

Universität Ulm

Besprechung: Freitag, 24.01.2020

Prof. Dr. Anna Dall'Acqua Prof. Dr. Emil Wiedemann Marius Müller Wintersemester 2019/20

Punktzahl: keine

Advanced Topics in the Calculus of Variations: Blatt 10

50. Die Reaktions-Diffusions-Gleichung. Am Paradebeispiel der Reaktions-Diffusionsgleichung wollen wir hier sehen, wie man das Mountain-Pass Lemma dazu benutzen kann. Es sei $\Omega \subset \mathbf{R}^n$ offen und beschränkt und $\mathcal{E}: H_0^1(\Omega) \to \mathbb{R}$ gegeben durch

$$\mathcal{E}(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} \, dx, \tag{1}$$

wober $p \in (1, \frac{n+2}{n-2})$ fest. Wir werden ohne Beweis verwenden, dass $\mathcal{E} \in C^{1,1}_{loc}(H^1_0(\Omega))$. (Wer möchte kann dies aber auch einfach zeigen).

(a) Zeige zunächst: \mathcal{E} ist nicht koerziv und hat keinen globalen Minimierer in $H^1_0(\Omega)$. Ferner ist jeder kritische Punkt $u \in H^1_0(\Omega)$ eine schwache Lösung von der sogenannten Reaktions-Diffusions-Gleichung

$$\begin{cases}
-\Delta u - |u|^{p-1}u = 0 & \text{in } \Omega, \\
u = 0 & \text{auf } \partial\Omega.
\end{cases}$$
(2)

- (b) Zeige: Jede Palais-Smale Folge für \mathcal{E} ist beschränkt.
- (c) Zeige, dass \mathcal{E} die Palais-Smale Bedingung zu jedem Energieniveau erfüllt.
- (d) Zeige mit dem Mountain-Pass-Lemma die Existenz eines kritischen Punktes u_{krit} mit $\mathcal{E}(u_{krit}) > 0$. Folgere, dass (2) keine eindeutige Lösung hat.
- **51.** Mountain-Pässe mit anderer Geometrie. Es sei $S \subset H$ eine Teilmenge eines Hilbertraumes H und Q eine topologische Untermannigfaltigkeit von H mit relativem Rand ∂Q . Im Folgenden sagen wir, dass S und Q verschlungen sind falls $S \cap \partial Q = \emptyset$ und für alle $h \in C^0(H, H)$ mit $h_{|\partial Q} = \operatorname{id} \operatorname{gilt}$, dass $S \cap h(Q) \neq \emptyset$.
 - (a) Es sei H ein Hilbertraum und $\mathcal{E} \in C^{1,1}_{loc}(H;\mathbb{R})$ erfülle die Palais-Smale-Bedingung. Seien $S,Q\subset H$ verschlungen und

$$\alpha := \inf_{u \in S} \mathcal{E}(u) > \sup_{u \in \partial Q} \mathcal{E}(u). \tag{3}$$

Sei zudem $\Gamma := \{ h \in C^0(H, H) : h_{|_{\partial Q}} = \mathrm{id} \}$. Zeige, dass für

$$\beta := \inf_{h \in \Gamma} \sup_{u \in Q} \mathcal{E}(h(u)) \tag{4}$$

gilt, dass $\beta \geq \alpha$ und β ein kritischer Wert von \mathcal{E} ist.

- (b) Zeige, dass das klassische Mountain Pass Lemma ein Spezialfall des oben genannten Satzes ist.
- (c) Beweise durch ein Bild, dass in $H = \mathbb{R}^3$ für alle $\rho < R, A > 0$ Die Mengen $S = \{x \in \mathbb{R}^3 : x_1 = 0, x_2^2 + x_3^2 = \rho^2\}$ und $Q = [-A, A] \times [0, R] \times \{0\}$ verschlungen sind.

Bemerkung: Allgemein gilt folgende Aussage (die später verwendet werden soll): Es sei $V \subset H$ ein abgeschlossener Unterraum derart dass dim $V^{\perp} < \infty$. Dann sind für alle $\rho > R, A > 0$ und $v \in V : ||v|| = 1$ die Mengen

$$S := \{ u \in V : ||u|| = \rho \}, \quad Q := \{ sv + w : w \in V^{\perp} : ||w|| \le A, s \in [0, R] \}$$
 (5)

in H verschlungen.

Im Folgenden seien $0 < \lambda_1 \le \lambda_2 \le ... \to \infty$ die sogenannten *Dirichlet-Eigenwerte*, d.h. es gibt eine Orthonormalbasis $(\phi_k)_{k=1}^{\infty} \subset L^2(\Omega)$ von $L^2(\Omega)$ aus schwachen Lösungen von

$$\begin{cases} -\Delta \phi_k = \lambda_k \phi_k & \text{in } \Omega \\ \phi_k = 0 & \text{auf } \partial \Omega \end{cases}$$
 (6)

(d) Es sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet, $\lambda > 0$ kein Dirichlet-Eigenwert und $p \in (1, \frac{n+2}{n-2})$. Definiere $\mathcal{E}: H_0^1(\Omega) \to \mathbb{R}$ durch

$$\mathcal{E}(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{\lambda}{2} \int_{\Omega} |u|^2 dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx.$$
 (7)

Zeige, dass \mathcal{E} einen kritischen Punkt $u \in H^1_0(\Omega): u \neq 0$ besitzt. Hierbei darf ohne Beweis verwendet werden, dass $\mathcal{E} \in C^{1,1}_{loc}(H^1_0(\Omega); \mathbb{R}^n)$ ist und die Palais-Smale Bedingung erfüllt. Einen Hinweis findest Du am Ende des Blattes.

52. Erste Überlegungen zur H-Flächengleichung.

- (a) Um in Satz 3.3 die Unterhalbstetigkeit zu zeigen, haben wir H > 0 angenommen. Allerdings wollen wir die H-Flächengleichung eigentlich für alle $H \in \mathbb{R} \setminus \{0\}$ lösen. Beschränkt die Annahme H > 0 die Allgemeinheit?
- (b) Zeige: Für Vektoren $a, b, c \in \mathbb{R}^3$ gilt stets

$$a \cdot (b \times c) = \det(a, b, c) \tag{8}$$

- (c) Im Beweis von Satz 3.3 haben wir benutzt, dass sich $H^1 \cap L^{\infty}$ -Funktionen in H^1 durch glatte Funktionen mit gleichmäßiger L^{∞} -Schranke approximieren lassen. Das wollen wir uns hier genauer überlegen.
 - (i) Es sei $u \in H^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Zeige: Dann gibt es $(u_n) \subset C^{\infty}(\mathbb{R}^n) \cap H^1(\mathbb{R}^n)$ sodass $u_n \to u$ in $H^1(\mathbb{R}^n)$ und punktweise f.ü.. Ferner gilt für alle $n \in \mathbb{N} ||u_n||_{L^{\infty}(\mathbb{R}^n)} \le ||u||_{L^{\infty}(\mathbb{R}^n)}$
 - (ii) Es sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit C^1 -Rand. Sei $u \in H^1(\Omega) \cap L^{\infty}(\Omega)$. Zeige: Dann gibt es $(u_n) \subset C^{\infty}(\overline{\Omega})$ derart, dass $u_n \to u$ in $H^1(\Omega)$ und punktweise fast überall. Ferner gilt $||u_n||_{L^{\infty}(\Omega)} \le ||u||_{L^{\infty}(\Omega)}$ (die Abschätzung mit Konstante 1 ist kein Schreibfehler!). Einen Hinweis findest Du am Ende des Blattes.

Hinweis zu Aufgabe 51(d): Setze $k_0 := \inf\{k \in \mathbb{N} : \lambda_k \ge \lambda\}$ und Verwende die Bemerkung von Aufgabe 51(c) mit $V = span\{\phi_{k_0}, \phi_{k_0+1}, \phi_{k_0+2}, \ldots\}$ (Warum ist V^{\perp} endlichdimensional?) und $v = \frac{1}{\sqrt{\lambda_{k_0}}}\phi_{k_0}$. Da \mathcal{E} auf endlichdimensionalen Teilräumen von $H^1_0(\Omega)$ gegen $-\infty$ für $||u|| \to \infty$ strebt (Warum?) gibt es genügend große A, R > 0 sodass für Q wie in der Bemerkung gilt dass, $\mathcal{E}_{|\partial Q} \le 0$. Zeige, dass es $\rho > 0$ gibt, sodass \mathcal{E} auf S ein positives Infimum hat.

Hinweis zu Aufgabe 52 c (ii): Es sei $Eu \in H^1(\mathbb{R}^n)$ die Sobolev Extension von u. Nun ist $w := \max\{-||u||_{\infty}, \min\{Eu, ||u||_{\infty}\}\}$ auch ein Element von $H^1(\mathbb{R}^n)$ (warum ?). Verwende nun Aufgabe 52c(i) für dieses w.