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Model

Model a heterogeneous elastic wire by a closed planar curve γ with
density ρ. Extending [1], the energy of the wire is

Eµ(γ, ρ) = 1
2

∫
γ

(
β(ρ)(κ − c0)2 + µ (∂sρ)2

)
ds (1)

with the arc-length parameter s
and the curvature κ of γ.
Model parameters:
• density-modulated bending

stiffness β ∈ C∞(R), β > 0,
• spontaneous curvature c0 ∈ R,
• diffusivity µ > 0 of the density.

Figure 1: Visualisation of a heterogene-
ous wire with c0 ̸= 0.

This energy is invariant under orientation-preserving reparametrizations.

Order reduction

Describe the arclength-parametrization
γ : [0, L] → R2 by an inclination angle
function θ : [0, L] → R such that

∂sγ =
(

cos θ
sin θ

)
.

𝜃

Figure 2: Angle function θ.
The angle function θ represents a C1-closed curve if and only if∫ L

0
cos θ ds =

∫ L

0
sin θ ds = 0 and θ(L) − θ(0) = 2πω, (2)

for some ω ∈ Z, the rotation index of the curve.

Express (1) in terms of θ : [0, L] → R and ρ : [0, L] → R by

Eµ(θ, ρ) = 1
2

∫ L

0

(
β(ρ)(∂sθ − c0)2 + µ (∂sρ)2

)
ds, (3)

using that κ = ∂sθ.

Goal

Use a dynamic approach to minimize (3) by evolving (θ, ρ) by the
associated L2-gradient flow. Thereby, require that

• the curve γ remains C2-closed,

• the density ρ remains C1-periodic and
∫ L

0
ρ ds =

∫ L

0
ρ0 ds. (4)

Boundary value problem

∂tθ = ∂s (β(ρ)(∂sθ − c0)) + λθ1 sin θ − λθ2 cos θ in (0, T ) × [0, L],
∂tρ = µ∂2

sρ − 1
2 β′(ρ)(∂sθ − c0)2 − λρ in (0, T ) × [0, L],

θ(·, L) − θ(·, 0) = 2πω, ρ(·, L) = ρ(·, 0) on [0, T ),
∂sθ(·, L) = ∂sθ(·, 0), ∂sρ(·, L) = ∂sρ(·, 0) on [0, T ),
θ(0, ·) = θ0, ρ(0, ·) = ρ0 on [0, L] (5)

§ The L2-gradient flow is a quasilinear coupled parabolic system that
is nonlocal due to the Lagrange multipliers λθ1, λθ2 and λρ.

© Working with the angle function θ reduces the order of the equation
for γ from fourth to second order.

Nonlocal Lagrange multipliers

Closedness-constraint: Lagrange multipliers λθ1 and λθ2. Define(
λθ1(t)
λθ2(t)

)
:= Π−1(θ)(t)

∫ L

0

(
− sin θ
cos θ

)
∂s

(
β(ρ)(∂sθ − c0)

)
ds,

where Π−1(θ)(t) denotes the inverse of the matrix

Π(θ)(t) :=

( ∫ L

0 sin2 θ ds −
∫ L

0 cos θ sin θ ds

−
∫ L

0 cos θ sin θ ds
∫ L

0 cos2 θ ds

)
.

This ensures (2) along the flow.

Fixed total mass-constraint: Lagrange multiplier λρ. With

λρ(t) := − 1
2L

∫ L

0
β′(ρ)(∂sθ − c0)2 ds,

a solution (θ, ρ) satisfies (4).

Local well-posedness

Theorem 1 ([2]). Let (θ0, ρ0) ∈ h1+α([0, L]) (little Hölder space) for
some α ∈ (0, 1) such that

θ0(L) − θ0(0) = 2πω, ∂sθ0(L) = ∂sθ0(0),
ρ0(L) = ρ0(0), ∂sρ0(L) = ∂sρ0(0)

and θ0 satisfies (2). Then there exist T0 > 0 and a unique solution
(θ, ρ) ∈ C∞((0, T0) × [0, L])

of (5) on (0, T0) × [0, L] satisfying the initial condition in the sense
that

lim
t→0

(θ(t), ρ(t)) = (θ0, ρ0) in C1+α([0, L]).

Moreover, the solution depends continuously on the initial datum.

Idea of the proof

Local Existence: Transform (5) to an equivalent problem in a
periodic setting to get rid of the boundary conditions. Apply the
Inverse Function Theorem between appropriate time-weighted Hölder
spaces.

!! Working with time-weights makes the arguments more challenging,
but provides well-posedness for weak initial data.

Global existence

Theorem 2 ([2]). The unique smooth solution (θ, ρ) of Theorem 1
exists up to T = ∞ and subconverges to a stationary solution of (5).

Figure 3: Numerical experiments on the convergence (thickness and color of the
curve describe ρ) by Gaspard Jankowiak, University of Constance.

References:
[1] Brazda, Jankowiak, Schmeiser, Stefanelli. Bifurcation of elastic curves with modulated stiffness. Europ. J. of Appl. Math. (2022)
[2] Dall’Acqua, Langer, Rupp, A dynamic approach to heterogeneous elastic wires. arXiv:2205.06587 (2022)


