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Abstract

The main result in this paper is that the solution operator for the
bi-laplace problem with zero Dirichlet boundary conditions on a bounded
smooth 2d-domain can be split in a positive part that contains the singular
part and a smooth sign-changing part. Such a splitting allows one to find
a priori estimates for fourth order problems similar to the one proved via
the maximum principle in second order elliptic boundary value problems.
The proof depends on a careful approximative fill-up of the domain by
a finite collection of limacons. The limacons involved are such that the
Green function for the Dirichlet bi-laplacian on each of these domains is
strictly positive.
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1 Introduction and main results

A mayor tool for second order elliptic equations is the maximum principle. The
maximum principle not only implies that a positive source will give a positive
solution but it helps to obtain a priori estimates and hence to find regularity
results. Especially in nonlinear equations such a priori estimates play a crucial
role. Several results are referred to by the name maximum principle but the
result that we want to refer to is the local result that reads for the laplacian as
Au > 0 in a neighborhood of a implies that u cannot have a strict maximum
in a. A serious obstruction for higher order elliptic equations is that one cannot
expect a similar result as functions like +22 clearly show.
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The situation becomes more complicated when considering a positivity pre-
serving property which is often also named “maximum principle”. For the lapla-
cian that is: —Awu > 0 in Q and v > 0 on 99 implies v > 0 in Q (with Q a
bounded domain in R™). This “global maximum principle” also holds for some
special higher dimensional problems. Indeed, A%y > 0 in B and — ‘u > 0,
u > 0 on OB implies u > 0 in B. Here B is a ball in R™ with n < 4 For this

special result see [16]. With f} ru=u =0 on dB the result holds for B in any

R™ and goes back 100 years to Boggio ([3]). The restriction to the ball is rather
crucial. Since Duffin’s counterexample ([10]) it has become well known that on
most domains such a positivity preserving property fails (see [15]).

In [I9] Nehari looks for subdomains of €2, characterized by the position of
the points x and y and by simple geometric properties of €2, in which the Green
function for the biharmonic problem with Dirichlet boundary condition on 2
may be shown to be positive.

In order to find a priori estimates it is however not necessary to have such a
sign preserving result; it is sufficient that the singularity of the solution operator
has a fixed sign. This separation of the solution operator in a smooth but sign
changing part and a singular part of fixed sign is the main result of the present
paper. However, since we are using conformal mappings, our present result
is restricted to two dimensional domains. Note that in two dimensions the
singularity of the solution operator for the bllaplaman appears in the second
derivative. Indeed the fundamental solution is 5+ |z|° In |z|.

Let us be more precise. For Q an open bounded C*% domain in R? we will
show that the solution operator for

A?u=f inQ,
u=0 on 01, (1)
%u =0 on 99,

can be split in the way we just mentioned. Crucial is that we find a uniform
behavior of such a splitting even near the boundary. Such a result away from
the boundary, that is in compact subsets of 2, was proven in [I4].

We proceed as follows. We recall from [7] that for Q taken from some family
of limacons the Green function for is positive. Secondly, one may show
that small perturbations of those limacons do not destroy the positivity of the
corresponding Green function. Thirdly, one may construct a finite number of
such slightly perturbed limacons { E; C R?} that are such that the boundary of
Q) is covered by the boundaries of those perturbed limacons while these limacons
cover a neighborhood of the boundary of 2. Together with a covering of the
interior one is able to construct the desired splitting of the solution through a
separation of unity related with that covering. Roughly explained, for each z €
Q there is an element F; in this finite covering such that the Green function for
can be decomposed as the sum of G, (z,y) and a remainder term GreSt( ,Y)
Where G, (x,y) is positive and Grebt (z, y) is without singularity. Note that the
choice of E; depends on z. Since the extension of G, (z,y) from E? to Q% by
0 is not smooth one may guess that the just mentioned decomposition is more
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involved than just this simple sum.

1.1 Main results

In this section we state the two main results of the paper. First we fix some
notation.

The Green function Gq is such that the solution of problem for appro-
priate f can be written as

u(z) = /Q Gl y) [ (v)dy.

In the following dg(.) denotes the distance to the boundary in the domain €

d ;= inf — .
o) = o 2=

Two closely related versions of the main result are the following. The first one is
a pointwise description which focusses on the splitting of the solution operator.

Theorem 1.1 Assume that 2 C R? is a bounded simply connected domain with
00N € C5. Then there exist G, Gy 02 — R such that the Green function
for can be written as

Ga(z,y) = Gg"(x,y) + Gy (2,y)
and the following is satisfied:
1. (a) GJM(x,y) >0 on Q2
(b) G&™ € O (Q2) N CY (Q2) for all v € (0,1) ;
(c) GE™ € O ({(z,y) € Q% #y}) for ally € (0,1);
2. (a) GG € CH™Y(Q%)NCG (Q2) for all v € (0,1).
Remark 1.1.1 For the condition 92 € C'6 see Definition .
Remark 1.1.2 Since Gq is symmetric one may assume that both G4 and

Q™ are symmetric. If not yet symmetric, then set G& new(T,Y) 1= 1Gg (z,y)+
3G (4, )
2Q y7 .

The next result is a kind of maximum principle, that is, it gives a pointwise
bound from above for the solution in terms of the positive part of the right hand
side and a weaker norm of the solution itself. Before we state the result let us
recall that the space W~"-?(Q) is the dual space of Wy (Q), with 1% + ﬁ =1,
and its norm can be defined as follows

Fully sy = sup {ule)s 0 € W (), Il oy < 1}



May 4, 2005 5)

Theorem 1.2 Let 0 < a < 1 and p € (1,00). Suppose that Q is a bounded
simply connected domain in R? with 0Q € C**. Then for any ¢ > 2 and
e > 0 there exists a constant cq.0. > 0 such that for f € LP(Q) the solution
u e W (Q) N WP (Q) of (1)) satisfies

u(z) < cge (Hf+HL1(B(I’€)mQ) + Hu||W71‘q(Q)) for every x € Q.

Here f+ denotes the positive part of f.

Remark 1.2.1 More precise information on how cqn,. depends on q,Q and
can be found in Theorem [{.1 For those who want to avoid norms for nega-
tive Sobolev spaces we recall that ||ully,-1.4q) < ¢(5,¢,Q) |[ull s for s >

2q(q+2)7".

1.2 Some notations

Let us fix the following (for later use we consider R™ with general n).

Notation 1.3 Let Q be a bounded domain in R™ and let f and g be functions
on 0 x Q.

o For o, € N" we set |a| = >}_, a; and

glal 58]
DeD? = :
T yf(x,y) 83:?1953‘2.. .23%" 8ylﬁly§2.. ygn f(il’,y)

o An equivalence relation for f and g which are nonnegative (See [13]):
fr~gonQxQ
if and only if there are c1,co > 0 such that
cif(z,y) < g(z,y) < caf(z,y) for all z,y € Q.
e A dominance relation with respect to a nonnegative f :
f=gonQxQ
if and only if there is ¢ > 0 such that
f(z,y) <cg(x,y) for all x,y € Q.

The Hélder spaces C"(Q) and C™(Q) with r € N and v € (0, 1] are supplied
with the norm:

Ifler@ = D 11D flloo,
lee|<r

[fller~r@y = Ifller@ + Z [D*f1, .

lee|=r
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where [f] 1= sup {M T,y €Q, v # y} For convenience we set C™%(Q) :=

le—ylr
C7(€Q). In the following C”(£2) denotes the set of all functions in C" () whose
supports are compact subsets of 2.
Form e Nand p > 1, p € R, W™P(Q) denotes the Sobolev space with the

norm
||f||Wm:P(Q) = Z |‘Daf||Lp(Q) .

la]<m
We fix the following notation to point out on which quantities the constants
depend.

Notation 1.4 For «, 8, v € R, C = C(«, 3,7) means that C depends only on
«, B and 7y, and that C is bounded for bounded values of these parameters.

Next we will need some notation concerning the domain and its boundary.

Notation 1.5 (relatively open subset of the boundary) For K a subset
of 9 C R™, set
K9 .— (K U (09)%)° N o9Q. (2)

In the literature several definitions of C*®-domains appear. To avoid any
ambiguity we explicitly give the version that we will use.

Definition 1.6 (uniform C*® regularity condition for Q) Let/ € Nt o€
[0,1] and Q be a bounded domain in R™. The domain Q satisfies the uniform
C%* regularity condition (we write 9 € C“*) if there exist a positive constant
M, a finite open covering {Uj}jeJ of 09, a corresponding collection {‘Pj}jeJ of
C% mappings such that for every j € J:

1. ¢;:U; — B={y e R": |y| < 1} is a bijection; set 1; = ©"";

2. with (@j1,...,¢jn) and (Yj1,...,0jn) the components of ¢; and 1; :

lpjillcea,) <M and ||¢jllceasy < M for all i

3. ;i (U;NQ)={y € B:y, >0};
and there exists & > 0 such that

{r €Q:d(z,00) <} C ij({yER”:|y|<%}).
jed

Deﬁnition is similar to the uniform C* regularity condition in [I, Def.4.10
page 84].
It will also be convenient to fix the following numbers.

Notation 1.7 Let Q be a bounded domain with 09 € C2.



May 4, 2005 7

1. We write pq for the largest number r such that both @ and R™\Q can
be filled with balls of radius r. To be precise: for r > 0 set Q, :=
{z€Q:d(2,00) >7}, Q. = {zeR"\Q:d(z,00) >r}. Set po > 0
the largest r such that the following holds:

Q=] Br(2) and R\ Q= | ] B, (2).

2€Q, 2€Q,

2. We will also use Rq defined as the smallest R such that Q C Br(z) for
some z € R%.

Remark 1.7.1 For most domains we may take po = k1 where k denotes the
mazimal curvature. But notice that pg can be strictly smaller than k~1. For
example this happens in the case of a dumb-bell shaped domain with a very
narrow passage.

2 Domains with a positive biharmonic Green
function

In this section we concentrate on the positivity preserving property of problem
in two-dimensional domain. Let first fix what we mean by this.

Definition 2.1 We say that problem on a domain § satisfies the positivity
preserving property if for any f positive the solution u of is also positive.

Obviously on a domain ) satisfies the positivity preserving property if
and only if the biharmonic Green function associated to problem on 2 is
positive.

It is well known that problem is positivity preserving on the disk (see
[3]). In the following we first recall a recent result in [7] where a family of
domains (limacons) is given on which the biharmonic Green function associated
to problem is positive. Next we will show that small C%" perturbations of
these domains do not destroy this property.

2.1 Limacon de Pascal

In [7] one finds that on some limacons the Green function for is strictly
positive. Since these limacons are our starting point we will shortly recall some
properties of these domains.

The Limacon de Pascal , with a € [O, %] is defined as the image of the
unit disk through the conformal map

ha(21,22) = (acl + 2ax 129, T2 + axi —az? +1 — a) for a € [O, %] . (3)

The result that is proved in [7] is the following:
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Y1 /6

Figure 1: Limacons Q, for respectively a =0, a = 1—?’0 and a = %\/6

Proposition 2.2 The Green function Gq, for with Q = Q, and a € [O, %]
1s positive if and only if a € [0, %\/ﬂ Moreover, there exist c¢1,co > 0 such that
Jor a € [0, $V/6] the following estimates hold. Writing for short d.(.) = dg, (.):

Gq,(x,y) < da(x)da(y)min{l, | ‘2
r—=y

Co (%\/6 - a) dy(x)d,(y) min {1, da(x)da(y)} .

do(2)d (y) } |

GQa (LC, y)

v

2
|z -y

Remark 2.2.1 In [T7] Hadamard was able to compute an explicit formula for
the biharmonic Green function on a limacon. The fact that this Green function
i

is positive for a € [0, V6] has been proven in [7].

We will also need scaled limacons and we will define these for R > 0 by
Qu.r = {(Rz,Ry) : (x,y) € ha(B1(0))},

with By (0) = {(n,€) € R? : n> + €2 < 1}. In the following €, denotes Qg ;.

In the present paper we will consider limacons Q, g for a € [0,a] where @
is strictly between % and %\/6 By taking a strictly smaller than %\/6 we will
obtain estimates of the Green function Ggq, (., .) which are uniform with respect
to a.

Some geometrical facts :

1. Foralla € [O, %] the limacon 2, r is symmetric with respect to the second
axis and both (0,0) and (0,2R) lie on 0, g.
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Let [—%q, Zq) X [—Ya, 2] denote the smallest rectangle that contains €, 1.
Then
a+— x, and a — Y, (4)

are nondecreasing functions for a € [0, 3] with 1 <z, < 1.3 and 0 < y, <
0.25.

For a € [, 2], we will use kq g : [~ Rzq, Rz,) — R to describe the lower
part of the boundary 09, g :

kor () =inf{y: (z,y) € Qa.r}. (5)

In particular in the approximation we will use that the following relations
hold:

1 1—4a
"2 (0) = =———— and 6
a,R ( ) R (1 _ 2&)2 ( )
o' b,
——ka,R < 5 fori=1,...,5, (7)
Haxl CO[—Rx¥,Rx] R

with 2} = (1 — v/3a). Notice that =} € (fx4, 2,) Where z, is defined
near . The constants b; can be taken independently of a € [1—36, 15—6]

pecial values of the parameter a are the following:
a = 0: Qg is the disk with radius R and center (0, R);
1 1

a= 7: Q4 R is convex if and only if a € [0, Z];

a= é\/é ~ .40825: the Green function associated to 1) for Q = Qg g is
positive if and only if a € [07 % 6], see [7l;

a=3: Q1 pis a cardioid.
3

e

O &
& i

I ] ] ]

i Tl Tl \1

0 a — o V6 3

Q,,r convex Q,,r non-convex
GQayR >0 GQa,R
changes sign

Figure 2: In the graph the critical values of the parameter a for convexity of the
limagons and positivity of the Green function.
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2.2 Perturbations from the bilaplacian on a limacon

In this section we study the positivity preserving property of problem on a
domain ) C R? that is e—close in a C?7-sense to a limacon.

The concept of e-closeness of domains that we use is the one introduced in
[12, Def.1.1]. For sake of completeness we recall the definition.

Definition 2.3 Let € > 0. We call Q e-close inﬁCk’W—sense to Q* if there exists
a CF7-mapping g : Q* — Q such that g(Q*) = Q and
lg = Ldl gr (e <€
The main result of the section is the following.
Theorem 2.4 (Perturbation of the domain) Let a € (1,$V6) and v €
(0,1). Then there exist e > 0 and c1,¢2 > 0 such that for every € € [0, ]

and a € [0,a] the following holds.
IfQ is e-close in C%7-sense to Qy, then the Green function Gq of (1|) satisfies

0 < &1 Da(w,y) < Ga(w,y) < c2Da(z,y) for every z,y € 9,

where

(8)

Dofx,y) = do(z)do(y) min {1, d()d@)} |

|z —yl?

Remark 2.4.1 In [7] the same estimates from above of Gq are given but with
more reqularity required at the boundary. Thanks to the e-closeness we get a
better estimate from below and the same from above with less assumptions on
the boundary.

The proof consists of several steps and uses similar arguments as in [12] for
a disk. For convenience we summarize the main parts here.

We first show that e-closeness in C%7-sense of € to €, implies the existence
of a biholomorphic map ¢, : 2, — € such that

oo = Id|| g2 () < 0(e) for 0 <o <. (9)

Next, through this conformal mapping ¢, problem on (2 is transformed into
the following problem on Q,:

(A2+A)u = f inQa,
u = 0 on dQ,, (10)

%u = 0 on 09,
where A is a lower order perturbation of the biharmonic operator. See [13]
Remark after Theorem 5.1]. From @ one also has that there exists a §; =

01(€) > 0 such that the coeflicients of A in satisfy

sup || Aalleo < 7.
o] <3
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We then see that the positivity of the Green function associated to problem
implies the positivity of the Green function associated to problem (1)) thanks
to the properties of conformal maps (J20]). Hence, instead of proving directly
Theorem [2.4] we prove the following result.

Theorem 2.5 (Perturbation of A? by lower order terms ) Let a € [0, a]
with @ as in Theorem . Consider problem @) with A = 3, <3 Aa(z)D?,
Ay € C(Q) and let Gg, a the Green function associated to
Then there exists ng > 0 such that, whenever ||Aylloo < Mo for all a with
|| < 3, the Green function associated to (%) is positive. Moreover, there exist
)

dy,d2 > 0 such that, with Dq_ (z,y) as in the following holds:

dlDQa(xvy) S GQG,A(xvy) S dQDQa(xvy)‘ (11)

Theorem [2.5]says that if the lower order perturbation of the biharmonic oper-
ator is small then the positivity preserving property of system in €, follows
from the positivity preserving property of problem on the same domain.

A result similar to Theorem was proven in [I3] for the polyharmonic
Dirichlet boundary value problem on the unit disk B. The main ingredient of
the proof are appropriate estimates of

Gg(x,2) |DEGp(z,y)|
Gp(z,y) ’

which were proved in [12]. Notice that in [12] one considers Q being a ball. The
only place however where that fact is used is in the explicit estimates of H g.
Indeed all the other arguments can be applied to any planar smooth domain
whose Green function is positive in the strict sense as in the left hand side of
1} Hence to prove Theorem we first show that Héa (that is the quotient
in (12 calculated for G, ) satisfies the same estimates as Hf and then refer to
the work in [I3].

Hp(z,y,2) =

(12)

In the next section we construct the conformal mapping from “Q e-close
to Q,” to the limacon 2, and we state the equivalence of Theorem and
Theorem [2.5] Then we prove the perturbation result of Theorem

2.2.1 Conformal transformation

In this subsection we prove that problem on 2 that is e-close to €, cor-
responds to a problem of the type on , with the coefficients of A, the
lower order perturbation of A2, being small. Or, to be more precise, there is a
function € — d(g) with d(¢) — 0 when € | 0, such that
Q e-close in C*7-sense to Q, = sup || Aalle < d(e).
lor|<3

Or in other words, that Theorem [2.5] implies Theorem [2.4

The first step consist of proving existence of a biholomorphic map from the
limacon to a domain e-close to the limacon which is near the identity in C?7-
sense.
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Proposition 2.6 Let a € [0,a] and v € (0,1). Then there exist £ > 0 and
¢ = c(a) > 0 such that for e € [0,&) and every v' € (0,1) with v < v we have
the following.

If Q is e-close in C%7-sense to ), then there is a biholomorphic map @, :

Qo — Q, with ¢, € C*7(Q,) and ¢ € C*7(Q), such that
[ea = Id|| g2,y S ce” .

The proof of Proposition [2.6] consist of the following three lemmas.
Since a < a < %\/6 < % one may check that the map h,, defined in , is
conformal and one-to-one on the domain

B s = {x eR?: |z, < \/1.5}.

We choose the value &1 € (0,1) such that, if Q is e-close in C?7-sense to ), for
e € (0,e1), then h ' (Q) C B 15 It follows that h,' is a conformal map on
any domain  which is e-close in C?7-sense to the limacon for € < ;.

Lemma 2.7 Let a € [0,a] and v € (0,1). There exists c1 = c1(a) > 0 such
that the following holds. If Q is e-close in C%7-sense to Q, for e € (0,e1), then
QO := h 1 (Q) is cre-close in C?7-sense to the disk B.

Proof. Let g be a C?7-mapping, g : Q, — €, such that ||g — Id|| g2 (0,) < e
We define the map f: B — Q* by

flz) = (h;l ogo ha) (x),

where h, : B — Q, and h;l : Q0 — Q* are conformal (see Figure . Then
there exists a positive constant c1, depending on ||h,||cs and ||h; t||c4, such
that ||f — [dch,w(B) < cie. | ]

In the following Q* denotes h; ! ().

Lemma 2.8 Let a € [0,a] and v € (0,1). Then there exist e5 > 0 and ca =
co(a) > 0 such that for everye € (0,e3) and ' € (0,1) with~" < =, the following
holds. If Q is e-close in C*7-sense to Q,, then there exists a biholomorphic
mapping ¢ : B — QO with ¢ € C>7' (B), ¢! € C27(Q*) and such that

lp = Tdll o.r () < c2e?™ 7

Proof. From Lemma [2.7] it follows that Q* is ¢ie-close to B. Applying Propo-
sition we have that there exists 9 > 0 such that “Q* cje-close to B” for
cie € (0,&0) implies the existence of a biholomorphic mapping ¢ : B — Q* with
0 € C27(B), ¢! € C*7'(0*) and such that it holds

lo = Idl[ 2 (py < 28”7,

for every v/ € (0,1) withy" < 5. The claim follows by taking e, = min {e1, cl_leo}.
[
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0 - O*
< »
gl | ¥a f ®
Q, - B
- ;

Figure 3: The maps between €1, Q,, B and Q*.

Lemma 2.9 Leta € [0,a] andy € (0,1). There existez > 0 and c3 = c3(a) > 0
such that for every e € (0,e3) and v € (0,1) with v' <« the following holds.

IfQ is e-close in C%7-sense to Qq, then there exists a biholomorphic mapping
©a : Qa — Q with p, € C27 (Q4), ;' € C27(Q) and such that

lga = Tdl e 0,y < cse™
Proof. We denote ¢, the map from €, to Q given by

val(z) = (ha opo h;l) (z).

Here ¢ is the conformal map of Lemma [2.8] The map ¢, is biholomorphic as a
composition of biholomorphic maps. Furthermore we have ¢, € cz (€,) and
ot e 027 (Q) since ¢ € C27'(B) and ¢~ € €27 (Q¥).

By the way the holomorphic map ¢, is defined one finds that there exists a
positive constant K, depending on ||h4||cs and ||h;t]|c1, such that

lpa = Ldl| g2 () < K o = Ld]|c2ir (Y -
The claim follows by choosing c3 = Kcy and €3 = €5 with ¢y and ¢4 as
defined in Lemma 2.8 [
Remark 2.9.1 Notice that Proposition [2.6 follows from Lemma[2.9

We are now ready to prove that the positivity preserving property of problem
with a small perturbation of A2 on €, implies the positivity preserving
property of problem on § e-close in C%7-sense to (.
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Corollary 2.10 Let v € (0,1). For every 6 > 0 small enough and a € [0, a)
there exists g > 0 such that for € € [0,e0) the following holds.
If Q is e-close in C?7-sense to the limacon Q, and the coefficients of the
operator A satisfy
sup [|Aaloe < 6. (13)
le| <3
then the positivity of the Green function associated to problem @) on Qg implies
the positivity of the Green function associated to problem on €.

Proof. To prove the claim we show that problem on Q e-close in C%7-sense
to €, can be “transformed” into problem on {2, with the coefficients of the
lower order operator A satisfying (L3]).

Let u be solution of problem 1D on 2. Consider g < min {%,2*75}. By
Proposition we know that there exists a g9 = g (dg9) > 0 such that for
€ € [0,e0) and 4" € (0,1) with 4/ < v we have the following. If Q2 is e-close to

Q, in C?*7-sense then there exists a conformal map ¢, : Q, — € such that
oo = Id||l 2 (,) < Do

We define the function ve(z) := u o ¢, (z) on Q,. Clearly u > 0 if and only
if v, > 0. Since ¢, is a conformal map, the function v, satisfies

AQUCL _2v|90:z‘2 v@:ﬁ _4|§DZ 2@5?2 = |§0:z|4f090a in Qaa
Vg = 0 on 8Qa, (14)
%Ua =0 on 09,

where ¢!, denotes the complex derivative of p,. Hence v, is solution of a problem
as in . The coefficients of the lower order perturbation of A? in satisfy
by the choice of dg. ]

Remark 2.10.1 Notice that since we are working with conformal mappings
it s sufficient to have C*7-closeness in order to transform problem into
problem (@) Working with general transformations fourth order derivatives
would appear and C*7-closeness would be necessary.

As a consequence of Corollary 2.10] Theorem [2.4] will follow from Theorem
2.0)

2.2.2 Proof of the perturbation theorem

In [I3] Theorem [2.5 has been proven in the unit disk (that is Q). We now give
a sketch of the proof for Q,, a € [0,a] by following similar steps.
First we state some estimates for with G replaced by Ggq,.

Theorem 2.11 Let k = (kq, ko) with ki1,ks € N and |k| < 3. The following
estimates hold for any a € [0,a] and x,y,z € Qq.
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1. If |k| = 3, then

Go, (z,y) Tlr—z Jy—z

2. If |k| =2, then

GQH,(:E,Z)|D§GQH,(Z,ZJ)|<10g< 3 )
Ga,(z,y) - lz—yl)

3. If |[k| <1, then

Ga, (x,2) |DEGa, (2,y)| <1
GQa(xvy) -

Proof. With the same method as has been used in [I3] the result follows
from the optimal estimate from below for Gg,, which has been proved in [7]
(see Proposition , and from the estimates of the derivatives of the Green
function, which have been proved in [§] (see Proposition [B.2)). |

Let Go denote the Green operator associated to problem in , that is

Gof(x) = /Q Gl 9)f (v)dy.

By the estimate in Theorem [2.11| one may observe that the derivatives of the

Green function have an integrable singularity. Hence one finds the following two
corollaries of Theorem 2111

Corollary 2.12 There exists M € R such that for any 0 < f € LP(Q,) with
p>1and k = (ki,k2) € N2 with 0 < |k| < 3, the following estimate holds for
all a € [0, a

|(gQaDnga f) (l')| < M (Gaq, f) (z) for all x € Q.

Corollary 2.13 Let a € [0,a] and n > 0 be such that the coefficients of A in
@ satisfy ||Aallo < 1 for all |a| < 3. Then for any 0 < f € LP(§,) with
p=>1

|(Ga,AGa, f) (x)] <10 Mn (Ga, f) (x) for all x € Qq,

and furthermore
(G0, 4) Go. £) (2) | < W0Mn)' (Go, £) () for all w €
where M is the constant of Corollary[2.13

For the proofs we refer to [I3] Cor.4.2, Lem.5.4-5.5].

Proof of Theorem Let u be a solution of . Proceeding as in [I3]
Lemma 5.3] one finds that there exists a 7, > 0 such that (Z + Gq, A) ™" is well
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defined when the coefficients of A satisfy [|Aa| ., < m for |a] < 3. We have
u=—Go, Au+ Ga, f, or u= (T + Go, A) " Gq, f, and may formally write

Ga,.4a= T+ QQGA)_l Ga,
= Ga, — Ga,AGq, + (Ga,A)? Ga, — (Ga, A)® Ga, + (Ga, A)' Ga, — . (15)

Using Corollary from taking 7o = min {ﬁ, 771} and n < 1o the series
converges and we get

1Ga. < Ga,,a < 3Ga,. (16)
The estimate in follows directly from and Proposition [

Remark 2.13.1 For the problem

A2+ Au = f inQ,
u = 0 ondQ,
%u = 0 on 0L,

with Q e-close in C?7-sense to Q, for a € [0,a] and with A the lower order
perturbation of the bilaplacian such that ||Aa| ., < n for |af < 3, the result
stated in Theorem [2.5 is still valid for ¢ and n sufficiently small.

3 Filling the domain with perturbed limacons

In this section we prove that a sufficiently smooth bounded two-dimensional
domain can be approximated by limacon-like domains in the sense we want.
That is, we will construct a finite number of domains F; such that:

1. the union of E; covers 2 near 0€);
2. the union of OF; covers the boundary 0€;

3. each Ej is close in C?7-sense to a limacon , g with a € [0,4d] in a uniform
way;

4. the E; uniformly satisfy the uniform C* regularity condition in a € [0, al.

The precise statement is given in Theorem [3.8]

3.1 Local approximation

We first show that for each zg on 02 there exists a domain e-close to a limacon
which boundary intersects 92 in a neighborhood of zy. In order to do that it
will be convenient to use local systems of Cartesian coordinates. The following
lemma lists some technical results.
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Lemma 3.1 Let ¢ > 2 and Q be a domain in R? satisfying the uniform C*®
regularity condition, Definition (1.6, with constant M and mappings ¢; € che,
j € J. Let pq be as in Notation and set x,, = 73;)9.

Then for every zy € 0X) there exists a local Cartesian coordinates system and
a function g., € C4%, g0t [T pgs Tpy| — R, such that:

1. 2o =(0,0);
. the x-axis is tangential to O in zo;

2

3. the y-axis has the direction of the internal normal to 92 in zg;
4. B%psz (’ZO) noft C {(1'7:’/) HEARS [_mpszaxl’ﬂ] and y = 9z (SU)},
5

- gz llgea <2(0+1)M.

~Tpo mpsz]

Remark 3.1.1 Observe that the function g,, of Lemma satisfies |g’zO (x)| <
1

7
We skip the rather technical proof of Lemma [3.1

In the following theorem we will state that for every point of the boundary of
a domain satisfying the uniform C*4® regularity condition there exists a limacon
Q4. r that approximates J€2 in the point in C?-sense. Furthermore we will
construct a domain € that is e-close to the limacon Q. r and which boundary
coincides with 9 in a neighborhood of that point. By construction Q is a
domain satisfying the uniform C* regularity condition with constant M; where
M; depends only on M and pq.

For the purpose of a uniform statement we will have to rescale to limacons
of ‘unit’ size. In order to do so we define for a given f the scaled function:

f®(x,y) := R™' f(Rx, Ry) for R € RT. (17)
Theorem 3.2 Assume that the following holds for some «,v € (0,1):

i. Q C R? is a simply connected domain satisfying the uniform C*% regular-
ity condition with constant M ;

ii. g., € CH® for zg € Q) are functions that describe the boundary of Q as

m Lemma and fix R := min {% (maLxZOGaﬂ ||g;/O Hoo)ﬂ 7 1} ;

1. € > 0 is such that for all Q which are e—close to Qg1 in C?7 sense with
a € [13—6, 1—56] , the Green function associated to problem on € is positive.

Then there is § = §(M, pg",e,7) € (0, % R) such that the following holds.

For every zg € 0N) there exist a € [1—36, f’—ﬁ} , a limacon Q4 r and a C* map
fa,r : Qa,r = far (Qa,r) such that:
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1. 00N Bs (ZQ) =0 (fa,R (Qa,R)) N Bs (20) ;

2. the map ffR = (fa’R)R is e-close in C*7-sense to the identity on Qg 1:
£ — ]dHC2,w(Qay1) =8

3. the map f(fR is O bounded by some A = A(M, p§17s,'y): that 1is,
R
|‘fa’RHC4’a(Qa,l) S A.
Remark 3.2.1 We construct a C*® mapping fa,r : Q(LR — fa.R (Q,LR) mn
order that fa r (Q(LR) is a domain satisfying the uniform C*% regularity con-
dition with constant My where My = My(M, pg,"',e,7). Using the result in [9]
it should be possible to relax the reqularity of the boundary to C*.

Remark 3.2.2 In order to approzimate Q) with limacons in C*7-sense it is
sufficient that Q satisfies the uniform C*% reqularity condition for o > .

Remark 3.2.3 The R defined in Theorem[3.4 depends on § via the constant
M of the uniform C* regularity condition.

Corollary 3.3 Assume that Q, a, 7, e are such that the hypotheses of Theorem
hold true and let R as defined in that theorem. Then there is 6 > 0 such
that for every zo € OS2 there exists a domain E., that satisfies the following:

1. E,, satisfies the uniform C*® regularity condition with constant M; =
Ml(M7p(72175a7) >0;

2. E., is e-close in C*7-sense to a limacon Qq r with a € [, &];

3. 2 € (E., n0Q)>%".

)O,BQ

Furthermore, letting K, be the component of (E‘ZO N ox that contains

z0-
4. B(;(Zo) NoQ = Bg(ZQ) NK,;
5. E., and Q have the same outward normal for any x € K, .

The proof of Theorem is divided into several steps. We first present the
setting for a fixed zg € 9. Let us consider the local system of coordinates near
2o and the function g,, € C* given by Lemma (in this case [ = 4). We will
write g,, = ¢.

Let 6 be a positive number such that

J < min{l, %7 % (1 - 156¢§)} and 57 <& (ChoR™) . (18)

Here C1g is a positive constant that depends on M. We remark that § depends
on {2 through p51 and M.
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(‘J\\ |
U

/
J/

Figure 4: A domain, the finite number of approzimated limagons with their
boundaries covering the boundary of the domain, and a zoomed view.

3.2 Approximation by a limacon in one point
There exists a € [%, 1%] such that zg = (0,0) € Q4 g and
a.r(0) =g"(0),

where k, r € C™ is the map that describes, as in , the lower part of the
limacon.

In order to get that 09, r approximates the boundary of  in (0,0) up to
the second derivative, we have to impose the condition g” (0) = &/ z(0). Using
@ this reads as

1 1—-4a
"0)= =—. 19
9" (0) R(1- 2a)2 (19)

Since the map a — ﬁ sends the interval [%, 15—6] onto [—%, %] and it holds

lg” (0)| R < § by the definition of R, one finds that a € [£, 5] exists such that
holds.

Note that R is fixed and that it is sufficient to play with the parameter a to
fit the limacon 2, r to the domain 2 around zj.

3.3 Construction of the mapping f, r
Again we fix some preliminaries. Let x, be the number defined in and let
us fix 2} == $(1 —V3a) € (:%a, 3%4) . We introduce two cut-off functions:

1. @q,r € C(R) such that

Yar =1 for |z| < aiR,
Yar =0 for |z| > 2R,

la,rll oo < % for k=0,...,4and v € (0,1),

with Dy, some positive constants;
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2. g5 € C*(R) such that
a5 =1 for |z| <6,

a5 =0 for |z| > 26,

[Wasllgn. < oz for k=0,...,4and v € (0,1),

with Dj , some positive constants.

We define a C*®-mapping gs on [—~Rx,, Rx,] that follows the boundary of
Q when |z| < ¢ and the boundary of the limacon when Rz} < |z| < Rz, :

g(z) for 0<x <4,

2
1 ; ;
Fo(@) + Y5 (9= k)| (2= 8 +

6(1:75)1' for 0 < <26,

gs(x) = 2 4 =
ka’R(x)JrZiT (gyflcaﬁ)(l)lé(xfc5)z for 26 <z < Ra},
=0 ) . '
ko r(z) + goa,R(x)Zf' (g — ka’R)(l)L (x—06)" for IRz} <ax < Ral,
i!
i=0
ko, r(x) for Rz} <z < Rz,
(20)
and similarly for € [—Rz,, 0].
Qa,R
\ !
: : SUpp (P, r)
\ 90 supp (Ya,s)
| % " % | N S S :
“Rze Rz, —506 Rz, Rta %, . 9@ T TN

Figure 5: Left: the limagon that approxzimates in (0,0) the behavior of O up
to the second derivative.
Right: scheme for the support of the cut-off functions o r and 5.

Remark 3.3.1 In the definition of gs we use two cut-off functions. The reason
for this construction is that we want gs to be close to ko r in C?7 -sense and also

to be a C**-mapping. Indeed, considering ||gs — ka’RHCQ,W(iR%)R%) one sees
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that the terms (g — ka’R)(i) ‘5 have a different behavior for i = 0, 1,2 respectively
for i = 3,4. One cut-off function can be chosen independent of § since we
will show that for i = 0,1,2 the term (g — ka,R)(i)‘é = 0(0). While for i =

3,4 (g— ka’R)(i)L will be just bounded, and hence one needs a cut-off function

depending on § in order that the C*7-norm of g — ka r is an O(8). By the way,
close in C?7-sense is needed for positivity; C® is used in the reqularity results.

We define the function fo.r : Qa,r — fo,r (Qa,r) by

3R — gs(x)

far(z,y) = (m, 3R — kun(e) (y—3R) + 3R> ) (21)

' 3R—kq,r(x)
che (Qa,R) and the boundary of f, r (4 r) coincides with J€2 in a neighbor-
hood of zg = (0,0) of length at least 24.
In the next paragraph we show that fq r(Q4 r) is e-close to Q, g in C?7-
sense and that f, r(Qq r) satisfies the uniform C* regularity condition.

which gives (fo.r — I) (z,y) = (O ka.n(2)=95() (y — 3R)) . By construction f, g €

Remark 3.3.2 Notice that f, g = Id for (z,y) € Qu.r with |v| > Rxl. While
for |x| < Rz} it holds that fo,r = Id for x = 0 only. The map f, r also
changes the boundary of Qg r in a neighborhood of the point (0,2R). That is

not a problem since one may notice from the expression of f, r — Id that in the

ka,r(z)—g5(x)

approzimation only the term =gp—2—"03

plays a role.

3.4 The mapping is close to the identity in C?7-sense

In this section we will prove that fffR, which is the f, r from rescaled as
in , satisfies
Ifair = 1ll g2, ) < (22)

By the results of the previous section and our choice of ¢, it then follows that
the Green function associated to problem on fq r(Qq,r) is positive.

We first fix some notation. In the following N; and Ny denote respectively

— 22 _ o
N, ,_‘ corsy Bk r(0) = ZgO)] (23)

a* a*
gathaR — Wg‘

4 4 4 4
Ny = [Eehon — doeg] |k (0) - o9 (24

01[-575]
Notice that N; = N;(M) for i = 1,2. Indeed R depends on M and the depen-
dence of k, r on a is continuous in [13—6, 1—56] and hence uniform.
We have
a* a*
‘ o7 Ka,R — Wg‘

and ‘

ol < Ny§3tfori=0,...,3

% 25)
o' g o O (
Wka,R 5229 Co[=5.5] < NQ'
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In order to prove one has first to consider the effect of the scaling.
Proposition 3.4 Let v € (0,1). The function f(fR satisfies

ko
R a,R gs
R qd|| . o\ <B||oaf” 9
Hf 7 HCZW(Q“’I) H 3R —kar CO[— Rz ,Rx}]
0 kar-— 0% kop—
+5R HR g0 + OR? || o el TS
Oz 3R — ka,r CO[—Rx%,Ra] 0x% 3R — ka,r COl—Raxy,Ray]
& kar — gs
+4R*TY {‘“ ] : 26
9x? 3R — ka,r C7[—Ra,Rx¥] (26)
We postpone the proof of Proposition to Appendix
Proposition 3.5 Let v € (0,1). There is C19g = C1o(M) > 0 such that
| fRg - Id||CM(Qu’1) < CloRM™Y87. (27)

The right-hand side in is less then € due to our choice of § in .
In order to prove Proposition we estimate the terms in the right hand
side of separately. The details of the proof are given in Appendix

3.5 Bounded third and fourth derivative of the mapping

In this section we derive the estimate of HffRHCz; “(Ba)’ Again this fE, is
, o (Qay ;

the function f, r from rescaled as in . The estimate will imply that
fa.r(Q4 r) satisfies the uniform C** regularity condition.
The effect of the scaling is as follows:

Proposition 3.6 Let « € (0,1). There is C13 = C11(M) > 0 such that:

3 kar— s

92° 3R — ku.n *

17228 ]| oo (6, 1) < a9+ 5C1ER + 5R®
7 CO9(—Rz,Rx})

84 ka — 95

6RY || - 0
+ 8334 3R — ka,R

CO(—Ra,Rx¥)
‘94’%_95}
O0x* 3R — ka,R C”(QG,R) .

We postpone the proof of Proposition [3.6] to Appendix
The estimate we are looking for is then:

Proposition 3.7 Let « € (0,1). There is C1g = C19(M) > 0 such that:
R3+a
R
”fa,RHcélya((za,l) < Co §lta

R [my)  (y— 3R) (28)

In order to prove Proposition it is sufficient to find appropriate estimates
for the terms in the right hand side of . The details of the proof are in

Appendix [C:2.2
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3.6 The covering

We are now ready to prove that for any domain Q with 9Q € C*® one may
find an appropriate covering by finitely many open domains that are e-close in
C?-sense to some limacon.

Theorem 3.8 Let ), a, v and € satisfy the assumptions of Theorem[3.9 and let
R defined as in that Theorem. Then there exist finitely many balls B;, j € Jp
with Bj C §, finitely many open domains E; C R2, j € Jg, and constants
M = M(M, p§175,7) >0 and § > 0 such that:

1. QC UjEJB Bj U UjEJE E]‘,‘
2. (B;N0Q)°%° £0 for all j € Jg;

3. every E; with j € Jg is a domain satisfying the uniform C** regularity
condition with constant M ;

4. each Ej is e-close in C?7-sense to a limacon Qq r with a € [%, 1—56]

)O,GQ

Furthermore, for K; = (E; N 0Q with j € Jg it holds:

5. Ej; and K; have the same outward normal for any x € Kj;
6. {Kj}jeJE is a relatively open covering of 0€);
7. for all j € Jg the diameter of K; is larger than 6.

Proof. According to Corollary [3.3] there is a § > 0 such that for every zy € 9
there exists a domain E,, such that the following holds:

e E,, satisfies the uniform C** regularity condition with constant M, =
MZO(M7 p51757'7)§

e E., is e-close in C*7-sense to a limacon Q4 g with a € [Z, Z];

0,002 .
) that contains zg,

o letting K, the connected component of (EZO N o
it holds
B(;(Zo) NoQ) = Bg(Zo) n Kzo-

By compactness of 9 there exist z1,...,zy € 99 such that 9Q = U;\f:l K.,
Setting E; := F., and M = max M, and K accordingly one finds that this
family {K; }j:1  satisfies the properties of the last three items. A straight-
forward argument implies that 2\ Ujvzl (E; N Q) can be covered by finitely open
balls B; with B; C Q. ]

.....

Remark 3.8.1 In the proof we use that ) is simply connected. However with
a slightly different argument the method would work also for general connected
domains.
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4 Proving the estimates

In this section we prove the main results of the paper. First we give pointwise
estimates for the solution of , and then we prove the splitting of the solution
operator between a positive singular part and a sign changing regular part.

4.1 A maximum principle type estimate

The pointwise estimates for the solution of will be obtained using negative
Sobolev spaces. We refer to [Il pages 62-65].

Theorem 4.1 Suppose that the hypotheses of Theorem [3.3 hold true with 0 <
v, < 1. Then for any q > 2 and € € (0,4R)] there exists a constant C > 0 with
C = (52 M,pél,RQ,e,w) such that for any f € LP(Q), with p € (1,00), the

2—q?

solution u € W4P(Q) N WP (Q) of (1)) satisfies

U(CL') <C (Hf-‘rHLl(B(z7€)nQ) + ||UHW*1wq(Q)) for every x € Q. (29)

Proof. Let E;, with j € J, be the finite covering of Q of Theorem [3.§ and set
D; := E; N Q. We first consider the case ¢ = 4R.

Let v;, ¢ € I, be a partition of unity with boundary associated to the covering
{Dj};cs of © (Lemma in the appendix with § = 2R) such that for every
1€ 1:

i. |DYY;| < coR710l for o € N? with |a| < 4;

ii. 9; # 0 at the boundary only if (9E;q) N 9Q) """ # .

Here j(i) denotes the j € J such that supp(¢;) C E;. By the choice of 9; it also
holds that ¢; € C2°(QU (9E;(;y N 99Q)*"Y), ¢ € C2(Ej1yU (OE; ;) N Q) ")
and ¥; # 0 only on (Ej(i) N Q) U (an(Z-) N 89)0’69. Notice that I is a finite set.

We choose a new family of cut-off functions x; € C° (Q U (0E;@) N 6(2)0’6(2) ,
i € I, such that for every ¢ € I:

i. supp(¢;) C {z € Q: x;(z) =1} Csupp(xi) C (B NQ)U(E;) N 89)0’69 ;

il 0 < xi(x) <1
i, ||Vl < caR7I0l for every o € N? with |a| < 4.

The functions x;g and ;g denote (with abuse of notation) respectively

xig(z) == { xi(z)g(z) in Q, igl() = { E)/Jz(x)g(x) in Q,

0 otherwise, otherwise.

In the following, if not explicitly stated, every function will be extended by
0 outside its domain of definition.
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Figure 6: In the picture on the left one finds some E;’s that cover € locally.
The dark part shows the support of the cut-off function ;. On the right the
effect of the multiplication with the cut-off function considered on the dashed
line: in black a function [ and in red (lighter) the function ; f. The scaling is
arbitrary but consistent with the one in the following figures.

Let G, be the Green function associated to A2 on E; with zero Dirichlet
boundary condition. Let v, ; the function that satisfies

2 L= 3 .
{ Aa vgy = g inkEj,
Vgj = 5,;Vg5 = 0 on 0E;.

We define
u;(x) == Xi(x)vwiﬁj(i)(:c) and @(x) := Zﬁl(x)
el

Here j(i) denotes the j € J such that supp(v;) C Ej.
Since the Green function Gg,(x,y) is positive and bounded on E; x Ej
(Theorem we have for some ¢; = ¢; (M, pg')

4@ = xi@) /E G, ()01 () £ (4) dy
3(4)

IN

) | Gy @) ) dy < &1 @) ] upncoren
supp(ti)NQ
Hence with eg := 4R one gets

C1 ZXZ(QC) Hf+HL1(supp(w7¢)nQ)
el

!
IN

IN

N vl ( ) < e Hf+HL1(B(z,ER)ﬂQ) - (30)
L'\ U jer (supp(¥:)NQ)
Xi(z)#0
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Figure 7: On the left one finds in black the boundary of E; and in red the set
{z: Vyi(x) #0}. In the right one in black the function vy, i), that is the
solution of the clamped plate equation on FEj;y with on the right hand side v f,
that is, the truncated f (red in the picture).

We will now estimate the difference u — . For every i € I one has in Ej;) :

A%y g i) = 0ildu =A% (Yu) = Y na DD, (31)
la+3]=4,
181<3
where n,, g are positive coeflicients. From we find in Ej; that
A? (vg,pi) — i) == Y na gDy D u.
|la+8]=4,
1B1<3

Furthermore the function vy, s ;) — ¥;u satisfies zero Dirichlet boundary con-
dition on 9Fj(;). Indeed by construction: u = a%“ =0 on OF;(;) Nsupp () C
OF;;y N0 and ; = a%zm =0 for = € OFj(;)\ supp () -

Hence we may write for x € Fj(;

Uy, 1,50 (@) = Yi(z)u(z) — Ri(), (32)

where
R;(z) :=/ G,y () (A2 (Pi(y)uly)) — i(y)A%u(y)) dy.
Eja)

On the other hand we get from

A% = A% (ivy,r0) = XDy, f50) + (A2 (Xive, 1.56)) = XiD vy, 140))
Xiif + (A% (xitiu — xiRi) — i A (Yiu — Ry)) .
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Figure 8: On the left one now also finds in green the set {x : Vx;(z) # 0}. On
the right in green (lighter) the function @; = XUy, f.j()-

Since supp(v;) C {z € Q: x;(z) = 1} it holds A? (x;1u) = x;A% (;u) . Hence
we get
A0y = xithi f — A% (XiRs) + x: A R;.
Notice that this last relation holds in all of 2. Hence the function u satisfies in
Q
A% = f- Z A? (xiRi) + Z XiA2R1’-
iel iel

It follows that u — @ satisfies

A? (u—a)= Zie[ A? (xiRi) — Zie[ XiAzRi in Q,
0
0

u—1u on 0F), (33)
% (u—1a)= on 0f.

Here we used that @; = %ﬂi =0 on 09 for every i € I.
Writing

u() = iz) + Y /Q Galr,y) (A2 (iRi) — iA’R,) () dy

el

TR DR / Ga(x,y)D¥ x:(y)D? Ri(y) dy
icl,
|a'+,8'|:4,
6|3

= a(z)+ Z Na,B,a’ 3/ / Ga(z,y)D* Xi(!/)Dﬁ UDawiDﬁu,j(i)(y)dya
iel, |8],)8'| <3, &
|o¢'+ﬁ'|:4,
|a+p3|=4



May 4, 2005 28

and using the estimate in we find
’LL(QL’) < ||f+HL1(B(x,sR)ﬂQ) (34)

+ Z Na,B8,a,3' GQ('ay)Da Xl( )D ’UDO‘w DBu,j( z)( )dyH
i€l, |8],)8'|<3, ¢
|o'+8'|=4,
o8] =4

o0

In the following we will estimate the second term in the right hand side of .
We fix i € I, a, 3,0/, 8" € N? with |o/ + 3| = |a+ | =4 and |3|,|B] < 3.

We first notice that it is sufficient to prove for ¢ > 2 and near 2. Indeed
the result for general ¢ > 2 will then follow from the observation that the
following inequality holds

el sy < 1217 fullyy—r.a(qy for any G > g > 2.

Let fix ¢ > 2 with q — 2 small. The Sobolev Imbedding Theorem yields that
for some ¢z = c3(52 70 Pq ' Rq)

/GQ y)D* x;(y) D” UDazp Dhu,j (Y )dyH <

oo

C3

/ GQ XZ( )D UD“w7DBu,] dyH = ...
0" (Q)

Here and in the following we write simply j instead of j(i).

We proceed using the regularity result for the “three-quarter weak solution”
of problem (see Definition |D.12)). Indeed by Theorem the solution

’ ! /
operator from (W?”q Q) N w1 (Q)) to the space Wy9(€2) is an isomorphism.
—1
; RQ)

Hence we get for some ¢4 = 04(2—iq, M, pg,

IN

ca HD(’ xi(-)D” UDawiDﬁuJ(')H(W&q/(ﬂ)ﬂww(m)l
0

= CaSUp { (D Xi D vpay, Do, <P>‘ e e W(Q) N7 (Q)
with el o) <1} =

Notice that the constant in Theorem depends on ¢ and ¢’'. However, since
we consider g near 2 we can choose a constant that depends only on the distance
of ¢ to 2.

’ / /
Next, we consider a restriction from the space (W?”q Q) w1 (Q)) to

/
the space (W&q (E;))NWg A (E )) . One uses that the cut-off function y; has

support in (E; NQ) U (02N 3Ej)°’89. Proceeding formally we take a cut-off
function h; € C°(QU (Q N IE,)*"?) such that:
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i. supp(x;) C {z € Q: hi(z) =1};
ii. supp(h;) C (E; NQ) U (OE; N 0)>%%
i, 0<h; <1
iv. [|[Veh|,, <caR7I% for every a € N? with |a| < 4.
Such a cut-off function exists since supp(x;) C (E£; N Q) U (OE; N BQ)O’BQ . The

function hyp lies in W' (E;) N W5 (E,) for every o € W34 (Q) N W3 (Q)
and moreover it holds

(D*XiD” vpay,poujrp)e = (D*XiD” vpay,pou,j, hip)a
= (D" XiDﬁ Upaqp; DB, j> hi<P>ch

Using that there exists a constant ¢; such that [|7;@|lyys.0 ) < csR™3 lllws.a @
we get

= cysup { <Da,XiD5/UDawiD5u,ja hio)E, ‘ e W (Q)n Wog’q/(Q)

with [|hie a0y < CSR—?’}

< cysup { <Da/XiDﬁlvDawiDﬁu,ja P)E; | P € WS’q,(Ej) NWe? (E;)
with [[Bllysa (s, < R
< cesup { <DﬁlvD“¢iD5u,jv PVE,; | P € w3 (E;) "W (E;)

with [[llyse (s, < 1} _

Here ¢g = cdﬁ, M, pg', Rq) since R depends on M.
We now proceed by integrating by parts. Since vpay, ps,, ; and ¢ and their
first derivatives are zero on OF; there is no contribution from the boundary. We

find
= CgSup { <vD“wiD5u,ja D6,¢>EJ ) (,5 S Wg’q,(Ej) n Wo2’q (E])

with |@llys. (s, <1}

- min{2,3—|5"| },¢’

< ¢ Sup{<vDawiD5u,ja50>Ej‘50 ew? 8]0 (E;) N Wy { 71} (E;),
H‘)OHW?’%/?’\«I’(EJ,) < 1}

< ¢ Sup{@mwimu,j’@@ ¢ € LY (Ej), llell Lo () < 1}

Co H’UDawiDﬁu,jHL‘l(Ej) -
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Next, we apply the regularity result for weak solution of problem (1)) (see
Definition . Notice that in order to do that one needs that 0E; € C*“. By

the result in Theorem we get for some ¢; = w(ﬁ, M, pgt, Re)

IN

LR R

p e W' (B) W (E;),

c7 sup { (DawiDﬁu, ©) B,

Ielws s, <1}

Since we consider ¢ near 2 we can choose the dependance on ¢ of the form —

2—q
in the constant that appears in the estimate of Theorem |[D.10]
’ / /
We now consider an extension from the space (W4’q (Ej)N W (EJ)) to

’ ! /
the space (W4’q Q) N (Q)) . Since 9; has compact support in (2N E;) U
(0Qn BEj)O’BQ one has

(D*¢; DPu, ), = (D*¥; DPu, p)q,
which implies
= C7sup { <Da1/)iDﬁUa <P>Q’ pE W (E;) N W()Zq (E), ||90||W4,q’(Ej) < 1}
crsup { (D*6:Du, )| o € W' (@) A WS (), Iellyaar o) < 1}

< cgsup { (DPu, cp)g‘ 0 e W (Q)N weT(Q), [l @) < 1} =....

IN

_ 1 -1
Here cg = c8(2fq,M,,oQ ,Ra).
The last step is an integration by part. We do not have any contribution
from the boundary since v and ¢ and their first derivative are zero on 9f2. Hence

one finds

= cssup {{u, D7¢)a o € W (@ N WG ()l (o) <1}

< cssup { (u,@)a| ¢ € W (@) NI (),
”‘P”WAL—\B\,q’(Q) < 1}
< cssup { <u,¢7>sz( 6 € WH(Q), el () < 1} = s IIuII(W(},q/(Q))/ :

The claim follows for e = 4R. For € € (0,er] one may repeat the same
construction with a refinement of the partition of unity v, ¢ € I. ]

Remark 4.1.1 The hypothesis Q) simply connected is required in order to use
Theorem [D.13.  The result can be proved also for general connected domains
using a generalization of Theorem[D.13
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4.2 Green function estimates

In this section we prove Theorem and we give optimal estimates from below
for the Green function of a two-dimensional domain  with 9Q € C'6. In this
section we have to assume more regularity on the boundary of 2 in order to use
[8, Th.2.6]. As before, G denotes the Green function associated to problem
(1) on €.

We first present some preliminary lemmas.

Lemma 4.2 Assume that ) is a bounded domain in R? with 0Q € C16. Then
Ga € W3P(Q?) for any p € [1,2).

Proof. In [§] one finds

- d(y) \°
|D5Gg(x,y)’ = |z —y| 1min{l7 () } for any 3 € N? with |3| < 3.

|z =yl
(35)
The result follows directly from ([35]). ]

Lemma 4.3 Let Q be a bounded domain in R? with 9Q € C15. Then for every
7 €(0,1)

Ga € CW7({(x,y) € B :x #y}) and Go € C(Q?) N CF(Q?).

Proof. From general regularity results for elliptic partial differential equations
(see [2]) it is well known that Go € C*™7({(z,y) € Q% :  # y}) for any
~v € (0,1). Indeed, in general, given [ € N, 8 € [0,1) and a bounded domain
D € CYP then the regularity of Gp on {(z,y) € D? : x # y} is as follows:

if 3=0: GpeC" " ({(x,y) € D*:z#y}) for any v € (0,1);
if3#0: GpeCY ({(z,y) eD*:x#y}).
The result that G € C17(Q?) follows directly from Lemmavia the Sobolev
imbedding Theorem ([I, Th.4.12 Part 2]). Hence G € W3P(Q?)NCH7(0Q?) for
p €[1,2) and v € (0,1) . Moreover the function and its first derivatives are zero

on JQ x Q and on Q x 9. Hence, by continuity and Theorem IX.17 in [4] it
follows that G € CA(Q?) (and also Gq € WP (Q2) for p € [1,2)). [

Proof of Theorem Following the construction in Theorem see ,
one may write the solution of problem as

u(r) = ft(:vH/QGn(x,Z)Z(Az(Xi(Z)Ri(Z))*Xi(Z)NRi(Z))dZ

= S ) / Gy o (2 2)0(2) f(2)dz +

i€l Ejw)

+ /Q Galr,2) 3 (A2(0(2) Ri(2)) — xi(2) A2 Ri(2)) d,

iel
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where
D= [ Gy () (A2 ul) — i) AM() d'
Ej)

and j(i) denotes the j € J such that supp(¢;) C E;. Considering formally
f(x) = 0y(z) we get

xay) - ZX’L GE]() 4 y)%( )

i€l

/ Go(z, 2) AQ(Xi(Z)Ri(Zvy)) — Xi(2)A%Ri(z,y)) dz,
7,61
where

Rz(zvy) = /E GE].(“(Z,Z/) (A2<wi<zl)GQ(zla y)) - wi(zl)AQGQ(Z/7y)> dz'.
3 (1)

We define
Go(x,y) ==Y xi(2)Gr, (z,y)1i(y), (36)
el
GB(z,y) i= Galz,y) — Gy 8(x,y). (37)

From the definition it follows that Go® € C'7(Q?) for any v € (0,1).
Indeed, writing explicitly R; and looking at the support of the term inside the
integral, we find

Go®(r,y) =

=2 Z”a,ﬁa,ﬁ/ Galz,2)Dxi(2) - (38)

i€l |a+p3|=4,
‘a +5’ |—4
181,|8'|<3

’ <Dﬁ GEm)( )DQIQ/%'(Z/)DB/GQ(Z/»Z/)dzl> dz,
A;
with ny g,q’,37 some positive coefficients and

B, ={2€Q:Vx;(2) 20} and A; = {z € Q: Vi;(z) # 0}. (39)

Since A; N B; = @ one always has z # 2’ in (38). Hence G, (z,2') € C(B; x
Aj). Since the term D' 4;(z") D% Gq(#',y) is integrable it follows that Gg® is
as regular as we want in the interior. The regularity up to the boundary is given
by the fact that 9Q € C*.

The positivity of G, follows from the positivity of Gpg,. Furthermore by
Lemma the definition of G358 and since G? € C57(Q2) for any 7 € (0,1)
holds, it follows that Go'® € C17(Q%) N CE(Q?) and moreover that G5 €
CY¥7({(z,y) € Q*: x #y}) for any v € (0,1). Notice that by the boundary
condition satisfied by G and G5 we also have that Gi& € CL(Q?). ]
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Remark 4.3.1 The functions G5? and Gg"g defined in the proof of Theorem
are not yet symmetric. In order to get symmetric functions one may consider

G mew(: ) = 5G4 (2,9) + 5G4 (v, o).

Optimal estimates from above for the Green function as well as estimates
for the absolute value are known. We refer to [18], [13] and [§]. We will next
prove optimal estimates from below for Gg,.

First we prove the following lemma.

Lemma 4.4 Let Q be a bounded domain in R? with 09 € C18. Then Gq
satisfies

IVGa( )l o) < ¢, ad(y)? for every y € Q and p € [1,2).

Proof. Via [§, Th.2.6] one finds

cg/ d(y)pmin{l, | d(_y)y| }pmin{l, |j(_x?y| }pdaj

cad(y / o —pdr < ¢, qd(y )2P

IVGa (- Y)lIe

IA

IN

for p € [1,2). ]

Theorem 4.5 Let Q be a bounded domain in R? with 0Q € C'6. Then there
exists cq > 0 such that Gq satisfies:

Galz,y) > —cqod(z)d(y)?* for every z,y € Q.

Proof. Since Go(z,y) = GE"8(x,y) + G (x,y), with G5" and G® defined
in and respectively, and Gsmg is positive it holds

Galz,y) > —|G58(z,y)| for every z,y € Q.

Hence in order to prove the result it is sufficient to get an estimate of the
absolute value of G,®

We first study the W*P-norm of G (-, y) for p € (1, 00).

Let A; and B; as defined in . From and elliptic regularity theory
(see Theorem it follows that

||G§(;g( ||W417 < CZ Z naﬁ ||D X DﬂR ||Lp(Bl

icl |a+p]=4,
1B]<3

We study separately the term HD" (VDB Ry( One has

HLP(B)
| Dx:(-) DP Ry (

< co Z Na’ 3!

o’ +8'|=4,
o<

HLP (Bi)

DP / G, (- 2")D¥ (2D Go (2, y)d='
A

Lp (B,L)
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We first observe that G g; is non singular in B; x A;. Indeed since A,NB; = o,
the function Gg,(z,2") is in C>°(B; x A;) and all its derivatives are bounded
by a constant depending only on €.

The next step consists in an integration by part. There are no contribution
from the boundary since in 9A; N2 the function v; and its derivatives are zero,
while in 9A; N 0 both Gg,; and Gq and their first derivatives are zero.

Let 3” € N2 denote a multi-index such that 8” < ', |8"| = |8| — 1. We
obtain

D% ODRi ()| 1o,

< ¢q Z N g Dﬁ/ DA" (GEJ(~,Z’)D°‘,1/1,-(Z’)> Dﬁlf’BHGQ(z’,y)dz’
|o/+8'|=4, As
|8'|<3
< cap Z na/7ﬁ’/‘DBI_B”GQ(Z/7:U)‘CZZ/Sclg)pd(y)Q.
|o/+8'|=4, @
|2

In the last step we used Lemma [4.4
Since G (x,y) € WHP(Q) N WP (Q) for any p € (1,00), from [6, Lem.5] it
follows that G|
Q xu y re;
T d@)? < e lGo®* (Yl -

Hence we obtain
G5 (2,y)| < chd(y)?d(x)?.

The claim follows. ™

Remark 4.5.1 In [6, Lemma 5] the authors consider a bounded domain Q@ with
0 smooth. One can consider a weaker assumption on the boundary. Indeed, in
order to apply the Rellich-Kondrachov Theorem, [, Th.6.3], it is sufficient that
Q is bounded and satisfies the strong Lipschitz condition, [1, Def.4.9]. Notice
that if Q satisfies the uniform C' reqularity condition with | > 2 then Q satisfies
also the strong Lipschitz condition.

Appendices

A Improved e-closeness to the disk

In [I2, Prop.2.6] the authors show that C?"™7-closeness to the disk (Definition
implies the existence of a conformal map that satisfies the C?™~!-closeness
condition. This result can be improved. Indeed from C?™7-closeness to the disk
one gets the existence of a conformal map that also satisfies the 2™ _closeness
condition for 4" € (0,7). We state the result in the following proposition. The
proof follows the main steps of the one in [I2] except in the last part.

L?(B;)
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Proposition A.1 Let v € (0,1) and m € N be given. Then there exist ¢g =
eo(m) > 0 and ¢ > 0 such that for e € [0,e9] and v € (0,1) with v < v we
have the following.

If Q* is e-close in C*™7V-sense to the disk B, then there exists a biholomor-
phic mapping ¢ : B — QF, with ¢ € C’Qm’“’/(B) and ¢~ ' € szﬁ'(Q*), such
that /

I = Tdl| com. gy < a7

Proof. Let f: B — Q* be a mapping such that ||f — Id||czm.~(5) < € with
e < gp small enough. According to [5] (see also [22], Sec.4.2]), a holomorphic
mapping ¢! : Q* — B, that has the desired qualitative properties, may be
constructed in the following way. First set

w(z) = 2rG(x,0).

Here G is the Green function for —A in Q* under homogeneous Dirichlet bound-
ary condition. Next define the conjugate harmonic function

o= [ (-2 9
@)= [ (~pgeo + g )

where the integral is taken with respect to any curve from 1 to z in Q*\ {0}.
The function w* is well defined up to multiples of 2. One finds that ¢! is
uniquely defined by

o N (x) == exp(—w(z) — iw*(z)) for x € Q*,

where R? and C are identified. The function ¢! maps 0 onto 0 and the point %

somewhere into the positive real half-axis. Moreover, for € 9Q* we find that
|~ (x)| = | exp(—iw*(z)| = 1 and hence p~1(92*) C dB. For x € Q* \ {0} we
have w(z) > 0 and hence ¢~ !(z)| < 1 implying ¢~1(Q*) C B.

Setting r(z) = 2nG(x,0) + log |z| one has that r satisfies

{—Ar = 0 in %, (40)

r(z) = 6(z):=log|z| on IN*.

In order to have that ||~ — 1d|| c2m.vr (@e) = O(e7~") (and consequently || —
1d|| c2m () = O(e7")) it would be sufficient that

[l gzmar @y = O, (41)

since -
¢ (z) = zexp(—r(z) —ir*(z)) for x € QO*,

again identifying R? and C. The estimate in (41 follows from the extension of
the boundary data 6|,. to some 6 on Q* with

Hé”C?mw’(Q*) = 0. (42)
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Indeed, the estimate for ||7|| 5o (@) is immediate by the maximum principle ap-

plied to . Furthermore, by means of elliptic estimates for second order equa-
tions (see [2}, Th.7.3] and [I1, Chap.6.3-6.4]), we find H7”||sz,7/(g*) =O().
Note that due to the closeness of Q* to B in C?™7-sense, according to Definition
the constants in these estimates may be chosen independently of Q*.

It remains to show the existence of some 6 that satisfies {) This is
done as follows. Since Q* is e—close to B in C?™7-sense one may show that

(6o f) |ap can be extended to 0y on B with ||0f||cgmﬁ,(3) = O(e7"), provided

90 )las|
H( °f)lon c2m: (8B)

tangential derivatives of (6 o f)|ap.
Set 9(t) := 0(f(cos(t),sin(t))). We are done, if we have shown that
max max

d J
§=0,...,2m t€[0,27] (dt) 19‘ o), (43)

d 2m
&)
dt
Notice that was already proved in [I2]. The improvement here is that also

holds.
We observe that 9(t) = O(e) since it holds that

log | f(cos(t),sin(t))| = log (1 4+ O(e)) = O(e).
Let us denote f(t) := f(cos(t),sin(t)). Then f = (f1, f2) : R — R? and

@) = (&) 0D

J o]

= O(e7™7"). That means we only have to estimate the

O@E). (44)

’

Y

= Y (woed) | X aas IR
la=1, p1it+Pa|=J =1
aeN? 1<p;

with some suitable coefficients d; 5 and with 3; = 1if 1 <[ < a; and 3 = 2
otherwise.

We want to compare this with the corresponding expression with f replaced
by Id. Writing fo(t) = Id o (cos(t), sin(t)) we find

(4)0 = S ((woer-wooh) s @)

la|=1,
a€eN?
|| ~ ~ _
| X s [T - ) + 7%
P1t+Pja| =] =1

1<p;
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Since 0(fo(t)) = log|(cos(t),sin(t))| = 0, all expressions containing fy only (and
not a difference), sum up to zero. In the remaining sum, every term contains at
least one factor of the form

(D%@) o f —(D0) o fo or f) — i),

with ||, p; € {1,...,2m}. For € small, each of this factors is at most O(e?).
Choosing ¢ sufficiently small, the other factors remain uniformly bounded with
respect to € € [0,£0). This shows (43). In order to verify we remark that

[ ;gf”) — fépél)]w = O(e) for p; € {1,...,2m} by the definition of e-closeness. It

remains to study the term [(DO‘H) of —(D“0)o fo] for |a € {1,...,2m}.
,y/
One finds

[(D°0) o f = (D0) o fo] y

|(D20) 0 (1) = (D*0) © fo(t) = (D0) o [(s) + (D*0)  fols)|

= Sup 7
t,5€[0,27], |t —s|”
[t—s|>e
|(D20) 0 (1) = (D*0) © fo(t) = (D0) o [(s) + (D*0)  fols)|
+ sup n =....
t,5€[0,27], |t —s|”
[t—s|<e
Since D0 € C7 for |a| < 2m, ||f — fo) Cioam O(e) and f, fo € C1[0,27],
we get 7
- N LA N
7O = fo®) + |7(9) = fols)
< ¢ sup 7
t,s€[0,27], |t — SP]
[t—s|>e
- A N
7)) = Fs)| -+ | o) = Fols)
+c sup 7
t,s€[0,27], |t —s|”
[t—s|<e
v ’ ’
< 2c sup c 12 swp [t—s|"77 <O@E7).
t,s€l0,2n], |t — s|” t,s€[0,27],
[t—s|>e [t—s|<e

B Previously known estimates for Gg,

For easy reference we recall here some results from [7] and [§].
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Proposition B.1 For every limacon Q, with a € [0,a] the following two-sided
estimate holds for (z,y) € Q2:

Ga,(2,y) ~ do,(z)dg, (y) min {1,

Proposition B.2 Let k € N? with 1 < |k| < 3. For every limacon Q, with
a € [0,a) the following estimates hold for x,y € Q,

do,(¥) \*
when |k| =3 |DkGQ (z, y)|<\x—y| {1 Qay},

when k| =2 |DkGQ (z,9)| —<log< )| )
(v)

s o )

when [ =1 & |DSGa, (2.)] = do, () min {1, %Gl )]

|z—y|

Remark B.2.1 We refer to [8, Th.2.6] for estimates of the derivatives of the
Green function associated to polyharmonic Dirichlet boundary value problems in
domains Q C R™ with n > 2. There it is assumed that Q is bounded and that
o € C" with r > 4m + 2.

C Technical lemmas

In this section we give the proof of some results needed in the proof of Theorem
We assume the same hypothesis and we use the same notation as in the
proof of this theorem. In particular, we recall that the domain {2 satisfies the
uniform C** regularity condition with constant M.

C.1 The mapping is close to identity
C.1.1 The effect of the scaling: proof of Proposition

In the following lemma we give the effect on the norms of the scaling defined in

[L7).

Lemma C.1 Let Q be a subset of R and let f : Q — Q' be a C*7-function.
Let f% be the f scaled as in . Then it holds

n

HfR_IdHCLw 19) 7||f Id”CO( ) Z

i=1

+ R Z {am T
J

CO(Q i,j=1

—-Id
il B

+RY

4,5=1

82

8xi:vj

f

]CW(Q )(45)
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The proof is obvious and will be skipped.
Proof of Proposition [3.4. We estimate separately the terms in the right-
hand side of for f = fo,r and Q = Qg g.

1. Since —y < R and k4 g — g5 = 0 for |z| € [Rz}, Rx,] we find

ka,R — 95

V= Bl < 48750

CO[—Rx},Rx¥)

2. We also have

2

o]
> 5y, Var —1d)|
i1 19T C°(Qa,r)
‘ka,R_gzﬁ +4RH8 ka,r — 95
= BB =karllcol-Ras, Raz) 0x 3R — ka,R || 0o~ Raz Raz)

3. From the definition of the function f, g in we get

2

82
Z O 'fa,R _
ij=111 9T C(Qa.r)
ka,r — " hon -
9 kar—gs +4R HazRgé '
0x 3R — ko r CO[— Rz, Rax] 0u? 3R = kur s el
4. One finds
2
32
Z |:3x-x-fa7R] _
ig=1 -7 (%)
82 ka R(l’) — 95 (LL'):|
= l‘, = - 3R 922 3R — o (2] +
{( y) = (y ) 927 3R ka,r (%) 1w (0, n)
8 ka R — 95 :|
+ e Jo = ... 46
|:8£C 3R — ka,R CV[—Raz¥,Rxk) ( )

Since it holds that

[z, y) = f@)gW]calapz < N llcopn lean T 190y [floaan

one gets from that

o < gpi—r || 2 kar—gs
= 012 3R — ko.r CO[—Ra* R
iR [82/&1,3—95} 1 9Rl— 0 kar—9s
022 3R — ka.r C7[~Raz,Rax] 0w 3R — ka,R COl—Ra},Ray)] ,

and the claim follows. ]
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C.1.2 Proof of Proposition

We divide the rather technical proof of Proposition [3.5]in several lemmas. Using

the result of Proposition to bound HffR — Idch,w ) it is sufficient to

get the estimates of the terms in the right hand side of separately. We will
do so in the next lemmas.

In the following C; = C;(M) > 0, for i = 1,...,9. The constants N;, i = 1,2
are defined in and .

Lemma C.2 For k, r and gs respectively as in (@ and (@ it holds that

Proof. By the definition of gs in , and one has

ka,r — g5

Y < C16R

CO[—Rzx},Rx}]

||ka,R - g‘SHCO[wa* Raxx] < Hka R — gHCO[,(g’g] +

2 1 i
a : il k;a - — 00
+ Lom ean Ok 0= ker) | (o)
4 1 (1) i
_ VL (9 kar)®| (00
T 2o ‘ Ves () 2uima (9= kar) 7| (= 00) C0[06,025]
2 o
< N +2) . GNCTR + ZN16 + f N0t < CLoR%.
The claim follows since |kq | < 2R. |

Lemma C.3 Let k, g and gs be given respectively as in (@) and (@) Then it
holds

Proof. Using Lemma and one finds directly

0 kao.r— 95

— < .
02 3R —ka < G20

CO—Raz¥,Rxk]

+ Ci6by <

kq,
H 0 JaR 90 a*(ka,R*gé)
x CO[—Raz},Rx}]

O0x 3R — ka R

IHE)

CO[—Rax},Rx}]

By the definition of gs and the choice of the cut-off functions ¢, r and ¥, s we
get

2 2
< %62 + % Z (ijl)!N163—le—1 + % Dll%o Z %N163_1R1
i=1 =0

%2]\[152 %% L ON153 + 3 RNQ(S %% 5 N2(54 + C1b16 < Cy6.

Here we used and that § < R and § < 1. [ ]
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Lemma C.4 For k, r and gs respectively as in (@ and @) it holds that

0% kop— )
H kar—gs <ay2.

3?2 3R — ka R

CO[—Raz},Rx})

’ / "
Proof. Since (%) = %a” — 2% (%) — %%, using Lemmasandand

one finds

o kaR_gé < 1
022 3R — ko 1 ka.r - R

32
@ (ka,R - 96)

CO[—Raz¥,Rx)
+201Co6 + £22C16R < .. ..

CO[—Razy,Rx}]

By the definition of g5 in one gets

2 2
< FNO+ENG+ 2R A Nt RT + 2550 N AN R
i=1 i=0

21 3Dj, 21 2
Ni62+ 21N 3550 4 21N,5
D,

DlU

+5 N1(5+

R 3!

D} )
+%3 1°N253 + 2 LZBON6* + £ (20105 + byCh) 6 < Cs
The constant C3 depends on €2 through N; and Ns. [ |
Remark C.4.1 Notice that the proof also implies that

2
H g e

82( R — 95)

CO[—Rzx} ,Rx¥]
Lemma C.5 For k., r and gs respectively as in (@ and (@) it holds that
0? _
[a 2( a,R _96)} < 05‘51 7.
CY[—Rux¥,Rx}]

Proof. Writing explicitly the function gs yields

82
) (ka,R - 96):| S 2N151_’Y
[85”2 C7[-Rz*, Rz
0? 2 () i
+2 |55 | Par ()7 (9= kar)” | (=)
=0 1[5, Rers]

2 4 ) ,
% (d’a,& () Z % (g - ka,R)(l) 5 ( - 6)1>‘| (47)
1=3 C71[6,26]
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It is convenient to study separately the terms on the right-hand side of (47] . In
the following C; = C;(M) >0, i = 1,2.
1. By . one has

52 - X
®ar ( § % (9 —ka,r) ‘ —3)’
C7[6,Rx}]

=0

2

82
l 6) L)OOL,R:|
D [

. . a
3—1 1—1
+ 2§ﬁl\fl5 [(. -9) ax@a,R] S + N16 [Pa,Rl s pan) < - -

Via the definition of the cut-off function ¢, r we get

2
Z(l 53 ZR’L lRl ’YD20 +Z N153 z£22+——nyz+2N16R1*’Y%
= =0

2
’LDl i—
+2) MNP RS R + Nis 5

2. Since

02 1 0 ;
5 | Yas (- E 7 (9= kar) 6('—5)
C(5,26]

5 [c ]

C[6,26]

-0 vt >]CW§]

% 1—2
™. y a1 (9~ kar)' )‘6 {(' —9) %,5(')} s S

from and the choice of 1, s one obtains

4

< Z% g kaR(i)

=3

(yém i 1g1 55 )

1 (9= kan)? (51 10 4 (i —1)6'25 1 Pre -5 )

() S (51‘—2% + (Z _ 2) 51’735177) < CQ517’Y

ﬁ g — ka,R)

+Z< y
1=3

4
+Z;< y

The claim follows.
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Lemma C.6 Let ko r and gs be given respectively in (@) and (@ Then it

holds
|: 62 ka,R — 95

} <&
8332 3R — ka,R CW[*R‘”Z’R‘”*}

=257,
Proof. We have
872 kavR — 9 < 1 iz
022 3R — ka,r | cr[— pos ges) L3R — Ka,r 02

1 3} 0 kar—gs
o| 1 Oy pl Far— 9
* [33 “Fan 0z "9z 3R - ka,pj .

(ka,R - 95) +
CY[—Raz},Rx})

kor— 0?
Rngéaka] | ()
(3R — ka.r) C7[~Ra},Ray)
We study the terms in the right-hand side of separately.
1. From (7), Remark and Lemma it follows that
1 0? Cs 1
— = (ka.rn — 95)} < Hbi2RYC, (5—1-0561 T < 25t
[SR — ko r 022 CV[= Rz, Ra] R? R
2. Using and Lemmas and one obtains
{ 1 0, 0 kir—gs ]
BR —ka,n 0 "7 02 3R — kart| o pras )
1 0
< b1026 |::| + 026 |: aR:|
3R = ka,r ] (- Rex Ra) 02" o~ Rey, Rez]
0 kar—9s
+b1i [7
® 102 3R — kar C7[-Ra* Rz
Cr
< Ebi2RV7TC5bi6 + 22RVT26 + C3 2R Tl < Eélﬂ.
3. Since
ka,R — 95 62
a,R C7[-Ra*, R
< |:ka’R_g‘S:| L1by o |:1:| bjCl(sR_i_
3R —kar C7[-Rax:,Rx) i 3R —ka,r C7v[-Rax:,Rxt) f
0? 1
+ |:ka,R:| *Cl(sR S ey
Ox? C7[-Ra*,Rz*] R

applying (7) and Lemmas and one finds

- < Co02R" I 4+ 4201 RV ,C16 + 22RTC16 < %5 .
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The claim follows directly from using the results of the previous points
1, 2 and 3. [ |

The proof of Proposition [3.5 follows from Lemmas [C.2] [C.3] [C-4] and [C.6]

C.2 Bounded third and fourth derivative of the mapping
C.2.1 The effect of the scaling: proof of Proposition

Proof of Proposition Let fq r1 and f, g2 be respectively the first and
the second component of f, r. From the definition of f, g we find: f, g1 (z,y) =

zand fo pro2(z,y) = #%(y—i%R) () < za+1
and Lemma [C.1] yields

4
araloia,y = 20 BT D% farzllon, )

|B8]=0,
BEN?
3+ 3
+R°T¢ Z [D fa’R’Q]C"(Qa,R) <....
|B]=4,
BEN?

By observing that

1 3R — g5
= Ilfa a0, ) S3 4o —— ;
R COR H 3R = ko, llco(— s )
using that f, g2 is linear in y one finds
8 3R-—gs
< 345 R —_— +
Z 92" 3R — ka,R || co(— ras Raz)
0* 3R -
H6RY| S ST
a R ka R CO(—Rz},Rx})
0* 3R -
+R3T [ (y—3R) 5 T 98 } .
0x* 3R — k'a,R C"‘(Qa,R)

The claim follows from Lemmas and since 3:;523"512 =1+

ka,R—9s
3R—kar' ™

C.2.2 Proof of Proposition

We also divide the technical proof of Proposition in several lemmas.
In the following C; = C;(M) > 0, for i = 12,...,18. The constants N,
1 =1,2 are defined in and .
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Lemma C.7 For k, r and gs respectively as in (@ and @) it holds that

3
H 0 < Cha.

(ka.r — g5)
dz? CO[—Rz} ,Rx})

Proof. By the definition of g5 we have

83
HW (ka,R - 95)

3

> |la3 2 (ka,R - g)
CO[—Ra*,Rax) H6x3

83 2 i %
a <(paR % g— kaR)()é('_(s))

1=0

+
C0[=45,5]

+2

€[5, Rz

+2 (49)

3 4 , .
% <¢a,a D4 (9= kar)] (- 5>2>

1=3

C15,25]

It is convenient to study the terms on the right-hand side of separately. In
the following C; = C;(M) > 0 for i = 1, 2.

1. Tt follows directly from that ’ 55 (ka,r — g)‘ o5 <
2. Via and the definition of the cut-off function ¢, R7we get

3 2 _ .
% <soa,R O & @ kar)?| (- 6)’)
=0

N,

CO[5,Ra]

2
< Z INISPTERR 43 " A NPT R R 4 3N16 5 < S8 < G

i=1
3. One finds
83 - (2) i
Yas () % (9~ kar) S0 <
=3 C0[5,26)
. N Db e ! N
< i % (g - ka,R)(l) s %52 + 323 ﬁ (g — ka,R)(l) 5 %éwfl
4 . DI 4 .
+ 3 e 0 kar) V| 004 (g~ kar) | 60 < O
=3 i=3
The claim follows. -

Lemma C.8 For k, r and gs respectively as in (@ and @) it holds that

H aR_95

<G
92 3R — kot =R

CO(—Rz},Rx})
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Proof. Since

(a)”’_a”’_gﬂ’(a)”_gﬁ”(a>'_ﬂ”’a
5) =B "B \B 6\6) " BB

using Lemma @ and Lemmas we get

> kar — 9s 1 b1 Cs38 | ab b Cis
— <5C12+ 33522 + 3500 + 2 Ci0R < —-.
I 023 3R = karllco_pas pasy ~ T & TURTEET R R
]
Lemma C.9 For k, r and gs respectively as in (@ and @) it holds that
84 014
— (ka.r — < —.
H Ozt ( . gé) CO[—Rx},Rx}] 0
Proof. From the definition of g4 it follows
H 64 4
-7 (ka,r — 95) _H(k R—9) +
drt CO[—Ra¥ R drt CO[—6,0]
84 2 . .
+2 Fy <<Pa,R () Z% (9 — ka,r)"” s (- — 5)l> +
i=0 CO[5,Rx]
64 4 . .
+2| 5 (W (D (9= kam) | (- 6)’) (50)
i=3 C016,26]

It is convenient to study the terms on the right-hand side of separately.
Here C; = C;(M) > 0 for i = 1, 2.

1. From (25) it follows directl thtHaik - ‘ <
rom |D it follows directly that || 5= (ko,r — g) opsg =

2. By (25)) and the definition of the cut-off function ¢, r we get that

4 2 _ '
% (%a () ; L (g~ kar)” - 5)’)

CO[5,Raz]
é
R

2
< D ANSPTERER 4 A NPT R 4 6N 6T < G40 <
=0 =1
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3. From (25) and the choice of 1, s one obtains
7 <wa,a () él (9~ kar)?| (-~ 6)")
ig,oé’i—l

Dho e i
510 +4Zzl (9 — kavR)()ézs

C01[5,25]

Dioci—3
=50

4
N |
6 oy (9~ kar) V| 0 4 4}3 (9 k)|,
=3 —a

C

+ (g — ka,R)(4))6 <=2
The claim follows. ]
Lemma C.10 Let k, r and gs be given respectively in (@) and (@ Then it

holds that
* kar—95 < Gis
81174 3R — k’a R ~ 6R’

CO(—Rz},Rx})

Proof. From

a (W)_a(iv) B [« " B [« " B" [« 4 ﬂ(“’)a
(&) =5 ‘%(g) _6ﬁ<ﬁ) ‘%(g) “ 5 OV

using Lemma and Lemmas we get

0* kar—9s 1c by C
I FaR— 9 < LCu 4 yhiCuyGlacyd 4 abyicys
’8$43Rka?R o) + + SR+ r:C2
Cis
C5R<—
! 6R

Lemma C.11 For k, r and gs respectively as in (@) and @) it holds that

o Cie
|:a 4( _95):| S&l-{-a'

C*[—Rax},Rx}]

Proof. From the definition of g5 one finds
ot ot
— (ka.r — — (ka.r —

Co[—Rz:,Rz:] { Ca[-6.9)

o : i i
+2[a (waRoZ;(g—ka,R)“5(-—5))]
=0 C<[6,Ray)
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It is convenient to study the terms on the right-hand side of separately. In
the following C; = C;(M) > 0 for i = 1,2, 3.
1. Since Q is a C** domain with constant M we have

{34 (k g)] <{a4k } +M<C
=7 (Fa,R — < | 5= FaeR < (1.
gzt Ce[—6,0] gzt Co[—6,0]
Notice that the constant C; depends only on M.
2. One has
ot 2 ;
[8%4 (@aR(')Z}!(g_ka,R)()‘ ( _6)>]
1=0 Co[6,Rxx]
2
94
< S h k)] 0= 0 fevar0)
; g 3 Ot Co[s,Ra]
2
, 98
MY - a0 opun)
i:Zl =0 g O’ Ce[5,Ra]
+6 (g — k )‘”‘ {8% ] <
— Ka,R = 5%a,R < ...
‘ 5 0227 Ce[5,Rar)]

Via and the definition of the cut-off function ¢, r we get

2 2
o S D AN TR R Y 2y T e R R
=1

i=0
2 C
—iD [ i— D — D a 2
+4) AN R AN R + 6N 6 s < el
i=1
3. Since

laﬁ (z/w Y L (g—kar)? - 5)1’)]
=3 C[5,20]

=0 i)

Co[6,26]

N 44 ﬁ (g ka’R)(i)’5 [( _ 5)1‘—1 38733?%,6(')}

P C[5,26]
4 2
[ 1—2

+ Z (7;_62)! (g - ka,R)( )'5 [( - 5) %%,5(')} Ca[5,26]

i=3 ’

4

4 ~ ke “')‘ =) 2y (-

Y o=k, (=07 Fvas0]

4
+ (g - ka,R)( )‘6 [wa,é}Ca[(;’%] § ceey
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from and the choice of 1, s one obtains

4
o T h k)@ (5 G
=3
4
7 71— D’ o . i— —a D/
+> oy (9~ k) 5 (5 Lode 1 (i — 1) 525 %)+
1=3

4
i i—o D5 . i —a D}
+Zﬁ(g_ka,R)()5(5 252ia+(1—2)5 351 %>
=3
4 ; . D/ . Dl
+4ZS (g _ ka,R)(Z) S (51—3 5112 + (Z . 3) 51—451—01%)

4)| Dy,
+ (9= kar) )‘5 S e

The claim follows.

Lemma C.12 For k, r and gs respectively as in (@) and @) it holds that

0" kar—9s Cir
02" 3R — Furrt| e oy~ ROTS

Proof. From by Lemma @ and Lemmas

one obtains
” ka,R_gt§:| < |: 1 :| Cia 1 Cie
o kar— g5 IR ST e
Oxt - ’ frome
[ 3R — ka,R Co (= Roz Rot) 3R — k‘a,R Co(—Rx*,Rxy)
_ 1 ]
_3R - ka,R Ca(—Rx;,Rx;)
[ 0® kar—9gs
_8(E3 3R — ka,R Co(—Rxk,Rx})
r o2
6 | 5=ka
+ _axg R

+ £

=

b1 +4 [ , }
R ox C(—Rz*,Rx*)
1
+4 {} A
3R — ka,R C*(—Ra*,Rax) " f
0% kar—0s
3:52 3R — ka,R Co(—Rx*,Rx}) e
b 83
3
?025 +4 |:6{E3ka’R

et
Co(—Rx%,Rx¥)
.
|3R — ka,r Ce(—Ra* ,Ra)
_8]%7395]
|10z 3R — ko R Ce(—Rx},Ray)
34
+ |:4ka,R:|
ox Ce(—Rx*,Rar)

+4 ]
Co(—Rux¥,Rx?)

bs
R3

+4 %CléR

i)
[3R—ka,R Ce(—Ra},Ray)
kar =95

| #
3R —k4r Co(—Rax,Rar)

#C10R + { R



May 4, 2005 50

< bop!-oCu 4 LG 4 ybiopl-op G 4 ybagpl-aC
+481oR b gl oRIT R 0y 8 1 62RO L O L
+6932R T by 4l oR T b 0y5 + 4 B2 R T L Co6
+22R'""* LCI6R + 4C5 52R T Iy + LLoR' T e O 6R
+Cy02R ™ 24 < Cmﬁ.
The claim follows. [

Lemma C.13 For k, r and gs respectively as in @ and @) it holds that

' kar — 95 Cis
O0z4 3R — ka,R CQ(Q‘LR) = §lta’

(.9) = (- 3)

Proof. Since
[(z,y) — f(z)g (y)}ca[a,bp < [f]ca[a,b} ||9Hco[a,b] + ||f||cﬂ[a,b] [g]ca[mb} )
one finds

4 _
@awk»@3R>a bar — 95

@3R - ka”R:|CD‘(Qa R)

< 3R1—a 674 k(%R — 95 + 4R |:a4 ka7R — 95 :|
- 02 3R — ka.r || co(— oy, o) 02t 3R = ka,p ] co(—Rag Rey)
By Lemma and Lemma we get
o Cis
comnGy s an e, < O

The boundedness of f, r in C**-norm follows directly from Proposition
and Lemmas and

C.3 Partition of unity

In this section we present a general result about partition of unity that we will
use in the proof of Theorem

Lemma C.14 (Partition of unity with boundary) LetQ C R" be a bounded
domain and let {Dj}jeJ C Q be a finite open covering of Q such that 9Q C
UjEJ (0D; N 8Q)°’6Q. For every § > 0 there exist finitely many smooth func-
tions p; € C'° (Q) , 1 € 1, such that:

1. ;>0 foralli € I and Y, v (x) =1 for all x €

2. for everyi € I there exists j = j (i) such that supp (v;) C D;U(0D; U Q)%

3. diam(supp(%;)) <6 for alli e I.

<....
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D Elliptic regularity and interpolation

Elliptic regularity results for linear equations can be found in numerous places.
However, if one goes beyond second order and if one needs to know how the
constants depend on the domain there is no easy reference. For that reason
we will collect such type of results in the present section. For the explicit
dependence of these constants we will go back to the original source of Agmon,
Douglis and Nirenberg ([2]).

This section is organized as follows. First we recall some classical results and
the Calderon-Zygmund inequality for n = 2. Then we consider a strong and a
weak formulation of problem . Finally we study three intermediate versions
(between strong and weak) of problem ().

Throughout this section the following condition will appear..

Condition D.1 The number « lies in (0,1) and Q is a bounded simply con-
nected domain (open subset) in R? satisfying the uniform C*® regularity con-
dition with constant M.

D.1 Classical results

In this section we recall some results from [II]. For sake of brevity we do not
give the most general statements.

Theorem D.2 [T], Th.9.13] Let  be a bounded domain in R™ satisfying the
uniform CY' regularity condition with constant M. Then it holds

1,2
ullwacoy < C (Il sy + 180l sy ) for every u e W22 (@) N W32(@),

with C = C(n, M, pg*, Rq).

Remark D.2.1 The dependence of the constant can be deduced from the proof
in [11, Th.9.13].

We will use the Calderon-Zygmund inequality for n = 2. This inequality is
usually proved by contradiction. Since we are interested in the dependence of
the constant on the domain, we give here a direct proof.

Lemma D.3 Let Q be a bounded domain in R?. Then there is C = C(Rq)
such that

[ull 20y < C AUl 2y for every u e W2 (Q) N Wy (9).

Proof. Let u € W22(Q) N W,?(Q). For n = 2 Aleksandrov’s maximum
principle ([LT, Th.9.1]) implies that supq [u] < C|[Au|/;zq) for some C' =

C(Rq). Hence we find [[ul12q) < C [[Auf 12(q) |Q|% . |
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Corollary D.4 Suppose Q is a bounded domain in R? satisfying the uniform
CYY regularity condition with constant M. Then there is C = C (M, pgl,RQ)
such that

lullypeziy < ClAullaiqy for every u e W2 (Q) N Wy (9).

Proof. The claim follows directly from Theorem and Lemma m

D.2 Regularity for strong solutions

The classical regularity result that we like to recall in an explicit statement is
the following.

Theorem D.5 Assume Condition [D.1] For every f € LP(Q) with p € (1,00)
there exists a unique solution u € W2(Q) N WP (Q) of .
Moreover the solution satisfies

3 1oy < lullwanigy < Cs 1 fll oy » (53)

with Cs = Cys(p,p’, M, pgl,RQ) where Cy satisfies the convention of Notation

4

Before proving Theorem we present some estimates.

Lemma D.6 Let Q be a bounded domain in R? satisfying the uniform CU!
reqularity condition with constant M and let p € (1,00) . Then there is C =
C(p,p', M, pg", Ra) such that:

Hu||Lp(Q) <C ||A2u||Lp(Q) for every u € WHP(Q) N WOQ’p(Q).
Proof. Since n = 2 we find by Sobolev inequalities that
ull o) < Crllullwazq) and [lull Ly o) < Collull 2z, -

Notice that C; = Cy(p, M, pél,RQ) and Cy = Cy(p', M, p&l,RQ). Hence we
have by Corollary [D-4] by integrating by parts and by Holder that

||U||Lp/(§z) ”u”Lp(Q) < GGy ||U||?/V2,2(Q) <0y ‘AU|2de =
Q
= Cg/Q’LL APy dx < Cs HAQUHLP(Q) [ull Lo () -
with C3 = C3(p,p’, M, pﬁl, Rgq). The claim follows. ]

Lemma D.7 Assume Condition [D.d. Then for 1 < p < oo there exists C =
C(p,p', M, pg", Rq) such that

lullwang) <C HAQUHLP(Q) for every u € WHP(Q) N WP (Q).
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Remark D.7.1 Usually Lemma [D.7 is proved by contradiction and this does
not explain what the constant depends on. However by using Lemma [D.6 we
find the explicit quantities.

Proof. The result follows from [2] Th.15.2] and Lemma The proof of [2]
Th.15.2] shows that the dependence of the constant is as given in the statement.
]

Proof of Theorem [D.5l

e Uniqueness follows by a standard integration by parts. Indeed, if A%y = 0

then
/ |Au)? dz = / u A*u dx =0,
Q Q

and with the boundary condition one finds u = 0.

e Estimate: By definition of the norm in W*?({2) one finds 3 HAQuHLp o <
[ull 4.0 () - The other side of inequality (53) follows from Lemma

e Existence: For f € C* () the existence of a solution u € C** (Q)NC(Q)
is given by [2, Th.12.7]. Such a solution satisfies (53)), ([2, Th.9.3]). By
an approximation argument the existence in W47 (Q) N W* () follows.

Remark D.7.2 The hypothesis 02 € C*% is needed in order to use Theorem
12.7 in [2]. For the rest of the paper it would be sufficient to assume 92 € C*.

For 1 < p < oo we formally fix the operator T} , by

D(Tyyp) = W4 (Q)N WP (Q),

) (54)
Typu:= A?uforue D(Ty,).

The operator T}, is the inverse of the solution operator.
The following result is a consequence of Theorem

Corollary D.8 Let 1 < p < co. Assuming Condition @ the operator Ty,
defined in gives an isomorphism from WP (Q) N WP (Q) onto LP ().
Moreover one has

1

<2

< HT4,17||(W47P(Q)mwg=p(ﬂ)~>LP(Q)) =%

S

where Cs is the constant appearing in Theorem [D.5
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D.3 Regularity for weak solutions

In the following section we give the explicit definition of what we will call a
weak solution for problem and we recall the classical regularity result in this
setting.

’ / /
Definition D.9 Let p € (1,00) and F € (W4ap (Q) N WP (Q)) . We call
u € LP(2) a weak solution of problem with right hand side F if the following
holds
/ u(z) A%v(z) dz = F(v) for every v € W (Q) N Woz’pl(Q).
Q

Theorem D.10 Assume Condition and let p € (1,00). Then for every
’ / !

F e (W“’ Q) NWP (Q)) there exists a unique u weak solution of problem

with right hand side F.

Moreover u satisfies

<l < Cu lIF]|

S IFI o 200 ' @)
21 N (war @' (@) (wer @i @)

with Cyy = Cyy(p,p', M, pg ', Ra).

, !/
Proof. Let i, be the canonical isometry L”(Q2) — (LT‘ (Q)) , that is, i, (u)(v) =
/u(x) v(z) dx for every v € LP (Q).
Q

Existence of u follows by a duality argument. Indeed, by Corollary we
may define /
U(f) := F(Ty(f)) for every f € L (12).

The solution u is given by u := i, L(U). Uniqueness and the estimate follow

from Corollary [ ]
For 1 < p < oo let us formally fix the operator Ty , by

D(Ty,) := LP(Q), (55)
(Top(w)(v) == ip(u)(Ty (v)) for every v € W4’p/(Q) N Woz’p Q).

From Theorem [D.10] it follows:

Corollary D.11 Let1 < p < co and assume Condition . The operator Tp
’ / /
defined in gives an isomorphism from LP () onto (W4’p Q) NWeP (Q)) .

Moreover one has

| (Lp(Q)—>(W4,p/(9)nwjvp’(sz)) ) <2

1
o < ||To,

where Cy, is the constant appearing in Theorem [D.10)
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D.4 Regularity between weak and strong

In the following section we consider via interpolation solutions between the
‘strong’ and the ‘weak’ ones defined in the previous sections.
We first give the three intermediate notions of solution.

Definition D.12 Let p € (1,00).

, /
1. Let F € (Wol’p (Q)) . We say that u € W3P(Q) N WSP(Q) is a “one-
quarter weak solution” of problem with right hand side F if it satisfies

- /Q(VAu(gc)) (Vu(x)) dz = F(v) for every v € Wol’p/ Q).

, /
2. Let F € (WOQ’p (Q)) . We say that u € WZP() is a “one-half weak
solution” of problem with right hand side F if it satisfies

/(Au(x)) (Av(z)) de = F(v) for every v € Wg’p/(Q).
Q
’ / !
3. Let F € (Wg’p Q) NWP (Q)) . We say that u € WyP(Q) is a “three-
quarter weak solution” of problem with right hand side F if it satisfies

— /Q(Vu(a:)) (VAv(z)) dz = F(v) for every v € W3 (Q) N WOQ’p/ (Q).

Theorem D.13 Assume Condition[D.1] and let 1 < p < oc.

N !/
1. Then for every F € Wol’p (Q2)) there exists a unique u “one-quarter
weak solution” of problem with right hand side F'.

Moreover u satisfies
o ||F||(W01,p/(9)) < ullwapg) < Cr ||F||( (@)
with Ch = Cy(p, 7/, MpQ ,Rq).

2. Then for every F € (&) there exists a unique u “one-half weak

solution” of problem (1)) with rzght hand side F'.

Moreover u satisfies
1
& 1Pz iy < sy < O Il

with Co = Ca(p, p', M, pg, ,RQ)



May 4, 2005 56

’ / /
3. Then for every F € (W?”p Q) NP (Q)) there exists a unique u “three-
quarter weak solution” of problem with right hand side F.
Moreover u satisfies

r < HUHWLP(Q) < Cs||F||

1
Cy 1] (W?’m’(sz)mwﬁp’(sz)) (Ww’(sz)mwgm'(sz))' ’

with C3 = C3(pvp/v M, p;}lv RQ)
Remark D.13.1 Theorem part 2 has been studied in [21, Chap.7].

Our aim in giving the proof of Theorem is to show how the constants in
the estimates depend on the domain. We proceed through interpolation: [-,-]s
denotes the complex interpolation with parameter 6 € (0, 1).

For sake of conciseness we fix the following notation:

Aoy = LP(Q)  Ayp = WHP(Q) NWP(Q),
Bop = (Aap) Bayp = LP(Q)(= (Ag ),
and for 6§ € (0,1)
A497p = [Ao,p, A47P}6 and B49)p = [Bo,p, B4)p]9.

With this notation we have Ty, : Aop — Boyp and Tuyp @ Asp — Bap,
where T, is defined in and Ty, is defined in (54).

Lemma D.14 Assume Condition and let 1 < p < oco. The operator Ty p
is a restriction of Ty, to Ay, in the sense that for every u € Ay

Top(u) € (B4,p’)/ and Ty p(u) = ip(Tap(u)).

Proof. Let u € Ay ;. For every v € Ay, we have

(Top(w)e) = [

u A?v dx = / v A%y dx = / v Ty p(u) de.
Q Q Q

The claim follows. u

As a consequence of Lemma [D.14] in the following lemma we find via inter-
polation a family of isomorphisms which are extensions of T} ;, and restrictions
of TO,p~

Lemma D.15 Assume Condition[D.1] and fiz § € (0,1). Consider the operator
Tyo,p such that D(Tugp) = Aagp and Tupp(u) = Ty p(u) for u € D(Tupp) and
1<p<oo.

Then Typ p, is an isomorphism from Aag, onto Bap, and moreover

1
—— <||T
max (Cy, O} = a0

where Cs and C,, are the constants appearing in Theorems [D-5 and re-
spectively.

‘(A49,p*>B49,p) <2 (56)
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Proof. The claim follows from Corollaries and since the complex
interpolation functor is exact and of type 6 (|23, Th.1.9.3a]). |

Remark D.15.1 Notice that (56) implies that for every u € Asgp it holds

31 Ta0.p (W)l g, < Il s, < max{Cy, Coo}HTao.p(w)| B -

In the following we consider the operators T4 ,, 15, and T3 p; i.e. the op-
erators Tyg, , defined in Lemma with 6; = 1i and ¢ = 1,2,3. Notice that
the solution operator for the “three-quarter weak solution” of problem is
the inverse of 77 ,. Analogously the solution operator for the “one-half weak
solution” of problem (/1)) is the inverse of 15, and the solution operator for the
“one-quarter weak solution” of problem is the inverse of T3 j,.

For these operators we have that

Aip=WHP(Q)N W(])min {i’2}’p(Q) with equivalent norms, (57)

where A; , = D(T; ). Identity can be found in Triebel for C*°-domains. We
first show that in order to hold it is sufficient that 9Q € C**. Furthermore
we give the dependence on the domain of the constants D; ,; and Djjp; that
appear in

Dugpillullyyin@ymmwmn 12210 (q) < llul

Aip < D27:D7i ||uHWi,p(Q)ﬂW[§“in {i:2hp 0y

for u € WHP(Q) N Wénin {i’Q}’p(Q).
We first recall a classical result from [23].

Proposition D.16 [23, Th.4.5.3] Let B denote the unit ball in R™. Then for
1=1,2,3 and 1 < p < o0 one has

2, i, min {¢,2},
L7(B). W (B) WP (B)] = whr(B) nwgt e p)
4
as Banach spaces (same elements, equivalent norms). Hence there exist con-
stants C1,p; and Ca 4 such that for every u € WP(B) N W™ {l’2}’p(B) one

has

< CQ,P,i||u||WivP(B)~

i

Crpillullwirs) < HUH[LP(B),W4,p(B)mW§vP(B)]

Bl

Theorem D.17 Let assume Condition[D.1, Then for1 < p < oo andi=1,2,3
it holds ‘ .
[AO,p,AALP]%,L- =WP(Q) N W™ G2br ).

Hence there exist constants D1 p,; and Do, ; such that for every u € W”’(Q) N
Wy {1’2}’11(9) one has

D1 pillullwir@) < llulliag 40,11, < Dapillullwir @),

+i

with D]’,p,i = Dj,p,i(p, M, pgl, RQ) fO’(‘j = 1, 2.
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Proof. Let S denote a C*“ transformation from Q onto B.
Considering the operator

E, : LP(Q) — LP(B) such that E,(f):= foS™*,
one finds that the following properties hold:
e [, is an isomorphism;

e for i = 1,...,4 the restriction of E, to W"P(Q) 0 W™ 02hr(0) is an
isomorphism onto W*?(B) N W™ {1’2}’1)(3);

e there are constants C; , and Cs, such that
Crpl Ep(Wllwirs) < lullwin@) < CopllEp(w)llwerm), — (58)
for every i = 0,1,...,4 and u € W"?(Q) N Wénin {i’Q}’p(Q). Furthermore
the constants Cy, and Cy, depend only on p, Rq, p,' and the M of
Condition [D1]
For 6 € (0,1) the operator E, induces isomorphisms
Eyo Auy — [17(B), W (B) W2 (B)]

and since the complex interpolation functor is exact ([23} Th.1.9.3a]) one has

C_(1,17||E;v,9(u)||[Lzo(B)7W4wzo(B)l*]WOZ*p(B)]G
< ullasg, < Cop

Ep,a(u)||[Lp(B),WAL,p(B)ngsP(B)]Q7 (59)

(See Theorem 1.2.4 in [23]).
Hence, by and Proposition we have that

Aip = L@, W@ W Q)]

1
4Z

S ——

= (By) (WHrB) W) = wir() g ()

Furthermore we explicitly find the constants that give the equivalence of the

norms. Indeed from (58)), and Proposition it follows

[[ul

Aip < CQ’pHEp,%i(u)H[LP(B),W‘LP(B)OW&”’(B)]

i

Bl

IN

_ Co
02,1002,17,1' ||Ep,ii(“) HWivP(B) < C’l’p Cz,p,z‘ ||UHW13P(Q)7
P
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and
lullwir) < CopllBy1i(w)lwirs)
Cap Cop 1
< Cl,p,’i HEp,%i(u)||[LP(B)’W‘LP(B)QWO?’P(B)]%i > él,p Cl,p,i ||u||Ai‘p'

Remark D.17.1 The ezistence of the C*® transformation from Q onto B de-
pends upon the regularity of 0 and the fact that © is simply connected. This
technical assumption can be removed.

Corollary D.18 Let assume Condition [D1l Then for 1 < p < oo and i =
1,2,3 it holds

i min {4—i,2},p’ !
[Bo Bigls, = (W (@ nwg 0210 g))

1.
z?

Moreover there exist constants Dj,p_’i = Dj’w-(p’,M, p;)l,RQ) for 7 =1,2 such
that

DLPJ ||U|| <W4_i1pl (Q)ﬂwsnin {4—i,2},p’ (Q))'

< ||u||[Bo,p,B4,p]ii < D2,p,z'||u\|(W4_i,p/(9)ﬂwamn44—7:,2},;»/(9))'7

, A / ’
holds for every u € (W‘lfi’p Q) nwy™" 4=i2hp (Q)) .

Proof. The result follows from Theorem through duality results for com-
plex interpolation spaces ([23, Th.1.11.3]). |

Corollary D.19 Assume Condition[D.1] and let 1 < p < .
Then for i =1,2,3 there exist isomorphisms

. . . . . i ’ /
T, s W (@) W 20 () — (Wi (@) nwg U o))

which are restrictions of Ty, and extensions of Ty p.
Moreover there exists constants C; = C;(p,p’, M, pél,RQ) such that for

every u € WHP(Q) N W(;nin {i’Q}’p(Q) it holds
1
a ||Tl,1)(’u’) ” (W4—i,p’(Q)mW[I)“i“ {4*1'72),12’(9))/

< lllwer o) = GITH I

/.

wia=ie (@nwgt U2 ()

Proof. The result follows from Lemma Theorem and Corollary
D.18 n

Theorem follows directly from the previous corollary.
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