new patch with {∀r.C, A1, A2} due to the fewer propagation concepts, then
we even worsen the non-deterministic saturation graph. In order to counteract this, we
should also extract patches from the saturation graph if we detect that a critical node
in the deterministic saturation graph is labelled with the same concepts as in the non-
deterministic saturation graph and the node in the non-deterministic saturation graph is
not critical. With this kind of internal patch we can ensure that if the saturation has iden-
tified a node that is neither critical nor influenced by non-deterministic consequences,
then we remember this “solved” state of the node and we do not “overwrite” its “solved”
state by integrating other patches in the non-deterministic saturation graph. Of course,
the strategy for the creation and extraction of patches optimally also considers the nom-
inal dependency and thigh at-most restrictions by trying to reducing the number of such
nodes.

Example 5. As mentioned, all nodes in the saturation graph of Figure 2, which is gen-
erated for testing the satisfiability of the concept A1 w.r.t. the TBox T4, are critical.
As a consequence, we have to check the satisfiability of A1 with the tableau algo-
rithm in detail. For this, we first check the consistency of the individuals a, b and c,
which results in a simple completion graph, where the nodes for a and c are merged
together. From this completion graph, we extract an initial saturation patch P1 for
the individuals, i.e., P1 = (PV

1, PLd
1, PLn

1, Pmc
1, Pnd

1) with PV
1 = {v{a}, v{b}, v{c}},

PLd
1 = {v{a} 7→ {{c}}, v{c} 7→ {{a}, B,∀s−.B}}, PLn

1 = ∅, Pmc
1 = {〈v{b}, r,>〉 7→ 1},

and Pnd
1 = {v{a}, v{b}, v{c}}. Note, although the nodes for the individuals a and c are

merged in the completion graph, we have to patch v{a} and v{b} separately since the sat-
uration does not support the merging of nodes. Also note that the completion graph
for the consistency check is deterministic and, therefore, the mapping of nodes to non-
deterministically derived concepts is not required, i.e., each node has to be mapped to
∅ for PLn

1. However, for ease of presentation, we omitted uninteresting patch data and
we simply used ∅ for PLn

1.
The deterministic saturation graph that is obtained from the application of P1 to our

initial saturation graph is extended by the data from the applied patch. In particular,
v{c} is extended by the concepts {a}, B, and ∀s−.B in this deterministic saturation graph,
whereby the concept B is also propagated to vA3 and, as a consequence, the label of
vA3 is extended to the set {>, A3,∃s.{c}, B,∀s−.B}. Since the patch does not contain non-
deterministic information, the non-deterministic saturation graph that is associated with
the application of P1 is identical to the deterministic one.

Now, the saturation status for the these saturation graphs reveals that the nodes v{a},
v{b}, v{c}, and vA3 are not critical. Thus, we have, in principle, already shown the satisfia-
bility of the concept A3. In contrast, vA1 is still indirectly critical due to the incompletely
handled disjunction A1 t A3 in the label of vA2 . Hence, we initialise a new completion
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graph with a node v, for which the concept A1 is asserted, in order to test the satisfia-
bility of A1 with the tableau algorithm. Since the disjunction will also be added to this
completion graph for an s-successor v′ of v, the tableau algorithm has to choose between
the disjuncts A1 and A3. Obviously, A1 is satisfiable, but the non-deterministic decision
influences the patching of the saturation graph. For example, by non-deterministically
adding A3 to v′, the tableau algorithm has to propagate B to the label of v and, thus,
we could create a patch P2 = ({vA1 }, ∅, {vA1 7→ {B,∀s−.B}}, ∅, {vA1 }). Obviously, the
node vA1 is also with the application of P2 in the associated deterministic saturation
graph critical and, therefore, its usage for assistance (e.g., blocking in new completion
graphs) is limited. In contrast, if A1 is non-deterministically added to v′, then we can
extract a saturation patch P3 = ({vA1 }, ∅, ∅, ∅, {vA1 }) and by applying P3, we can remove
the critical mark for the node vA1 also in the associated deterministic saturation graph.
Hence, we prefer the saturation patch P3 and we would also extract and apply P3 even
if we extracted and applied P2 from an earlier constructed completion graph.

As of now, we have only considered patching from fully expanded and clash-free
completion graphs. Of course, it is also possible to integrate unsatisfiability information
form completion graph into the saturation graphs. If the tableau algorithm cannot find
a fully expanded and clash-free completion graph for a concept C, then we can create
a patch where we deterministically extend vC by the concept ⊥. The management of
unsatisfiable concepts in the saturation graph has the significant benefit that ⊥ is also
propagated to other nodes and we can immediately identify many other unsatisfiable
concepts.

Note, especially with the extraction and application of patches, the assistance of the
tableau algorithm with the saturation graphs also integrates a very intelligent caching
technique into the tableau-based reasoning system. Of course, the realised caching is
limited to certain nodes that are not further influenced by predecessors, but it also works
with nominals and inverse roles. Moreover, it is very fast and can automatically propa-
gate unsatisfiability and satisfiability statuses to other concepts and labels.

The non-deterministic saturation graph can also be used to further improve the clas-
sification algorithm. As hitherto, all classes in the label of vA in the deterministic sat-
uration graph are indeed subsumers of the class A and if vA is not critical, then L(vA)
contains all subsumers. Now, if the node vA in the non-deterministic saturation graph is
not critical, then the label of vA in the non-deterministic saturation graph describes all
possible subsumers of A. Thus, if vA is not critical in the non-deterministic saturation
graph, then its label can be used to prune possible subsumers and, in particular, if the
label is also the same as in the deterministic saturation graph, then we again know that
L(vA) contains all subsumers.

6 Related Work

There are already some approaches that combine the reasoning techniques of fully-
fledged Description Logic reasoners with specialised procedures for specific fragments.
For instance, the reasoning system MORe [1] uses module extraction to extract a part of
an ontology that can be completely handled with a more efficient reasoning system and
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the fully-fledged reasoner is then used for the remaining parts of the ontology. Note, our
approach works more from the opposite direction: we apply the saturation and simply
ignore not supported features and then we detect which parts cannot be completely han-
dled. Since MORe uses other reasoners as black-boxes, it is, in principle, also possible
to combine arbitrary reasoning procedures by adapting the module extraction. How-
ever, as of now, all fully-fledged OWL 2 reasoners are based on variants of tableau
calculi and the efficient reasoning systems for interesting fragments are usually using
variants of saturation procedures (e.g., completion- and consequence-based reasoning),
whereby the combination of tableau and saturation algorithms currently seems to be the
only interesting combination.

In comparison with our approach, the technique in MORe is much more general
and flexible. For example, it is easily possible to exchange the fully-fledged reasoner
in MORe with a reasoning system for which it is know that it works better for cer-
tain kinds of ontologies. In addition, it is not necessary to modify existing reasoners,
whereas our approach has to be implemented into a reasoning system that satisfies cer-
tain requirements (e.g., binary absorption). Moreover, our approach has a significant
higher implementation effort since the saturation and the tableau algorithm has to op-
erate on compatible data structures, which usually means that an appropriate saturation
algorithm has to be implemented into a tableau-based reasoning system.

However, our approach has also various advantages. For example, our saturation
uses the same representation of ontologies as tableau algorithms and, therefore, the on-
tology has to be loaded only once. In contrast, the reasoners used by MORe have to
separately load the ontology (or parts thereof) since they are used as black-boxes and,
usually, they also do not have compatible data structures. Furthermore, our approach
is much more tolerant for the usage of features outside the efficiently supported frag-
ment. Some of our optimisations can also be used when all saturated nodes are critical,
which could, for example, be the case if the ontology contains non-absorbable GCIs.
In addition, we have presented an extension that allows to fix critical parts in the satu-
ration, whereby not supported features are not problematic if they are only rarely used
in the ontology. In contrast, MORe has to reduce the module for the efficient reasoner
as long as the module contains not supported features. Thus, our approach result in a
better pay-as-you-go behaviour. Moreover, we can use intermediate results from the sat-
uration, whereas the technique in MORe uses the externally provided interface of the
reasoners, which usually only provides basic information such as the satisfiability of
concepts and the subsumers of classes. Therefore, our integration of the saturation pro-
cedure obviously allows for more sophisticated optimisation techniques. For instance,
the transfer of inferred consequences and the blocking of the processing with the tableau
algorithm. Although both approaches are in principle applicable to different reasoning
tasks, our technique automatically improves the reasoning as long as the reasoning task
is reduced to consistency checking with the tableau algorithm. For example, in order to
support the satisfiability testing of complex concepts, our approach does not need any
adaptations. For MORe, however, it would be necessary to check whether the complex
concept is in the module that can be handled by the efficient reasoner in order to achieve
an improvement. Last but not least, we do not need the module extraction technique in
our approach, which can also take a significant amount of time. This is especially an ad-
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vantage for ontologies that are almost completely in the efficiently supported fragment
since our approach does not have a similar overhead for such ontologies.

Another reasoning system that combines different reasoning techniques is WSClas-
sifier [25], which uses a weakening and strengthening approach for the classification
of ontologies. To be more precise, the ontology is first rewritten into a simpler one
(the weakening of the ontology), where not supported language features are (partially)
expressed in the fragment that can be handled by the efficient reasoner. Then, a strength-
ened version of the weakened ontology is created, where axioms are added such that at
least also the consequences of the original ontology are implied. The weakened and the
strengthened ontologies are then classified by the specialised reasoner and possible dif-
ferences in the obtained subsumtion relations are verified with a fully-fledged reasoner.
Also for WSClassifier, the fragment specific reasoner (usually based on a saturation
procedure) and the fully-fledged reasoner (usually based on a tableau calculus) are used
as black boxes, which makes them, in principle, exchangeable. However, the weaken-
ing and strengthening also has to be adapted to the language fragment of the efficient
reasoner.

The advantages and disadvantages of our approach are in principle similar as in the
comparison with the technique realised in MORe. However, the approach of WSClas-
sifier is not as easily extendible to more language features and, as of now, it is only
presented for the DLALCHIO (with the elimination/encoding of transitive roles also
for SHIO). Moreover, since the nominals are simplified to fresh atomic concepts, the
approach can possibly not be used for all reasoning tasks. If such a simplification is,
however, applicable, then it often improves the reasoning performance for correspond-
ing ontologies.

7 Implementation and Evaluation

We extended Konclude4 [29] with the saturation procedure shown in Section 3 and with
the optimisations presented in Section 4 and 5. Konclude is a tableau-based reasoner for
SROIQ [9] with extensions for the handling of nominal schemas [26]. Konclude inte-
grates many state-of-the-art optimisations such as lazy unfolding, dependency directed
backtracking, caching, etc. Moreover, Konclude uses partial absorption [27] in order
to significantly reduce the non-determinism in ontologies, which makes Konclude very
suitable for the integration of saturation procedures.

Our integration of the saturation algorithm in Konclude almost covers the Descrip-
tion Logic Horn-SRIF by using the saturation extensions described in Section 5.1
such that universal restrictions that propagate concepts to successors and the merging
of successors due to functional at-most restrictions can be handled (basically only the
merging with predecessors is not integrated). The number of nodes that are additionally
processed for the handling of these saturation extensions is mainly limited by the num-
ber of concepts occurring in the knowledge base. However, the saturation in Konclude
only supports a very limited handling of ABox individuals since the ABox individuals
also have to be handled by the tableau algorithm (at least in the worst-case) and sev-
eral representations of the ABox individuals easily multiply the memory consumption.

4 Available at http://www.konclude.com/
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Table 6. Statistics of ontology metrics for the evaluated ontology repositories (Ø stands for aver-
age and M for median)

Repository # Axioms Classes Properties Individuals
Ontologies Ø M Ø M Ø M Ø M

Gardiner 276 6, 143 95 1, 892 16 36 7 90 3
NCBO BioPortal 403 25, 561 1, 068 7, 617 339 47 13 1, 782 0
NCIt 185 178, 818 167, 667 69, 720 68, 862 116 123 0 0
OBO Foundry 422 44, 424 1, 990 8, 033 839 28 6 24, 868 66
Oxford 383 74, 248 4, 249 8, 789 544 52 13 18, 798 12
TONES 200 7, 697 337 2, 907 100 28 5 66 0
Google Crawl 413 6, 282 194 1, 122 38 69 15 830 1
OntoCrawler 544 1, 876 119 125 18 56 12 638 0
OntoJCrawl 1, 680 5, 848 218 1, 641 43 29 8 810 0
Swoogle Crawl 1, 635 2, 529 109 420 21 26 8 888 0
ALL 6, 141 18, 583 252 4, 635 50 39 9 3, 674 0

Table 7. Ontology metrics for selected benchmark ontologies

Ontology Expressiveness Axioms Classes Properties Individuals

Gazetteer ALE+ 1, 170, 573 518, 196 16 1
EL-GALEN ALEH+ 60, 633 23, 136 950 0
Biomodels SRIF 847, 794 187, 520 70 220, 948
Cell Cycle v2.01 SRI 731, 482 106, 398 469 0
NCI v06.12d ALCH 141, 957 58, 771 124 0
NCI v12.11d SH 229, 713 95, 701 110 0
SCT-SEP SH 109, 959 54, 974 9 0
OBI SHOIN 32, 157 3, 533 84 160

To counteract this, Konclude primarily handles ABox individuals with the tableau algo-
rithm and uses patches from completion graphs (as presented in Section 5.2) to improve
those parts in the saturation graph that depend on nominals.

In addition, Konclude saturates the concepts that might be required for a certain
reasoning task upfront in a batch processing mode, whereby the switches between the
tableau and the saturation algorithm can be reduced significantly. Moreover, we sort
the concepts that occur in the knowledge base and saturate them in a specific order
to maximise the amount of data that can be shared between the saturated nodes. For
example, if the knowledge base contains the axiom A v B, then we first saturate B and
we use the data from vB to initiate vA. In particular, by coping the node labels, many
rule applications can be skipped, which significantly improves the performance of the
saturation procedure. Furthermore, this also reduces the effort for the saturation status
detection. For instance, if vB does not satisfy an at-most restriction, then this at-most
restriction is also not satisfied for vA.

In the following, we present a detailed evaluation that shows the effect of Kon-
clude’s integrated saturation procedure extended by the presented optimisation for the
assistance of the fully-fledged tableau algorithm. In addition, we compare the results of
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Konclude to the other state-of-the-art reasoners FaCT++ 1.6.2 [31], HermiT 1.3.8 [7],
MORe 0.1.6 [1], and Pellet 2.3.1 [23]. The evaluation uses a large test corpus of ontolo-
gies which have been obtained by collecting all downloadable and parseable ontologies
from the Gardiner ontology suite [5], the NCBO BioPortal,5 the National Cancer Insti-
tute thesaurus (NCIt) archive,6 the Open Biological Ontologies (OBO) Foundry [24],
the Oxford ontology library,7 the TONES repository,8 and those subsets of the OWL-
Corpus [19] that were gathered by the crawlers Google, OntoCrawler, OntoJCrawl, and
Swoogle.9 We used the OWL API for parsing and we converted all ontologies to self-
contained OWL/XML files, where we created, for each of the 1,380 ontologies with
imports, a version with resolved imports and another version, where the import direc-
tives are simply removed (which allows for testing the reasoning performance on the
main ontology content without imports, which are frequently shared by many ontolo-
gies). Since Konclude does not yet support datatypes, we removed all data properties
and we replaced all data property restrictions with owl:Thing in all ontologies. Table 6
shows an overview of our obtained test corpus with overall 6,141 ontologies including
statistics of ontology metrics for the source repositories. Please note that 34.9 % of all
ontologies are not even in the OWL 2 DL profile, which is, however, mainly due to
undeclared entities.

In addition to our test corpus, we present results for explicitly selected ontologies
(shown in Table 7) which are frequently used in other evaluations. This enables a con-
creter comparison and to directly show the effect of our approach for well-known bench-
mark ontologies. In particular, the upper part of Table 7 consists of the well-known
OWL 2 EL ontologies Gazetteer and EL-GALEN, where the latter one is obtained
by removing functionality and inverses from the Full-GALEN ontology.10 Gazetteer,
Biomodels, and Cell Cycle v2.01 are large but mainly deterministic ontologies from
the NCBO BioPortal, NCI v06.12d and NCI v12.11d are different versions of the NCI-
Thesaurus ontology from the NCIt archive, SCT-SEP denotes the SNOMED CT anatom-
ical model ontology,11 and OBI represents a recent version of the OBI ontology.12

Please note that some of these ontologies are also part of the test corpus.
The evaluation was carried out on a Dell PowerEdge R420 server running with two

Intel Xeon E5-2440 hexa core processors at 2.4 GHz with Hyper-Threading and 48
GB RAM under a 64bit Ubuntu 12.04.2 LTS. Our evaluation focuses on classification,
which is a central reasoning task that is supported by many reasoners and, thus, it is
ideal for the comparison of results. In principle, we only measured the classification
times, i.e., the times spent for parsing and loading ontologies as well as writing classi-

5 http://bioportal.bioontology.org/
6 http://ncit.nci.nih.gov/
7 http://www.cs.ox.ac.uk/isg/ontologies/; Note, the Oxford ontology library also

contains other repositories (e.g., the Gardiner ontology suite), which we ignored in order to
avoid too much redundancy.

8 http://owl.cs.manchester.ac.uk/repository/
9 In order to avoid too many redundant ontologies, we only used those subsets of the OWLCor-

pus which were gathered with the crawlers OntoCrawler, OntoJCrawl, Swoogle, and Google.
10 http://www.co-ode.org/galen/
11 http://condor-reasoner.googlecode.com/
12 http://obi-ontology.org/
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fication output to files are not included for the presented results. This is an advantage
for reasoners that already perform some preprocessing while loading, which is, how-
ever, not the case for Konclude since Konclude uses a lazy processing approach where
also the preprocessing is triggered with the classification request. This also seems to
be confirmed by the accumulated loading times over all ontologies in the evaluated
repositories, which are 1, 400 s for Konclude, 4, 130 s for FaCT++, 4, 192 s for MORe,
6, 452 s for Pellet, and 7, 869 s for HermiT. In addition, we ignored all errors that were
reported by the reasoners, i.e., if a reasoner stopped the processing of an ontology (e.g.,
due to not supported axioms or program crashes), then we only measured the actual
processing time. This is also a disadvantage for Konclude since Konclude processed
all ontologies (however, Konclude also ignored parts of role inclusion axioms if they
were not regular as specified by OWL 2 DL). In contrast, MORe reported errors for
240, HermiT for 260, FaCT++ for 280, and Pellet for 318 ontologies in our corpus. A
frequently reported error consisted of different individual axioms for which only one
individual was specified, and HermiT completely refused the processing of ontologies
with irregular role inclusion axioms (which are, however, only rarely present in our test
corpus).

For the ontology repositories, we used the time limit of 5 minutes, whereas we can-
celled the classification task for the selected benchmark ontologies after 15 minutes
since these ontologies are relatively large. Moreover, we averaged the results for the
selected benchmark ontologies over 3 separate runs, which was not necessary for the
evaluated repositories since the large amount of ontologies automatically compensates
the non-deterministic behaviours of the reasoners, i.e., the accumulated (classification)
times for separate runs over many ontologies are almost identical. Although some rea-
soners support parallelisation, we configured all reasoner to use only one worker thread,
which allows for a comparison independent of the number of CPU cores and facilitates
the presentation of the improvements through saturation.

7.1 Optimisation Evaluation

The presented optimisations are integrated in Konclude such that they can be sepa-
rately activated and deactivated. Hence, we can evaluate and compare the performance
improvements for the different optimisations. Please note that the deactivation of opti-
misations in Konclude can cause disproportionate performance losses since appropriate
replacement optimisations, which could compensate the deactivated techniques at least
in a slight way, are often not integrated in Konclude. For example, many reasoning
systems are using the completely defined concepts optimisation [30] to identify those
classes of an ontology for which all subsumption relations can be directly extracted
from the ontology axioms and, thus, satisfiability and subsumption tests are not neces-
sary to correctly insert these classes into the class hierarchy. Obviously, such an opti-
misation is not necessary for Konclude, because we can extract all subsumers of a class
from the saturation if the saturated representative node is not critical. Hence, the per-
formance with deactivated optimisations might be worse than it has to be. Nevertheless,
we evaluated the versions of Konclude, where

• all saturation optimisations are activated (denoted by ALL), and
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• none of the saturation optimisations are activated (denoted by NONE),

in combination with the activation/deactivation (denoted by +/−) of the following mod-
ifications:

• RT (standing for result transfer), where the transfer of (possibly intermediate) re-
sults from the saturation into the completion graph (as presented in Section 4.1) is
activated/deactivated;

• SE (standing for subsumer extraction), where the extraction of subsumers from the
saturation (as presented in Section 4.2) is activated/deactivated;

• MM (standing for model merging), where the model merging with the saturation
graph (as presented in Section 4.3) is activated/deactivated;

• ES (standing for extended saturation), where the handling of universal restrictions
and of functional at-most restrictions for successors in the saturation (as presented
in Section 5.1) is activated/deactivated;

• PS (standing for patched saturation), where the patching of the saturation graph
with data from fully expanded and clash-free completion graphs (as presented in
Section 5.2) is activated/deactivated.

For example, NONE+MM denotes the version of Konclude, where all saturation opti-
misations except the model merging with the saturation graph are deactivated.

Based on the version NONE, Table 8 shows the performance improvements for the
activation of the saturation optimisations RT, SE, and MM. In addition, the results for
ALL are shown, where all optimisations are activated simultaneously. Please note that
ES and PS are optimisations to further improve the saturation procedure and, there-
fore, their evaluation only makes sense in combination with other saturation optimisa-
tions. The most significant improvements are caused by the model merging optimisa-
tion (MM), which is mainly due to the large amount of NCI-Thesaurus ontologies in the
NCIt archive, where this optimisation significantly reduces the classification effort. In
contrast, the optimisations RT and SE only allow for minor improvements for the accu-
mulated classification times. Nevertheless, if all saturation optimisations are activated,
then we can again observe a significant performance improvement for all repositories,
which shows that there is a further synergy effect from the combination of the different
optimisations. Obviously, this is hardly surprising since at least the saturation is shared
by all optimisations.

Table 9 analogously shows the performance improvements by activating the satura-
tion optimisations RT, SE, and MM for the selected benchmark ontologies. The satura-
tion optimisations can significantly improve the classification performance for several
ontologies. It can also be observed that for many ontologies only specific optimisations
are crucial, which is, however, also not very surprising. For example, it is clear that the
MM optimisation cannot improve the performance for deterministic ontologies since
deterministic ontologies do not have possible subsumers for which the model merging
could be applied.

Table 10 shows the performance changes for the separate deactivation of saturation
optimisations based on the ALL configuration. The evaluation of optimisations might
be more interesting from this perspective, because the saturation of many concepts can
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Table 8. Accumulated classification times (in seconds) with separately activated saturation opti-
misations for the evaluated ontology repositories

Repository NONE NONE+RT NONE+SE NONE+MM ALL

Gardiner 531 611 469 535 559
NCBO BioPortal 2, 071 1, 947 971 2, 156 793
NCIt 28, 639 28, 538 28, 276 3, 223 2, 457
OBO Foundry 879 821 979 1, 078 649
Oxford 6, 623 5, 006 6, 012 6, 510 2, 743
TONES 1, 756 1, 456 1, 413 494 337
Google Crawl 465 428 448 467 138
OntoCrawler 26 25 24 25 22
OntoJCrawl 1, 417 923 715 1, 427 548
Swoogle Crawl 2, 501 2, 502 2, 493 1, 402 1, 343
ALL 44, 910 42, 256 41, 800 17, 317 9, 589

Table 9. Accumulated classification times (in seconds) with separately activated saturation opti-
misations for evaluated benchmark ontologies

Ontology NONE NONE+RT NONE+SE NONE+MM ALL

Gazetteer 34.3 36.1 17.0 36.7 16.8
EL-GALEN 73.2 5.8 1.5 76.3 1.5
Biomodels 127.2 56.5 34.5 127.1 34.4
Cell Cycle v2.01 ≥ 900.0 ≥ 900.0 46.3 ≥ 900.0 47.2
NCI v06.12d ≥ 900.0 ≥ 900.0 ≥ 900.0 23.2 19.6
NCI v12.11d 15.3 15.1 9.9 16.1 8.9
SCT-SEP ≥ 900.0 494.1 218.5 525.7 181.2
OBI 0.9 0.8 0.7 0.9 0.6

easily require a lot of reasoning time and, from this perspective, the overhead of the sat-
uration is not only associated with the separately activated optimisation. Furthermore,
this also allows for evaluating the effects of the saturation improvements ES and PS,
which is only useful in combination with other saturation optimisations. Table 10 re-
veals that some saturation optimisations are completely irrelevant for some repositories.
Moreover, the deactivation of optimisations can also improve the performance for sev-
eral repositories, e.g., the deactivation of RT results in better reasoning times for the
ontologies in the TONES repository.

Especially the deactivation of the PS optimisation does often not result in signifi-
cant performance losses, which can be traced back to several reasons. On the one hand,
Konclude integrates several caching techniques which often realise similar tasks as the
patching of the saturation graph. On the other hand, the patching of the saturation graph
only improves reasoning over time, i.e., critical nodes can only be solved if enough
patches are applied. As a consequence, the PS optimisation is usually more important
for subsequent reasoning tasks such as realisation. Furthermore, the implementation
currently only extracts patches for root nodes from consistency and satisfiability tests,
which could be further extended to other nodes if certain conditions are satisfied for
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Table 10. Accumulated classification times (in seconds) with separately deactivated saturation
optimisations for the evaluated ontology repositories

Repository ALL ALL−RT ALL−SE ALL−MM ALL−ES ALL−PS

Gardiner 559 706 550 505 558 722
NCBO BioPortal 793 992 1, 814 797 988 751
NCIt 2, 457 2, 551 3, 019 28, 158 2, 496 2, 451
OBO Foundry 649 793 843 648 741 700
Oxford 2, 743 5, 899 4, 093 2, 876 3, 429 2, 775
TONES 337 251 323 1, 457 321 324
Google Crawl 138 488 229 161 363 172
OntoCrawler 22 23 25 21 23 23
OntoJCrawl 548 707 890 406 517 448
Swoogle Crawl 1, 343 1, 372 1, 206 2, 428 1, 248 1, 215
ALL 9, 589 13, 782 12, 993 37, 457 10, 684 9, 583

these nodes. In particular, other caching techniques in Konclude often also consider
other nodes, whereby many node labels are already cached if they are identified as re-
solved in the saturation graph due to patches. Nevertheless, the PS optimisation is often
more important for ontologies that are mainly in the OWL 2 EL profile and intensively
use nominals since other caching techniques can often not be used in such cases. How-
ever, as of now, such ontologies are very rare, especially also due to the fact that they
could not be processed by existing reasoners.

The deactivation of MM also causes performance improvements (e.g., for Onto-
JCrawl and Gardiner), which indicates that further optimisation is possible. For exam-
ple, one could learn statistics about the success of model merging with certain nodes in
the saturation graph and automatically skip a merging test if there is a high “likelihood”
that it will fail. Apart from this, the model merging with the saturation graph (MM)
again seems to be the most important optimisation due to the NCIt archive.

The performance changes for the separate deactivation of saturation optimisations
for the evaluated benchmark ontologies is depicted in Table 11. Again, it can be ob-
served that often only specific optimisations are important for the ontologies. For ex-
ample, only the deactivation of the SE optimisations produces significant performance
losses for the Biomodels ontology.

7.2 Evaluation of Saturation Effort

Clearly, the saturation of many concepts also requires some effort. In the worst case,
the saturated concepts are not helpful in any way and, then, the time and memory that
were investigated in the saturation are completely wasted. However, as shown in Sec-
tion 7.1, the combination of the saturation with the presented optimisations signifi-
cantly improves the overall performance of the reasoning system for many real-world
ontologies. Nevertheless, we have evaluated how much time is spent on the saturation in
comparison with other processing steps, which can be used as indication where further
optimisation is possible. Table 12 shows the percentage of the overall reported process-
ing time that is spent in the different processing stages for the classification tests by the
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Table 11. Accumulated classification times (in seconds) with separately deactivated saturation
optimisations for selected benchmark ontologies

Ontology ALL ALL−RT ALL−SE ALL−MM ALL−ES ALL−PS

Gazetteer 16.8 16.6 37.2 17.0 17.4 17.4
EL-GALEN 1.5 1.5 5.6 1.5 1.5 1.5
Biomodels 34.4 34.8 53.4 34.4 34.5 34.6
Cell Cycle v2.01 47.2 47.9 53.4 48.3 47.9 45.2
NCI v06.12d 19.6 20.2 21.5 ≥ 900.0 19.9 20.0
NCI v12.11d 8.9 9.6 14.3 9.2 8.8 9.2
SCT-SEP 181.2 216.7 500.6 180.4 179.7 179.7
OBI 0.6 0.7 0.8 0.6 0.6 0.6

Table 12. Distribution of processing times in regard to different processing stages (in %)

Repository Building Preprocessing Saturation Consistency Classification

Gardiner 1.6 4.6 6.1 0.0 87.7
NCBO BioPortal 8.3 28.8 40.7 1.4 20.8
NCIt 5.3 8.3 13.3 0.0 73.1
OBO Foundry 37.2 10.2 7.8 13.6 31.3
Oxford 7.7 7.0 29.8 11.7 43.8
TONES 1.8 2.2 20.5 0.3 75.1
Google Crawl 8.4 3.6 8.6 3.0 76.3
OntoCrawler 46.4 9.5 5.6 22.7 15.8
OntoJCrawl 12.4 8.0 6.4 5.8 67.5
Swoogle Crawl 3.6 1.2 21.1 57.8 16.3
ALL 8.4 8.4 20.5 12.3 50.4

ALL version of Konclude. Unsurprisingly, the classification requires with 50 % signifi-
cantly more than any other processing stage for all repositories. However, 20.5 % of the
overall processing time is spent for the saturation, which is also a significant amount,
but already includes the time that is required for the detection of the saturation status.

7.3 Comparison with other Approaches

As mentioned in Section 6, there exist other approaches that also use saturation-based
reasoning techniques to improve fully-fledged tableau algorithms. For example, MORe
uses module extraction to delegate as much work as possible to an efficient reasoner
that is specialised for a specific fragment in order to classify ontologies. Since an early
development version of MORe is already available, we evaluated MORe with our test
corpus and, in the following, we compare the results to our approach. We used MORe
in combination with ELK 0.4.1 [18] and HermiT 1.3.8, but other combinations are also
possible since these reasoners are used as black-boxes.

The left-hand side of Table 13 shows the accumulated classification times for the
versions of Konclude where all saturation optimisations are deactivated (version NONE
in column 2) and all saturation optimisations are activated (version ALL in column 3) in
seconds for the different repositories. Furthermore, the improvement from the version
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Table 13. Improvements through saturation between the approaches in Konclude and MORe for
the accumulated classification times of the evaluated ontology repositories (in seconds and %)

Repository NONE [s] ALL [s] ↓ [%] HermiT [s] MORe [s] ↓ [%]

Gardiner 531 559 −5.2 1, 714 1, 590 7.2
NCBO BioPortal 2, 071 793 61.7 5, 918 3, 932 33.6
NCIt 28, 639 2, 457 91.4 26, 435 26, 600 −0.6
OBO Foundry 879 649 26.2 5, 587 4, 627 17.2
Oxford 6, 623 2, 743 58.6 12, 551 8, 652 31.1
TONES 1, 756 337 80.8 2, 609 2, 174 16.7
Google Crawl 465 138 70.3 2, 147 1, 933 10.0
OntoCrawler 26 22 14.7 1, 722 876 49.1
OntoJCrawl 1, 417 548 61.4 8, 253 4, 543 45.0
Swoogle Crawl 2, 501 1, 343 46.3 5, 051 4, 102 18.8
ALL 44, 910 9, 589 78.6 72, 659 59, 028 18.8

Table 14. Improvements through saturation between the approaches in Konclude and MORe for
the classification times of selected benchmark ontologies (in seconds and %)

Ontology NONE [s] ALL [s] ↓ [%] HermiT [s] MORe [s] ↓ [%]

Gazetteer 34.3 16.8 51.2 ≥ 900.0 18.2 ≥ 98.0
EL-GALEN 73.2 1.5 98.0 ≥ 900.0 2.6 ≥ 99.7
Biomodels 127.2 34.4 73.0 788.8 648.8 17.7
Cell Cycle v2.01 ≥ 900.0 47.2 ≥ 94.8 ≥ 900.0 ≥ 900.0 −

NCI v06.12d ≥ 900.0 19.6 ≥ 97.8 211.9 208.0 1.9
NCI v12.11d 15.3 8.9 41.8 92.7 83.3 10.1
SCT-SEP ≥ 900.0 181.2 ≥ 79.9 ≥ 900.0 ≥ 900.0 −

OBI 0.9 0.6 33.3 32.5 2.3 93.0

NONE to the version ALL is given in percent (in column 4 of Table 13). For example,
by using all presented saturation optimisations, the accumulated reasoning time for all
repositories is reduced by 78.6 % for Konclude. On the right-hand side of Table 13,
we have analogously depicted the accumulated reasoning times for HermiT (column 5)
and MORe (column 6), and also the percentage of HermiT’s reasoning time that can be
reduced by MORe (column 7).

Note, the accumulated loading times for all repositories are 7, 869 s for HermiT and
4, 192 s for MORe, where the difference of 3, 677 s can be explained by the additional
preprocessing that is already performed in HermiT’s loading stage. In order to get a
fair comparison, we added the preprocessing time from the loading stage to HermiT’s
classification time, i.e., the shown classification times for HermiT are extended by the
difference between the loading times of HermiT and MORe.

Table 13 reveals that MORe can significantly improve the reasoning time of HermiT
for almost all repositories. In particular, MORe saves 49.1 % of HermiT’s classification
time for the ontologies from OntoCrawler. Nevertheless, there are still many ontologies
in these repositories, where MORe is not able to reduce the effort of HermiT such that
they can be classified within the time limit (HermiT timed out for 129 and MORe for
103 ontologies, respectively). In contrast, Konclude integrates a more sophisticated in-
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teraction between the tableau algorithm and the saturation procedure and, therefore, the
improvements by the saturation optimisations are significantly better for many repos-
itories. As a result, the ALL version of Konclude reached the time limit only for 10
ontologies. Note, already the version NONE of Konclude, where all saturation optimi-
sations are deactivated, outperforms HermiT and MORe for many ontologies, which is
probably due to the difference in the integrated optimisations. For example, Konclude
uses several caching techniques to save and reuse intermediate results, which usually
improves the reasoning performance a lot.

Table 14 analogously shows the performance improvements for the selected bench-
mark ontologies. Again, it can be observed that the improvements through the saturation
are often better for Konclude than for MORe, especially if ontologies are considered for
which the performance of the version NONE of Konclude is not already good.

7.4 Comparison with State-of-the-Art Reasoners

We also evaluated the classification times for the state-of-the-art reasoners FaCT++ and
Pellet, which are compared with the other reasoners HermiT, Konclude, and MORe in
Table 15. Note, Table 15 only shows the accumulated classification times that are ac-
tually reported by the reasoners, i.e., we did not compensate differences in the loading
times. It can be observed that Konclude outperforms all other reasoners for all evaluated
repositories, which is mainly due to the integrated saturation optimisations. FaCT++ is
the only reasoner that can efficiently handle the majority of all NCI-Thesaurus ontolo-
gies in the NCIt archive also without saturation optimisations. Nevertheless, the model
merging with the saturation graph allows for pruning many possible subsumers in Kon-
clude, whereby the classification performance can further be improved and this allows
Konclude to outperform FaCT++ for the NCIt archive.

Analogously, Table 16 shows the comparison of the classification times between
all evaluated reasoners for the selected benchmark ontologies in seconds. Again, with
the activated saturation optimisations, Konclude can outperform the other reasoners for
almost all ontologies and is able to classify all these benchmark ontologies within the
time limit. In comparison with the remaining reasoners, the results of MORe are also
very good. In particular, MORe only timed out for 2 ontologies. Hence, an assistance
through saturation seems to pay off.

8 Conclusions and Future Work

In this paper, we have presented a technique for tightly coupling saturation- and tableau-
based procedures. Unlike standard completion- and consequence-based saturation pro-
cedures, the approach is applicable for arbitrary OWL 2 DL ontologies. Furthermore, it
has a very good pay-as-you-go behaviour, i.e., if only few axioms use features that are
problematic for saturation-based procedures (e.g., disjunction), then the tableau proce-
dure can still benefit significantly from the saturation.

13 FaCT++ 1.6.2 crashed for the classification of Biomodels after 2.7 seconds.
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Table 15. Comparison of accumulated classification times between state-of-the-art reasoners (in
seconds) for the evaluated ontology repositories

Repository FaCT++ HermiT Konclude MORe Pellet

Gardiner 3, 122 1, 675 559 1, 590 4, 004
NCBO BioPortal 5, 230 5, 702 793 3, 932 9, 226
NCIt 3, 892 25, 203 2, 457 26, 600 17, 647
OBO Foundry 7, 168 6, 075 649 4, 627 12, 031
Oxford 23, 581 12, 155 2, 743 8, 652 27, 450
TONES 1, 678 2, 241 337 2, 174 2, 391
Google Crawl 1, 946 2, 100 138 1, 933 7, 733
OntoCrawler 1, 077 1, 694 22 876 9, 894
OntoJCrawl 14, 125 6, 907 548 4, 543 30, 396
Swoogle Crawl 3, 281 4, 558 1, 343 4, 102 9, 026
ALL 65, 100 68, 310 9, 589 59, 028 129, 798

Table 16. Comparison of accumulated classification times between state-of-the-art reasoners (in
seconds) for selected benchmark ontologies

Ontology FaCT++ HermiT Konclude MORe Pellet

Gazetteer ≥ 900.0 ≥ 900.0 16.8 18.2 480.2
EL-GALEN ≥ 900.0 ≥ 900.0 1.5 2.6 135.1
Biomodels 2.713 788.8 34.4 648.8 ≥ 900.0
Cell Cycle v2.01 ≥ 900.0 ≥ 900.0 47.2 ≥ 900.0 ≥ 900.0
NCI v06.12d 13.9 206.1 19.6 208.0 69.6
NCI v12.11d 57.8 78.8 8.9 83.3 306.9
SCT-SEP ≥ 900.0 ≥ 900.0 181.2 ≥ 900.0 ≥ 900.0
OBI ≥ 900.0 31.5 0.6 2.3 ≥ 900.0

The very good pay-as-you-go behaviour seems to be confirmed by our evaluation
over several thousand ontologies, where the integration of the presented saturation opti-
misations into the reasoning system Konclude significantly improves the classification
performance. In particular, with these optimisations, Konclude is able to outperform
many other state-of-the-art reasoners for a wide range of ontologies by often more than
one order of magnitude.

There are also several possibilities to enhance our approach in future works. In
particular, the saturation can be extended to support features of more expressive De-
scription Logics in more detail. As discussed, more precise saturation extensions for
nominals are possible and, as soon as corresponding ontologies are available, their
integration and evaluation could be very interesting. Moreover, extensions to support
datatypes should be more or less straightforward. Due to the very good pay-as-you-go
behaviour, our approach promises a very good handling of ontologies even if datatypes
are used beyond the rigid restrictions of less expressive Description Logics. As already
considered for other reasoners, we could also generate an upper bound approximation
with the saturation (e.g., for disjunction, we could consider the addition of all disjuncts
at the same time), and then we could identify which new consequences can be inferred
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compared to the ordinary saturation. This could be used to quickly decide the satisfia-
bility of sets of concepts and, thus, to further assist and guide the tableau algorithm.

Since some saturation optimisations already overlap with other optimisation tech-
niques integrated in Konclude, we can examine whether the deactivation, reconfigu-
ration, or specialisation of these techniques improves the reasoning performance. In
particular, other caching techniques can possibly be reduced since the saturation-based
optimisations often realise the same tasks and are usually faster.
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