Grundlagen des Datenschutzes und der IT-Sicherheit (Teil 2d)

Vorlesung im Sommersemester 2014 an der Universität Ulm von Bernhard C. Witt

2. Grundlagen der IT-Sicherheit

Grundlagen des Datenschutzes		Grundlagen der IT-Sicherheit	
✓	Geschichte des Datenschutzes	✓	Anforderungen zur IT-Sicherheit
✓	Datenschutzrechtliche Prinzipien	✓	Mehrseitige IT-Sicherheit
✓	Technischer Datenschutz	✓	Risiko-Management
✓	Mitarbeiterdatenschutz	→	Konzeption von IT-Sicherheit

Konzeption von IT-Sicherheit:

- Erstellung sicherer IT-Systeme
 - ° V-Modell XT
 - ° Konstruktionsprinzipien
- Umsetzung von IT-Sicherheit
 - ° Architektur der IT-Infrastruktur
 - → Notfallvorsorgekonzept
 - → Notfallplan
 - ° IT-Sicherheit im laufenden Betrieb
 - → Sicherheitskonzept

Erstellung sicherer IT-Systeme

- Software-Erstellung
 - → V-Modell XT
- Konstruktionsprinzipien
 - → allgemeine Prinzipien
 - → Prinzipien für Sicherheitsprozesse
- Konzeption von Informationssicherheit
 - → Sicherheitskonzept [Übung]
 - → Notfallvorsorgekonzept & Notfallplan [Übung]

Überblick zum V-Modell XT

Hinweise zum V-Modell XT (1)

- für jedes systemsicherheitskritisch eingestuftes Systemelement ist eine Sicherheitsanalyse durchzuführen
- Verfahrens- bzw. Betriebssicherheit sowie Zuverlässigkeit, Fehlertoleranz und Korrektheit als Maßstäbe für Safety
- Gewährleistung von <u>Verfügbarkeit</u>, <u>Integrität</u>, <u>Vertraulichkeit</u> und <u>Verbindlichkeit</u> (= beweisbare zugesicherte Eigenschaften) beim Einsatz der IT als Maßstäbe für **Security**

Hinweise zum V-Modell XT (2)

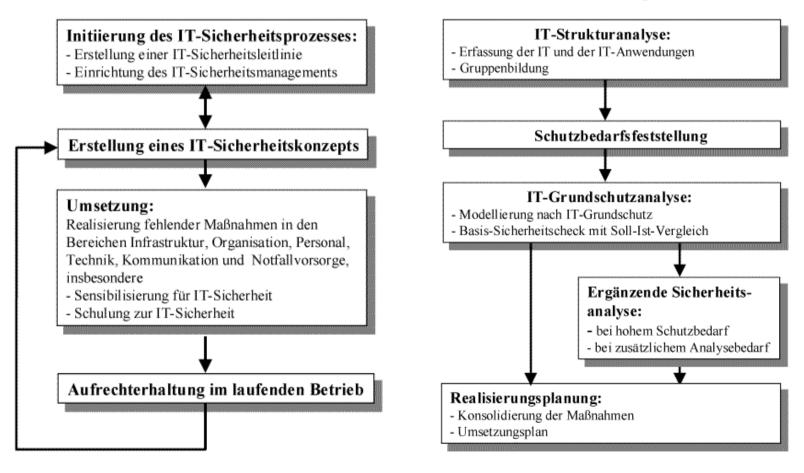
- Systemsicherheitsanalyse mittels
 - Blackbox-Test durch Auftraggeber
 - → Stellen sich erwartete Ergebnisse ein?
 - Whitebox-Test durch Auftragnehmer
 - → Werden alle Konstruktionselemente durchlaufen?
- **jeder Konstruktionsphase** (Anforderungsfestlegung, Spezifikation, Entwurf, Implementation) **ist eine Kontrollphase zugeordnet**, unter Beachtung von:
- Verifikation: System wurde zu jedem Zeitpunkt nach den "Regeln der Kunst" erstellt & weist vordefinierte Eigenschaften auf
 - → Vollständigkeit, Widerspruchsfreiheit, Durchführbarkeit, Testbarkeit
- Validierung: System entspricht den vom Nutzer gewünschten Kriterien & den geltenden Anforderungen
 - → Adäquatheit, Benutzbarkeit, Funktionsverhalten im Fehlerfalle

Konstruktion sicherer IT-Systeme (1)


Allgemeine Prinzipien (nach Saltzer und Schroeder, 1975):

- Prinzip einfacher Sicherheitsmechanismen: wirksame, aber möglichst einfache Konstruktion
- **Erlaubnisprinzip**: Zugriff muss ausdrücklich erlaubt werden
- Prinzip vollständiger Rechteprüfung: Rechteprüfung bei allen Aktionen
- Prinzip des offenen Entwurfs: angewandte Verfahren und Mechanismen sind offenzulegen → Kerckhoffs' Prinzip
- Prinzip der differenzierten Rechtevergabe: keine Rechte aufgrund nur einer einzigen Bedingung
- Prinzip minimaler Rechte: Vergabe nur der Rechte, die zur Aufgabenstellung unbedingt benötigt werden
- Prinzip durchgreifender Zugriffskontrollen: Vermeidung verdeckter Kanäle
- Prinzip der Benuterzakzeptanz: einfache Anwendbarkeit

Konstruktion sicherer IT-Systeme (2)


Prinzipien für Sicherheitsprozesse (nach Schneier, 2000):

- Risiko durch Aufteilung verringern: nur benötigtes Privileg vergeben
- das schwächste Glied sichern: Angriffsbaum betrachten
- Choke-Points verwenden: Benutzer durch engen Kanal zwingen
- **gestaffelte Abwehr**: hintereinander geschaltete Barrieren aufbauen
- Folgeschäden begrenzen: Rückkehr zum sicheren Normalzustand bei Systemausfällen
- Überraschungseffekt nutzen: innere Einstellungen des IT-Systems verdeckt halten
- **Einfachheit**: lieber wenige, dafür effektive Schutzmechanismen
- Einbeziehung der Benutzer: Insider so weit & oft wie möglich beteiligen
- Gewährleistung: Produktverhalten gemäß Zusicherung
- Alles in Frage stellen: Nicht mal sich selbst vertrauen

Umsetzung der Konstruk-tionsprinzipien

Vorgehensmodell gemäß IT-Grundschutzkataloge

Authentifizierung

- Sicherung der Benutzeridentifikation (gemäß Authentisierung) anhand
 - ° Wissen → z.B. Password
 - ° Besitz → z.B. Chipkarte (= Prozessorkarte)
 - ° Merkmal → z.B. Unterschrift/Biometrie
 - ° Zwei-Faktor-Authentifizierung (anhand zweier der drei aufgeführten Mechanismen)
- nur Feststellung, ob Benutzer berechtigt ist, nicht ob dessen (vorgegebene) Identität tatsächlich korrekt ist!
- → Zugangs-/Zugriffskontrolle mittels Rechteprüfung

Rechtevergabe

Matrizen:

- Subjekt (Benutzer & Prozesse) = Zeilen
- Objekt (Dateien & Datenträger) = Spalten
- Zugriffsart (lesen, schreiben, ausführen, löschen) = Zellen
- → Access Control List: wer darf auf gegebenes Objekt zugreifen
- → <u>Capability List</u>: auf welche Objekte darf ein gegebener Benutzer zugreifen
- → Grundsatz: need-to-know (nur benötigte Rechte einräumen)
- → Pflege erfordert z.T. hohen Aufwand (darum: Benutzerrollen!
 → Role-Based Access Control; RBAC)
- → beachtenswert: spezifischere Regeln vor allgemeineren Regeln!