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Abstract. In the class of surfaces with fixed boundary, critical points of the Will-
more functional are naturally found to be those solutions of the Euler-Lagrange
equation where the mean curvature on the boundary vanishes. We consider the
case of symmetric surfaces of revolution in the setting where there are two families
of stable solutions given by the catenoids. In this paper we demonstrate the exis-
tence of a third family of solutions which are unstable critical points of the Willmore
functional, and which spatially lie between the upper and lower families of catenoids.
Our method does not require any kind of smallness assumption, and allows us to
derive some additional interesting qualitative properties of the solutions.

1. Introduction

Given a smooth immersed surface f : Σ → R3, the Willmore functional is defined
by

W(f) =

∫
Σ

H2 dµg,

where g is the Riemannian metric induced by the standard Euclidean inner product
〈·, ·〉 in R3 along the pull-back of f , dµg =

√
det (g) dx is the induced surface element,

H = (κ1 + κ2)/2 denotes the mean curvature, and κ1, κ2 are the principal curvatures
of f . An important feature of the Willmore functional is its invariance under the full
Möbius group of R3. (See [5, 26], [28, Section 7.3] and Weiner [27].)

A critical point of the Willmore functional is called a Willmore surface and is a
solution of the Willmore equation

(1) ∆H + 2H(H2 −K) = 0 on Σ

where ∆ denotes the Laplace-Beltrami operator on f and K = κ1κ2 is the Gauss
curvature. In the literature there are many results concerning the existence and
regularity of Willmore surfaces. The case where f is a closed immersed surface has
been well-studied, and we only mention here the papers [1, 7, 16, 17, 22, 24]. For the
case where f is an immersed surface with boundary much less is known. In this setting
one must supplement (1) with appropriate boundary conditions. A discussion of the
range of possibilities can be found in Nitsche [19]. One possible choice is the Dirichlet
boundary conditions where the boundary of the surface and the tangent bundle at the
boundary are prescribed. Another is the natural (or Navier) boundary conditions. In
this case the position and the mean curvature H ≡ 0 are prescribed as boundary data.
The latter boundary condition arises naturally from the formula for the first variation
(see (4) below). The Navier Willmore boundary value problem is that which we shall
study in this paper. For both types of boundary conditions, existence results obtained
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through perturbative methods can be found in [19, 21]. Schätzle in [23] proves the
existence of Willmore surfaces satisfying Dirichlet boundary conditions in Sn. These
are embedded if their Willmore energy is small enough. Uniqueness theorems without
symmetry assumptions are due to Palmer [21] and the first author [9]. So far other
existence results are known only in the class of embedded surfaces of revolution. It is
interesting to study this special case in order to understand the possible qualitative
behavior of the solutions and which phenomena may occur. Existence results for
Willmore surfaces of revolution subject to Dirichlet and Navier boundary conditions
have been obtained in [10, 11, 13] and [2, 3, 12] respectively. Before stating our new
result we must first fix some notation.

Given a smooth and positive function u : [−1, 1] → R we consider the surface of
revolution Γ(u) = fu

(
[−1, 1] × [0, 2π]

)
, where fu is the embedding associated to u

defined by

(2) fu : (x, ϕ) 7→ (x, u(x) cosϕ, u(x) sinϕ), x ∈ [−1, 1], ϕ ∈ [0, 2π].

The surface Γ(u) is said to be generated by u. For such a surface the mean curvature
and the Gauss curvature are given by

H(x) = H[u](x) =
1

2

(
− u′′(x)

(1 + u′(x)2)3/2
+

1

u(x)
√

1 + u′(x)2

)
, and(3)

K(x) = K[u](x) = − u′′(x)

u(x)(1 + u′(x)2)2
,

respectively. The Willmore functional reads

W(u) :=W(fu)

=
π

2

∫ 1

−1

(
− u′′(x)

(1 + u′(x)2)3/2
+

1

u(x)
√

1 + u′(x)2

)2

u(x)
√

1 + u′(x)2 dx.

Given α > 0, let us denote by Sα the set of positive, symmetric functions in H2(−1, 1)
with boundary value α; that is,

Sα = {u ∈ H2(−1, 1) | u(x) > 0, u(x) = u(−x), x ∈ [−1, 1] and u(±1) = α} .

The first variation of the Willmore functionalW at u ∈ Sα∩H4(−1, 1) in the direction
of a function ϕ ∈ H2(−1, 1) ∩H1

0 (−1, 1) is given by (cf. [12, Lemma 6])

(4)
d

dt
W(u+ tϕ)

∣∣∣
t=0

= −2π
[
H

uϕ′

1 + (u′)2

]1

−1
− 2π

∫ 1

−1

uϕ
(
∆H + 2H(H2 −K)

)
dx .

Critical points then solve the following Navier boundary value problem:

∆H + 2H(H2 −K) = 0 in (−1, 1),(5)

u(±1) = α, H(±1) = 0.(6)
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Note that (5) is equivalent to (cf. [10, Section 2.1])

1

u(x)
√

1 + u′(x)2

d

dx

(
u(x)√

1 + u′(x)2
H ′(x)

)
+

1

2
H(x)

(
u′′(x)

(1 + u′(x)2)
3
2

+
1

u(x)
√

1 + u′(x)2

)2

= 0, x ∈ (−1, 1) .

(7)

By also expressing H in terms of u one observes that (5) is a highly nonlinear ODE
of fourth order. Furthermore, the boundary conditions H(±1) = 0 are nonlinear as
well. Particular solutions of (5)-(6) are given by the family of catenaries

ub(x) =
1

b
cosh(bx),

as long as the equation α = ub(±1) = cosh(b)
b

has a positive solution. There is a critical
boundary value α∗ below which catenaries cease to exist, given by

α∗ = inf
y∈(0,∞)

cosh(y)

y
=

cosh(b0)

b0

' 1.5088

with b0 = 1.1996 . . . satisfying cosh(b0) = b0 sinh(b0). For α > α∗ the equation

α = cosh(b)
b

has precisely two solutions 0 < b1(α) < b0 < b2(α) < ∞, and since
H[ub1 ] ≡ H[ub2 ] ≡ 0, the functions ub1 and ub2 are solutions of (5)-(6). As W(u) ≥ 0
and W(ub1) = W(ub2) = 0, these functions are global minimisers of W in the class
Sα. It is natural to expect the existence of a third critical point ofW between the two
catenaries. By carrying out a bifurcation analysis it was shown in [12] that (b0, ub0)
is the unique bifurcation point for (5)-(6) on the branch b 7→ (b, ub) in the class of
symmetric solutions; in particular one has:

Theorem 1.1 ([12, Theorem 1.3]). There exists an ε > 0 such that for α ∈ (α∗, α∗+ε)
the boundary value problem (5)-(6) has at least three solutions in Sα. One of these is
not a minimal surface.

In order to extend this result for larger values of α it is natural to first attempt a
straightforward adaptation of classical mountain pass theory. The min-max charac-
terisation of the Palais-Smale limit would then automatically imply instability. Such
a strategy was successfully carried out by Struwe (see [25] and the references therein)
to prove the existence of unstable solutions to the Plateau problem via an adaptation
of classical Ljusternik-Schnirelmann theory. Palais-Smale sequences for the Willmore
functional have been recently investigated in [4], where it is proven that local Palais-
Smale sequences that are uniformly bounded in W 2,2 ∩W 1,∞ possess a convergent
subsequence. The limit is shown to satisfy a system of differential equations which,
under a smallness condition on the energy, is equivalent to the constrained Willmore
equation. The indication from [4] is thus that for a Palais-Smale approach to be
successful, one typically requires some kind of energy assumption. By following a
different approach we are able to avoid any smallness assumption in our case and
obtain the following global result.

Theorem 1.2. For every α > α∗ the boundary value problem (5)-(6) has, in addition
to the two catenaries ub1 and ub2, a third smooth solution u ∈ Sα which is unstable in
the sense that u is not a local minimum of W in Sα. Furthermore
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Figure 1. Numerically calculated unstable solutions between the two cate-
naries for α = 5 (left) and α = 10 (right). (See also Remark 3.7.)

(i) H[u] < 0 in (−1, 1);
(ii) u and H[u] are strictly convex in [−1, 1];

(iii) ub2(x) < u(x) < ub1(x) for x ∈ (−1, 1).

To our knowledge, this is the first existence result for unstable Willmore surfaces
satisfying prescribed boundary conditions. A sufficient condition for unstable closed
Willmore surfaces is given in [20] together with some examples. (See also [18].)

The proof of Theorem 1.2 essentially consists of two steps. In the first step, we
show that the Willmore equation is equivalent to certain singular first order ODEs
for the mean curvature H[u].

Theorem 1.3. Let u : [−1, 1]→ R be a smooth, positive, symmetric function. Then
u is a solution of (5) if and only if for all x ∈ [−1, 1]
(8)
H ′(x)u(x)

1 + u′(x)2
(u(x)−xu′(x))−H(x)u(x)(x+ u(x)u′(x))√

1 + u′(x)2

(
H(x)− 1

u(x)
√

1 + u′(x)2

)
= 0.

Furthermore, if u is a solution of (5) then there exists a constant C such that for all
x ∈ [−1, 1]

(9) −H
′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2
= C .

The converse holds provided u is not identically constant on [−1, 1].

The proof of this result will be given in Section 2 and relies on the scale and
translation invariance of the Willmore functional. By evaluating (8) at x = 1 one
readily confirms that a smooth, symmetric solution of (5) with u(±1) = ±u′(±1)
satisfies

H(±1) = 0 or H(±1) =
1

u(1)
√

1 + u′(1)2
.

This observation allows us in the second step to obtain a solution of (5)-(6) by con-
structing a symmetric solution of (5) with u(±1) = α, u′(±1) = ±α in such a way
that the case H(±1) = 1

α
√

1+α2 is excluded. In this manner we are led to consider
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a particular Dirichlet boundary value problem (see (15)) which is accessible to the
direct method of the calculus of variations. We approach this problem in Section 3
by minimising W over the sets

Ñα,β := {u ∈ Sα ∩ C1,1([−1, 1]) : u′(−1) = β, u′(x) ≤ α for all x ∈ [0, 1]}
for β > −α. The desired solution u is then obtained as the limit of minimisers when
β ↘ −α. Perhaps surprisingly, the constraint u′ ≤ α ensures that u is convex which
in turn implies that H(±1) = 0. At the same time this method yields the instability
of our solution by exploiting the strict monotonicity of the map

β 7→ inf
v∈Ñα,β

W(v).

Such monotonicity properties were used in [2] to prove the existence of solutions to
the Navier boundary value problem for α < α∗. The qualitative properties (i)–(iii)
are finally obtained by combining the minimising property of u with (8) and (9).
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2. Proof of Theorem 1.3

An important feature of the Willmore functional is its invariance with respect to
conformal transformations. It is natural to expect that this large class of invariances
yields extra information at the boundary, in the spirit of the Pohozaev identity. In
the case under consideration, we can obtain quite a lot of additional information. For
this purpose it is useful to derive the first variation of W .

Given a compact surface Σ with boundary and a sufficiently smooth immersion
f : Σ→ R3 we denote by W(f) := ∆H + 2H(H2 −K) the Euler-Lagrange operator
ofW in L2 at f , and use φ⊥ := 〈φ, ν〉 ν, with ν the exterior unit normal vectorfield, to

denote the normal projection of a vectorfield φ. We also use the notation ~H := −Hν
to denote the mean curvature vector.

Lemma 2.1 ([15, Theorem 2.1]). Let Σ be a compact surface with boundary, t0 ∈ R,
and δ > 0. For a smooth variation h : Σ× (t0− δ, t0 + δ)→ R3 with φ = ∂th we have

(10)
d

dt
W(h(·, t)) = −

∫
Σ

( 〈
W(h(·, t)), φ⊥

〉
+∇∗ω

)
dµg.

Here, given a frame {τi}2
i=1 on TΣ, the one-form ω is defined by

ω(τi) = 2
〈
φ, (∂i ~H)⊥

〉
− ∂i

〈
φ, ~H

〉
− | ~H|2 〈φ, ∂ih〉 , and ∇∗ω = −

2∑
i,j=1

gij∇iω(τj)

where ∂i is the derivative along τi, and ∇i is the covariant derivative along τi.

Choosing h in (10) according to the invariances of the Willmore functional allows
us now to carry out the
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Proof of Theorem 1.3. We first prove that every smooth, positive, symmetric solution
of (5) satisfies (8) and (9). The opposite implications will be discussed together
afterwards.

Consider the cylinder Σ = [−1, 1]× [0, 2π], where we have identified 0 and 2π, and
set fu : Σ→ R3 to be the embedding associated to u as in (2). As u satisfies (5), fu
is clearly a Willmore surface and W(fu) ≡ 0. Let x1, x2 ∈ [−1, 1] with x1 < x2, and
consider the cylinder Σ̃ = [x1, x2]× [0, 2π], where we have again identified 0 and 2π.
Let h : Σ̃× (t0 − δ, t0 + δ) → R3 be a family of sufficiently smooth immersions as in
Lemma 2.1 satisfying h(·, t0) = fu(·). Denote by ∂1Σ̃ and by ∂2Σ̃ the left and right
boundaries of Σ̃ respectively, so that

∂Σ̃ = ∂1Σ̃ ∪ ∂2Σ̃, with ∂jΣ̃ the circle given by ∂jΣ̃ = {xj} × [0, 2π], j = 1, 2 .

We denote by ηj the interior unit conormal of ∂jΣ̃. The embedding (2) induces a
global orthonormal frame {τx, τϕ} for the tangent bundle over Σ, where

τx =
1√

1 + u′(x)2
∂x, and τϕ =

1

u(x)
∂ϕ.

Note that via the embedding this induces the following frame{
τxh((x, ϕ), t0), τϕh((x, ϕ), t0)

}
=
{
τxfu(x, ϕ), τϕfu(x, ϕ)

}
=

{
1√

1 + u′(x)2

(
1, u′(x) cosϕ, u′(x) sinϕ

)
,
(
0,− sinϕ, cosϕ

)}
of the tangent space at (x, u(x) cosϕ, u(x) sinϕ). In these coordinates η1(ϕ) =
τxh((x1, ϕ), t0), and by symmetry η2(ϕ) = −τxh((x2, ϕ), t0). Since h(·, t0) = fu(·)
is a Willmore surface, Lemma 2.1 combined with Stokes’ theorem (note that ω is a
1-form) yields

d

dt
W(h)

∣∣∣∣
t=t0

=

∫
Σ̃

2∑
i,j=1

gij∇iωj dµg = −
∫

Σ̃

∇∗ω dµg

=

∫
∂1Σ̃

ω(η1) dµ∂1g +

∫
∂2Σ̃

ω(η2) dµ∂2g

=

∫
∂1Σ̃

ω(τx) dµ∂1g −
∫
∂2Σ̃

ω(τx) dµ∂2g,

where dµ∂jg is the induced metric on ∂jΣ̃. Using the explicit expression for τx given
above and taking note of the definition of ω from Lemma 2.1, we find

d

dt
W(h)

∣∣∣∣
t=t0

=

∫
∂1Σ̃

[
2
〈
φ, (∂x ~H)⊥

〉
− ∂x

〈
φ, ~H

〉
− | ~H|2 〈φ, ∂xfu〉

] 1√
1 + u′(x)2

dµ∂1g

−
∫
∂2Σ̃

[
2
〈
φ, (∂x ~H)⊥

〉
− ∂x

〈
φ, ~H

〉
− | ~H|2 〈φ, ∂xfu〉

] 1√
1 + u′(x)2

dµ∂2g
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=

∫ 2π

0

[
2
〈
φ, (∂x ~H)⊥

〉
− ∂x

〈
φ, ~H

〉
− | ~H|2 〈φ, ∂xfu〉

] u(x)√
1 + u′(x)2

dϕ

∣∣∣∣
x=x1

−
∫ 2π

0

[
2
〈
φ, (∂x ~H)⊥

〉
− ∂x

〈
φ, ~H

〉
− | ~H|2 〈φ, ∂xfu〉

] u(x)√
1 + u′(x)2

dϕ

∣∣∣∣
x=x2

.(11)

In order to proceed we need to choose the direction of the variation φ. It is natural to
consider variations parallel to the generators of the Möbius group of R3, since for such
φ the Willmore functional is invariant and the left hand side of (11) is automatically
zero. For the purposes of proving (8) and (9) it will be enough to consider the
invariance of W under scaling and translation respectively.

We begin with the scale invariance of W . Consider the family of immersions
h((x, ϕ), t) = t(x, u(x) cos(ϕ), u(x) sin(ϕ)) and take t0 = 1. Then

φ(x, ϕ) = (x, u(x) cosϕ, u(x) sinϕ) = fu(x, ϕ).

The exterior unit normal ν is given by

ν(x, ϕ) =
1√

1 + u′(x)2
(−u′(x), cosϕ, sinϕ),

and (∂x ~H)⊥(x, ϕ) =
〈

(∂x ~H)(x, ϕ), ν(x, ϕ)
〉
ν(x, ϕ) = −H ′(x)ν(x, ϕ). We thus have

for the first term

2
〈
φ(x, ϕ), (∂x ~H)⊥(x, ϕ)

〉
= −2H ′(x) 〈fu(x, ϕ), ν(x, ϕ)〉 = 2H ′(x)

xu′(x)− u(x)√
1 + u′(x)2

.

Note that the final expression no longer depends on ϕ. Keeping in mind (3), a direct
computation simplifies the second term as

−∂x
〈
φ(x, ϕ), ~H(x, ϕ)

〉
= −∂x

(
− H(x)√

1 + u′(x)2

(
− xu′(x) + u(x)

))
= −H ′(x)

xu′(x)− u(x)√
1 + u′(x)2

+ 2H2(x)
(
x+ u(x)u′(x)

)
−H(x)

x+ u(x)u′(x)

u(x)
√

1 + u′(x)2
.

For the third term we have

−| ~H|(x, ϕ)2 〈φ(x, ϕ), ∂xfu(x, ϕ)〉 = −H(x)2
(
x+ u(x)u′(x)

)
.

As h is a continuous family of rescalings of fu, the scale invariance of W implies that
the left hand side of (11) vanishes. Inserting the equalities computed above allows us
to write down the right hand side of (11) explicitly. We obtain

0 = 2π u(x)

(
H ′(x)

1 + u′(x)2
(u(x)− xu′(x))− H(x)2√

1 + u′(x)2
(x+ u(x)u′(x))

+
H(x)

u(x)(1 + u′(x)2)
(x+ u(x)u′(x))

)∣∣∣∣x2
x1

.(12)

Clearly, as u′(0) = 0 and H ′(0) = 0 equation (8) holds at x = 0. Formula (8) follows
for x > 0 by taking x2 = x and x1 = 0 in (12), while taking x1 = −x and x2 = 0 in
(12) implies (8) for x < 0.
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The case of translations gives equation (9) in a similar manner. Let us consider
the family of immersions h((x, ϕ), t) = (x, u(x) cos(ϕ), u(x) sin(ϕ)) + t(1, 0, 0) with
t0 = 0. Then φ(x, ϕ) = (1, 0, 0). We have for the first term

2
〈
φ(x, ϕ), (∂x ~H)⊥(x, ϕ)

〉
= 2

u′(x)H ′(x)√
1 + u′(x)2

.

The second term becomes

−∂x
〈
φ(x, ϕ), ~H(x, ϕ)

〉
= −∂x

( u′(x)H(x)√
1 + u′(x)2

)
= − H ′(x)u′(x)√

1 + u′(x)2
− H(x)

u(x)
√

1 + u′(x)2
+ 2H(x)2.

For the third term we have

−| ~H|(x, ϕ)2 〈φ(x, ϕ), ∂xfu(x, ϕ)〉 = −H(x)2.

As h is a continuous family of translations, the translation invariance ofW combined
with the above formulae simplify (11) to

−H
′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2

∣∣∣∣x2
x1

= 0.

Since x1, x2 ∈ [−1, 1] are arbitrary, it follows that there exists a constant C such that

−H
′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2
= C, for x ∈ [−1, 1],

which is (9).

Let us now show that every solution of (8) satisfies (5). Denoting the left hand
side of (8) by L[u](x), a long but straightforward computation shows that

(13) 0 =
d

dx
L[u](x) = u(x)(u(x)− xu′(x))

(
∆H + 2H(H2 −K)

)
(x) , x ∈ [−1, 1] .

Let E = {x ∈ [−1, 1] | u(x) − xu′(x) = 0}. Clearly, (5) holds at all points x ∈
[−1, 1]\E. Due to the smoothness of u, it is sufficient to show that [−1, 1]\E is dense
in [−1, 1]. If this were not the case, there would be an open interval (x0 − δ, x0 + δ)
such that u(x)− xu′(x) = 0 in (x0 − δ, x0 + δ) ∩ [−1, 1] =: I. This implies u(x) = ax
in I for some constant a, and therefore

L[u](x) ≡ 1

4a
√

1 + a2
6= 0 in I ,

which contradicts (8).
Finally we show that a solution to (9) that is not identically constant in [−1, 1]

satisfies (5). Denoting the left hand side of (9) by M [u](x), a computation shows
that

(14) 0 =
d

dx
M [u](x) = u(x)u′(x)

(
∆H + 2H(H2 −K)

)
(x) , x ∈ [−1, 1] .

Let E = {x ∈ [−1, 1] | u′(x) = 0}. Note that E ( [−1, 1] since u is not identically
constant on [−1, 1]. Clearly, (5) is satisfied at x ∈ [−1, 1]\E. As above, it is sufficient
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to show that [−1, 1] \ E is dense in [−1, 1]. If this were not the case, there would be
an open interval I ⊂ E such that there exists x∗ ∈ ∂I that is an accumulation point
for [−1, 1] \ E. Then by continuity (5) is satisfied at x∗. On the other hand, since
I ⊂ E there exists a positive constant a such that u(x) ≡ a for x ∈ I and therefore(

∆H + 2H(H2 −K)
)
(x∗) =

1

4a3
6= 0 ,

a contradiction. This finishes the proof of Theorem 1.3. �

Remark 2.2. In the proof of Theorem 1.3 we have used the translation invariance
only in the direction (1, 0, 0). In other directions the integrand retains a dependence
on the angle ϕ and hence no interesting equation can be derived. This also occurs
if we use the invariance with respect to rotations. It seems that we cannot use
the invariance with respect to inversions since we cannot write it as a continuous
transformation.

Remark 2.3. One can also derive formulas (8) and (9) from (5) by integrating (13)
and (14) on intervals (x1, x2). The surprising fact about (13) and (14) is that the
multiplication of the Willmore operator by suitable factors enables us to recognise a
derivative. However it is difficult to guess the right form of these factors in advance.
We have therefore chosen to use the invariances of the Willmore functional to prove
(8) and (9) because this approach seems to be more natural and easier to generalise.

Theorem 2.4. Let u : [−1, 1]→ R be a smooth, positive, symmetric solution of (5)
satisfying u(1) = u′(1). Then,

H(1) = 0 or H(1) =
1

u(1)
√

1 + u′(1)2
.

Proof. By Theorem 1.3 u satisfies (8) for all x ∈ [−1, 1]. Taking x = 1 in (8) and
using that u(1) = u′(1) we obtain

H(1)u(1)
√

1 + u′(1)2

(
1

u(1)
√

1 + u′(1)2
−H(1)

)
= 0 ,

from which the claim follows. �

Corollary 2.5. Let α > α∗ and u : [−1, 1] → R be a smooth, positive, symmetric,
convex solution of the Dirichlet Willmore boundary value problem

(15)

{
∆H + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, and u′(±1) = ±α.

Then u solves (5)-(6) and Γ(u) is not a minimal surface.

Proof. Since u is convex we have u′′(x) ≥ 0 and hence

H(1) =
1

2

(
− u′′(1)

(1 + u′(1)2)3/2
+

1

u(1)
√

1 + u′(1)2

)
≤ 1

2u(1)
√

1 + u′(1)2
.

Theorem 2.4 then implies that H(1) = 0. Finally, if Γ(u) were a minimal surface, i.e.
H ≡ 0, then [8, Proposition 5.11] would imply that u is a catenary. This is impossible
due to α > α∗ and the boundary values of u and u′. �
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In the following proposition we collect some further consequences of Theorem 1.3.
We shall use (16) to prove that H[u] < 0 in (−1, 1), while we have included (17)
because we feel that such a result is of independent interest.

Proposition 2.6. Let u : [−1, 1] → R be a smooth, positive, symmetric solution of
(5). Then H[u] satisfies

(16) u2(x)H ′(x) + C
(
x+ u(x)u′(x)

)
= 0 .

Furthermore, u is a solution of the second order differential equation

(17) − u(x)2u′′(x)

(1 + u′(x)2)3/2
− u(x)√

1 + u′(x)2
+ C(u(x)2 + x2) = D, in [−1, 1].

Here C is as in (9) and D is a constant of integration.

Proof. The differential equation (16) is obtained from Theorem 1.3 by observing that
(8) can be rewritten as(
−H

′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2

)
(x+ u(x)u′(x)) +H ′(x)u(x)2 = 0 ,

and using (9). The second statement in the claim follows from the first using

d

dx

[
u(x)2H(x)

]
= u(x)2H ′(x) +

d

dx

u(x)√
1 + u′(x)2

together with the fact that x+ u(x)u′(x) = d
dx

(
1
2
(x2 + u(x)2)

)
, integrating once, and

using (3). �

3. Existence of a convex solution to (15)

In view of Corollary 2.5 we obtain a solution of (5)-(6) with H 6≡ 0 by constructing
a convex solution of the Dirichlet Willmore boundary value problem (15). For later
purposes it is convenient to consider the family of Dirichlet boundary value problems

(18)

{
∆H + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, and u′(±1) = ∓β,

for boundary slopes β ∈ [−α,− sinh(b1(α))). As in the introduction, we denote by
b1 = b1(α), b2 = b2(α) with 0 < b1(α) < b0 < b2(α) < ∞ the two solutions of the

equation α = cosh(b)
b

. Using the properties of the function y 7→ cosh(y)
y

one sees that

(19)
cosh(y)

y
< α ⇐⇒ y ∈ (b1(α), b2(α)).

For β ∈ [−α,− sinh(b1(α))) we have

(20) sinh(b1) < −β ≤ α =
cosh(b2)

b2

< sinh(b2),

so that in the parameter range we consider the two catenaries ub1 , ub2 are not solutions
of (18). Next, let us introduce

αβ :=

√
1 + β2

arcsinh (−β)
.
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Note that (20) implies that arcsinh (−β) ∈ (b1(α), b2(α)) so that (19) with y =
arcsinh (−β) implies

(21) α > αβ, β ∈ [−α,− sinh(b1(α))).

Existence of solutions to (18) for arbitrary α > 0 and β ∈ R has been obtained
in [11] by minimizing over suitable subsets of H2(−1, 1) the “hyperbolic Willmore
functional”

Wh(u) =

∫ 1

−1

(
u(x)u′′(x)

(1 + u′(x)2)3/2
+

1√
1 + u′(x)2

)2
√

1 + u′(x)2

u(x)
dx,

which is the elastic energy of the graph of u as a curve in the hyperbolic half-plane.
Motivated by the theory developed in [11, Section 4.2.3] we introduce the following
set:

Ñα,β := {u ∈ Sα ∩ C1,1([−1, 1]) | u′(−1) = β, u′(x) ≤ α for all x ∈ [0, 1]}.

As we shall see later, the constraint on u′ will ensure the convexity of our solution.
In addition we have for all u ∈ Ñα,β

α− u(x) =

∫ 1

x

u′(x) dx ≤ α(1− x), x ∈ [0, 1].

and therefore

(22) u(x) ≥ αx, x ∈ [0, 1].

In view of (21) and the fact that −β ≤ α, we see that the function

ū(x) :=
1

b
cosh(bx) + α− αβ, with b = arcsinh (−β)

belongs to Ñα,β, so that this set is not empty. Let

M̃α,β := inf
u∈Ñα,β

W(u).

As observed by Pinkall and Bryant-Griffiths [6, 14], the Willmore functional and the
hyperbolic Willmore functional are related by the identity

W(u) =
π

2
Wh(u)− 2π

u′(x)√
1 + u′(x)2

∣∣∣∣∣
1

−1

so that in particular

(23) W(u) =
π

2
Wh(u) + 4π

β√
1 + β2

, u ∈ Ñα,β.

Hence, on Ñα,β minimising W is equivalent to minimising Wh. Furthermore, by

Lemma 4.5 in [11], in the minimisation process, we can restrict to functions u ∈ Ñα,β

additionally satisfying

(24) u′(x) > 0 and 1− 1√
1 + u′(x)2

cosh

(√
1 + u′(x)2

u(x)
x

)
≥ 0 for x ∈ (0, 1].
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Remark 3.1. The inequalities in (24) imply

(25)
u(x)

x
≥

√
1 + u′(x)2

arcsinh (u′(x))
, x ∈ (0, 1].

Applying (19) with y = arcsinh (u′(x)), this gives

(26) u′(x) ≥ sinh
(
b1(α(x))

)
, where α(x) =

u(x)

x
, x ∈ (0, 1].

Moreover, note that if the second inequality in (24) is strict, then so are the inequal-
ities (25) and (26).

Remark 3.2. The second inequality in (24) is strict for minimisers u ∈ Ñα,β, β ∈[
− α,− sinh(b1(α))

)
that satisfy (5) (cf. [11, Proof of Proposition 4.18]). For the

convenience of the reader we have provided a proof of this statement in the Appendix.

In what follows we shall make use of the following technical result:

Lemma 3.3. Let α > α∗ and β ∈ (−α,− sinh(b1(α))]. For each u ∈ Ñα,β sat-
isfying (24) and for each γ ∈ [αβ, α) there exists a symmetric, strictly positive
v ∈ C1,1([−1, 1]) such that v satisfies (24), v(±1) = γ, v′(−1) = β, α ≥ v′(x) > 0 for
x ∈ (0, 1] and W(v) ≤ W(u). In addition, if u satisfies u′ ≤ δ ≤ α in (0, 1] then also
the function v satisfies v′ ≤ δ ≤ α in (0, 1].

Proof. See Corollary 4.20 and its proof in [11]. That result is formulated using the
hyperbolic Willmore functional Wh which can be rewritten in terms of W in view of
(23). �

Theorem 3.4. For α > α∗ and β ∈ (−α,− sinh(b1(α))) there exists a convex function
u ∈ Ñα,β such that W(u) = infv∈Ñα,βW(v). The function u belongs to C∞([−1, 1])

and solves the Dirichlet boundary value problem (18). Furthermore, u satisfies (24)
as well as

(27) u′(x) ≤ −β, x ∈ [0, 1].

Proof. The existence and regularity of a minimizer u satisfying (18), (24) and (27)
can be found in [11, Section 4.2.3]. It remains to show that u is convex. Combining
(27) with (22) we deduce that

(28)
d

dx

u(x)

x
=

1

x

(
u′(x)− u(x)

x

)
≤ 1

x
(−β − α) < 0, x ∈ (0, 1].

Next, we claim that u′ is injective on [0, 1]. If not, there would exist x1, x2 in (0, 1]
such that x1 < x2 and u′(x1) = u′(x2). We can choose x1 such that u′(x) < u′(x1) for

all x ∈ [0, x1). Let us consider the function ũ : [−1, 1] → R, ũ(x) = u(x1x)
x1

. Clearly

ũ(±1) = u(x1)
x1

=: α̃ and ũ′(−1) = −u′(x1) =: β̃. Recalling that u′(x) < u′(x1) for

x ∈ [0, x1) and arguing similarly as in (28) we derive

ũ′(x) = u′(x1x) ≤ u′(x1) <
u(x1)

x1

= α̃, x ∈ [0, 1],
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so that ũ ∈ Ñα̃,β̃, and β̃ > −α̃. On the other hand, (26) computed for u at x1 yields

β̃ ≤ − sinh(b1(α̃)), and so we have β̃ ∈ (−α̃,− sinh(b1(α̃))]. Evaluating (25) at x2

and taking into account that u′(x1) = u′(x2) = −β̃ we find

u(x2)

x2

≥

√
1 + β̃2

arcsinh (−β̃)
= αβ̃.

Combining this estimate with (28) we infer that

α̃ =
u(x1)

x1

>
u(x2)

x2

≥ αβ̃.

Moreover since u satisfies (24), the same holds for ũ. Lemma 3.3 with α = α̃,

β = β̃, γ = u(x2)
x2

, and δ = u′(x1) implies that there exists a symmetric, strictly

positive function ṽ ∈ C1,1([−1, 1]) satisfying (24), ṽ(±1) = u(x2)
x2

, ṽ′(−1) = −u′(x1),

ṽ′(x) ≤ u′(x1) ≤ α for x ∈ [0, 1] and W(ṽ) ≤ W(ũ). Recalling that u′(x1) = u′(x2)
we deduce that the function

v(x) :=

{
x2ṽ
( x
x2

)
for x ∈ [−x2, x2],

u(x) for x ∈ [−1,−x2) ∪ (x2, 1],

belongs to Ñα,β. Furthermore,

W(v) =W(ṽ) + 4π

∫ 1

x2

H(x)2u(x)
√

1 + u′(x)2 dx

≤ W(ũ) + 4π

∫ 1

x2

H(x)2u(x)
√

1 + u′(x)2 dx

=W(u)− 4π

∫ x2

x1

H(x)2u(x)
√

1 + u′(x)2 dx.

Since u is a mimimum of W over Ñα,β we deduce that H ≡ 0 on [x1, x2]. It is well
known that then necessarily u|[x1,x2] is a piece of a catenary (cf. [8, Proposition 5.11]).

This however contradicts the fact that u′(x1) = u′(x2). As a consequence, u′ must be
injective on [0, 1], so that u′ is strictly increasing as u′(0) < u′(1) and we finally infer
that u is convex. �

Next, we need a result concerning the monotonicity behaviour of β 7→ M̃α,β.

Lemma 3.5. Let α > α∗ and β, β′ ∈ [−α,− sinh(b1(α))) with β < β′.
Then M̃α,β′ < M̃α,β.

Proof. See the Appendix. �

Theorem 3.6. Let α > α∗. Then there exists a convex function u ∈ Ñα,−α such
that W(u) = infv∈Ñα,−αW(v). The function u belongs to C∞([−1, 1]) and solves the

Dirichlet boundary value problem (15).

Proof. Let (βk)k∈N be a sequence in (−α,− sinh(b1(α))) with limk→∞ βk = −α. By
Theorem 3.4, for each k ∈ N there exists a convex function uk ∈ Ñα,βk such that
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W(uk) = infv∈Ñα,βk
W(v) and uk is a solution of (18) with β = βk. Obviously we

have the uniform bounds

(29) uk(x) ≤ α, |u′k(x)| ≤ α, x ∈ [−1, 1], k ∈ N,

while Lemma 3.5 implies that

(30) W(uk) = M̃α,βk < M̃α,−α, k ∈ N.

Furthermore we show in the Appendix that there exists a constant cα > 0 such that

(31) uk(x) ≥ cα, x ∈ [−1, 1], k ∈ N.

As a consequence, (uk)k∈N is uniformly bounded in H2(−1, 1) so that, after possibly
extracting a subsequence, there exists u ∈ H2(−1, 1) with

(32) uk ⇀ u in H2(−1, 1) and uk → u in C1([−1, 1]) .

Clearly, u is strictly positive, symmetric, convex and we have u(±1) = α, u′(−1) =
−α. It is not difficult to see that one can approximate u in H2(−1, 1) by a sequence
of functions belonging to Ñα,−α so that we infer

W(u) ≥ M̃α,−α.

On the other hand, the weak lower semicontinuity of W together with (30) yields

W(u) ≤ lim inf
k→∞

W(uk) ≤ lim sup
k→∞

W(uk) ≤ M̃α,−α ≤ W(u),

so that

(33) lim
k→∞
W(uk) =W(u) = M̃α,−α.

Next, a short calculation together with (32) and (33) shows that

π

2

∫ 1

−1

uk(x)

(1 + u′k(x)2)
5
2

(u′′k(x)− u′′(x))2 dx

=W(uk) + π

∫ 1

−1

u′′k(x)

(1 + u′k(x)2)
3
2

dx− π

2

∫ 1

−1

1

uk(x)
√

1 + u′k(x)2
dx

− π
∫ 1

−1

uk(x)u′′k(x)u′′(x)

(1 + u′k(x)2)
5
2

dx+
π

2

∫ 1

−1

uk(x)u′′(x)2

(1 + u′k(x)2)
5
2

dx

→W(u) + π

∫ 1

−1

u′′(x)

(1 + u′(x)2)
3
2

dx

− π

2

∫ 1

−1

1

u(x)
√

1 + u′(x)2
dx− π

2

∫ 1

−1

u(x)u′′(x)2

(1 + u′(x)2)
5
2

dx

= 0.

With the help of (29) and (31) we infer that u′′k → u′′ in L2(−1, 1) so that (uk)k∈N
converges strongly to u in H2(−1, 1). We can use this information in order to establish
that u is a smooth solution of (15). Indeed, since uk is a solution of (18) we have

〈W ′(uk), ϕ〉 = 0, ϕ ∈ H2
0 (−1, 1), k ∈ N,
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where the first variation of W in direction ϕ ∈ H2
0 (−1, 1) is given by the formula (cf.

(29), [12])

〈W ′(v), ϕ〉 = π

∫ 1

−1

v(x)v′′(x)ϕ′′(x)

(1 + v′(x)2)
5
2

dx− 5

2
π

∫ 1

−1

v(x)v′(x)v′′(x)2ϕ′(x)

(1 + v′(x)2)
7
2

dx

− π

2

∫ 1

−1

v′(x)ϕ′(x)

v(x)(1 + v′(x)2)3/2
dx

+
π

2

∫ 1

−1

( v′′(x)2ϕ(x)

(1 + v′(x)2)
5
2

− ϕ(x)

v(x)2(1 + v′(x)2)
1
2

)
dx.

Letting k →∞ we deduce that

〈W ′(u), ϕ〉 = 0, ϕ ∈ H2
0 (−1, 1),

and proceeding as in the proof of Theorem 4, Step 2 in [10] we find that u is a smooth
solution of (15). �

Remark 3.7. Let us emphasize that the constraint u′ ≤ α in the definition of Ñα,β

appears to be crucial in order to construct convex solutions. This observation is based
on the results of numerical experiments conducted with the algorithm described in
[11, Section 7], which calculates approximate solutions of (18) via the L2-gradient
flow of W . The corresponding solutions are therefore in general local minima of W
in the class

Nα,β = {u ∈ Sα ∩ C1,1([−1, 1]) : u′(−1) = β} .
On the left hand side of Figure 2 we display two solutions for α = −β = 3, while
the pictures on the right hand side show their corresponding mean curvature H. We
remark that the lower solution does not belong to Ñ3,−3, and has energy W ' 0.4172
while the energy of the upper (convex) solution is W ' 3.428. Note also that the
values of H(±1) numerically confirm the statement of Theorem 2.4.

Proof of Theorem 1.2. Fix α > α∗. We already know that the two catenaries

x 7→ cosh(bi(α)x)

bi(α)
, i = 1, 2,

are solutions of (5)-(6). The existence of a third solution which is convex follows
immediately by combining Corollary 2.5 and Theorem 3.6. Furthermore, denoting by
(uk)k∈N the sequence occuring in the proof of Theorem 3.6 we infer with the help of
(30) that W(uk) < W(u), k ∈ N. Since uk ∈ Sα and uk → u, k → ∞ in H2(−1, 1),
the function u cannot be a local mimimum of W in Sα.

Proof of (i). We claim that the mean curvature H of u is either strictly positive or
strictly negative on (−1, 1). In view of the symmetry of H it is enough to prove the
claim on [0, 1). Assume that there exists an x0 ∈ [0, 1) such that H(x0) = 0. Then
there would also exist an x1 ∈ (x0, 1) such that H ′(x1) = 0, and hence by (16)

C
(
x1 + u(x1)u′(x1)

)
= 0.

As u′(x) > 0 in (0, 1] it follows that C = 0, which upon reinsertion in (16) gives that
H is a constant function and hence H ≡ 0, which contradicts Corollary 2.5. Therefore
H is of fixed sign on (−1, 1).
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Figure 2. Numerically computed solutions to (15) (left) and their mean
curvature (right) in the case α = 3.

In order to determine the sign of H we now compute

2

∫ 1

0

H(x)(1 + u′(x)2)
(xu′(x)

u(x)
− 1
)
dx

=

∫ 1

0

d

dx

(
arccosh

(√
1 + u′(x)2

)
− x

√
1 + u′(x)2

u(x)

)
dx

= arccosh
(√

1 + α2
)
−
√

1 + α2

α

> arccosh
(√

1 + (α∗)2
)
−
√

1 + (α∗)2

α∗

= 0(34)

since the function α 7→ arccosh
(√

1 + α2
)
−
√

1+α2

α
is strictly increasing. As u ∈ Ñα,−α,

we have u′(x) ≤ α which together with (22) yields

(35)
xu′(x)

u(x)
≤ 1 for x ∈ [0, 1].

Assume that H > 0 on (−1, 1). Combining (34) and (35) shows

0 ≥ 2

∫ 1

0

H(x)(1 + u′(x)2)
(xu′(x)

u(x)
− 1
)
dx > 0,
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which is impossible. Hence H(x) < 0 for all x ∈ (−1, 1), which proves (i).

Proof of (ii). We are now in a position to show that u and H are strictly convex.
Strict convexity of u follows immediately by solving (3) for u′′ and using H(x) < 0:

u′′(x) = −2H(x)
(
1 + u′(x)2

) 3
2 +

1 + u′(x)2

u(x)
> 0, x ∈ [−1, 1].

In order to see that H is strictly convex, we first observe that evaluating (9) at the
origin gives

C = −u(0)H(0)2 +H(0) < 0.

Differentiating (16) and using (35) (which, due to the symmetry of u, is valid in
[−1, 1]) as well as (i), it follows for all x ∈ (−1, 1) that

H ′′(x) = (−C)

(
1

u(x)2
− 2

xu′(x)

u(x)3
+
u′′(x)

u(x)
− u′(x)2

u(x)2

)
≥ (−C)

(
− 1 + u′(x)2

u(x)2
+
u′′(x)

u(x)

)
= (−C)

(
− 1 + u′(x)2

u(x)2
− 2H(x)

(
1 + u′(x)2

) 3
2

u(x)
+

1 + u′(x)2

u(x)2

)
= 2CH(x)

(
1 + u′(x)2

) 3
2

u(x)

> 0.

Proof of (iii). Let us first show that

(36) u(x) > ub2(x) =
1

b2

cosh(b2x), x ∈ (−1, 1),

where b2 = b2(α). Since

α√
1 + α2

− u(0) =

∫ 1

0

d

dx

[
u(x)√

1 + u′(x)2

]
dx = 2

∫ 1

0

u(x)u′(x)H(x) dx < 0

by (i), and as α < sinh(b2), this implies

u(0) >
α√

1 + α2
>

α

cosh(b2)
=

1

b2

= ub2(0),

so that (36) holds at the origin. Set x∗ = inf
{
x ∈ [0, 1] | u(x) = ub2(x)

}
. Since (36)

holds at x = 0, we have x∗ ∈ (0, 1]. Assume that x∗ < 1. Clearly

(37) u′(x∗) ≤ u′b2(x
∗).

Since u(x∗) = ub2(x
∗) we deduce with the help of (22)

cosh(b2x
∗)

b2x∗
=
u(x∗)

x∗
≥ α,

so that by (19) b2x
∗ ≤ b1 or b2x

∗ ≥ b2. Since x∗ < 1 and b1 < b0, this in particular
implies b2x

∗ < b0. By Theorem 3.6, u is a minimiser in Ñα,−α. Remark 3.2 followed
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by Remark 3.1 thus yields that

u′(x∗) > sinh

(
b1

(u(x∗)

x∗

))
= sinh

(
b1

(cosh(b2x
∗)

b2x∗

))
= sinh(b2x

∗) = u′b2(x
∗)

by the definition of b1 and since b2x
∗ < b0. This contradicts (37) so that x∗ = 1,

proving (36) on [0, 1). The claim on (−1, 1) follows by the symmetry of u and ub2 .
Let us finally show that

(38) u(x) < ub1(x) =
1

b1

cosh(b1x), x ∈ (−1, 1),

where b1 = b1(α). Set x∗ = sup
{
x ∈ [0, 1] | u′(x) = u′b1(x)

}
. Clearly x∗ < 1 and

u′(x) > u′b1(x) for x ∈ (x∗, 1]. Let us assume that x∗ > 0. We have u′(x∗) = u′b1(x
∗) =

sinh(b1x
∗) and

u(x∗)− ub1(x∗) =

∫ 1

x∗
(u′b1(x)− u′(x)) dx < 0.

Therefore,
u(x∗)

x∗
<
ub1(x

∗)

x∗
=

cosh(b1x
∗)

b1x∗
=

√
1 + u′(x∗)2

arcsinh (u′(x∗))
.

On the other hand (25) computed in x∗ yields

u(x∗)

x∗
≥

√
1 + u′(x∗)2

arcsinh (u′(x∗))
,

a contradiction. Hence x∗ = 0 which implies that u′(x) > u′b1(x) for x ∈ (0, 1].
Integration yields (38) on [0, 1), and the symmetry of u and ub1 gives (38) on (−1, 1).

This completes the proof of Theorem 1.2. �

Appendix

Proof of Remark 3.2. If the second inequality in (24) were not strict, then there would
exist an x1 ∈ (0, 1) such that

(39) u(x1) =
u(x1)√

1 + u′(x1)2
cosh

(√
1 + u′(x1)2

u(x1)
x1

)
.

Let

uγ(x) =
1

γ
cosh

(
γx
)
, where γ =

√
1 + u′(x1)2

u(x1)
.

Note that u(x1) = uγ(x1) and

u′γ(x1) = sinh(γx1) =
√

cosh2
(
γx1

)
− 1 = u′(x1),

where we used (39) for the last equality. Since u ∈ Ñα,β this implies u′γ(x) ≤ u′γ(x1) =
u′(x1) ≤ α for x ∈ [0, x1]. As a consequence the function

v(x) :=

{
uγ(x) for x ∈ [−x1, x1],
u(x) otherwise,

belongs to Ñα,β and W(v) ≤ W(u). Since u is a minimiser of W in Ñα,β we infer
that W(v) = W(u) and hence H[u] ≡ 0 on [−x1, x1]. It follows from [8, Propo-
sition 5.11] and the boundary values that u ≡ uγ on [−x1, x1]. Since both u and



UNSTABLE WILLMORE SURFACES OF REVOLUTION 19

uγ solve (5) on (−1, 1) we obtain u ≡ uγ on [−1, 1] which is in contradiction with
β ∈ [−α,− sinh(b1(α))). �

Proof of Lemma 3.5. Here we essentially follow the argument of Lemma 3.11 in [2]
with minor modifications. Let us first prove that

(40) M̃α,β′ < M̃α,β for all β, β′ ∈ (−α,− sinh(b1(α))) with β < β′.

We observe that (21) implies α > αβ and α > αβ′ . By Theorem 3.4 there exists a

convex function u ∈ Ñα,β satisfying (24) such that W(u) = infv∈Ñα,βW(v). Since

u′(1) = −β > −β′ there is x∗ ∈ (0, 1) with u′(x∗) = −β′. The function ũ : [−1, 1]→
R, ũ(x) := 1

x∗
u(x∗x) then satisfies (24), ũ(±1) = 1

x∗
u(x∗) =: α̃ and ũ′(−1) = β′. In

view of (22) we have α̃ ≥ α. Furthermore, since u is convex we infer that

ũ′(x) = u′(x∗x) ≤ u′(x∗) ≤ α ≤ α̃ in [0, 1]

so that ũ ∈ Ñα̃,β′ . Evaluating (26) at x∗ implies β′ ≤ − sinh(b1(α̃)). Since β′ > −α ≥
−α̃, we therefore have β′ ∈ (−α̃,− sinh(b1(α̃))]. As observed earlier, α > αβ′ and
so α ∈ (αβ′ , α̃]. If α̃ > α, Lemma 3.3 yields the existence of a symmetric, strictly
positive function v ∈ C1,1([−1, 1]) satisfying v(±1) = α, v′(−1) = β′, v′ ≤ α in [0, 1],
(24) and W(v) ≤ W(ũ). If α̃ = α we simply choose v = ũ. In any case we have
v ∈ Ñα,β′ and

W(u) = 4π

∫ x∗

0

H(x)2u(x)
√

1 + u′(x)2 dx+ 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx

=W(ũ) + 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx

≥ W(v) + 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx

≥ M̃α,β′ + 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx.

We observe that H 6≡ 0 on [x∗, 1], for otherwise u|[x∗,1] would have to be a catenary,
contradicting the fact that u(1) = α, u′(1) = −β and (20). Recalling that W(u) =
M̃α,β we infer (40).
In order to complete the proof of Lemma 3.5 it is in view of (40) sufficient to show
that

(41) M̃α,β ≤ M̃α,−α for all β ∈ (−α,− sinh(b1(α))).

Fix β ∈ (−α,− sinh(b1(α))) and let u ∈ Ñα,−α be an arbitrary function satisfying (24).
Note that (21) implies α > αβ. Since u′(1) = α > −β there is an x∗ ∈ (0, 1) such

that u′(x∗) = −β and 0 < u′(x) < u′(x∗), x ∈ (0, x∗). The function ũ(x) = u(x∗x)
x∗

then satisfies (24), ũ(±1) = u(x∗)
x∗

=: α̃ and ũ′(−1) = β. In view of (22) we have

α̃ ≥ α and therefore ũ′(x) ≤ u′(x∗) = −β < α ≤ α̃ for x ∈ [0, 1], so that ũ ∈ Ñα̃,β.
Similarly as above we deduce from (21), (25), (26) that β ∈ (−α̃,− sinh(b1(α̃))] as
well as α̃ ≥ α > αβ. Choosing v = ũ if α = α̃, and v according to Lemma 3.3 if
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α̃ > α, we obtain a symmetric, strictly positive function v ∈ C1,1([−1, 1]) satisfying
v(±1) = α, v′(−1) = β, v′ ≤ α in [0, 1], (24) and W(v) ≤ W(ũ). As a result

W(u) ≥ W(ũ) ≥ W(v) ≥ M̃α,β,

from which we deduce (41). This finishes the proof of Lemma 3.5. �

Proof of (31). We use the argument from the proof of Lemma 4.9 in [11]. For the
convenience of the reader we reproduce the relevant calculations and adapt them to
our particular situation. To begin,

W(uk) = π

∫ 1

0

(
− u′′k(x)

(1 + u′k(x)2)
3
2

+
1

uk(x)
√

1 + u′k(x)2

)2

uk(x)
√

1 + u′k(x)2 dx

≥ π

∫ 1

0

1

uk(x)
√

1 + u′k(x)2
dx− 2π

∫ 1

0

u′′k(x)

(1 + u′k(x)2)
3
2

dx

= π

∫ 1

0

1

uk(x)
√

1 + u′k(x)2
dx+ 2π

βk√
1 + β2

k

.

Since u′k ≤ α in [0, 1] we have uk(x) ≤ uk(0) + αx, x ∈ [0, 1] and therefore

π√
1 + α2

∫ 1

0

1

uk(0) + αx
dx ≤ W(uk) + 2π

|βk|√
1 + β2

k

≤ M̃α,−α + 2π
α√

1 + α2
,

as |βk| ≤ α. Solving this inequality for uk(0) and recalling that uk is convex we infer

inf
x∈[0,1]

uk(x) = uk(0) ≥ α

exp
(
α
√

1+α2

π
M̃α,−α + 2α2

)
− 1

,

which proves (31). �
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