A dynamic approach to heterogeneous elastic wires

Leonie Langer (Ulm University)

joint work with Anna Dall'Acqua (Ulm University), Gaspard Jankowiak (University of Konstanz), Fabian Rupp (University of Vienna)

Generalized Euler-Bernoulli energy

Model a heterogeneous elastic wire by a closed planar **curve** γ with **density** ρ . Taking into account the interplay between shape and heterogeneity,

$$\mathcal{E}_{\mu}(\gamma,\rho) = \frac{1}{2} \int_{\gamma} \left(\beta(\rho)(\kappa - c_0)^2 + \mu \left(\partial_s \rho\right)^2 \right) \mathrm{d}s \tag{1}$$

with the arc-length parameter s and the curvature κ of γ (see also [1]).

(Non)preservation analysis

- I Decisive advantage of working with the angle function θ : Both equations are of second order (not fourth).
- \rightarrow Parabolic maximum principles are available for both equations.

Theorem 2 (Zeroset of κ). Let $c_0 = 0$. Then both the number of zeros of $\kappa = \partial_s \theta$ and the number of inflection points of the associated curve are nonincreasing in time.

Model parameters:

- real analytic bending stiffness β , $\beta > 0$,
- spontaneous curvature $c_0 \in \mathbb{R}$,
- diffusivity $\mu > 0$ of the density.
- Further, we fix the length L > 0,
 the rotation index ω ∈ Z,
- the integral of the density as the total mass $\nu L \in \mathbb{R}$.

Fig. 1. Heterogeneous

Fig. 1: Heterogeneous curve with $\omega = 2$. Color and thickness indicate the density.

Order reduction

Consider the arclength-parametrization $\gamma \colon [0, L] \to \mathbb{R}^2$ described by an inclination angle function $\theta \colon [0, L] \to \mathbb{R}$ such that

$$\partial_s \gamma = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}.$$

Then $\theta(L) - \theta(0) = 2\pi\omega$ and $\kappa = \partial_s \theta$.

Express (1) in terms of $\theta \colon [0, L] \to \mathbb{R}$ and $\rho \colon [0, L] \to \mathbb{R}$ by

Theorem 3 (Preservation of convexity). Let $c_0 = 0$. Then $\partial_s \theta_0 = \kappa_0 \ge 0$ ($\kappa_0 > 0$) on [0, L]implies $\kappa \ge 0$ ($\kappa > 0$) on $[0, \infty) \times [0, L]$.

tion points.

Fig. 2: 4 inflec-

Similarly: Preservation of positivity of the density under appropriate assumptions on β .

Remarkably: If $c_0 \neq 0$, Theorem 2 and 3 are false in general!

Theorem 4 (Preservation of symmetry). Let $\omega = 1$ and $k \ge 2$. If (θ_0, ρ_0) describes a k-fold rotationally symmetric heterogeneous curve, then so does (θ, ρ) for all $t \in (0, \infty)$. Likewise, the property of being axially symmetric is transferred from (θ_0, ρ_0) to (θ, ρ) .

Fig. 3: Preservation of 5-fold rotational symmetry. Time increases from left to right. Parameters: $\beta(x) = e^x$, $c_0 = 0$, $\mu = 10^{-3}$, $\nu = 0$, $\omega = 1$.

$$\mathcal{E}_{\mu}(\theta,\rho) = \frac{1}{2} \int_{0}^{L} \left(\beta(\rho) (\partial_{s}\theta - c_{0})^{2} + \mu (\partial_{s}\rho)^{2} \right) \mathrm{d}s.$$

(2)

Coupled system

Decrease (2) by evolving an admissible initial datum (θ_0, ρ_0) by the associated L^2 -gradient flow.

$$\begin{cases} \partial_t \theta = \partial_s \left(\beta(\rho)(\partial_s \theta - c_0)\right) + \lambda_{\theta 1} \sin \theta - \lambda_{\theta 2} \cos \theta & \text{in } (0, T) \times [0, L], \\ \partial_t \rho = \mu \partial_s^2 \rho - \frac{1}{2} \beta'(\rho)(\partial_s \theta - c_0)^2 - \lambda_\rho & \text{in } (0, T) \times [0, L], \\ \theta(\cdot, L) - \theta(\cdot, 0) = 2\pi\omega, \quad \rho(\cdot, L) = \rho(\cdot, 0) & \text{on } [0, T), \\ \partial_s \theta(\cdot, L) = \partial_s \theta(\cdot, 0), \quad \partial_s \rho(\cdot, L) = \partial_s \rho(\cdot, 0) & \text{on } [0, T), \\ \theta(0, \cdot) = \theta_0, & \rho(0, \cdot) = \rho_0 & \text{on } [0, L]. \end{cases}$$

Nonlocal Lagrange multipliers: Define $\lambda_{\theta 1}(\theta, \rho)$, $\lambda_{\theta 2}(\theta, \rho)$ and $\lambda_{\rho}(\theta, \rho)$ such that

$$\int_{-\infty}^{L} \sin \theta \, \mathrm{d}s = \int_{-\infty}^{L} \cos \theta \, \mathrm{d}s = \int_{-\infty}^{L} \rho \, \mathrm{d}s - \nu L = 0 \quad \text{for all } t > 0.$$

Theorem 5. Let $\omega = 1$ and $k \ge 2$. If (θ_0, ρ_0) describes a k-fold rotationally symmetric heterogeneous curve with $\kappa_0 \ge c_0$ ($\kappa_0 \le c_0$) on [0, L], then $\kappa \ge c_0$ ($\kappa \le c_0$) on $[0, \infty) \times [0, L]$.

Asymptotic behavior

Theorem 6 (Growth assumptions on β). Let β be such that $\beta'(x)(\nu - x) \leq \overline{C}\beta(x)(\nu - x)^2$ for all $x \in \mathbb{R}$,

for some $\overline{C} \geq 0$. Let (θ_0, ρ_0) satisfy $\overline{C}L\mathcal{E}_{\mu}(\theta_0, \rho_0) < \mu$. Then, ρ converges exponentially fast to $\rho_{\infty} \equiv \nu$ in $L^2(0, L)$ as $t \to \infty$. Moreover, the limit θ_{∞} describes an ω -fold covered circle if $\omega \neq 0$ or a multifold covered figure eight elastica if $\omega = 0$.

Fig. 4: Convergence to figure eight elastica with constant density. Time increases from left to right. Parameters: $\beta(x) = 0.1 + x^2$, $c_0 = 2$, $\mu = 10^{-1}$, $\nu = 0$, $\omega = 0$.

which ensures the closedness and the fixed total mass constraint.

Existence and convergence

Theorem 1 ([2]). The initial boundary value problem (3) is locally well-posed. Moreover, the solution (θ, ρ) exists globally and converges for $t \to \infty$ to a stationary solution $(\theta_{\infty}, \rho_{\infty})$.

Theorem 7 (Large μ). Let $\omega \neq 0$ and $\rho_0 \equiv \nu$. If μ is large enough, then the limit $(\theta_{\infty}, \rho_{\infty})$ describes an ω -fold covered circle with constant density.

Note: In general, the constant initial density does not remain constant.

Idea of the proof: For μ large enough, the ω -fold covered circle with constant density is the unique minimizer of (2) and locally the unique constrained critical point.

References:

[1] Brazda, Jankowiak, Schmeiser, Stefanelli. *Bifurcation of elastic curves with modulated stiffness*. Europ. J. of Appl. Math. (2022)
 [2] Dall'Acqua, Langer, Rupp, *A dynamic approach to heterogeneous elastic wires*. arXiv:2205.06587 (2022)

