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Abstract

Bounds for the 3G-expression
∫
Ω

G (x, z) G (z, y) dz/G (x, y) play a fundamental
role in potential theory. Here G (x, y) is the Green function for the Laplace problem
with zero Dirichlet boundary conditions on Ω. The 3G-formula equals Ey

x (τΩ), the
expected lifetime for a Brownian motion starting in x ∈ Ω̄, that is killed on exiting Ω
and conditioned to converge to and to be stopped at y ∈ Ω̄. Although it was shown by
probabilistic methods for bounded (simply connected) 2d-domains that if x ∈ ∂Ω then
the supremum of y 7→ Ey

x (τΩ) is assumed for some y at the boundary, the analogous
question remained open for x in the interior. Here we are able to give an answer
in the case that B ⊂ R2 is the unit disk. The dependence of this quantity on the
positions of x and y is investigated and it is shown that indeed Ey

x (τB) is maximized
on B̄2 by opposite boundary points. The result gives also an answer to a number of
questions related to the best constant for the positivity preserving property of some
elliptic systems. In particular it confirms a relation with a ‘sum of inverse eigenvalues’
that was conjectured in [11].

1 Introduction

Let B =
{
x ∈ R2 : |x| < 1

}
denote the unit disk and set

GB (x, y) =
1
4π

log

(
|x|2 |y|2 − 2x · y + 1
|x|2 − 2x · y + |y|2

)
for x, y ∈ B.

This function GB is the Green function for{
−∆u = f in B,
u = 0 on ∂B,

(1)

that is, the solution of (1) is given by u (x) =
∫
B GB (x, y) f (y) dy. We will show that for

every y ∈ B the function x 7→ H (x, y) (≡ Ey
x (τB) for Brownian motion normalized for

−∆) given by

H (x, y) =
∫

B

GB (x, z) GB (z, y)
GB (x, y)

dz (2)
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is increasing away from y along the hyperbolic geodesics and along the curves of a com-
plementary family. See Theorem 1 and Figure 1 below. As a consequence we will find
that x 7→ H (x, y) has no interior maximum and we will even pinpoint the location of the
maximum at the boundary.

Our aim in studying this problem was to supply an answer to some questions left open
in [2], [9] and in [10], [11]. After explaining the background we will come back to this in
section 1.3.

1.1 The link between analysis and probability

The model problem for the positivity preserving property of systems of second order elliptic
boundary value problems that are coupled in a noncooperative way is

−∆u = f − λv in Ω,
−∆v = f in Ω,
u = v = 0 on ∂Ω,

(3)

where Ω is a bounded set in Rn and λ ∈ R+. One knows, at least for Ω that satisfy some
boundary regularity, that there exists λc (Ω) ∈ (0,∞) such that for all f ≥ 0 the solution
u satisfies u ≥ 0 if and only if λ ≤ λc (Ω) . See [11], [12] and [15]. Since the solution u of
(3) equals

u (x) =
∫

y∈Ω
GΩ (x, y)

(
1− λ

∫
z∈Ω

GΩ (x, z) GΩ (z, y)
GΩ (x, y)

dz

)
f (y) dy,

one can show that
λc (Ω)−1 = sup

x,y∈Ω

∫
z∈Ω

GΩ (x, z) GΩ (z, y)
GΩ (x, y)

dz, (4)

where GΩ is the Green function for the Laplace problem with zero Dirichlet boundary
condition on Ω. For rather general elliptic problems Cranston, Fabes and Zhao in [4]
showed that the right hand side of (4) is finite. For the Laplacian such a bound has been
obtained by Cranston in [6] for n ≥ 3 and with McConnell in [5] for n = 2.

The link between (4) and probability theory is:

Ey
x (τΩ) =

∫
z∈Ω

GΩ (x, z) GΩ (z, y)
GΩ (x, y)

dz, (5)

where Ey
x (τΩ) is the expectation of the lifetime of a Brownian motion starting in x, con-

ditioned to converge to and to be stopped at y and to be killed on exiting Ω.
The famous result from [5] states that there is a c > 0 such that

Ey
x (τΩ) ≤ c|Ω| for all Ω ⊂ R2,

where |Ω| is the Lebesgue measure of Ω.

Some details for identity (5). A Brownian motion that starts in x ∈ Ω and is killed
on ∂Ω has transition density given by pΩ(t, x, y) and has expected lifetime given by

Ex(τΩ) =
∫

Ω
GΩ(x, z)dz.
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To consider Brownian motion that is conditioned to exit Ω through Γ ⊂ ∂Ω and stopped
at leaving Ω, one uses the transition density ph

Ω(t, x, z) = pΩ(t, x, z)h(z)
h(x) where h is the

solution of 
−∆h = 0 in Ω,
h = 0 on ∂Ω \ Γ,
h = 1 on Γ.

This is a so-called Doob’s conditioned Brownian motion, see [7, Part 2, Chap. X]. The
expected lifetime is given by

Eh
x(τΩ) =

∫
Ω

GΩ(x, z)
h(z)
h(x)

dz. (6)

We want to consider the expectation for the time that Brownian motion spends going from
x to y and staying inside Ω. This can be approximated by the expected lifetime for the
following conditioned Brownian motion. One considers the domains Ωε = Ω \ Bε(y) and
the functions hy,ε such that 

−∆hy,ε = 0 in Ω,
hy,ε = 1 on ∂Bε(y),
hy,ε = 0 on ∂Ω,

with the expected lifetime given by (6) replacing h by hy,ε and GΩ by GΩε . The expectation
of the time we are interested in becomes the expected lifetime of the Brownian motion
starting at x and conditioned to leave Ω \ {y} at {y}. This is now given by

Ey
x(τΩ\{y}) = lim

ε→0
E

hy,ε
x (τΩε). (7)

For x and y in the interior, using that

hy,ε(z)
hy,ε(x)

→ GΩ(z, y)
GΩ(x, y)

,

and that GΩε → GΩ holds in dimension n > 1, identity (5) follows from (6) and (7).
In the particular case of y ∈ ∂Ω a similar procedure leads to

Ey
x (τΩ) =

∫
z∈Ω

GΩ (x, z)
KΩ (y, z)
KΩ (y, x)

dz, (8)

where KΩ (y, ·) is the Poisson kernel for y ∈ ∂Ω, namely the function such that u (x) =∫
y∈∂Ω KΩ (x, y) g (y) dσy solves {

−∆u = 0 in Ω,
u = g on ∂Ω.

For sufficiently regular domains the expression in (8) is a continuous extension of (5) to
Ω× Ω̄. Note that in the above we have used the analyst’s −∆ instead of −1

2∆.
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1.2 Notation and main result

Since the remainder is concerned with the unit disk in R2 we will skip the subscript Ω
and write G (x, y) = GB (x, y) etc. In 2 dimensions the direct relation between conformal
maps and Green functions is best exploited using C instead of R2. For the sake of clear
notation we will use boldface for this complex alternative:

for x ∈ R2 set x = x1 + ix2,

for h : R2 → R2 set h (x) = h1 (x) + ih2 (x) .

The explicit expressions of the Green function and of the Poisson kernel in the disk
can now be written as

G (x, y) =
1
4π

log

(
|ȳx− 1|2

|x− y|2

)
, where x, y ∈ B,

K (x, y) =
1
2π

1− |y|2

|x− y|2
, where x ∈ ∂B, y ∈ B.

By using dominated convergence and taking limits one can extend the definition of H in
(2) up to the closure B̄ × B̄. The complete definition of H then reads:

H (x, y) =



∫
B G (x, z) G (z, y) dz

G (x, y)
if x, y ∈ B with x 6= y,

0 if x = y ∈ B̄,∫
B K (x, z) G (z, y) dz

K (x, y)
if x ∈ ∂B, y ∈ B,∫

B K (y, z) G (z, x) dz

K (y, x)
if x ∈ B, y ∈ ∂B,

π |x− y|2
∫
B K (x, z) K (y, z) dz if x, y ∈ ∂B with x 6= y.

This function H lies in C
(
B̄ × B̄

)
and is strictly positive on B̄2\

{
(x, x) ; x ∈ B̄

}
. The

only delicate part is the case x = y ∈ ∂B for which we refer to formula (12) below.

A precise formulation of the result is the following:

Theorem 1 For all y ∈ B̄ the function x 7→ H (x, y) is

i. increasing along ‘ the hyperbolic geodesics through y’ in increasing euclidean dis-
tance;

ii. increasing along the orthogonal trajectories of ‘ the hyperbolic geodesics through y’
in increasing euclidean distance.

Remark 1.1 For B ‘the hyperbolic geodesics through y’ are the circles through y that
intersect ∂B perpendicular. The orthogonal trajectories are again circles. See Figure 1.

Remark 1.2 For y ∈ ∂B part i of Theorem 1 has been proved by Griffin, McConnell and
Verchota in [9].
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y

x 7→ H(x, y)

Figure 1: The geodesics through y in green (light) and the orthogonal trajectories in red
(dark).

Corollary 2 One directly finds that:

i. sup
x∈B̄

H (x, y) = H (−y/ |y| , y) for any y ∈ B̄\ {0} ;

ii. sup
x∈B̄

H (x, 0) = H (e, 0) with e = (1, 0);

iii. and sup
x,y∈B̄

H (x, y) = H (−e, e) .

Remark 2.1 Since the problem has a rotational symmetry one finds that e above might be
replaced by any a ∈ ∂B.

1.3 Earlier related results

Critical numbers related to (4) have been studied before in a number of papers.
Caristi and Mitidieri in [2] considered the radially symmetric case (in any dimension
n), that is, system (3) for radially symmetric functions and hence with −∆ replaced by
−r1−n ∂

∂r

(
rn−1 ∂

∂r

)
. They showed that the corresponding Hradial (r, s) is maximal for (r, s)

being extremal which means r = 0 and s = 1 or vice versa. The critical number that they
find for this radial case is as follows:

sup
r,s∈[0,1]

Hradial (r, s) =
1
2n

.

In the one-dimensional case they also considered ∂2

∂x2 + c without assuming symmetry.

Maximal lifetime on the disk. Griffin, McConnell and Verchota in [9] considered H
for general simply connected 2-dimensional domains Ω but fixed y ∈ ∂Ω. Two of their
main results for such Ω are

sup
x∈Ω̄,y∈∂Ω

H (x, y) = sup
x,y∈∂Ω

H (x, y)

and that (with our ‘analytic’ normalization)

sup
x,y∈Ω̄

H (x, y) ≤ 1
2π

|Ω| .
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For Ω = B and y ∈ ∂B they sharpen this estimate:

sup
x∈B̄,y∈∂B

H (x, y) ≤ 2 log 2− 1 =
2 log 2− 1

π
|B| .

The numerical values are 1
2π = .159155... and 2 log 2−1

π = .12296.... Our result improves
the last estimate by

sup
x,y∈B̄

H (x, y) = sup
x∈B̄,y∈∂B

H (x, y) ≤ 2 log 2− 1,

thereby giving an estimate for the lifetime inequality on a disk with a small hole which is
sharper than 1/(2π) (which corresponds to 1/π in [9, Remark 5.7]).

Domain optimization. In [10] Kawohl and coauthor showed that the disk does not
give the smallest bound for H among all convex planar sets of equal area. Indeed, they
considered a sector-like domain S, with |S| = |B|, and proved that:

sup
x∈S̄,y∈∂S

H (x, y) < sup
x∈B̄,y∈∂B

H (x, y) .

The question remains open if

sup
x,y∈S̄

H (x, y) < sup
x,y∈B̄

H (x, y) ? (9)

In the present paper we show that sup
x∈B̄,y∈∂B

H (x, y) = sup
x,y∈B̄

H (x, y) holds. We expect the

last identity to hold for all planar domains Ω. Let us put it as a conjecture.

Conjecture 3 If Ω is a (simply connected) planar domain, then

sup
x,y∈Ω

H (x, y) = sup
x,y∈∂Ω

H (x, y) .

The obvious consequence of this conjecture is (9). We want to remark that such a
result is not likely to hold on a manifold. Consider for example the surface of a ball with a
small hole near the pole, see Fig.2. Taking y near the north pole one expects the maximum
of H to be attained at an interior point near the south pole.

Relation with eigenvalues In one dimension critical numbers for sign-changing in (3)
were studied by Schröder [14]. The precise result was revisited in [11]. Due to the fact
that in one dimension the boundary consists of isolated points one recovers an eigenvalue
problem for the critical number.

A relation between that critical number and the Dirichlet eigenvalues in an interval
I ⊂ R is

sup
x,y∈I

H (x, y) =
∞∑

k=1

1
λk

= 2
∞∑

k=1

(−1)k−1

λk
. (10)

Note that for the unit interval I = (0, 1) these eigenvalues are λk = π2k2,
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Figure 2: Sphere with a small hole near the north pole.

For the disk one finds

sup
x,y∈B

H (x, y) = 4
∞∑

ν=1

(−1)ν−1
∞∑

k=1

mν,k

λν,k
, (11)

where λν,k is the eigenvalue for the eigenfunction with k − 1 circular nodal lines and ν
radial nodal lines, and where mν,k is the multiplicity, that is, mν,k = 1 for ν = 0 and
mν,k = 2 for ν ≥ 1. The numbers for the two right hand sides above can be found in [11].

1.4 Scheme for the proofs

In section 2 we will consider the case where one of the points lies on the boundary. As
mentioned before the case with one point at the boundary has been previously studied by
Griffin, McConnell and Verchota in [9]. We will need a more precise characterization of
H and in doing so we will recover some of their results. Instead of using power series in C
our basic tools will be conformal mappings, a monotonicity result for a convolution (see
Proposition 4) and the maximum principle.

Since the function under consideration is symmetric, H(x, y) = H(y, x), the behaviour
of x ∈ B 7→ H(x, y) with y ∈ ∂B can be used for the behaviour of x ∈ ∂B 7→ H(x, y) with
y ∈ B. Using such a result on the boundary and by several applications of the maximum
principle one is able to transfer a inequality valid on the boundary to the interior. This is
done in section 3 and will lead to our main result.

Most of the steps consist of deriving estimates for some tailor-made functions. Since
all these technicalities might blur the line of arguments we hope to clarify our approach
by complementing each intermediate result for a increasing direction of x 7→ H(x, y) (or a
related function) by a sketch.

2 The proof for one point lying on the boundary

Assuming y ∈ ∂B we may suppose without loss of generality that y = e = (1, 0). The
numerator

∫
B K (e, z) G (z, x) dz equals:

E (x) := −1− xx̄
8π

(
log (1− x)

x
+

log (1− x̄)
x̄

+ 1
)

for x ∈ B̄\ {e} and E (e) = 0.
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Indeed, since z 7→ K (e, z) ∈ Lp (B) for p ∈ (1, 2) the Dirichlet problem for the Poisson
equation −∆u = K (e, ·) in B with u = 0 on ∂B has a unique solution in W 2,p (B) ∩
W 1,p

0 (B) by [8, Theorem 9.15]. Since G is the kernel for the solution operator from Lp (B)
to W 2,p (B) ∩W 1,p

0 (B) this Dirichlet problem is solved by u (x) =
∫
B K (e, z) G (z, x) dz.

Next one checks straightforwardly that E lies in W 2,p (B) ∩ C0

(
B̄
)

for p ∈ (1, 2) and by
[1, Theorem IX.17] it follows that E ∈ W 2,p (B) ∩W 1,p

0 (B). Since −∆E = −4 ∂
∂x

∂
∂x̄E =

K (e, ·) in B one finds E = u, the unique solution. The expression for E can also be
deduced from an explicit formula for

∫
B G(x, z)G(z, y)dz with x, y ∈ B, which is given in

[13].
Dividing E(x) by K(e, x) yields:

H (x, e) = −(1− x) (1− x̄)
4

(
log (1− x)

x
+

log (1− x̄)
x̄

+ 1
)

, (12)

for x ∈ B̄\ {e} and by continuity H (e, e) = 0. We remark that log denotes the analytic
extension of the standard logarithm to C\ (−∞, 0] and that the function x 7→ log(1−x)

x is
extended by −1 for x = 0.

2.1 In the halfplane

We consider the conformal map from the ball B onto the halfplane R+ × R that maps
(−1, 0) to (0, 0) and (0, 0) to (1, 0). This map is given by h (x) = 1+x

1−x . Note that h(e) = ∞.
We let X denote an element of R+×R, or in complex notation X = X1 + iX2 ∈ R+ + iR.
The inverse of h is also a conformal map and is defined by h−1 (X) = X−1

X+1 .
It follows from a property of conformal maps that

H (x, e) =
∫

R+×R

K
(
e, h−1(Z)

)
K (e, x)

GR+×R (Z, h (x))
∣∣∣(h−1

)′ (Z1 + iZ2)
∣∣∣2 dZ1dZ2,

where GR+×R(X, Y ) = 1
4π log

(
1 +

4X1Y1

|X − Y |2

)
. Next, by defining the function

H̃ (X) := H (x, e) for X = h (x) ,

one finds

H̃ (X) =
1
4π

∫
R+×R

Z1

X1
log
(

1 +
4X1Z1

|X − Z|2

)
4(

(1 + Z1)
2 + Z2

2

)2 dZ1dZ2.

We will show that X2 7−→ H̃ (X1, X2) is decreasing for X2 > 0. In doing that we need:

Proposition 4 Let f, g ∈ L2(R), f, g ≥ 0, f (t) = f (|t|) , g (t) = g (|t|) and f, g decreasing
for t > 0. Then

t 7→
∫

R
f (x) g (x + t) dx, (13)

is decreasing on R+.
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Proof. We suppose first that additionally g ∈ C∞0 (R). One has

∂

∂t

∫
R

f (x) g (x + t) dx =
∫ +∞

−∞
f (x) g′ (x + t) dx

=
∫ −t

−∞
f (x) g′ (x + t) dx +

∫ +∞

−t
f (x) g′ (x + t) dx.

Using that g′ (x + t) = −g′ (−x− t) , one gets

∂

∂t

∫
R

f (x) g (x + t) dx = −
∫ −t

−∞
f (x) g′ (−x− t) dx +

∫ +∞

−t
f (x) g′ (x + t) dx.

Changing the coordinates one obtains

∂

∂t

∫
R

f (x) g (x + t) dx =
∫ 0

+∞
f (−y − t) g′ (y) dy +

∫ +∞

0
f (y − t) g′ (y) dy

=
∫ +∞

0
g′ (y) (f (y − t)− f (−y − t)) dy.

Now for t > 0, one has |y − t| < |−y − t|. Hence the function (13) is decreasing.
The preceding arguments yields the result also for g as in the hypothesis. We observe

that such g may be approximated in L2(R) by (gk)k∈N ⊂ C∞0 (R) having the additional
properties above. This is achieved by using an even and in positive x-direction decreasing
mollifier in C∞0 (R).

Corollary 5 The relations

max
X2∈R

H̃ (X1, X2) = H̃ (X1, 0) and X2
∂

∂X2
H̃ (X1, X2) ≤ 0,

hold for every X1 ∈ [0,+∞).

Proof. For every X1 ∈ R+, one has

H̃ (X) =
1
π

∫
R+

Z1

X1

∫
R

log
(

1 +
4X1Z1

|X − Z|2

)
1(

(1 + Z1)
2 + Z2

2

)2 dZ2dZ1.

Hence defining

f (Z2) = log
(
1 + 4X1Z1

(X1−Z1)2+Z2
2

)
,

g (Z2) = 1

((1+Z1)2+Z2
2)

2 ,

we can write∫
R

log
(
1 + 4X1Z1

|X−Z|2

)
1

((1+Z1)2+Z2
2)

2 dZ2 =
∫

R
f (Z2 −X2) g (Z2) dZ2.

Applying Proposition 4 one gets that the function H̃ is decreasing for X2 positive and
increasing for X2 negative for every X1 ∈ R+. The claim follows using the regularity of
the function. The case X1 = 0 goes similarly by proceeding to the limit.
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0

Figure 3: Illustration of Corollary 5; arrows denote increasing directions of X 7→ H̃(X).

2.2 Back in the disk

Using the properties of conformal mapping, see [3, Sect. III.3], from the increasing direc-
tion of H̃ we get an increasing direction of H (x, e) . The lines h−1 ({X1 = k1}) , varying
k1 in R+, are circles inside the disk which are tangent to ∂B in (1, 0) . Hence, we have for
every (x1, x2) that the function H is increasing in the direction

v(x1,x2) =
(
−x2,

2x1 − x2
1 − 1 + x2

2

2 (1− x1)

)
, if x2 > 0, (14)

and in the −v(x1,x2)–direction, if x2 < 0. In particular we obtain that

x2
∂

∂θ
H (x, e) := x2

(
−x2

∂

∂x1
+ x1

∂

∂x2

)
H (x, e) ≥ 0 when |x| = 1. (15)

Here we write x1 = |x| cos θ and x2 = |x| sin θ.

e0

x 7→ H(x, e)

Figure 4: The result of Corollary 5 transformed back to the disk; arrows denote increasing
directions of x 7→ H(x, e).

Since we will proceed through properties of the differential equation for H let us fix
the following formula.

Lemma 6 For a, b ∈ C2 with b 6= 0 the following identity holds

−∆
(a

b

)
− 2

∇b

b
· ∇
(a

b

)
+
−∆b

b

(a

b

)
=
−∆a

b
. (16)
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Having e ∈ ∂B one finds −∆K(x, e) = 0 and −∆
(∫

B G(x, z)K(z, e)dz
)

= K(x, e) in
B and by (16) the function H satisfies:

−∆H (x, e)− 2
∇K (x, e)
K (x, e)

· ∇H (x, e) = 1 when x ∈ B.

Let us consider the derivative with respect to the angle ∂
∂θH. Since ∂

∂θ = x1
∂

∂x2
−x2

∂
∂x1

,
we get

∇ ∂

∂θ
H = ∇

((
x1

∂

∂x2
− x2

∂

∂x1

)
H

)
=
(
R+

∂

∂θ

)
∇H,

with R =
(

0 1
−1 0

)
. Since ∂

∂θ and ∆ commute and since R is skew-symmetric, one

obtains that ∂
∂θH (x, e) satisfies

−∆
∂

∂θ
H − 2∇ log(K) · ∇ ∂

∂θ
H = − ∂

∂θ
∆H − 2

∇K

K
·
(
R+

∂

∂θ

)
∇H =

=
∂

∂θ

(
−∆H − 2

∇K

K
· ∇H

)
+ 2

(
∂

∂θ

∇K

K

)
· ∇H − 2

∇K

K
· R∇H

= 0 + 2
((

∂

∂θ
+R

)
∇ log K

)
· ∇H

= 2
(
∇ ∂

∂θ
log K

)
· ∇H.

By the symmetry one observes that ∂
∂θH(x, e) = 0 in {x ∈ B : x2 = 0}. Furthermore

it follows from (15) that ∂
∂θH(x, e) ≥ 0 in {x ∈ ∂B : x2 > 0}. A priori one knows that

x 7→ ∂
∂θH (x, e) is in C2(B+) ∩ C(B̄+ \ {e}) and only the behavior near e remains to be

studied. Using the explicit formula of H(x, e) given by (12), we will prove the following:

Lemma 7 The following identity holds

lim
x→e,
x∈B+

∂

∂θ
H(x, e) = 0.

Proof. Since ∂
∂θ = i

(
x ∂

∂x − x̄ ∂
∂x̄

)
, one gets

∂

∂θ
H (x, e) = i

(1− x̄)
4

(
log (1− x) +

x
x̄

log (1− x̄) + x
)

−i
(1− x) (1− x̄)

4

(
− log (1− x)

x
− 1

1− x

)
−i

(1− x)
4

(
x̄
x

log (1− x) + log (1− x̄) + x̄
)

+i
(1− x) (1− x̄)

4

(
− log (1− x̄)

x̄
− 1

1− x̄

)

= i
log (1− x)

4x
(1− 2x̄ + xx̄)− i

log (1− x̄)
4x̄

(1− 2x + xx̄)− i
x̄− x

2
.
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One observes that
lim
x→e,
x∈B+

∂

∂θ
H (x, e) = 0.

Hence ∂
∂θH (·, e) ∈ C2(B)∩C(B̄) and that ∂

∂θH (·, e) satisfies the boundary value prob-
lem {

−∆ ∂
∂θH − 2∇K

K · ∇ ∂
∂θH = 2∇ ∂

∂θ log K · ∇H in B+,
∂
∂θH ≥ 0 on ∂B+.

(17)

Proposition 8 The inequality x2
∂

∂θ
H (x, e) ≥ 0 holds for all x ∈ B.

e0

x 7→ H(x, e)

Figure 5: For y = e ∈ ∂B the function x 7→ H(x, y) is increasing along semicircles to the
left.

Proof. Since K (x, e) =
1− |x|2

|x− e|2
we have

∂

∂θ
log K = −

∂
∂θ |x− e|2

|x− e|2
= −

(
x1

∂
∂x2

− x2
∂

∂x1

)(
(x1 − 1)2 + x2

2

)
|x− e|2

= 2
x2 (x1 − 1)− x1x2

|x− e|2
=

−2x2

|x− e|2
,

and

∇ ∂

∂θ
log K = ∇

(
−2x2

|x− e|2

)
=

−2
|x− e|2

(0, 1) +
2x2

|x− e|4
(2 (x1 − 1) , 2x2)

=
2

|x− e|4
(
2x2 (x1 − 1) , 2x2

2 − |x− e|2
)

= 2

(
2x2 (x1 − 1) , x2

2 − (x1 − 1)2
)

|x− e|4

=
4 (1− x1)
|x− e|4

(
−x2,

2x1 − x2
1 − 1 + x2

2

2 (1− x1)

)
.
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We see that ∇ ∂
∂θ log K (x1, x2) has the direction of v(x1,x2) as defined in (14) . Hence the

term
∇ ∂

∂θ
log K · ∇H,

is non-negative. Applying Theorem A to (17) the claim follows.

3 The proof for both points in the interior

3.1 Tangential directions

We consider now y in the interior. Without loss of generality we may suppose that y =
(−s, 0) with s ∈ (0, 1). The case s = 0 gives the radial symmetric case which has been
considered previously by Caristi and Mitidieri in [2].

Let us fix x at the boundary and consider H (x, y) . Let Cs = {y : |y| = s} . From the
previous section it follows that the maximum of H (x, ·) in Cs is attained in y = −sx. This
is equivalent to ask for y = (−s, 0) that x = (1, 0) . So using the symmetry of the problem
we can say that

x2
∂

∂θ
H (x, (−s, 0)) ≤ 0 when x ∈ ∂B. (18)

y 0

x 7→ H(x, y)

y

x 7→ Hs(x)

Figure 6: Using the symmetry between x and y we may conclude that for any y ∈ B, the
function x 7→ H(x, y) (left) is increasing along ∂B from the nearest boundary point of y
to the most distant boundary point. Putting y = (−s, 0) with s > 0 it means increasing to
the right along ∂B. Also the function x 7→ Hs(x) (right) is increasing to the right along
∂B.

We consider a conformal map ks from the disk onto the disk that maps y into 0:

ks (x) =
x + s

1 + sx
.

Proceeding as before we will now study the function

Hs (x) := H
(
k−1

s (x),k−1
s (0)

)
,

which due to the behaviour of conformal mappings transforms into

Hs (x) =
∫

B

G (x, z) G (z, 0)
G (x, 0)

∣∣∣(k−1
s

)′ (z1 + iz2)
∣∣∣2 dz1dz2.
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We have k−1
s (z) = z−s

1−sz and
∣∣∣(k−1

s

)′ (z1 + iz2)
∣∣∣2 = (1−s2)2

|e−sz|4 , hence

Hs (x) =
∫

B

G (x, z) G (z, 0)
G (x, 0)

(
1− s2

)2
|e− sz|4

dz1dz2.

One gets for x 6= 0 that the function Hs satisfies

−∆Hs (x) +
2

r |log r|
∂

∂r
Hs (x) =

(
1− s2

)2
|e− sx|4

.

Proposition 9 The inequality x2
∂
∂θHs (x) ≤ 0 holds for all x ∈ B.

Proof. By symmetry one may assume x ∈ B+. We consider the function Θ (x) :=
∂
∂θHs (x) or to be more specific

Θ (x) = x1
∂

∂x2
Hs (x)− x2

∂

∂x1
Hs (x) .

Since ∆ and ∂
∂θ commute, one finds

−∆Θ (x) = − ∂

∂θ
∆Hs (x) =

∂

∂θ

[
− 2

r| log r|
∂

∂r
Hs (x) +

(
1− s2

)2
|e− sx|4

]

= − 2
r| log r|

∂

∂r
Θ(x)− 4

(
1− s2

)2
|e− sx|6

sx2.

A priori Θ ∈ C2(B̄ \ {0}) holds and only the behavior of Θ in 0 remains to be studied.
We have

∂

∂θ
Hs(x) =

1
G(x, 0)

∂

∂θ
R(x),

where R(x) satisfies  −∆R (x) = − (1−s2)2

4π|e−sx|4 log |x|2 in B,

R (x) = 0 on ∂B.
(19)

Since the right hand side of (19) is in Lp(B) for every p ∈ (1,+∞), one gets R ∈ W 2,p(B)
and hence, using the Sobolev imbedding theorem it follows that

R ∈ C1,α(B̄) for every α ∈ (0, 1). (20)

Setting Ω = B 1
2
(0), we have ∂

∂θR and G−1(·, 0) ∈ C(Ω̄) (where we extend G−1(·, 0) in 0 by
0). Hence Θ ∈ C2(B+) ∩ C0(B̄+).

Using (18) and the fact that Hs is symmetric in x2 = 0, we find that Θ(x) ≤ 0 on
∂B+. We may summarize: −∆Θ (x) + 2

r| log r|
∂
∂rΘ(x) = −4(1−s2)2

|e−sx|6 sx2 in B+,

Θ(x) ≤ 0 on ∂B+.

The claim follows applying the maximum principle, see Theorem A.
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y

x 7→ Hs(x)

Figure 7: A conformal mapping changed H(x, y) to Hs(x) and put y in the center. By
Proposition 9 the mapping x 7→ Hs(x) is increasing to the right along all semicircles
around 0.

3.2 Radial directions

In order to prove Theorem 1, it remains to show that the function Hs (x1, 0) is increasing
on the interval (0, 1) . We will show that the function Hs is increasing in radial direction
by using the maximum principle. First we will show that the function Hs satisfies a zero
Neumann boundary condition:

Lemma 10 The identity ∂
∂rHs (x) = 0 holds for all x ∈ ∂B.

Proof. We write
Hs (x) =

R (x)
G (x, 0)

,

with R (x) =
∫
B G (x, z) G (z, 0) (1−s2)2

|e−sz|4 dz1dz2 and observe that R (x) = G (x, 0) = 0 for
x ∈ ∂B. Moreover

−∆R (x) = G (x, 0)

(
1− s2

)2
|e− sx|4

and −∆G (x, 0) = 0 for x 6= 0, x ∈ B.

Since −∆ = − ∂2

∂r2 − 1
r

∂
∂r −

1
r2

∂2

∂2φ
, we find that at the boundary

− ∂2

∂r2
R (x) =

∂

∂r
R (x) , (21)

− ∂2

∂r2
G (x, 0) =

∂

∂r
G (x, 0) . (22)

Using the series expansion near the boundary for R (x) and G (x, 0), we get for x ∈ ∂B:

lim
B3ξ→x

∂
∂rHs (ξ) = lim

B3ξ→x

∂
∂rG (ξ, 0)
G (ξ, 0)

(
∂
∂rR (ξ)

∂
∂rG (ξ, 0)

− R (ξ)
G (ξ, 0)

)

= lim
B3ξ→x

1
|ξ|−1

(
∂
∂r

R(ξ)+(|ξ|−1) ∂2

∂r2 R(ξ)+..

∂
∂r

G(ξ,0)+(|ξ|−1) ∂2

∂r2 G(ξ,0)+..
−

∂
∂r

R(ξ)+
|ξ|−1

2
∂2

∂r2 R(ξ)+..

∂
∂r

G(ξ,0)+
|ξ|−1

2
∂2

∂r2 G(ξ,0)+..

)
=

1
2

∂2

∂r2 R (x) ∂
∂rG (x, 0)− ∂2

∂r2 G (x, 0) ∂
∂rR (x)(

∂
∂rG (x, 0)

)2 ,
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which is zero by using (21) and (22).

Proposition 11 The inequality r
∂

∂r
Hs(x) ≥ 0 holds for all x ∈ B.

y

x 7→ Hs(x)

Figure 8: A conformal mapping changed H(x, y) to Hs(x) and, roughly spoken, put y in
the center. Here is the result from Proposition 11: the function x 7→ Hs(x) is radially
increasing. The combination with Figure 7 and the inverse conformal mapping lead to
Figure 1.

Proof. The function Hs satisfies

−∆Hs (x) =

(
1− s2

)2
|e− sx|4

+
4

|x|2
(
log |x|2

)x · ∇Hs (x) . (23)

Let us define Ξ (x) := r ∂
∂rHs (x) = x · ∇Hs (x). One has

−∆Ξ (x) = −2∆Hs (x)− x1
∂

∂x1
∆Hs (x)− x2

∂

∂x2
∆Hs (x) = . . .

and by (23)

. . . = 2(1−s2)2

|e−sx|4 + 8
|x|2(log|x|2)x · ∇Hs (x) + x · ∇

(
(1−s2)2

|e−sx|4 + 4
|x|2(log|x|2)x · ∇Hs (x)

)
= 2(1−s2)2

|e−sx|4 + 8
|x|2(log|x|2)Ξ (x) + 4sx1

(1−s2)2

|e−sx|6 (1− sx1)

+ 4x1

|x|2(log|x|2)
∂

∂x1
Ξ (x)− 8x2

1

|x|4(log|x|2)Ξ (x)− 8x2
1

|x|4(log2|x|2)Ξ (x)

− 4s2x2
2
(1−s2)2

|e−sx|6 + 4x2

|x|2(log|x|2)
∂

∂x2
Ξ (x)− 8x2

2

|x|4 log|x|2 Ξ (x)− 8x2
2

|x|4(log2|x|2)Ξ (x) ,

that gives

−∆Ξ (x)− 4x·∇Ξ(x)

|x|2 log|x|2 + 8Ξ(x)

|x|2(log2|x|2) = 2(1−s2)2

|e−sx|4

(
1− s|x|2

|e− sx|2

)
. (24)

One sees that the right hand side of (24) is non-negative. Furthermore, since

Ξ(x) =
r

G(x, 0)
∂

∂r
R(x)− R(x)

(G(x, 0))2
r

∂

∂r
G(x, 0),
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with R ∈ C1,α(B̄) (from (20)), one has that Ξ(0) = 0 and that Ξ is continuous in B. With
help of the preceding Lemma 10 we get that Ξ ∈ C0(B̄). Hence, summarizing we have{

−∆Ξ (x)− 4
|x|2 log|x|2 x · ∇Ξ (x) + 8Ξ(x)

|x|2(log2|x|2) ≥ 0 in B \ {0},
Ξ (x) = 0 on ∂B ∪ {0}.

The maximum principle stated in Theorem A finally yields Ξ ≥ 0 in B.

Appendix A: A version of the Maximum Principle

The maximum principle had to be repeatedly applied to differential operators of which the
coefficients become singular on the boundary. We prefer to give the precise formulation
of a maximum principle which is appropriate for this situation. For a proof we refer to [8,
Sect. 3.1].

Theorem A Suppose that Ω ⊂ Rn is open, bounded and connected, and that b ∈ C(Ω; Rn)
and c ∈ C(Ω; R) with c ≥ 0. Set L = −∆ + b · ∇+ c. If u ∈ C2(Ω) satisfies{

Lu(x) ≥ 0 for x ∈ Ω,
lim inf
Ω3x→x∂

u(x) ≥ 0 for x∂ ∈ ∂Ω,

then u ≥ 0 in Ω.
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