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Organic Semiconductors

Organic Solar Cells OLED Displays

Tim Brereton Estimating velocities of interacting random walkers



Charge transport in disordered media

The key quantity of interest when investigating charge
transport is charge mobility, µ.

A electric force, F , is applied to a material in a given
direction, e. Charge mobility is then defined as

µ =
νe
|F |
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Question

How does the microstructure of a disordered material influence
charge mobility?

Tim Brereton Estimating velocities of interacting random walkers



Modeling charge transport

In many disordered media, charge carriers move by ‘hopping’
between molecules.
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Modeling charge transport

The material is modeled by a geometric graph G = (V ,E ).

The vertices, V , represent molecules or segments of polymers.

The edges, E , represent possible transitions that the charge
carriers can make.

Every vertex has an energy associated with it. We write Ei for
the energy of the ith vertex.
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Modeling the material

There are two possible forms of disorder:

positional

energetic
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Modeling the material

The classical model of organic semiconductors is the Gaussian
disorder model. In this model, the molecules lies on a cubic
lattice and their energies are iid normal random variables.
This model has energetic disorder but no positional disorder.

Extensions to this model include correlated energy landscapes
and fudges to impose some positional disorder.

A recent and significant advance has been to model the
positional disorder using either molecular dynamics or
stochastic geometry (an approach pioneered in Ulm).

Tim Brereton Estimating velocities of interacting random walkers



Modeling the material

Figure: A 3D lattice for a Gaussian disorder model.
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Modeling the material

Figure: Left: A molecular network for DCV4T. Right: A molecular
network for Alq3.
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Modeling the material

Figure: A correlated energy landscape with trap regions.
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Modeling charge transport

In the single carrier case, the motion of a charge carrier is modeled
by a continuous time Markov chain (CTMC) taking values in V .
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Modeling charge transport

There are two common expressions for the transition rates of the
CTMC.

Miller-Abraham rates

qij =

{
v0 exp{−2γRij} exp

{
−Ej−EikBT

}
, Ej > Ei

v0 exp{−2γRij} Ej ≤ Ei

Marcus rates

qij =
2

π

J2ij√
4πλkBT

exp

{
−

(Ei − Ej − λ)2

4λkBT

}
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Qualitative features of the rates

The key qualitative feature of the rates are:

1 Charge carriers prefer to hop to molecules with lower energy.

2 The rates with which charge carriers jump from low to high
energy states are very small (relative to the other rates).
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The effect of disorder

In organic semiconductors, charge mobility depends heavily on
the magnitude of the electric field.

The main reason for this is the presence of regions of low
energy – ‘traps’ – in which charge carriers become stuck for
large amounts of time.
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Calculating charge carrier speed

In order to calculate average speed, we add periodic boundary
conditions to the graph.

We can then calculate speed in terms of the stationary
distribution of the CTMC describing the carrier’s movement.

Alternatively, we can use Monte Carlo to estimate speed by

ν̂e =
de,t

t
.
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The limitations of Monte Carlo estimation
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The limitations of Monte Carlo estimation

Figure: Number of times each state of a 40× 40 lattice is visited in
5× 108 steps.
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Aggregate Monte Carlo

1 Replace trap regions by single states (called ‘super states’).

2 Simulate a stochastic process on the coarsened state space.
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Aggregate Monte Carlo

We treat each super state as an absorbing CTMC.

States bordering the super state are treated as absorbing
states.

We then calculate expected times until absorption and the
probabilities of exiting the super state into specific bordering
states.
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Aggregate Monte Carlo
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Aggregate Monte Carlo
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Effectiveness
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Multiple charge carriers

In the multiple charge carrier case, we model each charge
carrier in the same way as in the single carrier case.

However, we add the restriction that a charge carrier cannot
move to a vertex occupied by another charge carrier.

Thus we obtain an exclusion process.
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Multiple charge carriers

Figure: Charge carrier velocity for 40× 40 lattice as a function of number
of carriers.
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Estimating velocity for multiple charge carriers

If we have k charge carriers, the size of the state space is(
|V |
k

)
.

This prohibits us from solving for the stationary distribution or
even constructing the rate matrix of the whole process directly.
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Aggregate Monte Carlo

Again, we want to collapse the trap regions into super states.

Problem: now we need to keep track of what is happening
inside super states.
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Aggregate Monte Carlo

More precisely, we need to be able to simulate:

The (random) time until a charge carrier exits a super state.

The state to which the exiting charge carrier tries to jump.

(If necessary) the locations of charge carriers within the super
state at a given time.
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Dual Chain Approach

We can use a dual chain!

That is, a process {Yt}t≥0 that is easy to simulate and allows
us to obtain the necessary information
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Dual Chain Approach

We treat the dynamics in each super state as a CTMC,
{Xt}t≥0, with a single absorbing state, ∆ (representing the
surrounding states).

We consider the full Markov chain on this super state (i.e., we
model the exclusion process).

If we have M sites and k particles, we have

N =

(
M

k

)
.

transient sites.

Thus, the CTMC has an N + 1× N + 1 rate matrix Q̄.
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Dual Chain Approach

We consider Q, the N × N submatrix of Q̄ obtained by
removing the row and column corresponding to ∆.

We assume Q is irreducible and reversible (in the sense that it
is in detailed balance with some probability measure) .

Then, −Q has N real-valued positive eigenvalues
0 < λ1 ≤ λ2 ≤ · · · ≤ λN .

We can use these to construct a sequence of ‘local equilibria’
{µi}Ni=1 and ‘death’ probabilities {di}Ni=1 with dN = 1.
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Dual Chain Approach

We define a continuous-time Markov chain, {Yt}t≥0 on the
state space {1, . . . ,N} ∪∆.

This process starts at 1.

It evolves according to the rate matrix

K (i , j) =



−λN+1−i i = j ∈ {1, . . . ,N},
diλN+1−i i ∈ {1, . . . ,N}, j = ∆,

(1− di )λN+1−i i ∈ {1, . . . ,N − 1}, j = i + 1,

1 i = j = ∆,

0 otherwise.
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Dual Chain Approach

We can now simulate the absorption time because

TY = inf{t ≥ 0 : Yt = ∆}.

has the same distribution as

TX = inf{t ≥ 0 : Xt = ∆}

The local equilibria tell us what is happening inside the super
state, as one can construct a coupling of {Xt}t≥0 and
{Yt}t≥0 such that

L(Xt | {Ys}0≤s≤t) = µYt
.

We can use the local equilibria to work out where charge
carriers jump when they leave the superstate.
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Result

At the cost of calculating eigenvalues, we can simulate absorption
times while keeping track of charge carrier locations.
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Extension

Extend our method to incorporate Coulomb interactions.
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Construction

Let m0 be the initial distribution of the exclusion process on S .

For ` ∈ {0, . . . ,N}, define the measures

µ̃` = m0

∏̀
i=0

(
I +

1

θN−i
Q

)

For i ∈ {0, . . . ,N − 1}, define

di = 1− µ̃i+1(S)

µ̃i (S)
.

We have di ∈ [0, 1] for all i ∈ {0, . . . ,N − 2} and dN−1 = 1.
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Construction

Now, for i ∈ {0, . . . ,N − 1}, we define the sequence of
probability distributions

µi =

N−1∏
j=1

(1− dj)
−1

 µ̃i ,

called local equilibria.
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