ModulBeschreibung: Seminar: Trends in Applied Artificial Intelligence, Machine Learning and Deep Learning

Kürzel	_
Leistungspunkte	4
Semesterwochenstunden	2
Sprache	Englisch
Moduldauer	1 Semester
Turnus	Jedes Semester
Modulverantwortliche(r)	JunProf. Dr. Vasileios Belagiannis
Dozenten	JunProf. Dr. Vasileios Belagiannis
Einordung des Moduls	Elektrotechnik M.Sc.
in Studiengänge	Informationssystemtechnik M.Sc.
	Communications Technology M.Sc.
	Computational Science and Engineering M.Sc.
	Informatik M.Sc.
	Medieninformatik M.Sc.
Vorkenntnisse	Grundkenntnisse in Höhere Mathematik und Maschinelles Lernen
Lernziele	Die Studierenden sind nach Abschluss des Moduls in der Lage
Estilete	aktuelle Fachliteratur aus den Bereichen künstliche Intelligenz,
	maschinellem Lernen und Deep Learning zu lesen, zu verstehen
	und in einem wissenschaftlichen Rahmen zu präsentieren.
Inhalt	Das Seminar bietet eine breite Übersicht über verschiedene
	Forschungsfragen aus den Bereichen künstlicher Intelligenz,
	maschinellem Lernen und Deep Learning, mit Anwendungen in
	verschiedene Themen wie automatisiertes Fahren, Robotik,
	Computergrafik, Visual Computing, Physik,
	Nachrichtentechnik, Mess- und Regeltechnik. In jedem
	Semester wird eine aktuelle Auswahl von Themen aus den
	folgenden Bereichen bearbeitet:
	Angewandte künstliche Intelligenz
	Aktuelle Fortschritte des maschinellen Lernens
	Aktuelle Fortschritte im Bereich Deep Learning
	Jedem Studierenden wird dazu eine aktuelle Publikation
	zugewiesen, die im Rahmen des Seminars durch ihn gelesen,
	verstanden und präsentiert werden muss. Die Präsentation ist
	darauf ausgelegt neben einer Zusammenfassung des Materials
	auch die wichtigsten Inhalte hervorzuheben und eine persönliche
	Meinung beizutragen.
Literatur	Die Literaturrecherche ist eines der Lernziele des Seminars. Für
	den Fall, dass tiefer gehende Literatur benötigt wird, wird diese
	im Rahmen des Seminars zur Verfügung gestellt.
Lehr- und Lernformen	Seminar 2 SWS
Arbeitsaufwand	Präsenzzeit: 30h
	Vor- und Nachbereitung: 90h
	Summe: 120h

Bewertungsmethode	Die Benotung basiert auf einer Bewertung der Präsentation, des
	Berichtes und der Beteiligung an der Diskussion. Außerdem ist
	Anwesenheit für den erfolgreichen Abschluss des Moduls
	verpflichtend (einmalige Abwesenheit unter der Angabe eines
	nachvollziehbaren Grundes ist möglich).
Notenbildung	Der Bericht (Seminararbeit) macht 60% der Gesamtnote aus.
	Die Präsentation und die Beteiligung an der Diskussion machen
	die restlichen 40% der Gesamtnote aus.
Grundlage für	-

Code	_
ECTS credits	4
Attendance time	2
Language of instruction	English
Duration	1 Semester
Cycle	Every semester
Coordinator	JunProf. Dr. Vasileios Belagiannis
Instructor(s)	JunProf. Dr. Vasileios Belagiannis
Allocation of study	Elektrotechnik M.Sc.
programmes	Informationssystemtechnik M.Sc.
programmes	Communications Technology M.Sc.
	Computational Science and Engineering M.Sc.
	Informatik M.Sc.
	Medieninformatik M.Sc.
Requirements	Basic knowledge on further Mathematics and machine learning.
Learning objectives	The students will be able to study, understand and present
Learning objectives	scientific documents from the recent literature of applied
	artificial intelligence, machine learning and deep learning. After
	finishing the seminar, the student will be able to read a
	publication and summarize and present it.
Syllabus	The seminar addresses a wide range of research topics in
Synabus	artificial intelligence, machine learning and deep learning, with
	applications in topics such as autonomous driving, robotics,
	computer graphics, visual computing, communication
	technology, measuring technology and control theory. Every
	semester a number of new topics selected within the context of:
	Applied artificial intelligence.
	 Recent advances in machine learning.
	Recent advances in deep learning.
	A recent publication will be assigned to each student in order to
	read the paper, comprehend it and make a presentation on it. In
	addition, the presentation will highlight important results,
	include the personal opinion of the student and discuss further
	research directions and applications.
Literature	Literature search is within the goals of the seminar. When prior
Litorature	literature is required, it will be provided.
Teaching and learning	Seminar 2 SWS
methods	55mmm 2 5 11 6
Workload	Active Time: 30 h
Jiliouu	Preparation and Evaluation: 90 h
	Sum: 120 h
Assessment	The grading is based on the presentation (research paper), the
	report and participation in the discussions. In addition, the
	student has to attend to all seminar sessions for passing the
	module (one absence for some important reason is acceptable).
Grading Procedure	The report accounts for 60% of the final grade. The presentation
<i>G</i>	and participation in the discussion account for the remaining
	40% of the final grade.
Basis for	-
	1