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Abstract

We consider the family of smooth embedded rotationally symmetric annular type surfaces in R3

having two concentric circles contained in two parallel planes of R3 as boundary. Minimising
the Willmore functional within this class of surfaces we prove the existence of smooth axi-
symmetric Willmore surfaces having these circles as boundary. When the radii of the circles
tend to zero we prove convergence of these solutions to the round sphere.
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1 Introduction and main results

A smooth, immersed two-dimensional surface Γ ⊂ R3 is a Willmore surface if it is stationary with
respect to compactly supported variations for the Willmore functional

W(Γ) :=
∫

Γ
H2 dA . (1)

Here H is the mean curvature of Γ. The Willmore functional is a special case of the more general
Helfrich functional. These functionals are of geometric interest. They appear, in particular, in
the theory of elasticity as models for the elastic energy of thin planes (see [7], [12] and [13]). The
Euler-Lagrange equation (called Willmore equation) associated to (1) is

4H + 2H(H2 −K) = 0 on Γ (2)

where 4 denotes the Laplace-Beltrami operator on the surface Γ.
Many results concerning existence and regularity of closed Willmore surfaces are present in the

literature, see for instance [16], [1], [9] and [14]. We are interested in studying existence of Willmore
surfaces with boundary and satisfying prescribed boundary conditions. Even though already in
1993 Nitsche in [12] attracted the attention to this problem not much is yet known. One of the
main difficulties is that equation (2) is of fourth order and not uniformly elliptic. Moreover, the
Willmore functional is not convex. Schätzle in [15] proved existence of Willmore immersions in
Sn satisfying Dirichlet boundary conditions. Working on Sn some compactness problems could
be overcome. Another approach to the problem is to study existence of solutions to (2) with
boundary conditions under certain symmetry assumptions. This leads to the study of Willmore
surfaces of revolution. Existence of Willmore surfaces of revolution generated by symmetric graphs
satisfying arbitrary symmetric Dirichlet boundary conditions has been proven in [5] (see also [4])
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by solving a minimisation problem. Scholtes in [17] studied the functional obtained by adding
an additional area term to the Willmore functional. He could prove existence of minimisers in
the class of surfaces of revolution generated by graphs satisfying prescribed (but not arbitrary)
Dirichlet boundary data.

Another challenging boundary value problem is obtained by fixing only the boundary of the
surfaces among which to vary. Since the problem is of fourth order, a second boundary condition
‘arises’ , the so-called ‘natural’ boundary condition. In the considered case the natural boundary
condition is that the mean curvature has to be zero at the boundary (see [2, App.A] or [18]). This
boundary value problem for surfaces of revolution generated by symmetric graphs has been studied
in [2] and [6]. In this paper we extend the results from [2]. Here we consider surfaces of revolution
generated by rotating a regular smooth curve along the x-axis. The boundary consists of two
circles on planes parallel to the y, z-plane and centered at (−1, 0, 0) and (1, 0, 0) respectively. The
radii are arbitrary, in particular the two circles do not necessarily have the same radius. Moreover,
we do not restrict ourselves to graphs and neither to symmetric curves.

Before stating the main theorem we introduce for some parameter αl > 0 the number

α∗r(αl) := inf
γ∈R

αl

cosh(γ)
cosh

(2 cosh(γ)
αl

+ γ
)

> 0 . (3)

Denoting by Sr := {reiϕ : ϕ ∈ R} the circle of radius r centered at the origin, our main result is
the following:

Theorem 1.1. Let Cαl
:= {−1} × Sαl

, Cαr := {1} × Sαr denote two concentric circles in parallel
planes of R3 with radii αl, αr > 0. Then there exists some smooth, annular type Willmore surface
Γ ⊂ R3 minimising the Willmore energy among all rotationally symmetric, annular type surfaces
with boundary Cαl

∪ Cαr . The surface Γ is embedded into R3 and admits the representation

Γ = {(x, u(x) cosϕ, u(x) sinϕ) : x ∈ [−1, 1] , ϕ ∈ R} (4)

with some function u ∈ C∞([−1, 1], (0, +∞)). The surface Γ is solution of the following boundary
value problem {

4H + 2H(H2 −K) = 0 on Γ,
∂Γ = Cαl

∪ Cαr , H = 0 on ∂Γ .
(5)

Finally, one of the following three alternatives holds:

a) If αr > α∗r(αl), there exist precisely two such solutions Γ, both being catenoids with H ≡ 0.

b) If αr = α∗r(αl), there exists precisely one such solution Γ, a catenoid with H ≡ 0.

c) If αr < α∗r(αl), there exists at least one such solution Γ. Its mean curvature satisfies H = 0
on Cαl

∪ Cαr and H 6= 0 on Γ\(Cαl
∪ Cαr).

Naturally, alternative c) is the most interesting part of this result as the constructed Willmore
surface is not a minimal surface. Alternative c) corresponds precisely to the case where no annular
type minimal surface spanning the two concentric circles exists (see Proposition 2.1). Also note
that the solution from part c) minimises under axi-symmetric variations but is only stationary
under general (i.e. not necessarily axi-symmetric) variations. Presently, we do not know whether
there exists some non-rotationally symmetric, annular type surface spanning Cαl

∪Cαr with smaller
Willmore energy than the one constructed in Theorem 1.1.

Our second result concerns the limit case when both αl and αr converge to zero, i.e. the
bounding circles Cαl

and Cαr collapse to the points (−1, 0, 0) and (1, 0, 0) respectively.
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Theorem 1.2. For αl, αr > 0 let Γ = Γαl,αr be the surface from Theorem 1.1 above and uαl,αr be
the positive function generating the surface Γαl,αr as in (4). Then Γαl,αr converges to the round
sphere S2 ⊂ R3 as both αl, αr → 0 in the sense that the functions uαl,αr converge uniformly to the
function

√
1− x2 in [−1, 1].

The asymptotic behavior of the minimisers in case of Willmore surfaces of revolution generated
by symmetric graphs with prescribed Dirichlet boundary conditions is studied in [5]. In that paper
it is proven that the functions generating the minimisers converge to the function

√
1− x2 in

Cm([−1 + δ0, 1 − δ0]) for any δ0 > 0. More precisely, in case of symmetric Dirichlet boundary
conditions one has two parameters. One prescribes the same radius α > 0 for both boundary
circles. Another parameter β ∈ R describes the contact angle between the surface and the two
planes containing the bounding circles. In the limit procedure in [5], β is kept fixed while α
is converges to zero. A similar result is proven in [8] in case of symmetric natural boundary
conditions.

1.1 Notation and structure of the paper

For a, b ∈ R, a < b, let c(t) = (x(t), y(t)) : [a, b] → R× (0, +∞) be some smooth regular curve and

Γ = {(x(t), y(t) cosϕ, y(t) sinϕ) : t ∈ [a, b] , ϕ ∈ [0, 2π)}

be the surface of revolution corresponding to c. The Willmore energy of Γ is given by

W(c) =
π

2

∫ b

a

( x′y′′ − x′′y′

(x′2 + y′2)3/2
− x′

y(x′2 + y′2)1/2

)2
y(x′2 + y′2)1/2 dt .

If the curve c is in fact a graph over the x-axis, i.e. c(t) = (t, u(t)), then we obtain

W(c) = W(u) =
π

2

∫ b

a

( u′′

(1 + u′2)3/2
− 1

u(1 + u′2)1/2

)2
u(1 + u′2)1/2 dx . (6)

Definition 1.1. Let T̃αl,αr denote the set of all regular curves c ∈ W 2,2([−1, 1], R × (0, +∞))
connecting the points (−1, αl) and (1, αr), i.e. c(−1) = (−1, αl), c(1) = (1, αr). Moreover,
let Tαl,αr denote the set of all functions u ∈ W 2,2([−1, 1], (0, +∞)) with boundary conditions
u(−1) = αl, u(1) = αr. Finally, we define

M̃αl,αr = inf
c∈eTαl,αr

W(c) and Mαl,αr = inf
u∈Tαl,αr

W(u) .

In order to show that Mαl,αr is attained it is convenient to work in a smaller class than Tαl,αr .

Definition 1.2. Given parameters αl, αr > 0, L > 0 we define the space

Tαl,αr,L :=
{
u ∈ Tαl,αr : u(x) ≥ L−1 and |u′(x)| ≤ L in [−1, 1]

}
as well as the numbers

Mαl,αr,L := inf
u∈Tαl,αr,L

W(u) .

Remark. The set Tαl,αr,L is empty if L > 0 is too small. However, Tαl,αr,L is non-empty and
hence Mαl,αr,L well-defined for sufficiently large L, see Lemma 3.1 below.
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The reason for working within the smaller class Tαl,αr,L is that it is relatively simple to construct
minimisers u = uL in this class. The main task consists in proving a priori estimates for these
minimisers uL independent of L.

The paper is organised as follows. In Section 2 we prove the equality M̃αl,αr = Mαl,αr . Hence
it is sufficient to study the minimisation problem in the class of graphs. In Section 3 we show
a priori estimates for minimisers in the smaller class Tαl,αr,L and prove that these estimates are
independent of L for L sufficiently large. This is the key point in the proof of Theorem 1.1 presented
in Section 4. Finally in Section 5 we study the behavior of minimisers for αl, αr → 0 and prove
Theorem 1.2.

2 Reduction to the case of graphs and monotonicity property of
the energy

Identifying some function u ∈ Tαl,αr with its graph parametrisation c(t) := (t, u(t)) ∈ T̃αl,αr we
obtain the inclusion Tαl,αr ⊂ T̃αl,αr and hence M̃αl,αr ≤ Mαl,αr . The goal of this section is to prove
the equality M̃αl,αr = Mαl,αr .

We start by determining for which data αl, αr > 0 a minimal surface actually is a solution of
the boundary value problem (5). For this purpose we consider the catenaries through (−1, αl), i.e.
the one-parameter family

uγ(x) :=
αl

cosh(γ)
cosh

(cosh(γ)
αl

(x + 1) + γ
)

, x ∈ R (7)

with a parameter γ ∈ R. We have uγ(−1) = αl, u′γ(−1) = sinh(γ) and vanishing Willmore energy
W(uγ) = 0. The surface of revolution corresponding to uγ is a minimal surface, called catenoid.
A catenary belongs to Tαl,αr whenever there is a γ ∈ R such that uγ(1) = αr. One can see that
this is equivalent to αr ≥ α∗r(αl) with α∗r(αl) defined in (3) in the introduction. We first prove the
following result, which we already mentioned in the introduction.

Proposition 2.1. For αl, αr > 0 let Cαl
, Cαr denote the two circles from Theorem 1.1. Then one

of the following three alternatives holds:

a) If αr > α∗r(αl), then there are precisely two annular type minimal surfaces spanning Cαl
∪Cαr ,

both being catenoids.

b) If αr = α∗r(αl), there exists precisely one annular type minimal surface spanning Cαl
∪ Cαr ,

a catenoid.

c) If αr < α∗r(αl), no annular type minimal surface spanning Cαl
∪ Cαr exists.

Proof. Due to [11, Theorem 1.1] there exist at most two such minimal surfaces. In particular, all
annular type minimal surfaces spanning Cαl

∪Cαr must be surfaces of revolution, since otherwise
one might produce infinitely many of them simply by rotation. However, catenoids (and planes)
are the only minimal surfaces of revolution and the claim follows from definition of α∗r(αl).

A simple consequence is

Lemma 2.2. Given αl > 0 let α∗r(αl) be defined as in (3). A catenary belongs to the space Tαl,αr

whenever αr ≥ α∗r(αl). In particular, Mαl,αr = M̃αl,αr = 0 is satisfied for any αr ≥ α∗r(αl).
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This lemma and a simple study of the function uγ defined in (7) immediately yield part a)
and b) of Theorem 1.1. Our next result describes a construction to replace a regular curve by a
curve admitting a non-parametric representation with almost the same Willmore energy but lower
boundary values.

Lemma 2.3. Given αl, αr > 0, any curve c ∈ T̃αl,αr and δ > 0 there exist α′l ∈ (0, αl), α′r ∈ (0, αr)
and some function u ∈ Tα′l,α

′
r

with W(u) ≤ W(c) + δ.

Proof. For ε > 0 we define the curve cε(t) = (xε(t), yε(t)) by

yε(t) :=
1
%
y(t) , xε(t) := −1 +

1
%

∫ t

−1

(
|x′(τ)|+ ε

)
dτ for t ∈ [−1, 1]

with the rescaling factor

% = %(ε) :=
1
2

∫ 1

−1

(
|x′(τ)|+ ε

)
dτ ≥ 1 + ε > 1 .

Note that cε is a regular curve, cε ∈ W 2,2([−1, 1], R × (0, +∞)), xε(−1) = −1 and xε(1) = 1 are
satisfied. Due to the conformal invariance of the Willmore functional, in particular the invariance
with respect to translations and reflections, one finds W(c) = W(c0). Together with the continuity
of ε 7→ W(cε) one deduces the convergence W(cε) →W(c) as ε → 0. Because of x′ε(t) ≥ ε

% > 0 in
[−1, 1] the curve cε has a non-parametric representation uε := yε ◦ x−1

ε ∈ W 2,2([−1, 1], (0, +∞)).
The claim follows noting that uε(−1) = y(−1)

% < y(−1) = αl, uε(1) = y(1)
% < y(1) = αr (since

% > 1) as well as W(uε) = W(cε) →W(c) for ε → 0.

Lemma 2.4. Given αl, αr > 0, any u ∈ Tαl,αr and α′r ≥ αr there exists some v ∈ Tαl,α′r with
W(v) ≤ W(u).

Proof. We need to study only the case α′r < α∗r(αl) since otherwise there exists some catenary
v ∈ Tαl,α′r with W(v) = 0. For some parameter τ ∈ [−1, 1] consider the function

vτ (x) :=
{

u(x) for x ∈ [−1, τ ]
w(x) for x ∈ (τ, 1]

where w(x) denotes the catenary with initial data w(τ) = u(τ), w′(τ) = u′(τ). Note that vτ

depends continuously on τ and satisfies vτ (−1) = u(−1) = αl. The function v−1 coincides with
some catenary and thus v−1(1) ≥ α∗r(αl) > α′r ≥ αr must hold. The function v1 coincides
with u ∈ Tαl,αr and hence v1(1) = u(1) = αr. The intermediate value theorem yields some
τ = τ(α′r) ∈ [−1, 1] such that vτ (1) = α′r, i.e. vτ ∈ Tαl,α′r . From the estimate

W(u) ≥ W(u|[−1,τ ]) = W(vτ )

the claim follows with v = vτ .

Lemmas 2.3 and 2.4 yield M̃αl,αr = Mαl,αr (see Definition 1.1) and the monotonicity of the
energy.

Corollary 2.5 (M̃αl,αr = Mαl,αr). The equality M̃αl,αr = Mαl,αr holds for any αl, αr > 0 , i.e.
any minimiser within the small class Tαl,αr is also a minimiser in the larger class T̃αl,αr .
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Proof. Because of Tαl,αr ⊂ T̃αl,αr we only need to prove M̃αl,αr ≥ Mαl,αr . Given any c ∈ T̃αl,αr

and δ > 0 Lemma 2.3 yields some α′l ∈ (0, αl), α′r ∈ (0, αr) and u ∈ Tα′l,α
′
r

such that W(u) ≤
W(c) + δ. Applying Lemma 2.4 twice one obtains some v ∈ Tαl,αr with W(v) ≤ W(u). We
conclude W(v) ≤ W(c) + δ and hence Mαl,αr ≤ W(c) + δ for any c ∈ T̃αl,αr and δ > 0. This yields
Mαl,αr ≤ M̃αl,αr .

Corollary 2.6 (Monotonicity of the energy). Let Mαl,αr be defined as in Definition 1.1 for αl, αr >
0. Then Mαl,αr is monotonically decreasing in αl for each fixed αr, and monotonically decreasing
in αr for each fixed αl.

By Corollary 2.5 the above result is also valid for M̃αl,αr .

3 A priori estimates for the constrained minimisers

In this section we prove a priori estimates for the minimisers in Tαl,αr,L (see Definition 1.2).
We start with establishing an upper bound on the energy Mαl,αr,L from Definition 1.2, assuming

L to be sufficiently large.

Lemma 3.1. For αl, αr > 0 there exists a constant L0 depending only on αl, αr such that the
energy satisfies Mαl,αr,L < 4π whenever L ≥ L0.

Proof. Consider the circular arc

v(x) :=

√
α2

r + α2
l

2
+ 1− x2 +

α2
r − α2

l

2
x for x ∈ [−1, 1] (8)

which belongs to Tαl,αr and hence also to Tαl,αr,L, provided L ≥ L0 with

L0 = L0(αl, αr) := max
x∈[−1,1]

(
v(x)−1 + |v′(x)|

)
. (9)

The surface of revolution corresponding to v is a piece of a sphere and hence W(v) < 4π, as the
Willmore energy of a sphere is 4π. We conclude Mαl,αr,L < 4π whenever L ≥ L0.

3.1 Estimates on the hyperbolic curvature of the minimisers

As already observed by Bryant and Griffiths [3] and Langer and Singer [10], there is an interesting
relation between the Willmore energy of surfaces of revolution and the elastic energy of curves in
the hyperbolic half-plane. Indeed, for u ∈ Tαl,αr and a, b ∈ [−1, 1], a < b, one has

W(u|[a,b]) =
π

2

∫ b

a
κ2(x)

√
1 + u′2

u
dx− 2π

[ u′√
1 + u′2

]b

a
(10)

where

κ(x) :=
uu′′

(1 + u′2)3/2
+

1
(1 + u′2)1/2

=
uu′′ + 1 + u′2

(1 + u′2)3/2
(11)

denotes the curvature of the planar curve x 7→ (x, u(x)) with respect to the hyperbolic half-plane
metric. Curves with κ(x) ≡ 0 are precisely the geodesics of the hyperbolic half-plane. These are
semi-circles whose center lie on the x-axis or semi-lines parallel to the y-axis. These curves play
an essential role in studying Willmore surfaces of revolution (see [4], [5] and [2]).

Using circles as barriers from below and catenaries as barriers from above we prove pointwise
bounds on the hyperbolic curvature of any minimiser in Tαl,αr,L.
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Lemma 3.2. For αl, αr > 0 let L0 be the constant defined in (9). Then the hyperbolic curvature of
any minimiser u ∈ Tαl,αr,L, L ≥ L0, satisfies 0 ≤ κ(x) ≤ 2, x ∈ [−1, 1]. Moreover, the inequality
u(x) ≤ v(x) holds in [−1, 1], v denoting the circular arc from (8).

Proof.

1) We first prove the lower bound κ(x) ≥ 0. For parameters z ∈ R, % > 0 define the function

s%,z(x) :=
√

max
{
%2 − (x− z)2, 0

}
, x ∈ R.

Note that s%,z restricted to [z− %, z + %] is simply a semi-circle centered at (z, 0) of radius %.
For z ∈ R we next define

r(z) := sup{% > 0 : s%,z(x) ≤ u(x) for all x ∈ [−1, 1]} and
g(z) := {x ∈ [−1, 1] : u(x) = sr(z),z(x)} .

Then g(z) is a nonempty, closed subset of [−1, 1] for any z ∈ R. We prove that g(z) is
actually a closed interval. Setting x1 := inf g(z), x2 := sup g(z) and I := [x1, x2] we have
g(z) ⊂ I. We are done if x1 = x2 or g(z) = I. Otherwise, let v be the function equal to
u on [−1, 1]\I and equal to sr(z),z on I. We first observe that v ∈ Tαl,αr,L. Indeed since
u = v on ∂I and v|I is a piece of a semicircle, v(x) ≥ inf u(x) ≥ L−1 holds on [−1, 1].
Moreover, v ∈ W 2,2([−1, 1], (0, +∞)) and |v′(x)| ≤ L since, by construction, u′(x1) ≥ v′(x1)
with equality if x1 ∈ (−1, 1) and u′(x2) ≤ v′(x2) with equality if x2 ∈ (−1, 1). Now, we
compare the Willmore energies of u and v. Since v|I is a piece of a semicircle, its hyperbolic
curvature vanishes there. Using formula (10) we estimate

W(v)−W(u) = W
(
v|I

)
−W

(
u|I

)
≤ 2π

[ u′√
1 + u′2

]x2

x1

− 2π
[ v′√

1 + v′2

]x2

x1

≤ 0 ,

using once again that u′(x2) ≤ v′(x2) and u′(x1) ≥ v′(x1) which follows from u ≥ v in I and
u = v on ∂I = {x1, x2}. This shows W(v) ≤ W(u). Furthermore, u|I ≡ v|I must hold since
otherwise we would obtain the strict inequality W(v) < W(u), contradicting the assumption
of u being a minimiser in Tαl,αr,L. This proves I = g(z) for all z ∈ R.

Now we can find some constant M > 0 such that g(z) = {−1} for all z ≤ −M and g(z) = {1}
for all z ≥ M . By continuity of the radius r(z) in z and of the function u in x, the graph of
the multi-mapping g is closed. It follows that, writing g(z) = [x1(z), x2(z)] for z ∈ [−M,M ],
the function x1 is lower semi-continuous (x1 : R → R), while x2 is upper semi-continuous.
Then, given any x∗ ∈ [−1, 1], an intermediate value argument (i.e. a bisection argument)
yields some z∗ ∈ R such that x∗ ∈ g(z∗). This means sr(z∗),z∗(x) ≤ u(x) in [−1, 1] and
sr(z∗),z∗(x∗) = u(x∗), i.e. the graph of u lies above the circle sr(z∗),z∗ while it touches the circle
at the point (x∗, u(x∗)). The circle sr(z∗),z∗ has vanishing hyperbolic curvature everywhere
and hence κ(x∗) ≥ 0.

2) To prove that u(x) ≤ v(x) in [−1, 1], let us write v given in (8) as v(x) =
√

r2 − (x− x0)2

for r > 0 and x0 ∈ R choosen appropriately. We recall that v(−1) = αl and v(1) = αr.
The inequality κ(x) ≥ 0 proven in part 1) together with (11) imply 0 ≤ 2(1 + u′2 + uu′′) =[
(x − x0)2 + u2(x)

]′′. Thus the mapping x 7→ ϕ(x) := (x − x0)2 + u2(x) is convex. Noting
ϕ(−1) = ϕ(1) = r2, we deduce ϕ(x) ≤ r2 in [−1, 1] or equivalently u(x) ≤

√
r2 − (x− x0)2 =

v(x) in [−1, 1].
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3) We now derive the upper bound κ(x) ≤ 2. The idea is similar to part 1). Instead of
using semicircles from below, we approach the graph of u from above by suitable catenaries.
Choose some function v ∈ Tαl,αr such that u(x) < v(x) holds for x ∈ (−1, 1), for example
v(x) := u(x) + 1− x2. For parameters γ ∈ R, z ∈ [−1, 1] let

c(x) = cγ,z(x) :=
v(z)

cosh(γ)
cosh

(cosh(γ)
v(z)

(x− z) + γ
)

for x ∈ R

denote the catenary with initial data c(z) = v(z), c′(z) = sinh(γ). For z ∈ R we also define

γ(z) := sup
{
γ ∈ R : u(x) ≤ cγ′,z(x) for all x ∈ [−1, z] and γ′ ≤ γ

}
and

g(z) :=
{
x ∈ [−1, z] : u(x) = cγ(z),z(x)

}
.

As in part 1), we prove that g(z) is some closed interval by setting x1 := inf g(z), x2 :=
sup g(z) and I := [x1, x2]. If x1 < x2, then let w ∈ Tαl,αr,L denote the function equal to u on
[−1, 1]\I and equal to cγ(z),z on I. Here we note x2 < z, u′(x2) = w′(x2) and u′(x1) ≤ w′(x1).
Then the equation

W(w) = W(w|[−1,1]\I) = W(u|[−1,1]\I) = W(u)−W(u|I)

together with W(u) ≤ W(w) imply W(u|I) = 0. However, this is only possible if u|I ≡ v|I
proving I = g(z). We have 1 ∈ g(1) and g(−1) = {−1}. The continuity of the function γ(z)
in z and the continuity of the function u in x give that the graph of the multi-mapping g
is closed. An intermediate value argument (as in part 1)) yields for any x∗ ∈ (−1, 1) some
z∗ ∈ (x∗, 1) with the properties u(x) ≤ cγ(z∗),z∗(x) in [−1, z∗] and u(x∗) = cγ(z∗),z∗(x∗). The
graph of u lies locally below the catenary cγ(z∗),z∗ while it touches the catenary at the point
(x∗, u(x∗)). The hyperbolic curvature of the catenary cγ(z∗),z∗ is bounded from above by 2
and we obtain κ(x∗) ≤ 2.

Thanks to the pointwise estimates on the hyperbolic curvature of the minimiser we find that
it is sufficient to get estimates on the minimiser from below and of the derivative at the boundary
in order to get pointwise estimates of the first and second order derivative of the function in the
interior of the interval.

Corollary 3.3. For αr, αl > 0 let L0 be the constant defined in (9). Let u ∈ Tαl,αr,L, L ≥ L0, be a
minimiser for the Willmore energy in this class. Let K > 0 and ε > 0 be such that u′(−1) ≥ −K,
u′(1) ≤ K as well as u(x) ≥ ε > 0 in [−1, 1]. Then u satisfies the estimates

|u′(x)| ≤ C in [−1, 1] and |u′′(x)| ≤ 2(1 + C2)3/2ε−1 a.e. in [−1, 1]

with the constant C = C(K, ε) = (2+max{αl, αr}K)ε−1. In particular, u ∈ W 2,∞([−1, 1], (0, +∞))
is true.

Proof. The inequality κ(x) ≥ 0 from Lemma 3.2 together with (11) imply 1+u′2+uu′′ = (x+uu′)′ ≥
0. Therefore the mapping x 7→ x + u(x)u′(x) is increasing. In particular

−1 + αlu
′(−1) ≤ x + u(x)u′(x) ≤ 1 + αru

′(1) for all x ∈ [−1, 1] , (12)

and that gives
|u′(x)| ≤ (2 + max{αl, αr}K)ε−1 = C for all x ∈ [−1, 1] .
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The inequality 0 ≤ κ(x) ≤ 2 from Lemma 3.2 together with (11) also yield

−1 ≤ uu′′

(1 + u′2)3/2
≤ 2 a.e. in [−1, 1]

and we conclude

|u′′(x)| ≤ 2(1 + C2)3/2ε−1 a.e. in [−1, 1] and u ∈ W 2,∞([−1, 1], (0, +∞)) .

In order to prove Theorem 1.1 it remains to show the a priori estimates u′(−1) ≥ −K, u′(1) ≤ K
and u(x) ≥ ε with constants K, ε only depending on αl and αr but not on L. These estimates are
proved in the following section.

3.2 The remaining a priori estimates

We start by proving some estimates on the Willmore energy from below. This yields (see Corollary
3.6 below) a bound on the length of the interval where a function with Willmore energy bounded
by 4π is allowed to become small.

Lemma 3.4. Consider a, b ∈ [−1, 1], a < b. The Willmore energy of u ∈ W 2,2([a, b], (0, +∞))
satisfies the two lower bounds

W(u) ≥ −2π
[ u′√

1 + u′2

]b

a
and W(u) ≥ π

2

∫ b

a

1
u
√

1 + u′2
dx− π

[ u′√
1 + u′2

]b

a
.

Proof. Starting from (6) and using the inequality (p− q)2 ≥ −4pq one gets

W(u) ≥ −2π

∫ b

a

u′′

(1 + u′2)3/2
dx = −2π

[ u′√
1 + u′2

]b

a
.

Similarly, we get another estimate from below on the energy starting again from formula (6) and
using the inequality (p− q)2 ≥ q2 − 2pq:

W(u) ≥ π

2

∫ b

a

1
u
√

1 + u′2
dx− π

∫ b

a

u′′

(1 + u′2)3/2
dx =

π

2

∫ b

a

1
u
√

1 + u′2
dx− π

[ u′√
1 + u′2

]b

a
.

Lemma 3.5. Let u ∈ W 2,2([0, 1], (0, +∞)) satisfy 0 < u(x) ≤ 1
20 . Then W(u) > π.

Proof. Set I := [14 , 3
4 ] and ε := 1

20 . One of the following three cases will apply.

a) If |u′(x)| ≤ 1 for all x ∈ I, Lemma 3.4 then yields

W(u) ≥ π

2

∫
I

1
u
√

1 + u′2
− π

[ u′√
1 + u′2

]3/4

1/4
≥ π

4ε
√

2
− 2π√

2
=

3π√
2

> π .

b) If u′(x1) > 1 for some x1 ∈ I, then the mean value theorem yields some x2 ∈ (3/4, 1) such
u′(x2) ≤ 4ε (since 0 < u(x) ≤ ε in [0, 1]). Together with Lemma 3.4 we deduce

W(u) ≥ W(u|[x1,x2]) ≥ 2π
[ −u′√

1 + u′2

]x2

x1

≥ 2π
[ 1√

2
− 4ε√

1 + 16ε2

]
> π .
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c) The remaining case u′(x1) < −1 for some x1 ∈ I can be treated as case b).

Remark. The smallness condition 0 < u(x) ≤ 1
20 is surely not optimal. However, note that the

constant function u(x) ≡ 1
2 has Willmore energy W(u) = π. Lemma 3.5 will be false if one only

requires 0 < u(x) ≤ 1
2 instead.

Corollary 3.6. Let u ∈ W 2,2([a, b], (0, +∞)), a, b ∈ [−1, 1] with a < b, satisfy W(u) < 4π and
0 < u(x) ≤ ε in [a, b] for some ε > 0. Then b− a < 80ε must hold.

Proof. The claim is proved by contradiction. Let us assume that b−a
80 ≥ ε. Then the functions

uk(x) :=
4

b− a
u
(
a +

b− a

4
(x + k)

)
for x ∈ [0, 1] , k = 0, . . . , 3 ,

satisfy 0 < uk(x) ≤ 1
20 in [0, 1]. Lemma 3.5 yields W(uk) ≥ π and together with the invariance of

the Willmore energy under translations and rescaling one obtains

W(u) =
3∑

k=0

W(uk) ≥
3∑

k=0

π = 4π

contradicting the assumption W(u) < 4π.

Comparing the minimisers with catenaries from above, we now obtain an estimate on the
derivative at the boundary of the interval and then an estimate from below independent of L.
The following lemma gives a bound on the slope of the catenaries that lie completely above the
minimiser. The idea is that if the slopes of these catenaries become very large, the catenaries
get arbitrarily close to the x-axis and so does the graph of u, lying completely below all these
catenaries. Applying Corollary 3.6, we show that this costs too much Willmore energy.

Lemma 3.7. For a ∈ [0, 1] and λ > 0 let u ∈ W 2,2([−1, a], (0, +∞)) satisfy W(u) < 4π and
u(a) ≤ λ. Assume furthermore that there exists γ∗ ∈ R such that

u(x) ≤ cγ(x) for all x ∈ [−1, a] and γ ≤ γ∗

where cγ denotes the catenary with initial data cγ(a) = λ and c′γ(a) = sinh(γ), i.e.

cγ(x) :=
λ

cosh(γ)
cosh

(cosh(γ)
λ

(x− a) + γ
)

. (13)

Then γ∗ ≤ max{162, λ} must hold.

Proof. Denote γ̄ := max{160, λ − 2}. We may assume γ∗ > γ̄ since otherwise we are done. For
arbitrary γ ∈ [γ̄, γ∗] we define xγ := a− λγ

cosh(γ) ∈ (−1, a) with the property

u(xγ) ≤ cγ(xγ) =
λ

cosh(γ)
.

For all x ∈ [a − λγ̄/ cosh(γ̄), a − λγ∗/ cosh(γ∗)] there exists γ ∈ [γ̄, γ∗] such that x = xγ . We
conclude

u(x) ≤ λ

cosh(γ̄)
≤ λγ̄

160 cosh(γ̄)
for all x ∈

[
a− λγ̄

cosh(γ̄)
, a− λγ∗

cosh(γ∗)

]
.
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Then Corollary 3.6 yields
λγ̄

cosh(γ̄)
− λγ∗

cosh(γ∗)
<

λγ̄

2 cosh(γ̄)
.

We conclude
γ̄

2 cosh(γ̄)
<

γ∗
cosh(γ∗)

≤ γ∗ − 2
2 cosh(γ∗ − 2)

and hence γ∗ ≤ γ̄ + 2, proving the claim.

Theorem 3.8 (Boundary gradient estimate). Consider αr, αl > 0 and let L0 be the constant
defined in (9). Any minimiser u for the Willmore energy in the class Tαl,αr,L, L ≥ L0, satisfies
the estimates

u′(−1) ≥ − sinh
(
max{162, αl}

)
and u′(1) ≤ sinh

(
max{162, αr}

)
.

Proof. We only prove the upper bound for u′(1) as the proof of the lower bound for u′(−1) is
similar. For γ ∈ R let cγ(x) denote the catenary with initial data cγ(1) = αr, c′γ(1) = sinh(γ) (i.e.
cγ is the catenary given in (13) with λ = αr and a = 1). We define the number

γ∗ := sup
{
γ ∈ R : u(x) ≤ cγ′(x) for all x ∈ [−1, 1] and γ′ ≤ γ

}
.

From cγ∗(1) = u(1) one easily deduces u′(1) ≥ c′γ∗(1) = sinh(γ∗). We proceed by proving the
equality u′(1) = c′γ∗(1). It is convenient to distinguish two cases. If the function u satisfies
u(x) < cγ∗(x) for all x ∈ [−1, 1), the definition of γ∗ yields u′(1) ≤ c′γ∗(1), proving the equality. If
instead u(x∗) = cγ∗(x∗) for some x∗ ∈ [−1, 1), we consider the function v ∈ Tαl,αr,L that is equal
to u on [−1, x∗] and equal to cγ∗ on [x∗, 1]. The inequality

W(u) ≤ W(v) = W(v|[−1,x∗]) = W(u|[−1,x∗]) = W(u)−W(u|[x∗,1])

implies W(u|[x∗,1]) = 0. However, this is only possible if u|[x∗,1] ≡ v|[x∗,1] holds, proving u′(1) =
v′(1) = c′γ∗(1) = sinh(γ∗) also in the second case. Now Lemma 3.7 with a = 1 and λ = u(1) = αr

yields γ∗ ≤ max{162, αr} and hence u′(1) = sinh(γ∗) ≤ sinh
(
max{162, αr}

)
.

In the next result we construct at every point x ∈ [−1, 1] a catenary lying completely above
the graph of u, while touching the graph at the point (x, u(x)). Using Lemma 3.7, we can control
the slope of this catenary and hence also the distance of the catenary to the x-axis (see inequality
(14) below). The catenaries are constructed with the same idea as in Lemma 3.2.

Theorem 3.9 (Estimate from below). For αr, αl > 0 let L0 be the constant defined in (9). Any
minimiser u of the Willmore energy in Tαl,αr,L, with L ≥ L0 large enough, satisfies

u(x) ≥ min{αl, αr}
cosh (max{162, αl + 2, αr + 2})

for all x ∈ [−1, 1] .

Proof. We proceed as in the proof of Lemma 3.2 part 3). Let v ∈ Tαl,αr,L denote the circular
arc defined by (8). Consider ṽ ∈ Tαl,αr,L defined by ṽ(x) = v(x) + 1 − x2, x ∈ [−1, 1]. We have
min{αl, αr} ≤ ṽ(x) ≤ max{αl, αr} + 2 in [−1, 1]. It follows from Lemma 3.2 that u(x) < ṽ(x)
holds in (−1, 1) and u(±1) = ṽ(±1). For parameters γ ∈ R, z ∈ [0, 1] let

c(x) = cγ,z(x) :=
ṽ(z)

cosh(γ)
cosh

(cosh(γ)
ṽ(z)

(x− z) + γ
)

for x ∈ R

denote the catenary with initial data c(z) = ṽ(z) and c′(z) = sinh(γ). Next we define

γ∗(z) := sup
{
γ ∈ R : u(x) ≤ cγ′,z(x) for all x ∈ [−1, z] and γ′ ≤ γ

}
.
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Lemma 3.7, applied to u|[−1,z] with λ = ṽ(z), yields the upper bound

γ∗(z) ≤ max{162, ṽ(z)} ≤ max
{
162, max{αl, αr}+ 2} = max{162, αl + 2, αr + 2}

and hence

cγ∗(z),z(x) ≥ ṽ(z)
cosh(γ∗)

≥ min{αl, αr}
cosh (max{162, αl + 2, αr + 2})

for all x ∈ [−1, z] and z ∈ [0, 1] . (14)

To finish the proof, we show that for any x ∈ [0, 1] we can find z ∈ [0, 1] such that u(x) = cγ∗(z),z(x).
This together with (14) yields the claim. For z ∈ [−1, 1] we define the set valued function

g(z) :=
{
x ∈ [−1, z] : u(x) = cγ∗(z),z(x)

}
and note that g(z) is non-empty and closed. Moreover, proceeding as in the proof of Lemma 3.2
part 3) we find that g(z) is a closed interval for any z ∈ [−1, 1] and since 1 ∈ g(1), g(−1) = {−1},
an intermediate value argument yields for any x∗ ∈ [−1, 1] some z∗ ∈ [x∗, 1] such that x∗ ∈ g(z∗),
i.e. u(x∗) = cγ∗(z∗),z∗(x∗), holds. Together with (14) we conclude

u(x) ≥ min{αl, αr}
cosh (max{162, αl + 2, αr + 2})

for all x ∈ [0, 1] .

Note that (14) is valid only for z ∈ [0, 1] so that the above reasoning only works for x ∈ [0, 1].
However, by considering the reflection ũ(x) := u(−x), which is a minimiser in the class Tαr,αl,L,
one obtains the same estimate also for x ∈ [−1, 0].

Combining Corollary 3.3, Theorems 3.8 and 3.9 we obtain the desired estimates.

Theorem 3.10. Given αl, αr > 0 there exists some constant C = C(αl, αr) > 0 such that any
minimiser u for the Willmore energy in the class Tαl,αr,L, L ≥ C, satisfies the estimates

u(x) ≥ 1
C

and |u′(x)| ≤ C in [−1, 1] .

Remark. It is important to note that the constant C of this result depends only on αl and αr

but is independent of L.

4 Construction of a minimiser

Proof of Theorem 1.1. Lemma 2.2 and a simple study of the function uγ defined in (7) yield
immediately part a) and b) of the claim. We divide the proof of part c) into three steps.

1) Let L0 be the constant defined in (9). For L ≥ L0 the set Tαl,αr,L from Definition 1.2 is
non-empty and Mαl,αr,L < 4π holds. We now prove the existence of a minimiser for the
Willmore energy in Tαl,αr,L, L ≥ L0. Fix some u ∈ Tαl,αr,L. Starting from (6) and using the
inequality (p− q)2 ≥ 1

2p2 − q2 we compute

W(u) ≥ π

2

∫ 1

−1

( (u′′)2u
2(1 + u′2)5/2

− 1
u(1 + u′2)1/2

)
dx

≥ π

4L(1 + L2)5/2

∫ 1

−1
(u′′)2dx− πL .

In particular, a bound on W(u) implies a bound on u′′ in L2([−1, 1]) and hence a bound
on u in the space W 2,2([−1, 1], (0, +∞)). Now let {uk}k∈N be a minimising sequence for the
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Willmore energy in Tαl,αr,L, i.e. W(uk) → Mαl,αr,L for k → ∞. By the argument above
uk is then uniformly bounded in W 2,2([−1, 1], (0, +∞)). A subsequence uk converges weakly
in W 2,2([−1, 1], (0, +∞)) and, by compact embedding, also strongly in C1([−1, 1], (0, +∞))
to some limit function u ∈ W 2,2([−1, 1], (0, +∞)). From the strong convergence in C1 we
deduce u(−1) = αl, u(1) = αr, u(x) ≥ L−1, |u′(x)| ≤ L in [−1, 1] and hence u ∈ Tαl,αr,L. A
lower semi-continuity argument yields

W(u) ≤ lim inf
k→∞

W(uk) = Mαl,αr,L .

On the other hand, u ∈ Tαl,αr,L implies W(u) ≥ Mαl,αr,L and hence W(u) = Mαl,αr,L. Thus,
u is indeed a minimiser of the Willmore energy in the class Tαl,αr,L. Moreover, Corollary 3.3
yields u ∈ W 2,∞([−1, 1], (0, +∞)) = C1,1([−1, 1], (0, +∞)).

2) Let C = C(αl, αr) denote the constant from Theorem 3.10 and u = uC be a minimiser for the
Willmore energy in the class Tαl,αr,C . We prove that this u is a minimiser in the large class
Tαl,αr . Given v ∈ Tαl,αr , choose some constant L ≥ C large enough such that v ∈ Tαl,αr,L.
If w ∈ Tαl,αr,L denotes a minimiser in the class Tαl,αr,L, then Theorem 3.10 shows in fact
w ∈ Tαl,αr,C . Because of L ≥ C, w is also a minimiser in the class Tαl,αr,C and we obtain
W(u) = W(w) ≤ W(v). Since v ∈ Tαl,αr is arbitrary, u must be a minimiser in the class
Tαl,αr , proving the claim. Moreover, u also provides a minimiser in the even larger space
T̃αl,αr of immersed regular curves by Corollary 2.5.

3) With the same arguments as in [4, Thm.3.9 Step 2] one can prove u ∈ C∞([−1, 1]). Let
Γ = Γ(u) denote the surface of revolution corresponding to u. The Euler-Lagrange equation
satisfied by Γ is given by 4H+2H(H2−K) = 0 on Γ, where 4 denotes the Laplace-Beltrami
operator on the surface Γ. Moreover, H = 0 on Cαl

∪ Cαr arises as the natural boundary
condition for our variational problem (see [2, App.A] or [18]). In Lemma 3.2 we have proven
that the solution Γ lies locally on one side of the catenoid, in particular H ≥ 0 or H ≤ 0
everywhere on Γ, the sign depending on the choice of the normal vector. From the strong
maximum principle, applied to the second order elliptic equation 4H + 2H(H2 − K) = 0
we deduce either H ≡ 0 on Γ or H 6= 0 on Γ\(Cαl

∪ Cαr). The case H ≡ 0 corresponds to
αr ≥ α∗r when the minimiser is a minimal surface of revolution, i.e. some catenoid.

Corollary 4.1. For αl, αr > 0 let Mαl,αr be defined as in Definition 1.1 and α∗r(αl) be defined as
in (3). Then αr 7→ Mαl,αr is strictly monotonically decreasing in (0, α∗r(αl)).

Proof. Let αr, α
′
r satisfy 0 < αr < α′r < α∗r(αl). Let u ∈ Tαl,αr be a minimiser for the Willmore

energy in Tαl,αr . Then u solves the corresponding Euler-Lagrange equation, that is u is solution
of the fourth order ordinary differential equation given in [5, Lemma 2.2]. In particular, u does
not coincide locally with a catenary. With the construction in Lemma 2.4 we find a v ∈ Tαl,α′r
such that W(v) ≤ W(u) and v coincides with a catenary on [x∗, 1] for some x∗ ∈ (−1, 1). Hence
W(v) < W(u) and also Mαl,α′r < Mαl,αr .

In [2] we studied the case of symmetric boundary conditions α = αl = αr, minimising there
only within the class symmetric graphs. We could prove that for α < α∗ = inf

γ∈R
cosh(γ)

γ ≈ 1.5089

the minimisers satisfy u′(−1) = −u′(1) = −α. We cannot expect the same behavior in the more
general case studied in this paper, but still we can show the following.

Lemma 4.2. Given αl, αr > 0, let u be a minimiser for the Willmore energy in Tαl,αr . Then
u′(−1) < 0 and u′(1) > 0 must hold.
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Proof. We prove only that u′(1) > 0 since the proof of u′(−1) < 0 is similar. We proceed by
contradiction. If u′(1) < 0, let c be the catenary such that c(1) = u(1) = αr and c′(1) = u′(1) and
x0 > 1 be such that c(x0) = αr. We take the function w̃ ∈ W 2,2([−1, x0], (0, +∞)) that is equal
to u on [−1, 1] and equal to c on (1, x0]. We denote by w the function defined on [−1, 1] obtained
from w̃ by appropriate translation and rescaling. By construction, w(−1) < αl and w(1) < αr.
Lemma 2.4 applied twice yields a function v ∈ Tαl,αr such that

W(v) ≤ W(w) = W(w̃) = W(u) .

Hence v is also a minimiser in Tαl,αr . By construction v coincides with a catenary on an interval
of positive length and therefore v is equal to a catenary on the entire interval [−1, 1], since both v
and the catenary are solutions of the fourth order Euler-Lagrange equation with the same initial
values. We obtain W(v) = 0, a contradiction to the assumption αr < α∗r(αl).

In the case u′(1) = 0 the construction is the same as above with the only difference that the
point x0 is chosen so that cosh((x0 − 1)/αr) < (x0 + 1)/2.

5 Convergence to a sphere for αl, αr → 0

Here we study the behavior of the minimisers, which admits a representation as in (4), as both αl

and αr converge to zero. In this situation the two circles defining the boundary of the surface Γαl,αr

collapse to points. We will show that Γαl,αr , the surface of revolution generated by the graph of
the positive function uαl,αr , converges to the round sphere S2 in the sense that the functions uαl,αr

converge uniformly to the function
√

1− x2 in [−1, 1] as αl, αr → 0. In the case of symmetric
boundary conditions αl = αr this result was proved in [8].

We start by proving that the energy of Γ converges to the energy of a round sphere, i.e. to 4π.

Lemma 5.1. For a, b ∈ [−1, 1], a < b, let u ∈ W 2,2([a, b], (0, +∞)) satisfy W(u) < 4π and
max

{
u(a), u(b)

}
≤ ε2 for ε < min{ b−a

2 , 1
80e−12}. Then the following estimates are satisfied

W(u) ≥ 4π
(
1− δ(ε)

)
and

b−ε∫
a+ε

κ2(x)

√
1 + u′(x)2

u(x)
dx ≤ 8 δ(ε)

with κ the hyperbolic curvature of u as defined in (11) and

δ(ε) := 1−

√
1 +

12
log(80ε)

> 0 . (15)

Proof. We first prove the following: Close to each boundary point there is a point with large
derivative (in absolute value). Applying Corollary 3.6 to u restricted to the interval [a, a + ε] we
get that there exist some x∗ ∈ [a, a+ε] such that u(x∗) ≥ ε

80 . We set L := sup{u′(x) : x ∈ [a, a+ε]}
and I := {x ∈ [a, a+ε] : u′(x) ≥ 0}. Notice that, due to the assumption on ε, L is strictly positive.
Moreover, I is not necessarily an interval but it is a closed set, by the continuity of u′. We choose
some x1 ∈ [a, a + ε] with u′(x1) = L. From Lemma 3.4 we first deduce

4π > W(u) ≥ π

2

∫ b

a

1
u
√

1 + u′2
dx− 2π

and continue by estimating

12 ≥
∫ b

a

1
u
√

1 + u′2
dx ≥

∫
I

1
u
√

1 + u′2
dx ≥

∫
I

u′

uL
√

1 + L2
dx ≥ 1

1 + L2

∫ x∗

a

u′

u
dx

=
1

1 + L2
log

u(x∗)
u(a)

≥ 1
1 + L2

log
ε

80ε2
=
− log(80ε)

1 + L2
.
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After suitably rearranging one obtains

u′(x1)√
1 + u′(x1)2

=
L√

1 + L2
≥

√
1 +

12
log(80ε)

.

where we use 0 < ε < 1
80e−12. In a similar way we can find some x2 ∈ [b− ε, b] such that

u′(x2)√
1 + u′(x2)2

≤ −

√
1 +

12
log(80ε)

.

From Lemma 3.4 applied to u|[x1,x2] we obtain

W(u) ≥ W(u|[x1,x2]) ≥ −2π
[ u′√

1 + u′2

]x2

x1

≥ 4π
(
1− δ(ε)

)
,

with δ(ε) defined in (15). Moreover, using x1 ≤ a + ε, x2 ≥ b − ε together with formula (10) for
the Willmore energy one deduces

π

2

b−ε∫
a+ε

κ2

√
1 + u′2

u
dx ≤ π

2

∫ x2

x1

κ2

√
1 + u′2

u
dx = W(u|[x1,x2]) + 2π

[ u′√
1 + u′2

]x2

x1

< 4πδ(ε) ,

proving the second estimate in the claim.

An immediate consequence is the convergence of the energy to the one of the sphere.

Corollary 5.2. The energy Mαl,αr from Definition 1.1 converges to 4π as αl, αr → 0.

Lemma 5.3. Let ε0 > 0 be such that δ(ε0) = 1
2 with δ(ε) defined in (15). For αl, αr > 0 such that

min{αl, αr} ≤ ε2 with ε < min{ε0,
1
80e−12} let u be a minimiser for the Willmore energy in Tαl,αr .

Then u satisfies

u(x) ≥ ε2 and |u′(x)| ≤ (2 + ε2 sinh(162))ε−2 for all x ∈ [−1 + 3ε, 1− 3ε] .

Proof. We have W(u) = Mαl,αr < 4π by Lemma 3.1. We prove the first claim by contradiction.
Let us assume that there exist ε < min{ε0,

1
80e−12} and some x∗ ∈ [−1+3ε, 1−3ε] with u(x∗) < ε2.

Then Lemma 5.1, applied on the intervals [−1, x∗] and [x∗, 1], proves W(u|[−1,x∗]) ≥ 4π(1−δ(ε)) >
2π as well as W(u|[x∗,1]) > 2π. This implies W(u) > 2π + 2π = 4π, contradicting W(u) < 4π
and proving the first claim. To prove the second inequality we first deduce from Theorem 3.8
that u′(−1) ≥ − sinh(162) and u′(1) ≤ sinh(162) must hold. These estimates and u(x) ≥ ε2 in
[−1 + 3ε, 1− 3ε], just proved, combined with the estimate (12) in the proof of Corollary 3.3 give

|u′(x)| ≤ (2 + max{αl, αr} sinh(162))ε−2 ≤ (2 + ε2 sinh(162))ε−2 .

We are now ready to prove Theorem 1.2.

Theorem 5.4. Let {αl,n}n∈N, {αr,n}n∈N be two strictly positive sequences converging to zero. For
each n ∈ N let un be a minimiser for the Willmore energy in Tαl,n,αr,n. Then un converges uniformly
on [−1, 1] to the function u0(x) :=

√
1− x2.
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Proof. Without loss of generality we may assume that αl,n, αr,n ≤ 1 for all n ∈ N. Defining the
sequence ϕn(x) := x2 + u2

n(x), it suffices to show that ϕn converge uniformly to ϕ0 ≡ 1. From
Lemma 3.2 it follows that un(x) ≤ max{αl,n, αr,n}+1 for all n, and hence ϕn is uniformly bounded
from above. If κn denotes the hyperbolic curvature of un, then we have the relation

κn =
unu′′n + 1 + u′2n

(1 + u′2n )3/2
=

ϕ′′n
2(1 + u′2n )3/2

. (16)

Lemma 3.2 implies κn(x) ≥ 0 and hence ϕ′′n ≥ 0 in [−1, 1]. From (12) together with Theorem 3.8
we conclude for all n ∈ N

−1− αl,n sinh(162) ≤ x + un(x)u′n(x) =
1
2
ϕ′n(x) ≤ 1 + αr,n sinh(162) for x ∈ [−1, 1] .

Hence ϕ′n(x) is uniformly bounded in [−1, 1] and, after passing to some subsequence, ϕn converges
uniformly in [−1, 1] to some limit function ϕ0 ∈ C0,1([−1, 1], R). From ϕn(−1) = 1+α2

l,n, ϕn(1) =
1 + α2

r,n we deduce ϕ0(−1) = 1 = ϕ0(1). We prove now that ϕ0 is a linear function. Fixing δ > 0,
we first observe that Lemma 5.1 yields

0 = lim
n→∞

∫ 1−δ

−1+δ
κ2

n

√
1 + u′2n
un

dx ,

while Lemma 5.3 shows

inf
x∈[−1+δ,1−δ]

n∈N

un(x) = m > 0 , sup
x∈[−1+δ,1−δ]

n∈N

|u′n(x)| = L < +∞ .

From (16), un ≤ 2 for all n ∈ N together with the estimate above we reach

0 = lim
n→∞

∫ 1−δ

−1+δ
κ2

n

√
1 + u′2n
un

dx ≥ 1
8(1 + L2)5/2

lim
n→∞

∫ 1−δ

−1+δ
(ϕ′′n)2 dx .

The sequence ϕ′′n converges to zero in L2(−1+δ, 1−δ) and we obtain ϕ0 ∈ W 2,2([−1+δ, 1−δ], (0,∞))
with ϕ′′0 ≡ 0 in (−1 + δ, 1 − δ) for any δ > 0. Thus, ϕ0 is a linear function and because of
ϕ0(−1) = 1 = ϕ0(1) we finally obtain ϕ0 ≡ 1, as claimed.
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ematische Schriften 293, 1996.

Matthias Bergner, Institut für Differentialgeometrie, Gottfried Wilhelm Leibniz Universität Han-
nover, Welfengarten 1, 30167 Hannover, Germany,
E-mail: bergner@math.uni-hannover.de

Anna Dall’Acqua, Fakultät für Mathematik, Otto-von-Guericke-Universität, Universitätsplatz 2,
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