
On the lifetime of a conditioned Brownian motion in the ball

Anna Dall’Acqua
Delft Inst. Applied Math., E.W.I.

Delft University of Technology
PObox 5031

2600 GA Delft
The Netherlands

e-mail: a.dallacqua@ewi.tudelft.nl

Abstract

Consider the Brownian motion conditioned to start in x, to converge to y, with x, y ∈ Ω̄, and
to be killed at the boundary ∂Ω. Here Ω is a bounded domain in Rn. For which x and y is the
lifetime of this Brownian motion maximal? One would guess for x and y being opposite boundary
points and we will show that this holds true for balls in Rn. As a consequence we find the best
constant for the positivity preserving property of some elliptic systems and an identity between
this constant and a sum of inverse Dirichlet eigenvalues.

1 Introduction

Let Ω be a Lipschitz domain in Rn and let GΩ denote the Green function for{
−∆u = f in Ω,

u = 0 on ∂Ω,
(1)

that is, the solution of (1) is given by u(x) =
∫
ΩGΩ(x, y)f(y)dy. Let us define

HΩ(x, y) :=
∫

Ω

GΩ(x, z)GΩ(z, y)
GΩ(x, y)

for x, y ∈ Ω× Ω.

The function HΩ(x, y) is of some importance in two different areas of mathematics: elliptic partial
differential equations and probability.

In p.d.e.’s the function HΩ(x, y) appears when studying the positivity preserving property of the
following system of second order elliptic equations:

−∆u = f − λv in Ω,
−∆v = f in Ω,

u = v = 0 on ∂Ω,
(2)

for λ > 0. One is interested in studying system (2) since this is the model problem for the positivity
preserving property of second order elliptic boundary value problems that are coupled in a non-
cooperative way (see [11]). In order that for every f > 0 the solutions u and v of (2) are also positive
one needs that λ ≤ λc(Ω) where

λ−1
c (Ω) := sup

x,y∈Ω
HΩ(x, y). (3)
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The L∞-bound of the function HΩ(x, y) for rather general elliptic operators has been studied in [3]
(see also [2], [4] and [5]). In the case of a two-dimensional simply connected domain Ω it has been
shown that

HΩ(x, y) ≤ 1
2π
|Ω| for x, y ∈ Ω̄.

In higher dimensions some regularity of the boundary is required in order to prove an L∞-bound for
HΩ. For a Lipschitz domain Ω ⊂ Rn with n ≥ 3 it holds that

HΩ(x, y) ≤ c|Ω|
2
n for x, y ∈ Ω̄,

with c a constant depending on the Lipschitz character of Ω and on the diameter of Ω, see [4].
In probability the function HΩ(x, y) represents the lifetime of a conditioned Brownian motion.

More precisely, the following relation holds

Eyx(τΩ) = HΩ(x, y), (4)

where Eyx(τΩ) is the expectation of the lifetime of a Brownian motion in Ω starting in x, conditioned
to converge to y and to be stopped at y, and to be killed on exiting Ω. Some details for identity (4)
can be found in [10] and [7] (see also [9]).

In the present paper we will study where the function HΩ(x, y) attains its maximum in Ω̄ × Ω̄
with Ω the unit ball in Rn, n ≥ 3. Our aim in studying the problem was to generalize some properties
known for the disk to the ball in dimension n.

In literature there are some results concerning the two-dimensional case. In [10] the authors
considered the behavior of x 7→ HΩ(x, y) for y fixed at the boundary and Ω a general simply connected
domain in R2. The main result reads as follows. For y ∈ ∂Ω the function x 7→ HΩ(x, y) is increasing
along “hyperbolic geodesics” in increasing Euclidean distance from y and hence the maximum is
attained for x ∈ ∂Ω. In particular in the case of the unit disk the maximum is attained at opposite
boundary points. The main tools are conformal mappings and series expansions. However, for y in
the interior there exists almost no results. In [7] the problem has been solved in the case Ω = D
the unit disk. The main result is that x 7→ HΩ(x, y) is increasing along the “hyperbolic geodesic”
through y in increasing Euclidean distance, and also it is increasing along the orthogonal trajectories
of the “hyperbolic geodesic” through y in increasing Euclidean distance. The proof uses Möbious
transformations, the maximum principle and partially the result in [10].

In higher dimensions only the radially symmetric case has been studied. In [6] the authors show
that Hrad(r, s) attains its maximum for (r, s) being extremal which means r = 0 and s = 1.

The main result of the paper is that HΩ(x, y) with Ω the unit ball in Rn with n ≥ 3 attains its
supremum at opposite boundary points. This is related to the best constant in (3). The proof consists
in studying the direction with which x 7→ HΩ(x, y), for y ∈ Ω̄ fixed, increases. As a direct application
of the localization of the maximum of HΩ, we will compute explicitly the best constant in (3) when Ω
is the unit ball in Rn. We will also prove an identity between λ−1

c (Ω) with Ω the unit ball in R3 and
a sum of Dirichlet eigenvalues. This kind of identities was first observed in [15] and then developed in
[11]. It is still an open question if these identities are simply a coincidence or if there is an explanation
beyond computation. We are now able to give an explanation to the identity in the case of the unit
disk but not in the case of the unit ball in R3.

The structure of the paper is as follows. First we present some notation and we state the main
result. In the second section we study the increasing direction of x 7→ HΩ(x, y) for y fixed in the
interior and in the third section we consider y fixed at the boundary. In the last section we discuss
some identities involving λ−1

c (Ω) and a sum of inverse Dirichlet eigenvalues. In the appendix we recall
some known properties of conformal mappings that will be used in the proof.
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1.1 Notation and main result

Let B = {x ∈ Rn : |x| < 1} denote the unit ball in Rn, n ≥ 3, and set for x, y ∈ B,

GB(x, y) =


1

n(n−2)ωn

(
|x− y|2−n −

∣∣∣x |y| − y
|y|

∣∣∣2−n) for y 6= 0,

1
n(n−2)ωn

(
|x|2−n − 1

)
for y = 0,

where ωn = 2π
n
2

nΓ(n
2
) is the volume of B. This function GB is the Green function for (1) with Ω = B.

Since in the rest of the paper we work in the unit ball we skip the subscript B and write H(x, y) =
HB(x, y). It is convenient to extend the definition of H to all B̄ × B̄:

H(x, y) =



∫
B

GB(x, z)GB(z, y)
GB(x, y)

dz for x, y ∈ B, x 6= y,

0 for x = y ∈ B̄,∫
B

KB(x, z)GB(z, y)
KB(x, y)

dz for x ∈ ∂B, y ∈ B,∫
B

KB(y, z)GB(z, x)
KB(y, x)

dz for x ∈ B, y ∈ ∂B,

nωn
2 |x− y|n

∫
B
KB(x, z)KB(y, z)dz for x, y ∈ ∂B, x 6= y.

(5)

One may show that (x, y) 7→ H(x, y) is continuous on B̄2. Here for x ∈ ∂B and y ∈ B

KB(x, y) :=
1
nωn

1− |y|2

|x− y|n
,

is the Poisson kernel for {
−∆u = 0 in B,
u = g on ∂B,

(6)

that is, the solution of (6) is given by u(x) =
∫
∂BKB(y, x)g(y)dy.

The main result of the paper is the following.

Theorem 1.1 For every y ∈ B̄ the function x 7→ H (x, y) , defined in (5), is increasing along the
“hyperbolic geodesics” through y in increasing Euclidean distance, and attains its maximum at opposite
boundary points.

Remark 1.1.1 The hyperbolic geodesics in B are the intersection of B with the Euclidean circles that
meet ∂B at right angle (see [17, page 66]). See Figure 1.

The method used for the proof is similar to the one used in [7] but, to a certain extent, simpler.
We look at the differential boundary value problem that the function satisfies and then apply the
maximum principle. Compared with [7] the proof here is somewhat simplified since, in some cases, we
are able to determine the sign of the functions via a geometrical reasoning. In the present setting we
have also to study the case x 7→ HΩ(x, y) for y fixed at the boundary since a result as the one in [10]
is not available in dimensions n ≥ 3.

We remark that although x 7→ HΩ(x, y) is increasing along the “hyperbolic geodesics” through
y in increasing Euclidean distance, this is not the ‘best’ increasing direction. Indeed the gradient
of HΩ(·, y) has also a non-zero component in a direction orthogonal to the “hyperbolic geodesics”
through y (see Remarks 2.5.1 and 3.6.1).
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Figure 1: A generic hyperbolic geodesic through y in B ⊂ Rn is obtained in the following way. One
considers a generic disk in B to which the origin and y belong. Each hyperbolic geodesic through y in
this disk is a hyperbolic geodesic through y in B ⊂ Rn.

2 One point fixed in the interior

In the following section we study the function x 7→ H(x, y) with y fixed in B. Without loss of
generality, we can fix y = −se1 with s ∈ (0, 1) and e1 = (1, 0, .., 0) ∈ Rn. The main result of the
section is the following.

Theorem 2.1 Let s ∈ (0, 1). The function x 7→ H(x,−se1) is increasing along the “hyperbolic
geodesic” through −se1 in increasing Euclidean distance and attains its maximum at the boundary in
the point x = e1.

2.1 Transformation to the center

Instead of studying directly the function x 7→ H(x,−se1) it is convenient to consider a transformation.
We consider a (anti-)conformal map hs from B onto B that maps 0 into y = −se1 and e1 into e1 given
by

hs(x1, x2, .., xn) =

(
Id + s2Q

)
x

|sx− e1|2
− s

1 + |x|2

|sx− e1|2
e1

= −1
s
e1 −

1− s2

s

sQx− e1

|sx− e1|2
,

(7)

where Q11 = 1, Qii = −1 for i = 2, . . . , n and Qij = 0 for i, j = 1, . . . , n and i 6= j. Notice that hs is
conformal if the dimension n is even, is anti-conformal if the dimension n is odd. One can also see hs
as the combination of the following mappings

x 7−→ Qx− 1
se1 7−→

Qx− 1
s
e1

|Qx− 1
s
e1|2

7−→ −1−s2
s

sQx−e1
|sx−e1|2

7−→ −1
se1 −

1−s2
s

sQx−e1
|sx−e1|2

.

Using the (anti-)conformal transformation hs, we can write

H(x̃, y) =
∫
B

GB(x̃, z)GB(z, y)
GB(x̃, y)

dz

=
∫
B

GB(x̃, hs(z′))GB(hs(z′), y)
GB(x̃, y)

Jhs(z
′)dz′,

where Jhs is the Jacobian of the transformation hs. By the definition of the function hs and Lemma
B.2 we find

H(hs(x), hs(0)) =
∫
B

GB(hs(x), hs(z′))GB(hs(z′), hs(0))
GB(hs(x), hs(0))

Jhs(z
′)dz′ (8)

=
∫
B

GB(x, z′)GB(z′, 0)
GB(x, 0)

J
2
n
hs

(z′)dz′.
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For simplicity of notation we define on B the function Hs given by

Hs(x) :=
∫
B

GB(x, z)GB(z, 0)
GB(x, 0)

J
2
n
hs

(z)dz.

Since
−∆

a

b
− 2

∇b
b
.∇a
b
− a

b2
∆b = −∆a

b
, (9)

one sees that the function Hs satisfies in B\{0} the equation

−∆xH
s(x)− 2

∇xGB(x, 0)
GB(x, 0)

· ∇xH
s(x) = J

2
n
hs

(x). (10)

We can rewrite (10) as

−∆xH
s(x) = 2(2− n)

|x|−n

|x|2−n − 1
x · ∇xH

s(x) + J
2
n
hs

(x), (11)

using the explicit formula of the Green function.

2.2 The radial direction

In the following section we show that the function Hs is increasing in radial direction. The method
consists in studying the differential boundary value problem that ∂

∂rH
s satisfies and then apply the

maximum principle.
We first prove that Hs satisfies zero Neumann boundary condition.

Lemma 2.2 Let s ∈ (0, 1). It holds that ∂
∂rH

s(x) = 0 for every x ∈ ∂B.

Proof. Let Rs(x) denote the numerator of Hs(x); that is

Rs(x) :=
∫
B
GB(x, z)GB(z, 0)J

2
n
hs

(z)dz. (12)

One has that Rs(x) = 0 for x ∈ ∂B and that it holds

−∆Rs(x) = GB(x, 0)J
2
n
hs

(x).

Since −∆ = −r1−n ∂
∂r

(
rn−1 ∂

∂r

)
− r−2∆Γ where ∆Γ is the Laplace-Beltrami operator on the surface of

the unit ball, we find that at the boundary

∂
∂r2

Rs(x) = −(n− 1) ∂∂rR
s(x),

∂
∂r2

GB(x, 0) = −(n− 1) ∂∂rGB(x, 0).
(13)

Hence from the series expansion near the boundary of Rs(·) and GB(·, 0) one gets for x ∈ ∂B

lim
B3ξ→x

∂

∂r
Hs(ξ) = lim

B3ξ→x

∂
∂rGB(ξ, 0)
GB(ξ, 0)

(
∂
∂rR

s(ξ)
∂
∂rGB(ξ, 0)

− Rs(ξ)
GB(ξ, 0)

)

= lim
B3ξ→x

(2− n)
|ξ|2−n − 1

(
∂
∂rR

s(x) + (|ξ| − 1) ∂
2

∂r2
Rs(x) + ..

∂
∂rGB(x, 0) + (|ξ| − 1) ∂2

∂r2
GB(x, 0) + ..

−
∂
∂rR

s(x) + |ξ|−1
2

∂2

∂r2
Rs(x) + ..

∂
∂rGB(x, 0) + |ξ|−1

2
∂2

∂r2
GB(x, 0) + ..

)

=
1
2

∂2

∂r2
Rs(x) ∂∂rGB(x, 0)− ∂

∂rR
s(x) ∂

2

∂r2
GB(x, 0)(

∂
∂rGB(x, 0)

)2 . (14)

The claim follows from (14) using (13).

We now show that r ∂∂rH
s(x) is well defined in 0.
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Lemma 2.3 Let s ∈ (0, 1). Then limx→0 r
∂
∂rH

s(x) = 0.

Proof. With Rs defined as in (12) one finds

r
∂

∂r
Hs(x) = x.∇Hs(x) =

x

GB(x, 0)
.∇Rs(x)− Rs(x)

GB(x, 0)
x

GB(x, 0)
.∇GB(x, 0). (15)

Since
x

GB(x, 0)
.∇GB(x, 0) =

(2− n) |x|2−n

|x|2−n − 1
=

2− n

1− |x|n−2 ,

and since from Lemma A.1 and [15, Sec.5] (see Remark 2.3.1) it follows that

Rs(x)
GB(x, 0)

≤ (1− s2)2

(s− 1)4
1

GB(x, 0)

∫
B
GB(x, z)GB(z, 0)dz ≤ (1− s2)2

(s− 1)4
cΩ |x| ,

we get

lim
x→0

(
Rs(x)
GB(x, 0)

x

GB(x, 0)
.∇GB(x, 0)

)
= 0.

The other term in (15) is given by

x

GB(x, 0)
.∇Rs(x) = − 1

nωn

|x|n−2

1− |x|n−2 ·

·x.
∫
B

(
|x− z|−n (x− z)−

∣∣∣x |z| − z
|z|

∣∣∣−n (x |z| − z
|z|) |z|

)(
|z|2−n − 1

)
J

2
n
hs

(z)dz.

One sees directly that

lim
x→0

|x|n−2

1− |x|n−2 x.

∫
B

∣∣∣x |z| − z
|z|

∣∣∣−n (x |z| − z
|z|) |z| (|z|

2−n − 1)J
2
n
hs

(z)dz = 0.

Hence to show that limx→0
x

GB(x,0) .∇R
s(x) = 0 it is sufficient to prove that the limit for x going to 0

of the modulus of
|x|n−2

1− |x|n−2 x.

∫
B
|x− z|−n (x− z)(|z|2−n − 1)J

2
n
hs

(z)dz,

is zero. One has

lim
x→0

|x|n−2

1− |x|n−2

∣∣∣∣x.∫
B
|x− z|−n (x− z)(|z|2−n − 1)J

2
n
hs

(z)dz
∣∣∣∣

≤ 4
(1− s2)2

(1− s)4
lim
x→0

(
|x|n−1

∫
B
|x− z|1−n |z|2−n dz

)
.

We study separately the integral term. Writing

|x|n−1
∫
B
|x− z|1−n |z|2−n dz = |x|n−1

∫
|z|< |x|

2

|x− z|1−n |z|2−n dz

+ |x|n−1
∫
B\
n
|z|< |x|

2

o |x− z|1−n |z|2−n dz = . . . ,

since |x− z| ≥ |x|
2 for |z| < |x|

2 , one finds

· · · ≤ 2n−1

∫
|z|< |x|

2

|z|2−n dz + 2n−2 |x|
∫
B\
n
|z|< |x|

2

o |x− z|1−n dz,

that goes to zero for x going to 0.
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Remark 2.3.1 In [15] it is proved that for x, y ∈ Ω it holds

HΩ(x, y) ≤ cΩ

(
ln

CΩ

|x− y|

)−1

for n = 2,

HΩ(x, y) ≤ cΩ |x− y| for n ≥ 3,
HΩ(x, y) ≤ cΩ,ε |x− y|2−ε for n ≥ 4 and ε > 0.

Notice that there is a different behavior for n = 2 and n ≥ 3 but also between the case n = 3 and
n ≥ 4.

Proposition 2.4 For every x ∈ B it holds that r ∂∂rH
s(x) ≥ 0.

Proof. Let Σ denote r ∂∂rH
s(x)(which is equal to x.∇Hs(x)). By definition of Σ and (11) one has

that

−∆Σ(x) = −2∆xH
s(x)− x.∇∆xH

s(x)

= 4(2− n)
|x|−n

|x|2−n − 1
Σ(x) + 2J

2
n
hs

(x) + 2(2− n)x.∇
(

|x|−n

|x|2−n − 1
Σ(x)

)
+ x.∇J

2
n
hs

(x).

Hence Σ satisfies

−∆Σ(x)− 2(2− n)
|x|−n

|x|2−n − 1
x.∇Σ(x) + 2(n− 2)2

|x|−n

(|x|2−n − 1)2
Σ(x) = 2J

2
n
hs

(x) + x.∇J
2
n
hs

(x), (16)

and the right hand side in (16) is positive. Indeed from Lemma A.1 and since s ∈ (0, 1) it holds for
x ∈ B

2J
2
n
hs

(x) + x.∇J
2
n
hs

(x) = (1− s2)2
(

2
|sx− e1|4

+ x.∇ 1
|sx− e1|4

)
= 2(1− s2)2

(
1

|sx− e1|4
− (sx− e1).2sx

|sx− e1|6

)
= −2(1− s2)2

(sx− e1).(sx+ e1)
|sx− e1|6

= 2(1− s2)2
1− s2 |x|2

|sx− e1|6
> 0.

Using the result of Lemmas 2.2 and 2.3 one finds{
−∆Σ(x)− 2(2− n) |x|−n

|x|2−n−1
x.∇Σ(x) + 2(n− 2)2 |x|−n

(|x|2−n−1)2
Σ(x) ≥ 0 in B \ {0},

Σ(x) = 0 on ∂B ∪ {0} .

The claim follows by the maximum principle.

2.3 Behavior at the boundary

In the previous section we have shown that x 7→ Hs(x) is radially increasing. Hence it remains to
study the behavior at the boundary of this function.

For x ∈ ∂B one finds

Hs(x) =
∫
B

KB(x, z)GB(z, 0)
KB(x, 0)

J
2
n
hs

(z)dz

= (1−s2)2

n(n−2)ωn

∫
B

1− |z|2

|x− z|n
|z|2−n − 1
|sz − e1|4

dz. (17)



December 15, 2004 8

Lemma 2.5 It holds that maxx∈∂BHs(x) = Hs(e1).

Proof. We first notice that by symmetry it is sufficient to consider x = (x1, x2,~0) with ~0 ∈ Rn−2 and
x2

1 +x2
2 = 1. Then in order to see how the function Hs(x) varies when x belongs to this circumference

we consider
∂

∂θ
Hs(x) = −x2

∂

∂x1
Hs(x) + x1

∂

∂x2
Hs(x).

From (17) one finds

∂

∂θ
Hs(x) = −(1−s2)2

(n−2)ωn

∫
B

(1− |z|2) |z|
2−n − 1

|sz − e1|4
−x2(x1 − z1) + x1(x2 − z2)

|x− z|n+2 dz

= (1−s2)2

(n−2)ωn

∫
B

(1− |z|2) |z|
2−n − 1

|sz − e1|4
x1z2 − x2z1

|x− z|n+2 dz.

We now study the sign of the integral. Let

Bp := {z ∈ B : x1z2 − x2z1 > 0} and Bn := {z ∈ B : x1z2 − x2z1 < 0} .

One sees that if ξ ∈ Bp then −ξ ∈ Bn and that the intersection of the closure of Bp and Bn is a
hyperplane in Rn going through x and the origin.

�
�

�
�

�

�
�

�
�

�

@
@

@
@

@

@
@

@
@

@

qx qx

q
x

qx

Bp

Bnq qξ

η

Bn

Bp

q q
ξ

η

Bn
Bp

q
q

η

ξ
Bp

Bnq qη
ξ

Figure 2: The sets Bp and Bn for different positions of x.

Let ξ ∈ Bp and let η the unique element in Bn such that: |ξ| = |η|, ξi = ηi for every i ≥ 3 and
|x− ξ| = |x− η|. By the choice it follows that

(1− |ξ|2)(|ξ|2−n − 1)
x1ξ2 − x2ξ1

|x− ξ|n+2 = −(1− |η|2)(|η|2−n − 1)
x1η2 − x2η1

|x− η|n+2 .

We notice that the term

(1− |ξ|2) |ξ|
2−n − 1

|sξ − e1|4
x1ξ2 − x2ξ1

|x− ξ|n+2 + (1− |η|2) |η|
2−n − 1

|sη − e1|4
x1η2 − x2η1

|x− η|n+2 ,

is positive if x2 < 0, is negative if x2 > 0 and is zero if x2 = 0. This follows from the observation that

s
∣∣ξ − 1

se1
∣∣ < s

∣∣η − 1
se1
∣∣ if x2 < 0,

s
∣∣ξ − 1

se1
∣∣ = s

∣∣η − 1
se1
∣∣ if x2 = 0,

s
∣∣ξ − 1

se1
∣∣ > s

∣∣η − 1
se1
∣∣ if x2 > 0,

(See Figure 3).
Repeating the same reasoning for every ξ ∈ Bp we get that x2

∂
∂θH

s(x) ≤ 0 for every x ∈ ∂B with
x = (x1, x2,~0). Hence, by symmetry it follows that supx∈∂BHs(x) = Hs(e1).



December 15, 2004 9

�
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�
�

�
�
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r
x

Bp

Bnr
rη

ξ

r 1
se1

Figure 3: The distances |η − x|, |ξ − x|, |ξ − 1
se1| and |η − 1

se1|.

Remark 2.5.1 With the same method used in the proof of Proposition 2.5 one can prove that

x2
∂

∂θ
Hs(x) ≤ 0 for

{
x ∈ B : xi = 0 for i ≥ 3 and x2

1 + x2
2 ≤ 1

}
,

wriring x1 = r cos(θ) and x2 = r sin(θ). This inequality gives that ∇Hs(x) has a non-zero component
in the tangential direction, implying that ∇H(x, y) has not the direction of the hyperbolic geodesic
through y.

Corollary 2.6 Let s ∈ (0, 1). The function Hs(x) is radially increasing in B and

max
x∈B̄

Hs(x) = Hs(e1).

Theorem 2.1 is a consequence of the previous corollary.

3 One point fixed at the boundary

In this section we study the function x 7→ H(x, y) with y ∈ ∂B. Without loss of generality, we can fix
y = e1. The main result is the following.

Theorem 3.1 The function x→ H(x, e1) is increasing along the “hyperbolic geodesic” through e1 in
increasing Euclidean distance, and attains its maximum at the boundary at x = −e1.

Theorem 1.1 will follow from Theorems 2.1 and 3.1.

3.1 Transformation to the half n-space

Instead of studying the problem in the ball it is convenient to consider a transformation to the half
n-space. We consider a (anti-)conformal map ϕ from S := R+ × Rn−1, the half n-space, onto B that
maps 0 into −e1 and e1 into 0 given by

ϕ(X1, X2, .., Xn) = e1 − 2
QX + e1

|X + e1|2
, (18)

where Q11 = 1, Qii = −1 for i = 2, . . . , n and Qij = 0 for i, j = 1, . . . , n and i 6= j. The map ϕ is
conformal if the dimension n is even, is anti-conformal if the dimension n is odd.

In the following, to avoid ambiguity in the notation, we denote with capital letters the coordinates
on the half n-space.

Using the (anti-)conformal transformation ϕ, we can write

H(x, e1) =
∫
B

KB(e1, z)GB(z, x)
KB(e1, x)

dz

=
∫
S

KB(e1, ϕ(Z))GB(ϕ(Z), x)
KB(e1, x)

Jϕ(Z)dZ,
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where Jϕ is the Jacobian of the transformation ϕ. By the definition of the function ϕ and Lemma B.2
we find

H(ϕ(X), e1) =
∫
S

KB(e1, ϕ(Z))GB(ϕ(Z), ϕ(X))
KB(e1, ϕ(X))

Jϕ(Z)dZ

=
∫
S

KB(e1, ϕ(Z))GS(Z,X)
KB(e1, ϕ(X))

(Jϕ(Z)Jϕ(X))
1
n
− 1

2Jϕ(Z)dZ.

Since

KB(e1, ϕ(Z)) = 1
nωn

|Z + e1|n−2

2n−2
Z1 = 1

nωn

1
2

n
2
−1
Jϕ(Z)

1
n
− 1

2Z1,

one has

H(ϕ(X), e1) =
∫
S

Jϕ(Z)
1
n
− 1

2

Jϕ(X)
1
n
− 1

2

Z1

X1
GS(Z,X)(Jϕ(Z)Jϕ(X))

1
n
− 1

2Jϕ(Z)dZ

= 1
n(n−2)ωn

∫
S

Z1

X1

(
|X − Z|2−n − |X + QZ|2−n

)
Jϕ(Z)

2
ndZ.

For simplicity of notation we define the function H̃ given by

H̃(X) := 1
n(n−2)ωn

∫
S

Z1

X1

(
|X − Z|2−n − |X + QZ|2−n

)
Jϕ(Z)

2
ndZ.

3.2 Increasing along the “hyperbolic geodesics” through e1

In the following section we show that the function x 7→ H(x, e1) is increasing along the “hyperbolic
geodesics” through e1. That’s equivalent to prove that the function H̃(X) is decreasing in the X1

direction. Indeed, the pre-image through the mapping ϕ, defined in (18), of the hyperbolic geodesics
in B through e1 are the straight lines in S that intersect the hyperplane {X1 = 0} orthogonally.

Let H̃X1 denote ∂
∂X1

H̃(X). We proceed studying the differential boundary value problem that H̃X1

satisfies in order to apply the maximum principle.
Since ∂S is composed of two parts, ∂S = {Z ∈ Rn : Z1 = 0} ∪ {∞}, we treat those separately. In

the following {Z1 = 0} denotes the hyperplane {Z ∈ Rn : Z1 = 0}.

Lemma 3.2 It holds that H̃X1(X) = 0 for X ∈ {X1 = 0} .

Proof. Writing H̃(X) = 1
X1
R̃(X) with

R̃(X) := 1
n(n−2)ωn

∫
S
Z1

(
|X − Z|2−n − |X + QZ|2−n

)
Jϕ(Z)

2
ndZ,

one finds

H̃X1(X) =
1
X1

(
∂

∂X1
R̃(X)− R̃(X)

X1

)
.

We first notice that since R̃(X) = 0 for X ∈ {X1 = 0} and −∆R̃(X) = X1Jϕ(X)
2
n , one finds that

∂2

∂X2
1
R̃(X) = 0 holds on {X1 = 0}. Hence using the series expansion near X ∈ {X1 = 0}

lim
S3Y→X

H̃X1(Y ) = lim
S3Y→X

1
Y1

(
∂

∂X1
R̃(X) + Y1

∂2

∂X2
1

R̃(X) + ..− ∂

∂X1
R̃(X)− 1

2
Y1

∂2

∂X2
1

R̃(X) + ..

)
=

1
2
∂2

∂X2
1

R̃(X) = 0.

The claim follows.
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Lemma 3.3 It holds that lim|X|→∞ H̃X1(X) = 0.

Proof. Since

H̃X1(X) = − 1
nωn

∫
S

Z1

X1

(
|X − Z|−n (X1 − Z1)− |X + QZ|−n (X1 + Z1)

) 22

|Z + e1|4
dZ

− 1
n(n−2)ωn

∫
S

Z1

X2
1

(
|X − Z|2−n − |X + QZ|2−n

) 22

|Z + e1|4
dZ,

and it holds |X − Z| < |X + QZ|, one has∣∣∣H̃X1(X)
∣∣∣ ≤ 23

nωn

∫
S

Z1

X1

|X1 − Z1|
|X − Z|n

1
|Z + e1|4

dZ + 23

n(n−2)ωn

∫
S

Z1

X2
1

1
|X − Z|n−2

1
|Z + e1|4

dZ

≤ 23

nωn

1
X1

∫
S

1
|X − Z|n−1

1
|Z + e1|3

dZ + 23

n(n−2)ωn

1
X2

1

∫
S

1
|X − Z|n−2

1
|Z + e1|3

dZ. (19)

We now proceed studying separately the terms in the right hand side of (19). For the first term
one finds ∫

S

1
|X − Z|n−1

1
|Z + e1|3

dZ =
∫
S∩B |X|

2

(X)

1
|X − Z|n−1

1
|Z + e1|3

dZ +

+
∫
S\B |X|

2

(X),

|Z|<2|X|

1
|X − Z|n−1

1
|Z + e1|3

dZ +
∫
S\B |X|

2

(X),

|Z|>2|X|

1
|X − Z|n−1

1
|Z + e1|3

dZ = . . . .

One observes that |Z + e1| > |Z| ≥ |X|
2 if Z ∈ B |X|

2

(X). While if Z 6∈ B |X|
2

(X) it holds |X − Z| > |X|
2

and even more |X − Z| > |Z|
2 if also |Z| > 2 |X|. Hence we get

. . . ≤ 23

|X|3

∫
S∩B |X|

2

(X)

1
|X − Z|n−1dZ +

2n−1

|X|n−1

∫
S,|Z|<2|X|

1
|Z + e1|3

dZ

+2n−1

∫
S,|Z|>2|X|

1
|Z|n−1

1
|Z + e1|3

dZ

≤ C1

|X|2
+

2n−1

|X|n−1

∫
|Z|<2|X|

1
|Z|2

dZ + 2n−1

∫
|Z|>2|X|

1
|Z|n+2dZ

≤ C1

|X|2
+

C2

|X|n−1 |X|
n−2 +

C3

|X|2
,

that goes to zero when |X| goes to infinity. Proceeding similarly one finds also that

lim
|X|→∞

∫
S

1
|X − Z|n−2

1
|Z + e1|3

dZ = 0.

The claim follows.

Proposition 3.4 The function H̃(X) is decreasing in the X1 direction.

Proof. Since it holds
−∆H̃(X) = Jϕ(X)

2
n +

2
X1

∂

∂X1
H̃(X),

one gets

−∆H̃X1(X)− 2
X1

∂

∂X1
H̃X1(X) +

2
X2

1

H̃X1(X) =
∂

∂X1
Jϕ(X)

2
n = −24 X1 + 1

|X + e1|6
≤ 0.
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Hence the function H̃X1 satisfies{
−∆H̃X1(X)− 2

X1

∂
∂X1

H̃X1(X) + 2
X2

1
H̃X1(X) ≤ 0 in S,

H̃X1 = 0 on ∂S.

Applying the maximum principle we find that H̃X1 ≤ 0 on S.

By the result in the previous proposition and using that the hyperbolic geodesics are transformed
onto hyperbolic geodesics by Möbious transformations, we get the following.

Corollary 3.5 The function x 7→ H(x, e1) is increasing along the “hyperbolic geodesics” through e1
in increasing Euclidean distance.

3.3 Behavior at the boundary

In this section we study the behavior of x 7→ H(x, e1) on ∂B. Indeed, since by the result of the
previous section we already know that

max
x∈B̄

H(x, e1) = max
x∈∂B

H(x, e1),

it only remains to find the location on ∂B of this maximum. Also in this case it is convenient to use
the transformation ϕ, defined in (18), and to work in the half n-space.

Proposition 3.6 For any i ∈ {2, . . . , n} it holds that Xi
∂
∂Xi

H̃(X) ≤ 0 on {X1 = 0}.

Proof. We find that for X ∈ {X1 = 0}

H̃(X) = 2
nωn

∫
S

Z2
1

|X − Z|n
Jϕ(Z)

2
ndZ.

Fix i ∈ {2, . . . , n} and X ∈ {X1 = 0}. We have

∂

∂Xi
H̃(X) = 23

ωn

∫
S

Z2
1

|X − Z|n+2

Zi −Xi

|Z + e1|4
dZ. (20)

We will now determine the sign of the integral in (20). Let

Sp,i := {Z ∈ S : Zi −Xi > 0} and Sn,i := {Z ∈ S : Zi −Xi < 0} .

Let P ∈ Sp,i and let P ′ the unique element in Sn,i such that: Pj = P ′j for j ∈ {1, . . . , n} with j 6= i,
and |X − P | = |X − P ′|. By the choice it follows that

P 2
1

|X − P |n+2 (Pi −Xi) = − P ′21
|X − P ′|n+2 (P ′i −Xi).

We notice that the term

P 2
1

|X − P |n+2

Pi −Xi

|P + e1|4
+

P ′21
|X − P ′|n+2

P ′i −Xi

|P ′ + e1|4
,

is positive if X2 < 0, is negative if X2 > 0 and is zero if X2 = 0. This follows from the observation
that ∣∣P ′ + e1

∣∣ > |P + e1| if X2 < 0,∣∣P ′ + e1
∣∣ = |P + e1| if X2 = 0,∣∣P ′ + e1
∣∣ < |P + e1| if X2 > 0,

(see Figure 4).
The claim follows repeating the same reasoning for every P ∈ Sp,i and i ∈ {2, . . . , n} .
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Figure 4: The sets Sp,i, Sn,i and the distance to −e1.

Remark 3.6.1 With the same method used in the proof of Proposition 3.6 one can prove that

Xi
∂

∂Xi
H̃(X) ≤ 0 for every X ∈ S and i ∈ {2, . . . , n} . (21)

Notice that from (21) it follows that ∇H̃(X) is not in the X1 direction. For the function H(·, e1) this
reads as ∇H(·, e1) is not tangent to the hyperbolic geodesics through e1.

Corollary 3.7 The function X 7→ H̃(X) for X ∈ S̄ attains its maximum in X = ~0.

Theorem 3.1 follows directly from the previous Corollary.

4 Relation with the eigenvalues

4.1 Previous results

In [11] the authors show that there exists a relation between the inverse of λc(Ω), defined in (3), and
the Dirichlet eigenvalues for two choices of Ω : Ω = [0, 1] ⊂ R (see also [16]) and Ω the unit disk. In
an interval I = [0, 1] ⊂ R the following identities hold

1
λc(I)

=
∞∑
m=1

1
λm

= 2
∞∑
m=1

(−1)m−1

λm
,

with λm = π2m2. For the disk D it holds

1
λc(D)

= 4
∞∑
m=0

(−1)m−1
∞∑
i=1

νm,i
λm,i

, (22)

where ν0,i = 1 and νm,i = 2 for m ≥ 1. The eigenvalue λm,i corresponds to the eigenfunctions with
i− 1 circular nodal lines and m radial nodal lines.

We are now able to give an explanation to identity (22). A complete orthonormal set of eigenfunc-
tions for (1) on the disk is given by, writing x = reiϕ:

ϕ0,i(x) =
1√
2π

J0(j0,ir)
1√
2
|J ′0(j0,i)|

for i ∈ N,

ϕe,m,i(x) =
cos(mϕ)√

π

Jm(jm,ir)
1√
2
|J ′m(jm,i)|

for m, i ∈ N,

ϕo,m,i(x) =
sin(mϕ)√

π

Jm(jm,ir)
1√
2
|J ′m(jm,i)|

for m, i ∈ N,
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with eigenvalues
λ0,i = j20,i and λe,m,i = λo,m,i = j2m,i for i,m ∈ N.

Here, as usual, Jm denotes the m-th Bessel function of the first kind and jm,i denotes the i-th zero of
Jm. For the normalization of the Bessel function see [18, 5.11 (11)]. By orthonormality one finds

1
λc(D)

= sup
x,y∈D

1
GD(x, y)

[ ∞∑
i=1

1
j40,i

J0(j0,ir)J0(j0,iρ)
πJ ′20 (j0,i)

+

+
∞∑
m=1

1
π

(cos(mϕ) cos(mϕ′) + sin(mϕ) sin(mϕ′))
∞∑
i=1

2
j4m,i

Jm(jm,ir)Jm(jm,iρ)
J ′2m(jm,i)

]

= lim
x→e1,
y→−e1

1
πGD(x, y)

[ ∞∑
i=1

1
j40,i

J0(j0,ir)J0(j0,iρ)
J ′20 (j0,i)

+

+2
∞∑
m=1

1
π

(cos(mϕ) cos(mϕ′) + sin(mϕ) sin(mϕ′))
∞∑
i=1

1
j4m,i

Jm(jm,ir)Jm(jm,iρ)
J ′2m(jm,i)

]
= . . . .

Differentiating with respect to ρ and computing for y = −e1, we get

· · · = lim
x→e1

1
πKD(x,−e1)

[ ∞∑
i=1

1
j30,i

J0(j0,ir)
J ′0(j0,i)

+ 2
∞∑
m=1

(−1)m cos(mϕ)
∞∑
i=1

1
j3m,i

Jm(jm,ir)
J ′m(jm,i)

]
= . . . ,

and differentiating with respect to r and computing for x = e1

· · · = 1
π

∑∞
i=1

1
j20,i

+ 2
∑∞

m=1(−1)m
∑∞

i=1
1

j2m,i

1
4π

= 4

( ∞∑
i=1

1
j20,i

+ 2
∞∑
m=1

(−1)m
∞∑
i=1

1
j2m,i

)
.

In [11] the numbers νm,i in (22) were interpreted as the multiplicity of the eigenvalue λm,i, since it
holds ν0,i = 1 and νm,i = 2 for m ≥ 1. Instead from the derivation of the formula it seems that what
plays a role is the different normalization of the eigenfunctions.

4.2 The identity for λ−1
c (B)

We will now show that an identity holds also between λ−1
c (B) and a sum of Dirichlet eigenvalues when

B is the unit ball in R3. We first compute the value of λ−1
c (B) for B ⊂ Rn with n ≥ 3. By Theorem

1.1 and (5) one has that it holds

1
λc(B)

= H(−en, en) =
2n−1

nωn

∫
B

(1− |z|2)2

|z − en|n |z + en|n
dz.

Via a C.A.S. (computer algebra system) one finds the following

1
λc(B)

=
√
π
(
2Γ(n2 )− (2 + n)Γ(1 + n) 2F1(2 + 1

2n, n; 3 + 1
2n;−1)

)
4(n− 1)Γ(1

2(n− 1))
,

where Γ(·) denotes the Gamma function and 2F1(·, ·; ·; ·) denotes the Gauss hypergeometric function
(see [1, Chap.6 and 15]). In the following table we collect the values of λ−1

c (B) with B ⊂ Rn for n ≤ 5.

n λ−1
c (B)

1 2
3 ' 0.6666

2 2 log 2− 1 ' 0.3862

3 2(π − 3) ' 0.2831

4 3− 2 log(4) ' 0.2274

5 1
3(10− 3π) ' 0.1917
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On the unit ball in R3 a complete orthonormal set of eigenfunctions is given in polar coordinates
(r, ϕ, θ) by

u0,k,i(r, ϕ, θ) =
√

2k+1
4π Pk(cos(θ))

jk(j 1
2
+k,ir)

1√
2
j′k(j 1

2
+k,i)

with k ∈ N0 and i ∈ N,

and with m, k, i ∈ N and k ≥ m,

ue,m,k,i(r, ϕ, θ) =
√

2k+1
2π

√
(k−|m|)!
(k+|m|)! cos (mϕ)Pmk (cos(θ))

jk(jk+ 1
2
,ir)

1√
2
j′k(jk+ 1

2
,i)
,

uo,m,k,i(r, ϕ, θ) =
√

2k+1
2π

√
(k−|m|)!
(k+|m|)! sin (mϕ)Pmk (cos(θ))

jk(jk+ 1
2
,ir)

1√
2
j′k(jk+ 1

2
,i)
,

(see [14, App. A]). We use the usual convention: 0 ≤ r ≤ 1, 0 ≤ ϕ < 2π and 0 ≤ θ ≤ π. Here
Pmk (·) denotes the Legendre function, jk denotes the fractional Bessel function of first kind and jk+ 1

2
,i

denotes the i-th zero of jk (see [1, Chap.8 and 10] and [18]). We choose this notation for the i-th zero
of jk since it coincides with the i-th zero of Jk+ 1

2
. Notice that jk(z) = 1√

z
Jk+ 1

2
(z).

The associated eigenvalues are

λ0,0,i =
1
j21

2
,i

and λ0,k,i = λe,m,k,i = λo,m,k,i =
1

j2
k+ 1

2
,i

with m, k, i ∈ N and k ≥ m.

Notice that each eigenvalue has multiplicity 2k + 1. For simplicity of notation we fix

µk,i =
1

j2
k+ 1

2
,i

for k ∈ N0 and i ∈ N. (23)

Hence, µk,i for k ∈ N0 and i ∈ N are the eigenvalues for problem (1) on B the unit ball in R3 counted
without multiplicity.

Lemma 4.1 For k ∈ N0 and i ∈ N let µk,i as defined in (23). Then it holds that

1
λc(B)

= 4
∞∑
k=0

(−1)k+1νk

∞∑
i=1

1
µk,i

, (24)

with ν0 = 1 and νk = 4 for k ≥ 1.

Proof. By [18, 15.51] one gets for k ∈ N0

∞∑
i=1

1
µk,i

=
∞∑
i=1

1
j2
k+ 1

2
,i

=
1

4(k + 3
2)
.

Hence it holds

4
∞∑
k=0

(−1)k+1νk

∞∑
i=1

1
µk,i

= −4
∞∑
i=1

1
µ0,i

+ 16
∞∑
k=1

(−1)k+1
∞∑
i=1

1
µk,i

= − 1
3
2

+ 4
∞∑
k=1

(−1)k+1 1
k + 3

2

= −2
3

+
4
6
(3π − 8) = 2(π − 3).

The claim follows.
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Appendices

A The Jacobian

In the present section we compute the Jacobians of the transformations hs and ϕ defined in (7) and
(18) respectively.

Lemma A.1 Let hs the (anti-)conformal map defined in (7). For any n ≥ 3 it holds that

Jhs(x) =
(1− s2)n

|sx− e1|2n
.

Proof. By the definition of hs in (7) it follows

∂

∂xj
hs,i(x) = −(1− s2)

δji
|sx− e1|2

Q ej + 2(1− s2)
(sQx− e1)i(sx− e1)j

|sx− e1|4
,

that gives

(∂jhs,i(x))i,j = − (1− s2)
|sx− e1|2

Q

(
Id − 2

sx− e1
|sx− e1|

(
sx− e1
|sx− e1|

)T)
,

using column notation for sx− e1. The claim follows directly since the matrix Id −2 sx−e1
|sx−e1|

(
sx−e1
|sx−e1|

)T
defines the reflection in the hyperplane through 0 perpendicular to sx− e1.

Lemma A.2 Let ϕ be the (anti-)conformal map defined in (18). For any n ≥ 3 it holds that

Jϕ(X) =
2n

|X + e1|2n
.

Proof. The proof is similar to the one of Lemma A.1. One uses that by the definition of ϕ in (18) it
holds

(∂jϕi(x))i,j = − 2
|X + e1|2

Q

(
Id − 2

X + e1
|X + e1|

(
X + e1
|X + e1|

)T)
,

using column notation for X + e1.

B Conformal transformation

In the following section, for completeness, we recall some known properties of conformal maps. The
situation is different in Rn for n = 2 and n ≥ 3.

Conformal maps are a very useful tool for problems in the plane. The first reason is that there
are many conformal maps: every simply connected domain D  R2 can be mapped conformally onto
the ball (Riemann Mapping Theorem, [13]). A second important property of conformal maps is the
‘invariance’ of the Green function. The precise result is stated in the following lemma.

Lemma B.1 Let A, D  R2 simply connected and let ϕ : A → D a conformal map. Let GA denote
the Green function for the Laplace problem with Dirichlet boundary condition in A.

Then it holds GD(ϕ(x), ϕ(y)) = GA(x, y).

In higher dimension the situation is different. The only conformal mappings are the Möbious
transforms. Liouville’s Theorem, [12], states that every conformal transformation in Rn with n ≥ 3
must necessarily reduce to a translation, a magnification, an orthogonal transformation, a reflection
through reciprocal radii, or a combination of these elementary transformations. Moreover there is no
‘invariance’ of the Green function via conformal mappings. However a relation still holds. We write
the result in the following lemma.
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Lemma B.2 Let A, D  Rn, n ≥ 3, simply connected and let ϕ : A → D be a conformal map. Let
Jϕ denote the Jacobian of ϕ. Then it holds that

GD(ϕ(x), ϕ(y)) = (Jϕ(x)Jϕ(y))
1
n
− 1

2 GA(x, y).

Remark B.2.1 The result stated in Lemma B.2 holds also if ϕ is an anti-conformal map since there
is only a change in the orientation.

Proof. In [8, Cor. 2] it is proved that for any Möbious transformation ψ in Rn and k ∈ N it holds

∆k(J
1
2
− k

n
ψ u ◦ ψ) = J

1
2
+ k

n
ψ

(
∆ku

)
◦ ψ. (25)

In our setting using (25) with k = 1, we get that for any x ∈ B

u(ϕ(x)) = J
1
n
− 1

2
ϕ (x)

∫
A
GA(x, y)J

1
2
+ 1

n
ϕ (y)(∆u)(ϕ(y))dy

=
∫
A
GA(x, y)(Jϕ(x)Jϕ(y))

1
n
− 1

2 (∆u)(ϕ(y))Jϕ(y)dy. (26)

We can also write

u(ϕ(x)) =
∫
D
GD(ϕ(x), z)∆u(z)dz

=
∫
A
GD(ϕ(x), ϕ(y))(∆u)(ϕ(y))Jϕ(y)dy. (27)

The claim follows from (26) and (27).
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