A dynamic approach to heterogeneous elastic wires

Generalized Euler-Bernoulli energy

Model a heterogeneous elastic wire by a closed planar curve γ with density ρ. Taking into account the interplay between shape and heterogeneity,

$$
\begin{equation*}
\mathcal{E}_{\mu}(\gamma, \rho)=\frac{1}{2} \int_{\gamma}\left(\beta(\rho)\left(\kappa-c_{0}\right)^{2}+\mu\left(\partial_{s} \rho\right)^{2}\right) \mathrm{d} s \tag{1}
\end{equation*}
$$

with the arc-length parameter s and the curvature κ of γ (see also [1]).

Model parameters:

- real analytic bending stiffness $\beta, \beta>0$,
- spontaneous curvature $c_{0} \in \mathbb{R}$,
- diffusivity $\mu>0$ of the density.
- Further, we fix the length $L>0$,
- the rotation index $\omega \in \mathbb{Z}$,
- the integral of the density as the total mass $\nu L \in \mathbb{R}$.

Fig. 1: Heterogeneous curve with $\omega=2$. Color and thickness indicate the density.

Order reduction

Consider the arclength-parametrization $\gamma:[0, L] \rightarrow \mathbb{R}^{2}$ described by an inclination angle function $\theta:[0, L] \rightarrow \mathbb{R}$ such that

$$
\partial_{s} \gamma=\binom{\cos \theta}{\sin \theta}
$$

Then $\theta(L)-\theta(0)=2 \pi \omega$ and $\kappa=\partial_{s} \theta$.
Express (1) in terms of $\theta:[0, L] \rightarrow \mathbb{R}$ and $\rho:[0, L] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{E}_{\mu}(\theta, \rho)=\frac{1}{2} \int_{0}^{L}\left(\beta(\rho)\left(\partial_{s} \theta-c_{0}\right)^{2}+\mu\left(\partial_{s} \rho\right)^{2}\right) \mathrm{d} s \tag{2}
\end{equation*}
$$

Coupled system

Decrease (2) by evolving an admissible initial datum $\left(\theta_{0}, \rho_{0}\right)$ by the associated L^{2}-gradient flow.

Nonlocal Lagrange multipliers: Define $\lambda_{\theta 1}(\theta, \rho), \lambda_{\theta 2}(\theta, \rho)$ and $\lambda_{\rho}(\theta, \rho)$ such that
$\int_{0}^{L} \sin \theta \mathrm{~d} s=\int_{0}^{L} \cos \theta \mathrm{~d} s=\int_{0}^{L} \rho \mathrm{~d} s-\nu L=0 \quad$ for all $t \geq 0$,
which ensures the closedness and the fixed total mass constraint.

Existence and convergence

Theorem 1 ([2]). The initial boundary value problem (3) is locally well-posed. Moreover, the solution (θ, ρ) exists globally and converges for $t \rightarrow \infty$ to a stationary solution $\left(\theta_{\infty}, \rho_{\infty}\right)$.

(Non)preservation analysis

!! Decisive advantage of working with the angle function θ : Both equations are of second order (not fourth).
\rightarrow Parabolic maximum principles are available for both equations.
Theorem 2 (Zeroset of κ). Let $c_{0}=0$. Then both the number of zeros of $\kappa=\partial_{s} \theta$ and the number of inflection points of the associated curve are nonincreasing in time.

Theorem 3 (Preservation of convexity). Let $c_{0}=0$. Then $\partial_{s} \theta_{0}=\kappa_{0} \geq 0\left(\kappa_{0}>0\right)$ on $[0, L]$ implies $\kappa \geq 0(\kappa>0)$ on $[0, \infty) \times[0, L]$.

Similarly: Preservation of positivity of the density under appropriate assumptions on β.

Fig. 2: 4 inflection points.

Remarkably: If $c_{0} \neq 0$, Theorem 2 and 3 are false in general!
Theorem 4 (Preservation of symmetry). Let $\omega=1$ and $k \geq 2$. If $\left(\theta_{0}, \rho_{0}\right)$ describes a k-fold rotationally symmetric heterogeneous curve, then so does (θ, ρ) for all $t \in(0, \infty)$. Likewise, the property of being axially symmetric is transferred from $\left(\theta_{0}, \rho_{0}\right)$ to (θ, ρ).

Fig. 3: Preservation of 5 -fold rotational symmetry. Time increases from left to right. Parameters: $\beta(x)=e^{x}, c_{0}=0, \mu=10^{-3}, \nu=0, \omega=1$.

Theorem 5. Let $\omega=1$ and $k \geq 2$. If (θ_{0}, ρ_{0}) describes a k-fold rotationally symmetric heterogeneous curve with $\kappa_{0} \geq c_{0}\left(\kappa_{0} \leq c_{0}\right)$ on $[0, L]$, then $\kappa \geq c_{0}\left(\kappa \leq c_{0}\right)$ on $[0, \infty) \times[0, L]$.

Asymptotic behavior

Theorem 6 (Growth assumptions on β). Let β be such that $\beta^{\prime}(x)(\nu-x) \leq \bar{C} \beta(x)(\nu-x)^{2} \quad$ for all $x \in \mathbb{R}$,
for some $\bar{C} \geq 0$. Let $\left(\theta_{0}, \rho_{0}\right)$ satisfy $\bar{C} L \mathcal{E}_{\mu}\left(\theta_{0}, \rho_{0}\right)<\mu$. Then, ρ converges exponentially fast to $\rho_{\infty} \equiv \nu$ in $L^{2}(0, L)$ as $t \rightarrow \infty$. Moreover, the limit θ_{∞} describes an ω-fold covered circle if $\omega \neq 0$ or a multifold covered figure eight elastica if $\omega=0$.

Fig. 4: Convergence to figure eight elastica with constant density. Time increases from left to right. Parameters: $\beta(x)=0.1+x^{2}, c_{0}=2, \mu=10^{-1}, \nu=0, \omega=0$.

Theorem 7 (Large μ). Let $\omega \neq 0$ and $\rho_{0} \equiv \nu$. If μ is large enough, then the limit $\left(\theta_{\infty}, \rho_{\infty}\right)$ describes an ω-fold covered circle with constant density.

Note: In general, the constant initial density does not remain constant.
Idea of the proof: For μ large enough, the ω-fold covered circle with constant density is the unique minimizer of (2) and locally the unique constrained critical point.

