Invariants of 4-dimensional singularities of integrable Hamiltonian systems

Tuzhilin Mikhail Alexeevich

Department of Differential geometry and applications
Lomonosov Moscow State University

3rd Workshop Analysis, Geometry and Probability
2-atom and molecule

Definition

Let f be a Morse function on a closed symplectic manifold M^2 and c a singular value of f.

By **2-atom** (P^2, f) we call the foliation of a neighbourhood P^2 of a singular fiber f defined by inequality $c - \varepsilon \leq f \leq c + \varepsilon$ for sufficiently small $\varepsilon > 0$ foliated by the level lines of f.

We consider 2-atoms up to the fiber equivalence.

Figure: Torus and its molecule
2-atom and molecule

Definition
Let f be a Morse function on a closed symplectic manifold M^2 and c a singular value of f.
By 2-atom (P^2, f) we call the foliation of a neighbourhood P^2 of a singular fiber f defined by inequality $c - \varepsilon \leq f \leq c + \varepsilon$ for sufficiently small $\varepsilon > 0$ foliated by the level lines of f.
We consider 2-atoms up to the fiber equivalence.

Definition
The molecule of (M^2, f) is the graph whose vertices are 2-atoms and edges are one-parametric families of circles.

Figure: Torus and its molecule
f-graph

Definition

For each 2-atom one can construct f-graph as follows.

Construction of f-graph:

Figure: Atom C_1 and its f-graph

M. A. Tuzhilin

Invariants of 4-dimensional singularities of integrable Hamiltonian systems
Definition

For each 2-atom one can construct **f-graph** as follows.

Construction of f-graph:

1. Mark by black color the atom boundary circles corresponding to the $c + \varepsilon$ value of the function f. Fix the orientation on the atom (the manifold M^2 is orientable) that induces the orientations of black circles.

Figure: Atom C_1 and its f-graph
f-graph

Definition

For each 2-atom one can construct **f-graph** as follows.

Construction of f-graph:

1. Mark by black color the atom boundary circles corresponding to the $c + \varepsilon$ value of the function f. Fix the orientation on the atom (the manifold M^2 is orientable) that induces the orientations of black circles.

2. Consider the union of black circles and separatrices starting and ending at black circles, that generates a geometrical graph with oriented edges belonging to black circles.

Figure: Atom C_1 and its f-graph
f-graph

Definition

For each 2-atom one can construct **f-graph** as follows.

Construction of f-graph:

1. Mark by black color the atom boundary circles corresponding to the $c + \varepsilon$ value of the function f. Fix the orientation on the atom (the manifold M^2 is orientable) that induces the orientations of black circles.

2. Consider the union of black circles and separatrices starting and ending at black circles, that generates a geometrical graph with oriented edges belonging to black circles.

Remark

Each f-graph vertex is incident to just one incoming, one outgoing, and one nonoriented edge.

Figure: Atom C_1 and its f-graph
Definition

A Hamiltonian system $\dot{x} = \{x, H\}$ on symplectic manifold M^4 is called **integrable** iff there exists an additional independent integral f in involution with Hamiltonian H.

Remark

Any 2-atom is the base of Siefert bundle of a 3-atom.
Definition

A Hamiltonian system $\dot{x} = \{x, H\}$ on symplectic manifold M^4 is called **integrable** iff there exists an additional independent integral f in involution with Hamiltonian H.

Definition

The map $F : M^4 \to \mathbb{R}^2$, where $F(x) = (H(x), f(x))$ is called the **momentum map**.
Definition

A Hamiltonian system $\dot{x} = \{x, H\}$ on symplectic manifold M^4 is called **integrable** iff there exists an additional independent integral f in involution with Hamiltonian H.

Definition

The map $\mathcal{F} : M^4 \rightarrow \mathbb{R}^2$, where $\mathcal{F}(x) = (H(x), f(x))$ is called the **momentum map**.

Definition

Suppose that both H and f are Bott functions. The foliation on the **isoenergetic surface** $Q^3_h = \{H = h\}$ generated by f is called **Liouville foliation**. Suppose that this foliation has a singular fiber $L = f^{-1}(c)$. Using f and Q^3_h instead of f and M^2 we define **3-atom** word-by-word as 2-atom.
3-atom

Definition
A Hamiltonian system \(\dot{x} = \{x, H\} \) on symplectic manifold \(M^4 \) is called **integrable** iff there exists an additional independent integral \(f \) in involution with Hamiltonian \(H \).

Definition
The map \(\mathcal{F} : M^4 \to \mathbb{R}^2 \), where \(\mathcal{F}(x) = (H(x), f(x)) \) is called the **momentum map**.

Definition
Suppose that both \(H \) and \(f \) are Bott functions. The foliation on the isoenergetic surface \(Q^3_h = \{H = h\} \) generated by \(f \) is called **Liouville foliation**. Suppose that this foliation has a singular fiber \(L = f^{-1}(c) \). Using \(f \) and \(Q^3_h \) instead of \(f \) and \(M^2 \) we define **3-atom** word-by-word as 2-atom.

Remark
Any 2-atom is the base of Siefert bundle of a 3-atom.
Circular molecule

Definition

The set of all critical values of momentum map is called **bifurcation diagram**.

Figure: Marked circular molecule
Circular molecule

Definition

The set of all critical values of momentum map is called **bifurcation diagram**.

Definition

Suppose that \((0, 0)\) is a zero rank singular value of the momentum map. Consider the preimage of the curve in bifurcation diagram goes around \((0, 0)\). One can construct **circular molecule of the singularity** corresponding to the preimage in the same way as in the 2-dimensional case.

Figure: Marked circular molecule
Circular molecule

Definition

The set of all critical values of momentum map is called **bifurcation diagram**.

Definition

Suppose that \((0, 0)\) is a zero rank singular value of the momentum map.

Consider the preimage of the curve in bifurcation diagram goes around \((0, 0)\). One can construct **circular molecule of the singularity** corresponding to the preimage in the same way as in the 2-dimensional case.

Conjecture (A. T. Fomenko)

The circular molecule completely defines 4-dimensional singularity up to Liouville equivalence.

Figure: Marked circular molecule
Almost direct product

Definition

Suppose that a finite group G symplectically acts on both atoms (V_1, f_1) and (V_2, f_2) and both f_i are G-invariant.

Consider the action of G on $V_1 \times V_2$ defined by

$$\varphi(g)(x_1, x_2) = (\varphi_1(g)(x_1), \varphi_2(g)(x_2)),$$

where φ_i is the action of G on the atom V_i. The almost direct product of atoms V_1 and V_2 is the factor $(V_1 \times V_2)/G$ defined by such action of group G.

M. A. Tuzhilin

Invariants of 4-dimensional singularities of integrable Hamiltonian systems
Almost direct product

Definition

Suppose that a finite group G symplectically acts on both atoms (V_1, f_1) and (V_2, f_2) and both f_i are G-invariant.

Consider the action of G on $V_1 \times V_2$ defined by

$$\varphi(g)(x_1, x_2) = (\varphi_1(g)(x_1), \varphi_2(g)(x_2)),$$

where φ_i is the action of G on the atom V_i. The almost direct product of atoms V_1 and V_2 is the factor $(V_1 \times V_2)/G$ defined by such action of group G.

Definition

The triple (V_1, V_2, G) is called irreducible if there is no elements in the group G, which act non-trivially just at one of V_i.

M. A. Tuzhilin

Invariants of 4-dimensional singularities of integrable Hamiltonian systems
The connection between integrable Hamiltonian systems and almost direct products

Theorem (Nguen Tien Zung)

Any 4-dimensional singularity can be represented as the almost direct product $(V_1 \times V_2)/G$; for irreducible triple (V_1, V_2, G) the representation is unique up to Liouville equivalence.

Figure: Bifurcation diagram of almost direct product

Figure: Marked circular molecule of direct product $C_1 \times C_1$
Three examples of almost direct products with the same marked circular molecule

Theorem (A. V. Grabezhnoy)

Almost direct products \((C_1 \times C_1')/\mathbb{Z}_2 \), \((C_1 \times C_4')/\mathbb{Z}_4 \) and direct product \(C_1 \times C_1 \) have the same marked circular molecule.

Figure: f-graphs of atoms \(C_1' \) and \(C_4' \) and atom \(C_4' \) visualized in Wolfram Mathematica
An infinite series of almost direct products with the same circular molecule

Theorem

Almost direct products $(C_1^n \times C_1^n) / \mathbb{Z}_n$ (for every $n > 1$) *and direct product* $C_1 \times C_1$ *have the same circular molecules.*

Figure: f-graph of atom M_2

Figure: f-graph of atom C_1^n
Main definitions

Relations between 4-dim singularity and its boundary

A. V. Grabezhnoy

Results

Lemma

Let the generator of a finite cyclic group G acts by composition of rotations on $\frac{2\pi k}{n}$ and $\frac{2\pi p}{q}$ along the basic cycles, where $\frac{k}{n}$ and $\frac{p}{q}$ is irreducible fractions.

Figure: Example: torus and group action
Lemma

Let the generator of a finite cyclic group G acts by composition of rotations on $\frac{2\pi k}{n}$ and $\frac{2\pi p}{q}$ along the basic cycles, where $\frac{k}{n}$ and $\frac{p}{q}$ is irreducible fractions.

1. The images of basic cycles under factorization intersect each other in $GCD(n, q)$ points.

Figure: Example: torus and group action
Lemma

Let the generator of a finite cyclic group G acts by composition of rotations on $\frac{2\pi k}{n}$ and $\frac{2\pi p}{q}$ along the basic cycles, where $\frac{k}{n}$ and $\frac{p}{q}$ is irreducible fractions.

1. **The images of basic cycles under factorization intersect each other in $\text{GCD}(n, q)$ points.**

2. **Orient the cycles corresponding to the rotations. Divide the first and the second cycles by n and q parts respectively and numerated them from 0 (the intersection point) w.r.t. the orientation. Suppose that the point number 1 w.r.t. the first circle is a w.r.t. the second. Than a satisfied the following system:**

\[
\begin{align*}
px & \equiv 1 \pmod{q} \\
 a & \equiv -kx \pmod{n}.
\end{align*}
\]

(1)
Remark

The number a **is the numerator of** r-**mark**, $\text{GCD}(n, q)$ **is the denominator.**

\[
\begin{align*}
px & \equiv 1 \pmod{q} \\
q & \equiv -kx \pmod{n}.
\end{align*}
\]

Figure: Torus and the system of equations
Remark

1. The number a is the numerator of r-mark, $\text{GCD}(n, q)$ is the denominator.

2. Lemma gives simple way to calculate r-marks for circular molecules of almost direct products. Also it is enough to know for this calculation only action of the group G on boundary circles of the corresponding atoms. The structure of atoms gives restrictions on the choice of the group G.

Figure: Torus and the system of equations

\[
\begin{align*}
px & \equiv 1 \pmod{q} \\
a & \equiv -kx \pmod{n}.
\end{align*}
\]
Remark

1. The number a is the numerator of r-mark, $\text{GCD}(n, q)$ is the denominator.

2. Lemma gives simple way to calculate r-marks for circular molecules of almost direct products. Also it is enough to know for this calculation only action of the group G on boundary circles of the corresponding atoms. The structure of atoms gives restrictions on the choice of the group G.

Theorem

All r-marks of the marked circular molecule for every almost direct product with group G are finite and have the form $\frac{k}{|G|}$.

Figure: Torus and the system of equations

\[
\begin{align*}
px & \equiv 1 \pmod{q} \\
\frac{2\pi k}{n} & \equiv -kx \pmod{n}.
\end{align*}
\]
Thank you for your attention!