A dynamic approach to heterogeneous elastic wires

Anna Dall'Acqua (Ulm University) Leonie Langer (Ulm University) Fabian Rupp (University of Vienna)

Model

Model a heterogeneous elastic wire by a closed planar **curve** γ with **density** ρ . Extending [1], the energy of the wire is

$$\mathcal{L}_{\mu}(\gamma,\rho) = \frac{1}{2} \int_{\gamma} \left(\beta(\rho)(\kappa - c_0)^2 + \mu \left(\partial_s \rho\right)^2 \right) \mathrm{d}s \tag{1}$$

with the arc-length parameter sand the curvature κ of γ . Model parameters:

Nonlocal Lagrange multipliers

Closedness-constraint: Lagrange multipliers $\lambda_{\theta 1}$ and $\lambda_{\theta 2}$. Define $\begin{pmatrix} \lambda_{\theta 1}(t) \\ \lambda_{\theta 2}(t) \end{pmatrix} := \Pi^{-1}(\theta)(t) \int_0^L \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \partial_s (\beta(\rho)(\partial_s \theta - c_0)) \mathrm{d}s,$ where $\Pi^{-1}(\theta)(t)$ denotes the inverse of the matrix $\Pi(\theta)(t) := \begin{pmatrix} \int_0^L \sin^2 \theta \, \mathrm{d}s & -\int_0^L \cos \theta \sin \theta \, \mathrm{d}s \\ -\int_0^L \cos \theta \sin \theta \, \mathrm{d}s & \int_0^L \cos^2 \theta \, \mathrm{d}s \end{pmatrix}.$

This ensures (2) along the flow.

density-modulated bending stiffness β ∈ C[∞](ℝ), β > 0,
spontaneous curvature c₀ ∈ ℝ,

• diffusivity $\mu > 0$ of the density.

Figure 1: Visualisation of a heterogeneous wire with $c_0 \neq 0$.

This energy is invariant under orientation-preserving reparametrizations.

Fixed total mass-constraint: Lagrange multiplier λ_{ρ} . With

 $\lambda_{\rho}(t) := -\frac{1}{2L} \int_0^L \beta'(\rho) (\partial_s \theta - c_0)^2 \,\mathrm{d}s,$

a solution (θ, ρ) satisfies (4).

Order reduction

Describe the arclength-parametrization $\gamma \colon [0, L] \to \mathbb{R}^2$ by an inclination angle function $\theta \colon [0, L] \to \mathbb{R}$ such that

 $\partial_s \gamma = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}.$

Figure 2: Angle function θ .

The angle function θ represents a C^1 -closed curve if and only if

 $\int_{0}^{L} \cos\theta \,\mathrm{d}s = \int_{0}^{L} \sin\theta \,\mathrm{d}s = 0 \quad \text{and} \quad \theta(L) - \theta(0) = 2\pi\omega, \quad (2)$

for some $\omega \in \mathbb{Z}$, the rotation index of the curve.

 $\mathbf{T} \qquad (\mathbf{1}) \cdot \mathbf{I} \qquad \mathbf{C} \cap [\mathbf{0} \mathbf{T}] \quad \mathbf{T} \qquad \mathbf{1} \quad [\mathbf{0} \mathbf{T}] \quad \mathbf{T}$

Local well-posedness

Theorem 1 ([2]). Let $(\theta_0, \rho_0) \in h^{1+\alpha}([0, L])$ (little Hölder space) for some $\alpha \in (0, 1)$ such that $\theta_0(L) - \theta_0(0) = 2\pi\omega, \quad \partial_s\theta_0(L) = \partial_s\theta_0(0),$ $\rho_0(L) = \rho_0(0), \qquad \partial_s\rho_0(L) = \partial_s\rho_0(0)$ and θ_0 satisfies (2). Then there exist $T_0 > 0$ and a unique solution $(\theta, \rho) \in C^{\infty}((0, T_0) \times [0, L])$ of (5) on $(0, T_0) \times [0, L]$ satisfying the initial condition in the sense that

 $\lim_{t \to 0} (\theta(t), \rho(t)) = (\theta_0, \rho_0) \quad \text{in } C^{1+\alpha}([0, L]).$

Express (1) in terms of
$$\theta: [0, L] \to \mathbb{R}$$
 and $\rho: [0, L] \to \mathbb{R}$ by

$$E_{\mu}(\theta, \rho) = \frac{1}{2} \int_{0}^{L} \left(\beta(\rho)(\partial_{s}\theta - c_{0})^{2} + \mu (\partial_{s}\rho)^{2} \right) \mathrm{d}s, \qquad (3)$$
using that $\kappa = \partial_{s}\theta$.

Goal

Use a dynamic approach to minimize (3) by evolving (θ, ρ) by the associated L^2 -gradient flow. Thereby, require that

• the curve γ remains C^2 -closed,

• the density ρ remains C^1 -periodic and $\int_0^L \rho \, \mathrm{d}s = \int_0^L \rho_0 \, \mathrm{d}s.$ (4)

 $\begin{aligned} \partial_t \theta &= \partial_s \left(\beta(\rho) (\partial_s \theta - c_0) \right) + \lambda_{\theta 1} \sin \theta - \lambda_{\theta 2} \cos \theta & \text{ in } (0, T) \times [0, L], \\ \partial_t \theta &= \partial_s \left(\beta(\rho) (\partial_s \theta - c_0) \right) + \lambda_{\theta 1} \sin \theta - \lambda_{\theta 2} \cos \theta & \text{ in } (0, T) \times [0, L], \end{aligned}$

Moreover, the solution depends continuously on the initial datum.

Idea of the proof

Local Existence: Transform (5) to an equivalent problem in a periodic setting to get rid of the boundary conditions. Apply the Inverse Function Theorem between appropriate time-weighted Hölder spaces.

!! Working with time-weights makes the arguments more challenging, but provides well-posedness for weak initial data.

Global existence

Theorem 2 ([2]). The unique smooth solution (θ, ρ) of Theorem 1 exists up to $T = \infty$ and subconverges to a stationary solution of (5).

$\partial_t \rho = \mu \partial_s^2 \rho - \frac{1}{2} \beta'(\rho) (\partial_s \theta - c_0)^2 - \lambda_\rho$		in $(0, T') \times [0, L],$	
$\theta(\cdot, L) - \theta(\cdot, 0) = 2\pi\omega,$	$\rho(\cdot,L)=\rho(\cdot,0)$	on $[0, T)$,	
$\partial_s \theta(\cdot, L) = \partial_s \theta(\cdot, 0),$	$\partial_s \rho(\cdot, L) = \partial_s \rho(\cdot, 0)$	on $[0, T)$,	
$\theta(0,\cdot)=\theta_0,$	$\rho(0,\cdot)=\rho_0$	on $[0, L]$	(5)

C The L²-gradient flow is a quasilinear coupled parabolic system that is nonlocal due to the Lagrange multipliers λ_{θ1}, λ_{θ2} and λ_ρ.
C Working with the angle function θ reduces the order of the equation for γ from fourth to second order.

Figure 3: Numerical experiments on the convergence (thickness and color of the curve describe ρ) by Gaspard Jankowiak, University of Constance.

References:

[1] Brazda, Jankowiak, Schmeiser, Stefanelli. *Bifurcation of elastic curves with modulated stiffness*. Europ. J. of Appl. Math. (2022)
 [2] Dall'Acqua, Langer, Rupp, *A dynamic approach to heterogeneous elastic wires*. arXiv:2205.06587 (2022)

