Universität Ulm

Besprechung: Freitag, 20.12.2019

Prof. Dr. Emil Wiedemann Prof. Dr. Anna Dall'Acqua Marius Müller

Wintersemester 2019/20 Punktzahl: keine

Advanced Topics in the Calculus of Variations: Blatt 7

- 39. Die kritische Sobolevkonstante. In dieser Aufgabe wollen wir zeigen, dass im kritischen Fall $p=\frac{n+2}{n-2}$ die optimale Sobolevkonstante unabhängig vom Gebiet ist. Allerdings wird sie auf beschränkten Gebieten nicht angenommen.
 - (a) Zeige: Für alle $\rho, R \in (0, \infty)$ gilt $S(\frac{n+2}{n-2}, B_{\rho}(0)) = S(\frac{n+2}{n-2}, B_R(0))$.
 - (b) Zeige: Für alle $\Omega \subset \mathbb{R}^n$ gilt $S(\frac{n+2}{n-2},\Omega) \geq S$.
 - (c) Zeige: Für alle R > 0 gilt $S(\frac{n+2}{n-2}, B_R(0)) = S$.
 - (d) Beweise Lemma 1.2 (i).
- 40. Parade-Beispiele für die Fälle im Concentration-Compactness-Lemma. Im Folgenden sind Folgen von Borel-Wahrscheinlichkeitsmaßen $(\mu_k)_{k\in\mathbb{N}}$ auf $\mathcal{B}(\mathbb{R}^n)$ gegeben. Wir wollen uns überlegen, unter welchen Fall im ersten Concentration-Compactness Lemma diese fallen.
 - (a) Bitte gib für jeden Fall des Concentration-Compactness-Lemmas (Kompaktheit, Verschwinden, Dichotomie) an, ob es eine Teilfolge gibt, für die der jeweilige Fall erfüllt ist. Begründe Deine Behauptungen.
 - (i) (Konstante Folgen) $\mu_k=\mu$ für ein konstantes Borel-Wahrscheinlichkeitsmaß $\mu.$
 - (ii) (Verschiebungs-Folgen) $\mu_k = \delta_{ke_1}$, wobei δ_x nach wie vor das Dirac-Maß mit Punktmasse 1 in x bezeichnet und e_1 der erste Einheitsvektor in \mathbb{R}^n .
 - (iii) (Zerstreuungs-Folgen) $\mu_k = \frac{1}{k} \sum_{l=1}^k \delta_{le_1}$ (mit der selben Notation wie in Aufgabenteil (a)(ii)).
 - (iv) Gib ein Beispiel für Dichotomie an und zeige ohne Verwendung des Concentration Compactness Lemmas, dass der Dichotomie-Fall zutrifft.
 - (v) $\mu_k = \frac{2}{k\pi} \frac{1}{1 + \frac{x^2}{k^2}} dx$ (n = 1).
 - (vi) $\mu_k = \frac{2}{\pi} \frac{k}{1 + k^2 x^2} dx$ (n = 1).

41. Gleichmäßige Konvexität

- (a) Beweise Satz 1.5 der Vorlesung. Einen Hinweis findest Du (falls benötigt) am Ende dieses Blattes.
- (b) Zeige, dass $(L^1(\mathbb{R}^n), ||\cdot||_{L^1})$ nicht gleichmäßig konvex ist.
- (c) Der Satz von Clarkson besagt, dass für $p \in (1, \infty)$ $L^p(\mathbb{R}^n)$ gleichmäßig konvex ist. Folgere, dass für alle $m \in \mathbb{N}$ und $p \in (1, \infty)$ der Raum $D^{m,p}(\mathbb{R}^n)$ gleichmäßig konvex ist. Einen Hinweis findest Du am Ende dieses Blattes. Außerdem empfehle ich, nicht die in der Vorlesung definierte Norm sondern die Norm

$$||v||_{D^{m,p}(\mathbb{R}^n)} := \left(\sum_{|\alpha|=m} ||D^{\alpha}u||_{L^p(\mathbb{R}^n)}^p\right)^{\frac{1}{p}} \tag{1}$$

zu nehmen.

Anmerkung: Man weiß auch (Satz von Milman), dass alle gleichmäßig konvexen Banachräume reflexiv sind. Daher gibt es die Teilfolge, die wir in der Motivation vor Satz 1.5 gewählt haben.

- **42. Die** $D^{m,p}$ -**Räume.** Im Folgenden wollen wir studieren was der Unterschied zwischen $D^{1,2}(\mathbb{R}^n)$ und $W^{1,2}(\mathbb{R}^n)$ ist und wie relevant das für die Theorie ist
 - (a) Sei $\delta > 0$ und $f_{\delta} : \mathbb{R}^3 \to \mathbb{R}$ gegeben durch

$$f_{\delta}(x) = \begin{cases} \frac{1}{|x|} & |x| > \delta \\ \frac{1}{\delta} & |x| \le \delta \end{cases}$$
 (2)

- Zeige $f_{\delta} \in D^{1,2}(\mathbb{R}^3)$ aber $f_{\delta} \notin W^{1,2}(\mathbb{R}^3)$ für alle $\delta > 0$. Welche Bedeutung hat der punktweise Grenzwert der f_{δ} für $\delta \to 0$ für die Theorie der partiellen Differentialgleichungen?
- (b) BONUS: Diese Aufgabe setzt weitreichende Kenntnisse der Fouriertransformation und der Hardy-Littlewood-Sobolev-Ungleichung voraus. Letztere kann in [Analysis, Lieb and Loss, Theorem 4.3] nachgelesen werden.
 - (i) Es sei $G \in L^1_{loc}(\mathbb{R}^n)$ die Fundamentallösung der Laplace-Gleichung in \mathbb{R}^n . Zeige $\widehat{G}(k) = \frac{1}{|k|^2}$ für alle $k \in \mathbb{R}^n$.
 - (ii) Zeige damit dass für alle $f, g \in C_0^{\infty}(\mathbb{R}^n)$ gilt, dass

$$\int_{\mathbb{R}^n} f(x)g(x) \, \mathrm{d}x \le ||\nabla f||_{L^2(\mathbb{R}^n)} \left(\int_{\mathbb{R}^n} g(x)(G * g)(x) \, \mathrm{d}x \right)^{\frac{1}{2}} \tag{3}$$

(iii) Verwende die explizite Darstellung von G und die Hardy-Littlewood-Sobolev-Ungleichung um zu zeigen, dass

$$||f||_{L^{p+1}(\mathbb{R}^n)} \le C||\nabla f||_{L^2(\mathbb{R}^n)} \quad \forall f \in C_0^{\infty}(\mathbb{R}^n). \tag{4}$$

Zeige abschließend, dass die Ungleichung auch für beliebige $f \in D^{1,2}(\mathbb{R}^n)$ gilt.

Hinweis zu Aufgabe 41(a): Falls ||x|| = 0 so ist nichts zu zeigen. Falls $||x|| \neq 0$, so gibt es laut dem Satz von Hahn-Banach ein stetiges lineares Funktional $x^* \in X^*$ sodass $x^*(x) = ||x||$. Verwende dieses Funktional.

Hinweis zu Aufgabe 41(c): Verwende (meinetwegen ohne gesonderten Beweis), dass $(\mathbb{R}^m, ||\cdot||_p)$ gleichmäßig konvex ist um Folgende Zwischenbehautptung zu zeigen: Seien $(V_i, ||\cdot||_i)$ (i=1,...,m) gleichmäßig konvexe normierte Räume, so ist auch $(V_1 \times ... \times V_m, ||\cdot||)$ ein gleichmäßig konvexer normierter Raum, wobei hier für $(v^1,...,v^m) \in V$

$$||(v^1, ..., v^m)|| := \left(\sum_{i=1}^m ||v^i||_i^p\right)^{\frac{1}{p}}$$
(5)

definieren.