A dynamic approach to heterogeneous elastic wires

Leonie Langer (Ulm University)

joint work with Anna Dall’Acqua (Ulm University), Gaspard Jankowiak (University of Konstanz), Fabian Rupp (University of Vienna)

Generalized Euler-Bernoulli energy

Model a heterogeneous elastic wire by a closed planar curve \(\gamma \) with density \(\rho \). Taking into account the interplay between shape and heterogeneity,

\[
\mathcal{E}_\mu(\gamma, \rho) = \frac{1}{2} \int_0^L \left[\beta(\rho)(\kappa - \gamma)^2 + \mu (\partial_\nu \rho)^2 \right] ds
\]

with the arc-length parameter \(s \) and the curvature \(\kappa \) of \(\gamma \) (see also [1]).

Model parameters:
- real analytic bending stiffness \(\beta, \gamma > 0 \),
- spontaneous curvature \(c_0 \in \mathbb{R} \),
- diffusivity \(\mu > 0 \) of the density.
- Further, we fix the length \(L > 0 \),
- the rotation index \(\omega \in \mathbb{Z} \),
- the integral of the density as the total mass \(\nu L \in \mathbb{R} \).

Order reduction

Consider the arclength-parametrization \(\gamma : [0, L] \to \mathbb{R}^2 \) described by an inclination angle function \(\theta : [0, L] \to \mathbb{R} \) such that

\[
\partial_s \gamma = \left(\cos \theta, \sin \theta \right)
\]

Then \(\theta(L) - \theta(0) = 2\pi \omega \) and \(\kappa = \partial_s \theta \).

Express (1) in terms of \(\theta : [0, L] \to \mathbb{R} \) and \(\rho : [0, L] \to \mathbb{R} \) by

\[
\mathcal{E}_\mu(\theta, \rho) = \frac{1}{2} \int_0^L \left(\beta(\rho)(\partial_\nu \theta - c_0)^2 + \mu (\partial_\nu \rho)^2 \right) ds
\]

Coupled system

Decrease (2) by evolving an admissible initial datum \((\theta_0, \rho_0) \) by the associated \(L^2 \)-gradient flow:

\[
\begin{align*}
\partial_t \theta &= \partial_s (\beta(\rho)(\partial_\nu \theta - c_0)) + \lambda_{\theta_1} \sin \theta - \lambda_{\theta_2} \cos \theta & \text{in } (0, T) \times [0, L], \\
\partial_t \rho &= \mu \partial_\nu^2 \rho - \frac{1}{2} \beta'(\rho)(\partial_\nu \theta - c_0)^2 - \lambda_{\rho_1} \sin \theta && \text{in } (0, T) \times [0, L], \\
\theta(s, 0) &= \theta_0(s), \quad \rho(s, 0) &= \rho_0(s) & \text{on } [0, T),
\end{align*}
\]

Nonlocal Lagrange multipliers: Define \(\lambda_{\theta_1}(\theta, \rho), \lambda_{\theta_2}(\theta, \rho) \) and \(\lambda_{\rho_1}(\theta, \rho) \) such that

\[
\int_0^L \sin \theta ds = \int_0^L \cos \theta ds = \int_0^L \rho ds - \nu L = 0 \quad \text{for all } t \geq 0,
\]

which ensures the closedness and the fixed total mass constraint.

Existence and convergence

Theorem 1 ([2]). The initial boundary value problem (3) is locally well-posed. Moreover, the solution \((\theta, \rho) \) exists globally and converges for \(t \to \infty \) to a stationary solution \((\theta_\infty, \rho_\infty) \).

Order reduction

Decouple (2) by solving the system of first order equations (3).

(Non)preservation analysis

!! Decisional advantage of working with the angle function \(\theta \).
- Both equations are of second order (not fourth).
- Parabolic maximum principles are available for both equations.

Theorem 2 (Zeroset of \(\kappa \)). Let \(c_0 = 0 \). Then both the number of zeros of \(\kappa = \partial_s \theta \) and the number of inflection points of the associated curve are nonincreasing in time.

Theorem 3 (Preservation of convexity). Let \(c_0 = 0 \). Then \(\partial_s \theta = \kappa_0 \geq 0 \) \((\kappa_0 \geq 0) \) on \([0, L] \) implies \(\kappa \geq 0 \) \((\kappa \geq 0) \) on \([0, \infty) \times [0, L] \).

Similarly: Preservation of positivity of the density under appropriate assumptions on \(\beta \).

Remarkably: If \(c_0 \not= 0 \), Theorem 2 and 3 are false in general!

Theorem 4 (Preservation of symmetry). Let \(\omega = 1 \) and \(\kappa \geq 2 \). If \((\theta_0, \rho_0) \) describes a \(k \)-fold rotationally symmetric heterogeneous curve, then so does \((\theta, \rho) \) for all \(t \in (0, \infty) \). Likewise, the property of being axially symmetric is transferred from \((\theta_0, \rho_0) \) to \((\theta, \rho) \).

Asymptotic behavior

Theorem 6 (Growth assumptions on \(\beta \)). Let \(\beta \) be such that

\[
\beta'(x)(v - x) \leq C \beta(x)(v - x)^2
\]

for all \(x \in \mathbb{R} \), for some \(C \geq 0 \). Let \((\theta_0, \rho_0) \) satisfy \(C L \mathcal{E}_\mu(\theta_0, \rho_0) < \mu \). Then, \(\rho \) converges exponentially fast to \(\rho_\infty \equiv v \) in \(L^2(0, L) \) as \(t \to \infty \). Moreover, the limit \(\theta_\infty \) describes an \(\omega \)-fold covered curve if \(\omega \neq 0 \) or a multifold covered figure eight elastica if \(\omega = 0 \):

Theorem 7 (Large \(\mu \)). Let \(\mu \not= 0 \) and \(\rho_0 \equiv v \). If \(\mu \) is large enough, then the limit \((\theta_\infty, \rho_\infty) \) describes an \(\omega \)-fold covered curve with constant density.

Note: In general, the constant initial density does not remain constant.

Idea of the proof: For \(\mu \) large enough, the \(\omega \)-fold covered curve with constant density is the unique minimizer of (2) and locally the unique constrained critical point.