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Abstract

The main result in this paper is that the solution operator for the
bi-laplace problem with zero Dirichlet boundary conditions on a bounded
smooth 2d-domain can be split in a positive part that contains the singular
part and a smooth sign-changing part. Such a splitting allows one to find
a priori estimates for fourth order problems similar to the one proved via
the maximum principle in second order elliptic boundary value problems.
The proof depends on a careful approximative fill-up of the domain by
a finite collection of limacons. The limacons involved are such that the
Green function for the Dirichlet bi-laplacian on each of these domains is
strictly positive.
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1 Introduction and main results

A mayor tool for second order elliptic equations is the maximum principle. The
maximum principle not only implies that a positive source will give a positive
solution but it helps to obtain a priori estimates and hence to find regularity
results. Especially in nonlinear equations such a priori estimates play a crucial
role. Several results are referred to by the name maximum principle but the
result that we want to refer to is the local result that reads for the laplacian as
∆u ≥ 0 in a neighborhood of a implies that u cannot have a strict maximum
in a. A serious obstruction for higher order elliptic equations is that one cannot
expect a similar result as functions like ±x2 clearly show.



May 4, 2005 3

The situation becomes more complicated when considering a positivity pre-
serving property which is often also named “maximum principle”. For the lapla-
cian that is: −∆u ≥ 0 in Ω and u ≥ 0 on ∂Ω implies u ≥ 0 in Ω (with Ω a
bounded domain in Rn). This “global maximum principle” also holds for some
special higher dimensional problems. Indeed, ∆2u ≥ 0 in B and − ∂

∂|x|u ≥ 0,
u ≥ 0 on ∂B implies u ≥ 0 in B. Here B is a ball in Rn with n ≤ 4. For this
special result see [16]. With ∂

∂|x|u = u = 0 on ∂B the result holds for B in any
Rn and goes back 100 years to Boggio ([3]). The restriction to the ball is rather
crucial. Since Duffin’s counterexample ([10]) it has become well known that on
most domains such a positivity preserving property fails (see [15]).

In [19] Nehari looks for subdomains of Ω, characterized by the position of
the points x and y and by simple geometric properties of Ω, in which the Green
function for the biharmonic problem with Dirichlet boundary condition on Ω
may be shown to be positive.

In order to find a priori estimates it is however not necessary to have such a
sign preserving result; it is sufficient that the singularity of the solution operator
has a fixed sign. This separation of the solution operator in a smooth but sign
changing part and a singular part of fixed sign is the main result of the present
paper. However, since we are using conformal mappings, our present result
is restricted to two dimensional domains. Note that in two dimensions the
singularity of the solution operator for the bilaplacian appears in the second
derivative. Indeed the fundamental solution is −1

8π |x|
2 ln |x|.

Let us be more precise. For Ω an open bounded C4,α domain in R2 we will
show that the solution operator for

∆2u = f in Ω,
u = 0 on ∂Ω,

∂
∂νu = 0 on ∂Ω,

(1)

can be split in the way we just mentioned. Crucial is that we find a uniform
behavior of such a splitting even near the boundary. Such a result away from
the boundary, that is in compact subsets of Ω, was proven in [14].

We proceed as follows. We recall from [7] that for Ω taken from some family
of limacons the Green function for (1) is positive. Secondly, one may show
that small perturbations of those limacons do not destroy the positivity of the
corresponding Green function. Thirdly, one may construct a finite number of
such slightly perturbed limacons

{
Ej ⊂ R2

}
that are such that the boundary of

Ω is covered by the boundaries of those perturbed limacons while these limacons
cover a neighborhood of the boundary of Ω. Together with a covering of the
interior one is able to construct the desired splitting of the solution through a
separation of unity related with that covering. Roughly explained, for each x ∈
Ω there is an element Ej in this finite covering such that the Green function for
(1) can be decomposed as the sum of GEj

(x, y) and a remainder term Grest
j (x, y)

where GEj (x, y) is positive and Grest
j (x, y) is without singularity. Note that the

choice of Ej depends on x. Since the extension of GEj (x, y) from E2
j to Ω2 by

0 is not smooth one may guess that the just mentioned decomposition is more
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involved than just this simple sum.

1.1 Main results

In this section we state the two main results of the paper. First we fix some
notation.

The Green function GΩ is such that the solution of problem (1) for appro-
priate f can be written as

u(x) =
∫

Ω

GΩ(x, y)f(y)dy.

In the following dΩ(.) denotes the distance to the boundary in the domain Ω:

dΩ(z) := inf
x∈∂Ω

|z − x| .

Two closely related versions of the main result are the following. The first one is
a pointwise description which focusses on the splitting of the solution operator.

Theorem 1.1 Assume that Ω ⊂ R2 is a bounded simply connected domain with
∂Ω ∈ C16. Then there exist Greg

Ω , Gsing
Ω : Ω̄2 → R such that the Green function

for (1) can be written as

GΩ(x, y) = Greg
Ω (x, y) +Gsing

Ω (x, y)

and the following is satisfied:

1. (a) Gsing
Ω (x, y) ≥ 0 on Ω̄2;

(b) Gsing
Ω ∈ C1,γ

(
Ω̄2
)
∩ C1

0

(
Ω̄2
)

for all γ ∈ (0, 1) ;

(c) Gsing
Ω ∈ C15,γ

({
(x, y) ∈ Ω̄2;x 6= y

})
for all γ ∈ (0, 1) ;

2. (a) Greg
Ω ∈ C15,γ

(
Ω̄2
)
∩ C1

0

(
Ω̄2
)

for all γ ∈ (0, 1) .

Remark 1.1.1 For the condition ∂Ω ∈ C16 see Definition 1.6.

Remark 1.1.2 Since GΩ is symmetric one may assume that both Greg
Ω and

Gsing
Ω are symmetric. If not yet symmetric, then set G···Ω,new(x, y) := 1

2G
···
Ω (x, y)+

1
2G

···
Ω (y, x).

The next result is a kind of maximum principle, that is, it gives a pointwise
bound from above for the solution in terms of the positive part of the right hand
side and a weaker norm of the solution itself. Before we state the result let us
recall that the space W−m,p(Ω) is the dual space of Wm,p′

0 (Ω), with 1
p + 1

p′ = 1,
and its norm can be defined as follows

‖u‖W−m,p(Ω) := sup
{
u(ϕ);ϕ ∈Wm,p′

0 (Ω), ‖ϕ‖Wm,p′ (Ω) ≤ 1
}
.
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Theorem 1.2 Let 0 < α < 1 and p ∈ (1,∞). Suppose that Ω is a bounded
simply connected domain in R2 with ∂Ω ∈ C4,α. Then for any q > 2 and
ε > 0 there exists a constant cq,Ω,ε > 0 such that for f ∈ Lp(Ω) the solution
u ∈W 4,p(Ω) ∩W 2,p

0 (Ω) of (1) satisfies

u(x) ≤ cq,Ω,ε
(∥∥f+

∥∥
L1(B(x,ε)∩Ω)

+ ‖u‖W−1,q(Ω)

)
for every x ∈ Ω.

Here f+ denotes the positive part of f .

Remark 1.2.1 More precise information on how cq,Ω,ε depends on q,Ω and ε
can be found in Theorem 4.1. For those who want to avoid norms for nega-
tive Sobolev spaces we recall that ‖u‖W−1,q(Ω) ≤ c (s, q,Ω) ‖u‖Ls(Ω) for s >

2q (q + 2)−1
.

1.2 Some notations

Let us fix the following (for later use we consider Rn with general n).

Notation 1.3 Let Ω be a bounded domain in Rn and let f and g be functions
on Ω× Ω.

• For α, β ∈ Nn we set |α| =
∑n
k=1 αk and

Dα
xD

β
y f(x, y) =

∂|α|

∂xα1
1 xα2

2 .. xαn
n

∂|β|

∂yβ1
1 yβ2

2 .. yβn
n

f(x, y).

• An equivalence relation for f and g which are nonnegative (See [13]):

f ∼ g on Ω× Ω

if and only if there are c1, c2 > 0 such that

c1f(x, y) ≤ g(x, y) ≤ c2f(x, y) for all x, y ∈ Ω.

• A dominance relation with respect to a nonnegative f :

f � g on Ω× Ω

if and only if there is c > 0 such that

f(x, y) ≤ c g(x, y) for all x, y ∈ Ω.

The Hölder spaces Cr(Ω̄) and Cr,γ(Ω̄) with r ∈ N and γ ∈ (0, 1] are supplied
with the norm:

‖f‖Cr(Ω̄) :=
∑
|α|≤r

‖Dαf‖∞,

‖f‖Cr,γ(Ω̄) := ‖f‖Cr(Ω̄) +
∑
|α|=r

[Dαf ]γ ,
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where [f ]γ := sup
{
|f(x)−f(y)|
|x−y|γ ;x, y ∈ Ω̄, x 6= y

}
. For convenience we set Cr,0(Ω̄) :=

Cr(Ω̄). In the following Crc (Ω) denotes the set of all functions in Cr(Ω) whose
supports are compact subsets of Ω.

For m ∈ N and p ≥ 1, p ∈ R, Wm,p(Ω) denotes the Sobolev space with the
norm

‖f‖Wm,p(Ω) =
∑
|α|≤m

‖Dαf‖Lp(Ω) .

We fix the following notation to point out on which quantities the constants
depend.

Notation 1.4 For α, β, γ ∈ R, C = C(α, β, γ) means that C depends only on
α, β and γ, and that C is bounded for bounded values of these parameters.

Next we will need some notation concerning the domain and its boundary.

Notation 1.5 (relatively open subset of the boundary) For K a subset
of ∂Ω ⊂ Rn, set

K◦,∂Ω := (K ∪ (∂Ω)c)◦ ∩ ∂Ω. (2)

In the literature several definitions of C`,α-domains appear. To avoid any
ambiguity we explicitly give the version that we will use.

Definition 1.6 (uniform C`,α regularity condition for Ω) Let ` ∈ N+, α ∈
[0, 1] and Ω be a bounded domain in Rn. The domain Ω satisfies the uniform
C`,α regularity condition (we write ∂Ω ∈ C`,α) if there exist a positive constant
M, a finite open covering {Uj}j∈J of ∂Ω, a corresponding collection {ϕj}j∈J of
C`,α mappings such that for every j ∈ J :

1. ϕj : Uj → B = {y ∈ Rn : |y| < 1} is a bijection; set ψj = ϕinvj ;

2. with (ϕj,1, . . . , ϕj,n) and (ψj,1, . . . , ψj,n) the components of ϕj and ψj :

‖ϕj,i‖C`,α(Ūj) ≤M and ‖ψj,i‖C`,α(B̄) ≤M for all i;

3. ϕj (Uj ∩ Ω) = {y ∈ B : yn > 0};

and there exists δ > 0 such that

{x ∈ Ω : d (x, ∂Ω) < δ} ⊂
⋃
j∈J

ψj
({
y ∈ Rn : |y| < 1

2

})
.

Definition 1.6 is similar to the uniform C` regularity condition in [1, Def.4.10
page 84].

It will also be convenient to fix the following numbers.

Notation 1.7 Let Ω be a bounded domain with ∂Ω ∈ C2.
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1. We write ρΩ for the largest number r such that both Ω and Rn\Ω can
be filled with balls of radius r. To be precise: for r > 0 set Ωr :=
{z ∈ Ω : d (z, ∂Ω) ≥ r}, Ω̃r :=

{
z ∈ Rn \ Ω̄ : d (z, ∂Ω) ≥ r

}
. Set ρΩ > 0

the largest r such that the following holds:

Ω =
⋃
z∈Ωr

Br (z) and Rn \ Ω̄ =
⋃
z∈Ω̃r

Br (z) .

2. We will also use RΩ defined as the smallest R such that Ω ⊂ BR(z) for
some z ∈ R2.

Remark 1.7.1 For most domains we may take ρΩ = κ−1 where κ denotes the
maximal curvature. But notice that ρΩ can be strictly smaller than κ−1. For
example this happens in the case of a dumb-bell shaped domain with a very
narrow passage.

2 Domains with a positive biharmonic Green
function

In this section we concentrate on the positivity preserving property of problem
(1) in two-dimensional domain. Let first fix what we mean by this.

Definition 2.1 We say that problem (1) on a domain Ω satisfies the positivity
preserving property if for any f positive the solution u of (1) is also positive.

Obviously (1) on a domain Ω satisfies the positivity preserving property if
and only if the biharmonic Green function associated to problem (1) on Ω is
positive.

It is well known that problem (1) is positivity preserving on the disk (see
[3]). In the following we first recall a recent result in [7] where a family of
domains (limacons) is given on which the biharmonic Green function associated
to problem (1) is positive. Next we will show that small C2,γ perturbations of
these domains do not destroy this property.

2.1 Limaçon de Pascal

In [7] one finds that on some limacons the Green function for (1) is strictly
positive. Since these limacons are our starting point we will shortly recall some
properties of these domains.

The Limaçon de Pascal Ωa with a ∈
[
0, 1

2

]
is defined as the image of the

unit disk through the conformal map

ha(x1, x2) =
(
x1 + 2ax1x2, x2 + ax2

2 − ax2
1 + 1− a

)
for a ∈

[
0, 1

2

]
. (3)

The result that is proved in [7] is the following:
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6
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√
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Figure 1: Limaçons Ωa for respectively a = 0, a = 3
10 and a = 1

6

√
6.

Proposition 2.2 The Green function GΩa
for (1) with Ω = Ωa and a ∈

[
0, 1

2

]
is positive if and only if a ∈

[
0, 1

6

√
6
]
. Moreover, there exist c1, c2 > 0 such that

for a ∈
[
0, 1

6

√
6
]

the following estimates hold. Writing for short da(.) = dΩa
(.):

GΩa(x, y) ≤ c1 da(x)da(y) min

{
1,
da(x)da(y)
|x− y|2

}
,

GΩa
(x, y) ≥ c2

(
1
6

√
6− a

)
da(x)da(y) min

{
1,
da(x)da(y)
|x− y|2

}
.

Remark 2.2.1 In [17] Hadamard was able to compute an explicit formula for
the biharmonic Green function on a limacon. The fact that this Green function
is positive for a ∈

[
0, 1

6

√
6
]

has been proven in [7].

We will also need scaled limacons and we will define these for R > 0 by

Ωa,R := {(Rx,Ry) : (x, y) ∈ ha(B1(0))} ,

with B1(0) =
{
(η, ξ) ∈ R2 : η2 + ξ2 < 1

}
. In the following Ωa denotes Ωa,1.

In the present paper we will consider limacons Ωa,R for a ∈ [0, ā] where ā
is strictly between 1

4 and 1
6

√
6. By taking ā strictly smaller than 1

6

√
6 we will

obtain estimates of the Green function GΩa
(., .) which are uniform with respect

to a.

Some geometrical facts :

1. For all a ∈
[
0, 1

2

]
the limacon Ωa,R is symmetric with respect to the second

axis and both (0, 0) and (0, 2R) lie on ∂Ωa,R.
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2. Let [−xa, xa] × [−ya, 2] denote the smallest rectangle that contains Ωa,1.
Then

a 7→ xa and a 7→ ya (4)

are nondecreasing functions for a ∈
[
0, 1

2

]
with 1 ≤ xa ≤ 1.3 and 0 ≤ ya ≤

0.25.

3. For a ∈ [ 3
16 ,

5
16 ], we will use ka,R : [−Rxa, Rxa]→ R to describe the lower

part of the boundary ∂Ωa,R :

ka,R (x) = inf {y : (x, y) ∈ Ωa,R} . (5)

In particular in the approximation we will use that the following relations
hold:

k′′a,R (0) =
1
R

1− 4a
(1− 2a)2

and (6)∥∥∥∥ ∂i∂xi ka,R
∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ bi
Ri−1

for i = 1, . . . , 5, (7)

with x∗a = 1
2 (1 −

√
3a). Notice that x∗a ∈ ( 1

5xa,
1
2xa) where xa is defined

near (4). The constants bi can be taken independently of a ∈ [ 3
16 ,

5
16 ].

Special values of the parameter a are the following:

• a = 0: Ω0,R is the disk with radius R and center (0, R);

• a = 1
4 : Ωa,R is convex if and only if a ∈

[
0, 1

4

]
;

• a = 1
6

√
6 ≈ .40825: the Green function associated to (1) for Ω = Ωa,R is

positive if and only if a ∈
[
0, 1

6

√
6
]
, see [7];

• a = 1
2 : Ω 1

2 ,R
is a cardioid.

di
sk

ca
rd

io
id

a −→0 1
4

� -
Ωa,R convex

� -
Ωa,R non-convex

1
2

1
6

√
6

� -

GΩa,R
≥ 0

� -

GΩa,R

changes sign

Figure 2: In the graph the critical values of the parameter a for convexity of the
limaçons and positivity of the Green function.
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2.2 Perturbations from the bilaplacian on a limacon

In this section we study the positivity preserving property of problem (1) on a
domain Ω ⊂ R2 that is ε−close in a C2,γ-sense to a limacon.

The concept of ε-closeness of domains that we use is the one introduced in
[12, Def.1.1]. For sake of completeness we recall the definition.

Definition 2.3 Let ε > 0. We call Ω ε-close in Ck,γ-sense to Ω∗ if there exists
a Ck,γ-mapping g : Ω̄∗ → Ω̄ such that g(Ω̄∗) = Ω̄ and

‖g − Id‖Ck,γ(Ω̄∗) ≤ ε.

The main result of the section is the following.

Theorem 2.4 (Perturbation of the domain) Let ā ∈ ( 1
4 ,

1
6

√
6) and γ ∈

(0, 1). Then there exist ε0 > 0 and c1, c2 > 0 such that for every ε ∈ [0, ε0]
and a ∈ [0, ā] the following holds.

If Ω is ε-close in C2,γ-sense to Ωa, then the Green function GΩ of (1) satisfies

0 < c1DΩ(x, y) ≤ GΩ(x, y) ≤ c2DΩ(x, y) for every x, y ∈ Ω,

where

DΩ(x, y) = dΩ(x)dΩ(y)min
{

1,
dΩ(x)dΩ(y)
|x− y|2

}
. (8)

Remark 2.4.1 In [7] the same estimates from above of GΩ are given but with
more regularity required at the boundary. Thanks to the ε-closeness we get a
better estimate from below and the same from above with less assumptions on
the boundary.

The proof consists of several steps and uses similar arguments as in [12] for
a disk. For convenience we summarize the main parts here.

We first show that ε-closeness in C2,γ-sense of Ω to Ωa implies the existence
of a biholomorphic map ϕa : Ωa → Ω such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ δ(ε) for 0 < γ′ < γ. (9)

Next, through this conformal mapping ϕa problem (1) on Ω is transformed into
the following problem on Ωa:

(
∆2 +A

)
u = f̃ in Ωa,
u = 0 on ∂Ωa,

∂
∂νu = 0 on ∂Ωa,

(10)

where A is a lower order perturbation of the biharmonic operator. See [13,
Remark after Theorem 5.1]. From (9) one also has that there exists a δ1 =
δ1(ε) > 0 such that the coefficients of A in (10) satisfy

sup
|α|≤3

‖Aα‖∞ ≤ δ1.
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We then see that the positivity of the Green function associated to problem
(10) implies the positivity of the Green function associated to problem (1) thanks
to the properties of conformal maps ([20]). Hence, instead of proving directly
Theorem 2.4 we prove the following result.

Theorem 2.5 (Perturbation of ∆2 by lower order terms ) Let a ∈ [0, ā]
with ā as in Theorem 2.4. Consider problem (10) with A =

∑
|α|≤3Aα(x)Dα,

Aα ∈ C(Ω̄a) and let GΩa,A the Green function associated to (10).
Then there exists η0 > 0 such that, whenever ‖Aα‖∞ ≤ η0 for all α with

|α| ≤ 3, the Green function associated to (10) is positive. Moreover, there exist
d1,d2 > 0 such that, with DΩa

(x, y) as in (8), the following holds:

d1DΩa
(x, y) ≤ GΩa,A(x, y) ≤ d2DΩa

(x, y). (11)

Theorem 2.5 says that if the lower order perturbation of the biharmonic oper-
ator is small then the positivity preserving property of system (10) in Ωa follows
from the positivity preserving property of problem (1) on the same domain.

A result similar to Theorem 2.5 was proven in [13] for the polyharmonic
Dirichlet boundary value problem on the unit disk B. The main ingredient of
the proof are appropriate estimates of

Hk
B(x, y, z) :=

GB(x, z)
∣∣Dk

zGB(z, y)
∣∣

GB(x, y)
, (12)

which were proved in [12]. Notice that in [12] one considers Ω being a ball. The
only place however where that fact is used is in the explicit estimates of Hk

B .
Indeed all the other arguments can be applied to any planar smooth domain Ω
whose Green function is positive in the strict sense as in the left hand side of
(11). Hence to prove Theorem 2.5 we first show that Hk

Ωa
(that is the quotient

in (12) calculated for GΩa
) satisfies the same estimates as Hk

B and then refer to
the work in [13].

In the next section we construct the conformal mapping from “Ω ε-close
to Ωa” to the limacon Ωa and we state the equivalence of Theorem 2.4 and
Theorem 2.5. Then we prove the perturbation result of Theorem 2.5.

2.2.1 Conformal transformation

In this subsection we prove that problem (1) on Ω that is ε-close to Ωa, cor-
responds to a problem of the type (10) on Ωa with the coefficients of A, the
lower order perturbation of ∆2, being small. Or, to be more precise, there is a
function ε 7→ δ(ε) with δ(ε)→ 0 when ε ↓ 0, such that

Ω ε-close in C2,γ-sense to Ωa =⇒ sup
|α|≤3

‖Aα‖∞ ≤ δ(ε).

Or in other words, that Theorem 2.5 implies Theorem 2.4.
The first step consist of proving existence of a biholomorphic map from the

limacon to a domain ε-close to the limacon which is near the identity in C2,γ-
sense.
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Proposition 2.6 Let a ∈ [0, ā] and γ ∈ (0, 1). Then there exist ε̄ > 0 and
c = c(ā) > 0 such that for ε ∈ [0, ε̄) and every γ′ ∈ (0, 1) with γ′ < γ we have
the following.

If Ω is ε-close in C2,γ-sense to Ωa then there is a biholomorphic map ϕa :
Ω̄a → Ω̄, with ϕa ∈ C2,γ′(Ω̄a) and ϕ−1

a ∈ C2,γ′(Ω̄), such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ c ε
γ−γ′ .

The proof of Proposition 2.6 consist of the following three lemmas.
Since a ≤ ā < 1

6

√
6 < 1

2 one may check that the map ha, defined in (3), is
conformal and one-to-one on the domain

B√1.5 :=
{
x ∈ R2 : ‖x‖2 <

√
1.5
}
.

We choose the value ε1 ∈ (0, 1) such that, if Ω is ε-close in C2,γ-sense to Ωa for
ε ∈ (0, ε1), then h−1

a (Ω) ⊂ B√1.5. It follows that h−1
a is a conformal map on

any domain Ω which is ε-close in C2,γ-sense to the limacon for ε < ε1.

Lemma 2.7 Let a ∈ [0, ā] and γ ∈ (0, 1). There exists c1 = c1(ā) > 0 such
that the following holds. If Ω is ε-close in C2,γ-sense to Ωa for ε ∈ (0, ε1), then
Ω∗ := h−1

a (Ω) is c1ε-close in C2,γ-sense to the disk B.

Proof. Let g be a C2,γ-mapping, g : Ω̄a → Ω̄, such that ‖g − Id‖C2,γ(Ω̄a) ≤ ε.
We define the map f : B̄ → Ω̄∗ by

f(x) :=
(
h−1
a ◦ g ◦ ha

)
(x),

where ha : B̄ → Ω̄a and h−1
a : Ω̄ → Ω̄∗ are conformal (see Figure 3). Then

there exists a positive constant c1, depending on ‖ha‖C4 and ‖h−1
a ‖C4 , such

that ‖f − Id‖C2,γ(B̄) ≤ c1ε.

In the following Ω∗ denotes h−1
a (Ω).

Lemma 2.8 Let a ∈ [0, ā] and γ ∈ (0, 1). Then there exist ε2 > 0 and c2 =
c2(ā) > 0 such that for every ε ∈ (0, ε2) and γ′ ∈ (0, 1) with γ′ < γ, the following
holds. If Ω is ε-close in C2,γ-sense to Ωa, then there exists a biholomorphic
mapping ϕ : B̄ → Ω̄∗ with ϕ ∈ C2,γ′(B̄), ϕ−1 ∈ C2,γ′(Ω̄∗) and such that

‖ϕ− Id‖C2,γ′ (B̄) ≤ c2ε
γ−γ′ .

Proof. From Lemma 2.7 it follows that Ω∗ is c1ε-close to B. Applying Propo-
sition A.1 we have that there exists ε0 > 0 such that “Ω∗ c1ε-close to B” for
c1ε ∈ (0, ε0) implies the existence of a biholomorphic mapping ϕ : B̄ → Ω̄∗ with
ϕ ∈ C2,γ′(B̄), ϕ−1 ∈ C2,γ′(Ω̄∗) and such that it holds

‖ϕ− Id‖C2,γ′ (B̄) ≤ c2ε
γ−γ′ ,

for every γ′ ∈ (0, 1) with γ′ < γ. The claim follows by taking ε2 = min
{
ε1, c

−1
1 ε0

}
.
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h−1
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Ω

B

Ω∗

Figure 3: The maps between Ω, Ωa, B and Ω∗.

Lemma 2.9 Let a ∈ [0, ā] and γ ∈ (0, 1). There exist ε3 > 0 and c3 = c3(ā) > 0
such that for every ε ∈ (0, ε3) and γ′ ∈ (0, 1) with γ′ < γ the following holds.

If Ω is ε-close in C2,γ-sense to Ωa, then there exists a biholomorphic mapping
ϕa : Ω̄a → Ω̄ with ϕa ∈ C2,γ′(Ω̄a), ϕ−1

a ∈ C2,γ′(Ω̄) and such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ c3ε
γ−γ′ .

Proof. We denote ϕa the map from Ω̄a to Ω̄ given by

ϕa(x) :=
(
ha ◦ ϕ ◦ h−1

a

)
(x).

Here ϕ is the conformal map of Lemma 2.8. The map ϕa is biholomorphic as a
composition of biholomorphic maps. Furthermore we have ϕa ∈ C2,γ′(Ω̄a) and
ϕ−1
a ∈ C2,γ′(Ω̄) since ϕ ∈ C2,γ′(B̄) and ϕ−1 ∈ C2,γ′(Ω̄∗).

By the way the holomorphic map ϕa is defined one finds that there exists a
positive constant K, depending on ‖ha‖C4 and ‖h−1

a ‖C4 , such that

‖ϕa − Id‖C2,γ′(Ω̄a) ≤ K ‖ϕ− Id‖C2,γ′(B̄) .

The claim follows by choosing c3 = Kc2 and ε3 = ε2 with c2 and ε2 as
defined in Lemma 2.8.

Remark 2.9.1 Notice that Proposition 2.6 follows from Lemma 2.9.

We are now ready to prove that the positivity preserving property of problem
(10) with a small perturbation of ∆2 on Ωa implies the positivity preserving
property of problem (1) on Ω ε-close in C2,γ-sense to Ωa.



May 4, 2005 14

Corollary 2.10 Let γ ∈ (0, 1). For every δ > 0 small enough and a ∈ [0, ā]
there exists ε0 > 0 such that for ε ∈ [0, ε0) the following holds.

If Ω is ε-close in C2,γ-sense to the limacon Ωa and the coefficients of the
operator A satisfy

sup
|α|≤3

‖Aα‖∞ ≤ δ, (13)

then the positivity of the Green function associated to problem (10) on Ωa implies
the positivity of the Green function associated to problem (1) on Ω.

Proof. To prove the claim we show that problem (1) on Ω ε-close in C2,γ-sense
to Ωa can be “transformed” into problem (10) on Ωa with the coefficients of the
lower order operator A satisfying (13).

Let u be solution of problem (1) on Ω. Consider δ0 < min
{

1
2 , 2

−7δ
}
. By

Proposition 2.6 we know that there exists a ε0 = ε0 (δ0) > 0 such that for
ε ∈ [0, ε0) and γ′ ∈ (0, 1) with γ′ < γ we have the following. If Ω is ε-close to
Ωa in C2,γ-sense then there exists a conformal map ϕa : Ω̄a → Ω̄ such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ δ0.

We define the function va(x) := u ◦ ϕa(x) on Ωa. Clearly u > 0 if and only
if va > 0. Since ϕa is a conformal map, the function va satisfies

∆2va − 2∇|ϕ′a|2 · ∇ ∆va

|ϕ′a|2
− 4|ϕ′′a|2 ∆va

|ϕ′a|2
= |ϕ′a|4f ◦ ϕa in Ωa,

va = 0 on ∂Ωa,
∂
∂ν va = 0 on ∂Ωa,

(14)

where ϕ′a denotes the complex derivative of ϕa. Hence va is solution of a problem
as in (10). The coefficients of the lower order perturbation of ∆2 in (14) satisfy
(13) by the choice of δ0.

Remark 2.10.1 Notice that since we are working with conformal mappings
it is sufficient to have C2,γ-closeness in order to transform problem (1) into
problem (10). Working with general transformations fourth order derivatives
would appear and C4,γ-closeness would be necessary.

As a consequence of Corollary 2.10, Theorem 2.4 will follow from Theorem
2.5.

2.2.2 Proof of the perturbation theorem

In [13] Theorem 2.5 has been proven in the unit disk (that is Ω0). We now give
a sketch of the proof for Ωa, a ∈ [0, ā] by following similar steps.

First we state some estimates for (12) with GB replaced by GΩa
.

Theorem 2.11 Let k = (k1, k2) with k1, k2 ∈ N and |k| ≤ 3. The following
estimates hold for any a ∈ [0, ā] and x, y, z ∈ Ωa.



May 4, 2005 15

1. If |k| = 3, then

GΩa(x, z)
∣∣Dk

zGΩa(z, y)
∣∣

GΩa
(x, y)

� 1
|x− z|

+
1

|y − z|
.

2. If |k| = 2, then

GΩa
(x, z)

∣∣Dk
zGΩa

(z, y)
∣∣

GΩa
(x, y)

� log
(

3
|z − y|

)
.

3. If |k| ≤ 1, then
GΩa

(x, z)
∣∣Dk

zGΩa
(z, y)

∣∣
GΩa

(x, y)
� 1.

Proof. With the same method as has been used in [13] the result follows
from the optimal estimate from below for GΩa , which has been proved in [7]
(see Proposition B.1), and from the estimates of the derivatives of the Green
function, which have been proved in [8] (see Proposition B.2).

Let GΩ denote the Green operator associated to problem (1) in Ω, that is

GΩf(x) :=
∫

Ω

GΩ(x, y)f(y)dy.

By the estimate in Theorem 2.11 one may observe that the derivatives of the
Green function have an integrable singularity. Hence one finds the following two
corollaries of Theorem 2.11.

Corollary 2.12 There exists M ∈ R+such that for any 0 ≤ f ∈ Lp(Ωa) with
p ≥ 1 and k = (k1, k2) ∈ N2 with 0 ≤ |k| ≤ 3, the following estimate holds for
all a ∈ [0, ā] ∣∣(GΩa

DkGΩa
f
)
(x)
∣∣ ≤M (GΩa

f) (x) for all x ∈ Ωa.

Corollary 2.13 Let a ∈ [0, ā] and η > 0 be such that the coefficients of A in
(10) satisfy ‖Aα‖∞ ≤ η for all |α| ≤ 3. Then for any 0 ≤ f ∈ Lp(Ωa) with
p ≥ 1

|(GΩaAGΩa f) (x)| ≤ 10Mη (GΩa f) (x) for all x ∈ Ωa,

and furthermore∣∣∣((GΩaA)i GΩaf
)

(x)
∣∣∣ ≤ (10M η)i (GΩa f) (x) for all x ∈ Ωa,

where M is the constant of Corollary 2.12.

For the proofs we refer to [13, Cor.4.2, Lem.5.4-5.5].

Proof of Theorem 2.5. Let u be a solution of (10). Proceeding as in [13,
Lemma 5.3] one finds that there exists a η1 > 0 such that (I + GΩa

A)−1 is well
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defined when the coefficients of A satisfy ‖Aα‖∞ ≤ η1 for |α| ≤ 3. We have
u = −GΩa

Au+ GΩa
f , or u = (I + GΩa

A)−1 GΩa
f , and may formally write

GΩa,A = (I + GΩaA)−1 GΩa

= GΩa − GΩaAGΩa + (GΩaA)2 GΩa − (GΩaA)3 GΩa + (GΩaA)4 GΩa − . . .(15)

Using Corollary 2.13 from (15) taking η0 = min
{

1
30M , η1

}
and η ≤ η0 the series

converges and we get
1
2GΩa ≤ GΩa,A ≤ 3

2GΩa . (16)

The estimate in (11) follows directly from (16) and Proposition B.1.

Remark 2.13.1 For the problem
(
∆2 +A

)
u = f in Ω,
u = 0 on ∂Ω,

∂
∂νu = 0 on ∂Ω,

with Ω ε-close in C2,γ-sense to Ωa for a ∈ [0, ā] and with A the lower order
perturbation of the bilaplacian such that ‖Aα‖∞ ≤ η for |α| ≤ 3, the result
stated in Theorem 2.5 is still valid for ε and η sufficiently small.

3 Filling the domain with perturbed limacons

In this section we prove that a sufficiently smooth bounded two-dimensional
domain can be approximated by limacon-like domains in the sense we want.
That is, we will construct a finite number of domains Ej such that:

1. the union of Ej covers Ω near ∂Ω;

2. the union of ∂Ej covers the boundary ∂Ω;

3. each Ej is close in C2,γ-sense to a limacon Ωa,R with a ∈ [0, ā] in a uniform
way;

4. the Ej uniformly satisfy the uniform C4,γ regularity condition in a ∈ [0, ā].

The precise statement is given in Theorem 3.8.

3.1 Local approximation

We first show that for each z0 on ∂Ω there exists a domain ε-close to a limacon
which boundary intersects ∂Ω in a neighborhood of z0. In order to do that it
will be convenient to use local systems of Cartesian coordinates. The following
lemma lists some technical results.
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Lemma 3.1 Let ` ≥ 2 and Ω be a domain in R2 satisfying the uniform C`,α

regularity condition, Definition 1.6, with constant M and mappings ϕj ∈ C`,α,
j ∈ J. Let ρΩ be as in Notation 1.7 and set xρΩ :=

√
3

2 ρΩ.
Then for every z0 ∈ ∂Ω there exists a local Cartesian coordinates system and

a function gz0 ∈ C`,α, gz0 : [−xρΩ , xρΩ ]→ R, such that:

1. z0 = (0, 0) ;

2. the x-axis is tangential to ∂Ω in z0;

3. the y-axis has the direction of the internal normal to ∂Ω in z0;

4. B 1
2ρΩ

(z0) ∩ ∂Ω ⊂ {(x, y) : x ∈ [−xρΩ , xρΩ ] and y = gz0 (x)} ;

5. ‖gz0‖C`,α[−xρΩ ,xρΩ ] ≤ 2 (`+ 1)M .

Remark 3.1.1 Observe that the function gz0 of Lemma 3.1 satisfies
∣∣g′z0 (x)

∣∣ ≤
1√
3
.

We skip the rather technical proof of Lemma 3.1.

In the following theorem we will state that for every point of the boundary of
a domain satisfying the uniform C4,α regularity condition there exists a limacon
Ωa,R that approximates ∂Ω in the point in C2-sense. Furthermore we will
construct a domain Ω̃ that is ε-close to the limacon Ωa,R and which boundary
coincides with ∂Ω in a neighborhood of that point. By construction Ω̃ is a
domain satisfying the uniform C4,α regularity condition with constantM1 where
M1 depends only on M and ρΩ.

For the purpose of a uniform statement we will have to rescale to limacons
of ‘unit’ size. In order to do so we define for a given f the scaled function:

fR(x, y) := R−1 f(Rx,Ry) for R ∈ R+. (17)

Theorem 3.2 Assume that the following holds for some α, γ ∈ (0, 1):

i. Ω ⊂ R2 is a simply connected domain satisfying the uniform C4,α regular-
ity condition with constant M ;

ii. gz0 ∈ C4,α for z0 ∈ ∂Ω are functions that describe the boundary of Ω as
in Lemma 3.1 and fix R := min

{
1
2

(
maxz0∈∂Ω

∥∥g′′z0∥∥∞)−1
, 1
}

;

iii. ε > 0 is such that for all Ω̃ which are ε−close to Ωa,1 in C2,γ sense with
a ∈

[
3
16 ,

5
16

]
, the Green function associated to problem (1) on Ω̃ is positive.

Then there is δ = δ(M,ρ−1
Ω , ε, γ) ∈

(
0, 1

16R
)

such that the following holds.
For every z0 ∈ ∂Ω there exist a ∈

[
3
16 ,

5
16

]
, a limacon Ωa,R and a C4,α map

fa,R : Ω̄a,R → fa,R
(
Ω̄a,R

)
such that:
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1. ∂Ω ∩Bδ (z0) = ∂ (fa,R (Ωa,R)) ∩Bδ (z0) ;

2. the map fRa,R := (fa,R)R is ε-close in C2,γ-sense to the identity on Ω̄a,1:∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1) ≤ ε;

3. the map fRa,R is C4,α bounded by some A = A(M,ρ−1
Ω , ε, γ): that is,∥∥fRa,R∥∥C4,α(Ω̄a,1) ≤ A.

Remark 3.2.1 We construct a C4,α mapping fa,R : Ω̄a,R → fa,R
(
Ω̄a,R

)
in

order that fa,R
(
Ω̄a,R

)
is a domain satisfying the uniform C4,α regularity con-

dition with constant M1 where M1 = M1(M,ρ−1
Ω , ε, γ). Using the result in [9]

it should be possible to relax the regularity of the boundary to C4.

Remark 3.2.2 In order to approximate ∂Ω with limacons in C2,γ-sense it is
sufficient that Ω satisfies the uniform C2,α regularity condition for α > γ.

Remark 3.2.3 The R defined in Theorem 3.2 depends on Ω via the constant
M of the uniform C4,α regularity condition.

Corollary 3.3 Assume that Ω, α, γ, ε are such that the hypotheses of Theorem
3.2 hold true and let R as defined in that theorem. Then there is δ > 0 such
that for every z0 ∈ ∂Ω there exists a domain Ez0 that satisfies the following:

1. Ez0 satisfies the uniform C4,α regularity condition with constant M1 =
M1(M,ρ−1

Ω , ε, γ) > 0;

2. Ez0 is ε-close in C2,γ-sense to a limacon Ωa,R with a ∈
[

3
16 ,

5
16

]
;

3. z0 ∈
(
Ēz0 ∩ ∂Ω

)◦,∂Ω.

Furthermore, letting Kz0 be the component of
(
Ēz0 ∩ ∂Ω

)◦,∂Ω that contains
z0:

4. Bδ(z0) ∩ ∂Ω = Bδ(z0) ∩Kz0 ;

5. Ez0 and Ω have the same outward normal for any x ∈ Kz0 .

The proof of Theorem 3.2 is divided into several steps. We first present the
setting for a fixed z0 ∈ ∂Ω. Let us consider the local system of coordinates near
z0 and the function gz0 ∈ C4,α given by Lemma 3.1 (in this case l = 4). We will
write gz0 = g.

Let δ be a positive number such that

δ < min
{

1,
xρΩ
4
,
R

16

(
1− 5

16

√
3
)}

and δ1−γ < ε
(
C10R

1+γ
)−1

. (18)

Here C10 is a positive constant that depends on M . We remark that δ depends
on Ω through ρ−1

Ω and M .
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←→

Figure 4: A domain, the finite number of approximated limaçons with their
boundaries covering the boundary of the domain, and a zoomed view.

3.2 Approximation by a limacon in one point

There exists a ∈
[

3
16 ,

5
16

]
such that z0 = (0, 0) ∈ Ω̄a,R and

k′′a,R(0) = g′′(0),

where ka,R ∈ C∞ is the map that describes, as in (5), the lower part of the
limacon.

In order to get that ∂Ωa,R approximates the boundary of Ω in (0, 0) up to
the second derivative, we have to impose the condition g′′ (0) = k′′a,R(0). Using
(6) this reads as

g′′ (0) =
1
R

1− 4a
(1− 2a)2

. (19)

Since the map a 7→ 1−4a
(1−2a)2

sends the interval
[

3
16 ,

5
16

]
onto

[
− 1

2 ,
1
2

]
and it holds

|g′′ (0)|R ≤ 1
2 by the definition of R, one finds that a ∈

[
3
16 ,

5
16

]
exists such that

(19) holds.
Note that R is fixed and that it is sufficient to play with the parameter a to

fit the limacon Ωa,R to the domain Ω around z0.

3.3 Construction of the mapping fa,R

Again we fix some preliminaries. Let xa be the number defined in (4) and let
us fix x∗a := 1

2 (1−
√

3a) ∈
(

1
5xa,

1
2xa
)
. We introduce two cut-off functions:

1. ϕa,R ∈ C∞(R) such that

ϕa,R ≡ 1 for |x| ≤ 1
2x

∗
aR,

ϕa,R ≡ 0 for |x| ≥ x∗aR,
‖ϕa,R‖Ck,ν ≤ Dk,ν

Rk+ν for k = 0, . . . , 4 and ν ∈ (0, 1) ,

with Dk,ν some positive constants;
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2. ψa,δ ∈ C∞(R) such that

ψa,δ ≡ 1 for |x| ≤ δ,
ψa,δ ≡ 0 for |x| ≥ 2δ,

‖ψa,δ‖Ck,ν ≤
D′

k,ν

δk+ν for k = 0, . . . , 4 and ν ∈ (0, 1) ,

with D′
k,ν some positive constants.

We define a C4,α-mapping gδ on [−Rxa, Rxa] that follows the boundary of
Ω when |x| ≤ δ and the boundary of the limacon when Rx∗a ≤ |x| ≤ Rxa :

gδ(x) :=



g(x) for 0 ≤ x ≤ δ,

ka,R(x) +
2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(x− δ)i +

+ ψa,δ(x)
4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(x− δ)i for δ < x ≤ 2δ,

ka,R(x) +
2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(x− δ)i for 2δ < x ≤ 1

2Rx
∗
a,

ka,R(x) + ϕa,R(x)
2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(x− δ)i for 1

2Rx
∗
a < x ≤ Rx∗a,

ka,R(x) for Rx∗a < x ≤ Rxa,
(20)

and similarly for x ∈ [−Rxa, 0].

0−δ δ Rx∗a−Rx∗a−Rxa Rxa

∂Ω

Ωa,R

0−
δ

−
2δ δ 2δ R

x ∗
a

−
R
x ∗
a

1
2 R
x ∗
a

−
1

2 R
x ∗
a

−
R
x
a

R
x
a

supp (ψa,δ)

supp (ϕa,R)

Figure 5: Left: the limaçon that approximates in (0, 0) the behavior of ∂Ω up
to the second derivative.
Right: scheme for the support of the cut-off functions ϕa,R and ψa,δ.

Remark 3.3.1 In the definition of gδ we use two cut-off functions. The reason
for this construction is that we want gδ to be close to ka,R in C2,γ-sense and also
to be a C4,α-mapping. Indeed, considering ‖gδ − ka,R‖C2,γ(−Rxa,Rxa) one sees
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that the terms (g − ka,R)(i)
∣∣∣
δ

have a different behavior for i = 0, 1, 2 respectively
for i = 3, 4. One cut-off function can be chosen independent of δ since we
will show that for i = 0, 1, 2 the term (g − ka,R)(i)

∣∣∣
δ

= O(δ). While for i =

3, 4 (g − ka,R)(i)
∣∣∣
δ

will be just bounded, and hence one needs a cut-off function

depending on δ in order that the C2,γ-norm of g−ka,R is an O(δ). By the way,
close in C2,γ-sense is needed for positivity; C4,α is used in the regularity results.

We define the function fa,R : Ω̄a,R → fa,R
(
Ω̄a,R

)
by

fa,R (x, y) =
(
x,

3R− gδ(x)
3R− ka,R(x)

(y − 3R) + 3R
)
, (21)

which gives (fa,R − I) (x, y) =
(
0, ka,R(x)−gδ(x)

3R−ka,R(x) (y − 3R)
)
. By construction fa,R ∈

C4,α
(
Ω̄a,R

)
and the boundary of fa,R (Ωa,R) coincides with ∂Ω in a neighbor-

hood of z0 = (0, 0) of length at least 2δ.
In the next paragraph we show that fa,R(Ωa,R) is ε-close to Ωa,R in C2,γ-

sense and that fa,R(Ωa,R) satisfies the uniform C4,α regularity condition.

Remark 3.3.2 Notice that fa,R ≡ Id for (x, y) ∈ Ω̄a,R with |x| ≥ Rx∗a. While
for |x| < Rx∗a it holds that fa,R ≡ Id for x = 0 only. The map fa,R also
changes the boundary of Ωa,R in a neighborhood of the point (0, 2R). That is
not a problem since one may notice from the expression of fa,R − Id that in the
approximation only the term ka,R(x)−gδ(x)

3R−ka,R(x) plays a role.

3.4 The mapping is close to the identity in C2,γ-sense

In this section we will prove that fRa,R, which is the fa,R from (21) rescaled as
in (17), satisfies ∥∥fRa,R − Id

∥∥
C2,γ(Ω̄a,1) ≤ ε. (22)

By the results of the previous section and our choice of ε, it then follows that
the Green function associated to problem (1) on fa,R(Ωa,R) is positive.

We first fix some notation. In the following N1 and N2 denote respectively

N1 :=
∥∥∥ ∂4

∂x4 ka,R − ∂4

∂x4 g
∥∥∥
C0[−δ,δ]

+
∣∣∣ ∂3

∂x3 ka,R(0)− ∂3

∂x3 g(0)
∣∣∣ , (23)

N2 :=
[
∂4

∂x4 ka,R − ∂4

∂x4 g
]
Cα[−δ,δ]

+
∣∣∣ ∂4

∂x4 ka,R (0)− ∂4

∂x4 g(0)
∣∣∣ . (24)

Notice that Ni = Ni(M) for i = 1, 2. Indeed R depends on M and the depen-
dence of ka,R on a is continuous in

[
3
16 ,

5
16

]
and hence uniform.

We have ∥∥∥ ∂i

∂xi ka,R − ∂i

∂xi g
∥∥∥
C0[−δ,δ]

≤ N1δ
3−i for i = 0, . . . , 3

and
∥∥∥ ∂4

∂x4 ka,R − ∂4

∂x4 g
∥∥∥
C0[−δ,δ]

≤ N2.
(25)
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In order to prove (22) one has first to consider the effect of the scaling.

Proposition 3.4 Let γ ∈ (0, 1). The function fRa,R satisfies∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1) ≤ 5

∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+5R
∥∥∥∥ ∂∂x ka,R − gδ

3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 9R2

∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+4R2+γ

[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

. (26)

We postpone the proof of Proposition 3.4 to Appendix C.1.1.

Proposition 3.5 Let γ ∈ (0, 1). There is C10 = C10(M) > 0 such that∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1) ≤ C10R

1+γδ1−γ . (27)

The right-hand side in (27) is less then ε due to our choice of δ in (18).
In order to prove Proposition 3.5 we estimate the terms in the right hand

side of (26) separately. The details of the proof are given in Appendix C.1.2.

3.5 Bounded third and fourth derivative of the mapping

In this section we derive the estimate of
∥∥fRa,R∥∥C4,α(Ω̄a,1). Again this fRa,R is

the function fa,R from (21) rescaled as in (17). The estimate will imply that
fa,R(Ωa,R) satisfies the uniform C4,α regularity condition.

The effect of the scaling is as follows:

Proposition 3.6 Let α ∈ (0, 1). There is C11 = C11(M) > 0 such that:∥∥fRa,R∥∥C4,α(Ω̄a,1) ≤ xa + 9 + 5C11δR+ 5R3

∥∥∥∥ ∂3

∂x3

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+

+ 6R4

∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+R3+α

[
(x, y) 7→ (y − 3R)

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(Ω̄a,R)

. (28)

We postpone the proof of Proposition 3.6 to Appendix C.2.1.
The estimate we are looking for is then:

Proposition 3.7 Let α ∈ (0, 1). There is C19 = C19(M) > 0 such that:∥∥fRa,R∥∥C4,α(Ω̄a,1) ≤ C19
R3+α

δ1+α
.

In order to prove Proposition 3.7 it is sufficient to find appropriate estimates
for the terms in the right hand side of (28). The details of the proof are in
Appendix C.2.2.
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3.6 The covering

We are now ready to prove that for any domain Ω with ∂Ω ∈ C4,α one may
find an appropriate covering by finitely many open domains that are ε-close in
C2,γ-sense to some limacon.

Theorem 3.8 Let Ω, α, γ and ε satisfy the assumptions of Theorem 3.2 and let
R defined as in that Theorem. Then there exist finitely many balls Bj, j ∈ JB
with B̄j ⊂ Ω, finitely many open domains Ej ⊂ R2, j ∈ JE, and constants
M̄ = M̄(M,ρ−1

Ω , ε, γ) > 0 and δ > 0 such that:

1. Ω ⊂
⋃
j∈JB

Bj ∪
⋃
j∈JE

Ej;

2. (Ej ∩ ∂Ω)◦,∂Ω 6= ∅ for all j ∈ JE;

3. every Ej with j ∈ JE is a domain satisfying the uniform C4,α regularity
condition with constant M̄ ;

4. each Ej is ε-close in C2,γ-sense to a limacon Ωa,R with a ∈
[

3
16 ,

5
16

]
.

Furthermore, for Kj =
(
Ēj ∩ ∂Ω

)◦,∂Ω with j ∈ JE it holds:

5. Ej and Kj have the same outward normal for any x ∈ Kj;

6. {Kj}j∈JE
is a relatively open covering of ∂Ω;

7. for all j ∈ JE the diameter of Kj is larger than δ.

Proof. According to Corollary 3.3 there is a δ > 0 such that for every z0 ∈ ∂Ω
there exists a domain Ez0 such that the following holds:

• Ez0 satisfies the uniform C4,α regularity condition with constant Mz0 =
Mz0(M,ρ−1

Ω , ε, γ);

• Ez0 is ε-close in C2,γ-sense to a limacon Ωa,R with a ∈
[

3
16 ,

5
16

]
;

• letting Kz0 the connected component of
(
Ēz0 ∩ ∂Ω

)◦,∂Ω that contains z0,
it holds

Bδ(z0) ∩ ∂Ω = Bδ(z0) ∩Kz0 .

By compactness of ∂Ω there exist z1, . . . , zN ∈ ∂Ω such that ∂Ω =
⋃N
j=1Kzj

.
Setting Ej := Ezj

and M̄ = maxMzj
and Kj accordingly one finds that this

family {Kj}j=1,...,N satisfies the properties of the last three items. A straight-

forward argument implies that Ω\
⋃N
j=1 (Ej ∩ Ω) can be covered by finitely open

balls Bj with B̄j ⊂ Ω.

Remark 3.8.1 In the proof we use that Ω is simply connected. However with
a slightly different argument the method would work also for general connected
domains.
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4 Proving the estimates

In this section we prove the main results of the paper. First we give pointwise
estimates for the solution of (1), and then we prove the splitting of the solution
operator between a positive singular part and a sign changing regular part.

4.1 A maximum principle type estimate

The pointwise estimates for the solution of (1) will be obtained using negative
Sobolev spaces. We refer to [1, pages 62-65].

Theorem 4.1 Suppose that the hypotheses of Theorem 3.2 hold true with 0 <
γ, α < 1. Then for any q > 2 and ε ∈ (0, 4R] there exists a constant C > 0 with
C = C( 1

2−q ,M, ρ−1
Ω , RΩ, ε, γ) such that for any f ∈ Lp(Ω), with p ∈ (1,∞), the

solution u ∈W 4,p(Ω) ∩W 2,p
0 (Ω) of (1) satisfies

u(x) ≤ C
(∥∥f+

∥∥
L1(B(x,ε)∩Ω)

+ ‖u‖W−1,q(Ω)

)
for every x ∈ Ω. (29)

Proof. Let Ej , with j ∈ J , be the finite covering of Ω of Theorem 3.8 and set
Dj := Ej ∩ Ω. We first consider the case ε = 4R.

Let ψi, i ∈ I, be a partition of unity with boundary associated to the covering
{Dj}j∈J of Ω (Lemma C.14 in the appendix with δ = 2R) such that for every
i ∈ I:

i. |Dαψi| ≤ cαR−|α| for α ∈ N2 with |α| ≤ 4;

ii. ψi 6= 0 at the boundary only if
(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω 6= ∅.

Here j(i) denotes the j ∈ J such that supp(ψi) ⊂ Ej . By the choice of ψi it also
holds that ψi ∈ C∞c (Ω∪

(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω), ψi ∈ C∞c (Ej(i)∪
(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω)

and ψi 6= 0 only on
(
Ej(i) ∩ Ω

)
∪
(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω. Notice that I is a finite set.

We choose a new family of cut-off functions χi ∈ C∞c
(
Ω ∪

(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω
)
,

i ∈ I, such that for every i ∈ I:

i. supp(ψi) ⊂
{
x ∈ Ω̄ : χi(x) = 1

}
⊂ supp(χi) ⊂

(
Ej(i) ∩ Ω

)
∪
(
Ej(i) ∩ ∂Ω

)◦,∂Ω ;

ii. 0 ≤ χi(x) ≤ 1;

iii. ‖∇αχi‖∞ ≤ cαR−|α| for every α ∈ N2 with |α| ≤ 4.

The functions χig and ψig denote (with abuse of notation) respectively

χig(x) :=
{
χi(x)g(x) in Ω̄,
0 otherwise, ψig(x) :=

{
ψi(x)g(x) in Ω̄,
0 otherwise.

In the following, if not explicitly stated, every function will be extended by
0 outside its domain of definition.
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Figure 6: In the picture on the left one finds some Ej’s that cover Ω locally.
The dark part shows the support of the cut-off function ψi. On the right the
effect of the multiplication with the cut-off function considered on the dashed
line: in black a function f and in red (lighter) the function ψif . The scaling is
arbitrary but consistent with the one in the following figures.

Let GEj
be the Green function associated to ∆2 on Ej with zero Dirichlet

boundary condition. Let vg,j the function that satisfies{
∆2vg,j = g in Ej ,

vg,j = ∂
∂ν vg,j = 0 on ∂Ej .

We define

ũi(x) := χi(x)vψif,j(i)(x) and ũ(x) :=
∑
i∈I

ũi(x).

Here j(i) denotes the j ∈ J such that supp(ψi) ⊂ Ej .
Since the Green function GEj (x, y) is positive and bounded on Ej × Ej

(Theorem 2.4) we have for some c1 = c1(M,ρ−1
Ω )

ũi(x) = χi(x)
∫
Ej(i)

GEj(i)(x, y)ψi(y)f(y) dy

≤ χi(x)
∫

supp(ψi)∩Ω

GEj(i)(x, y)f
+(y) dy ≤ c1 χi(x)

∥∥f+
∥∥
L1(supp(ψi)∩Ω)

.

Hence with εR := 4R one gets

ũ(x) ≤ c1
∑
i∈I

χi(x)
∥∥f+

∥∥
L1(supp(ψi)∩Ω)

≤ c2
∥∥f+

∥∥
L1

0
@S

i∈I
χi(x) 6=0

(supp(ψi)∩Ω)

1
A
≤ c2

∥∥f+
∥∥
L1(B(x,εR)∩Ω)

. (30)
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Figure 7: On the left one finds in black the boundary of Ej and in red the set
{x : ∇ψi(x) 6= 0}. In the right one in black the function vψif,j(i), that is the
solution of the clamped plate equation on Ej(i) with on the right hand side ψif,
that is, the truncated f (red in the picture).

We will now estimate the difference u− ũ. For every i ∈ I one has in Ej(i) :

∆2vψif,j(i) = ψi∆2u = ∆2 (ψiu)−
∑

|α+β|=4,
|β|≤3

nα,βD
αψiD

βu, (31)

where nα,β are positive coefficients. From (31) we find in Ej that

∆2
(
vψif,j(i) − ψiu

)
= −

∑
|α+β|=4,
|β|≤3

nα,βD
αψiD

βu.

Furthermore the function vψif,j(i) − ψiu satisfies zero Dirichlet boundary con-
dition on ∂Ej(i). Indeed by construction: u = ∂

∂νu = 0 on ∂Ej(i) ∩ supp (ψi) ⊂
∂Ej(i) ∩ ∂Ω and ψi = ∂

∂νψi = 0 for x ∈ ∂Ej(i)\ supp (ψi) .
Hence we may write for x ∈ Ej(i)

vψif,j(i)(x) = ψi(x)u(x)−Ri(x), (32)

where

Ri(x) :=
∫
Ej(i)

GEj(i)(x, y)
(
∆2(ψi(y)u(y))− ψi(y)∆2u(y)

)
dy.

On the other hand we get from (32)

∆2ũi = ∆2
(
χivψif,j(i)

)
= χi∆2vψif,j(i) +

(
∆2
(
χivψif,j(i)

)
− χi∆2vψif,j(i)

)
= χiψif +

(
∆2 (χiψiu− χiRi)− χi∆2 (ψiu−Ri)

)
.
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Figure 8: On the left one now also finds in green the set {x : ∇χi(x) 6= 0} . On
the right in green (lighter) the function ũi = χivψif,j(i).

Since supp(ψi) ⊂
{
x ∈ Ω̄ : χi(x) = 1

}
it holds ∆2 (χiψiu) = χi∆2 (ψiu) . Hence

we get
∆2ũi = χiψif −∆2 (χiRi) + χi∆2Ri.

Notice that this last relation holds in all of Ω. Hence the function ũ satisfies in
Ω

∆2ũ = f −
∑
i∈I

∆2 (χiRi) +
∑
i∈I

χi∆2Ri.

It follows that u− ũ satisfies
∆2 (u− ũ) =

∑
i∈I ∆2 (χiRi)−

∑
i∈I χi∆

2Ri in Ω,
u− ũ = 0 on ∂Ω,

∂
∂ν (u− ũ) = 0 on ∂Ω.

(33)

Here we used that ũi = ∂
∂ν ũi = 0 on ∂Ω for every i ∈ I.

Writing

u(x) = ũ(x) +
∑
i∈I

∫
Ω

GΩ(x, y)
(
∆2 (χiRi)− χi∆2Ri

)
(y) dy

= ũ(x) +
∑
i∈I,

|α′+β′|=4,

|β′|≤3

nα′,β′

∫
Ω

GΩ(x, y)Dα′χi(y)Dβ′Ri(y) dy

= ũ(x) +
∑

i∈I, |β|,|β′|≤3,

|α′+β′|=4,

|α+β|=4

nα,β,α′,β′

∫
Ω

GΩ(x, y)Dα′χi(y)Dβ′vDαψiDβu,j(i)(y)dy,
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and using the estimate in (30) we find

u(x) ≤ c2
∥∥f+

∥∥
L1(B(x,εR)∩Ω)

(34)

+
∑

i∈I, |β|,|β′|≤3,

|α′+β′|=4,

|α+β|=4

nα,β,α′,β′

∥∥∥∥∫
Ω

GΩ(·, y)Dα′χi(y)Dβ′vDαψiDβu,j(i)(y)dy
∥∥∥∥
∞
.

In the following we will estimate the second term in the right hand side of (34).
We fix i ∈ I, α, β, α′, β′ ∈ N2 with |α′ + β′| = |α+ β| = 4 and |β′| , |β| ≤ 3.

We first notice that it is sufficient to prove (29) for q > 2 and near 2. Indeed
the result for general q > 2 will then follow from the observation that the
following inequality holds

‖u‖W−1,q(Ω) ≤ |Ω|
1
q−

1
q̃ ‖u‖W−1,q̃(Ω) for any q̃ > q > 2.

Let fix q > 2 with q− 2 small. The Sobolev Imbedding Theorem yields that
for some c3 = c3( 1

2−q , ρ
−1
Ω , RΩ)∥∥∥∥∫

Ω

GΩ(·, y)Dα′χi(y)Dβ′vDαψiDβu,j(y) dy
∥∥∥∥
∞
≤

≤ c3

∥∥∥∥∫
Ω

GΩ(·, y)Dα′χi(y)Dβ′vDαψiDβu,j(y) dy
∥∥∥∥
W 1,q

0 (Ω)

= . . .

Here and in the following we write simply j instead of j(i).
We proceed using the regularity result for the “three-quarter weak solution”

of problem (1) (see Definition D.12). Indeed by Theorem D.13 the solution

operator from
(
W 3,q′(Ω) ∩W 2,q′

0 (Ω)
)′

to the space W 1,q
0 (Ω) is an isomorphism.

Hence we get for some c4 = c4( 1
2−q ,M, ρ−1

Ω , RΩ)

. . . ≤ c4

∥∥∥Dα′χi(·)Dβ′vDαψiDβu,j(·)
∥∥∥�
W 3,q′ (Ω)∩W 2,q′

0 (Ω)
�′

= c4 sup
{
〈Dα′χiD

β′vDαψiDβu,j , ϕ〉
∣∣∣ϕ ∈W 3,q′(Ω) ∩W 2,q′

0 (Ω)

with ‖ϕ‖W 3,q′ (Ω) ≤ 1
}

= . . .

Notice that the constant in Theorem D.13 depends on q and q′. However, since
we consider q near 2 we can choose a constant that depends only on the distance
of q to 2.

Next, we consider a restriction from the space
(
W 3,q′(Ω) ∩W 2,q′

0 (Ω)
)′

to

the space
(
W 3,q′(Ej) ∩W 2,q′

0 (Ej)
)′

. One uses that the cut-off function χi has

support in (Ej ∩ Ω) ∪ (∂Ω ∩ ∂Ej)◦,∂Ω
. Proceeding formally we take a cut-off

function hi ∈ C∞c (Ω ∪ (∂Ω ∩ ∂Ej)◦,∂Ω) such that:
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i. supp(χi) ⊂
{
x ∈ Ω̄ : hi(x) = 1

}
;

ii. supp(hi) ⊂ (Ej ∩ Ω) ∪ (∂Ej ∩ ∂Ω)◦,∂Ω ;

iii. 0 ≤ hi ≤ 1;

iv. ‖∇αhi‖∞ ≤ cαR−|α| for every α ∈ N2 with |α| ≤ 4.

Such a cut-off function exists since supp(χi) ⊂ (Ej ∩ Ω)∪ (∂Ej ∩ ∂Ω)◦,∂Ω
. The

function hiϕ lies in W 3,q′(Ej) ∩W 2,q′

0 (Ej) for every ϕ ∈ W 3,q′(Ω) ∩W 2,q′

0 (Ω)
and moreover it holds

〈Dα′χiD
β′vDαψiDβu,j , ϕ〉Ω = 〈Dα′χiD

β′vDαψiDβu,j , hiϕ〉Ω
= 〈Dα′χiD

β′vDαψiDβu,j , hiϕ〉Ej .

Using that there exists a constant c5 such that ‖hiϕ‖W 3,q′ (Ω) ≤ c5R−3 ‖ϕ‖W 3,q′ (Ω)

we get

. . . = c4 sup
{
〈Dα′χiD

β′vDαψiDβu,j , hiϕ〉Ej

∣∣∣ϕ ∈W 3,q′(Ω) ∩W 2,q′

0 (Ω)

with ‖hiϕ‖W 3,q′ (Ω) ≤ c5R
−3
}

≤ c4 sup
{
〈Dα′χiD

β′vDαψiDβu,j , ϕ̃〉Ej

∣∣∣ ϕ̃ ∈W 3,q′(Ej) ∩W 2,q′

0 (Ej)

with ‖ϕ̃‖W 3,q′ (Ej)
≤ c5R−3

}
≤ c6 sup

{
〈Dβ′vDαψiDβu,j , ϕ̃〉Ej

∣∣∣ ϕ̃ ∈W 3,q′(Ej) ∩W 2,q′

0 (Ej)

with ‖ϕ̃‖W 3,q′ (Ej)
≤ 1
}

= . . .

Here c6 = c6( 1
2−q ,M, ρ−1

Ω , RΩ) since R depends on M.

We now proceed by integrating by parts. Since vDαψiDβu,j and ϕ̃ and their
first derivatives are zero on ∂Ej there is no contribution from the boundary. We
find

. . . = c6 sup
{
〈vDαψiDβu,j , D

β′ ϕ̃〉Ej

∣∣∣ ϕ̃ ∈W 3,q′(Ej) ∩W 2,q′

0 (Ej)

with ‖ϕ̃‖W 3,q′ (Ej)
≤ 1
}

≤ c6 sup
{
〈vDαψiDβu,j , ϕ〉Ej

∣∣∣ϕ ∈W 3−|β′|,q′(Ej) ∩W
min{2,3−|β′|},q′
0 (Ej),

‖ϕ‖
W 3−|β′|,q′ (Ej)

≤ 1
}

≤ c6 sup
{
〈vDαψiDβu,j , ϕ〉Ej

∣∣∣ϕ ∈ Lq′(Ej), ‖ϕ‖Lq′ (Ej)
≤ 1
}

= c6
∥∥vDαψiDβu,j

∥∥
Lq(Ej)

= . . .
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Next, we apply the regularity result for weak solution of problem (1) (see
Definition D.9). Notice that in order to do that one needs that ∂Ej ∈ C4,α. By
the result in Theorem D.10 we get for some c7 = c7( 1

2−q ,M, ρ−1
Ω , RΩ)

. . . ≤ c7
∥∥DαψiD

βu
∥∥�
W 4,q′ (Ej)∩W 2,q′

0 (Ej)
�′

= c7 sup
{
〈DαψiD

βu, ϕ〉Ej

∣∣∣ϕ ∈W 4,q′(Ej) ∩W 2,q′

0 (Ej),

‖ϕ‖W 4,q′ (Ej)
≤ 1
}

Since we consider q near 2 we can choose the dependance on q of the form 1
2−q

in the constant that appears in the estimate of Theorem D.10.

We now consider an extension from the space
(
W 4,q′(Ej) ∩W 2,q′

0 (Ej)
)′

to

the space
(
W 4,q′(Ω) ∩W 2,q′

0 (Ω)
)′

. Since ψi has compact support in (Ω ∩ Ej)∪

(∂Ω ∩ ∂Ej)◦,∂Ω one has

〈DαψiD
βu, ϕ〉Ej

= 〈DαψiD
βu, ϕ〉Ω,

which implies

. . . = c7 sup
{
〈DαψiD

βu, ϕ〉Ω
∣∣∣ϕ ∈W 4,q′(Ej) ∩W 2,q′

0 (Ej), ‖ϕ‖W 4,q′ (Ej)
≤ 1
}

≤ c7 sup
{
〈DαψiD

βu, ϕ〉Ω
∣∣∣ϕ ∈W 4,q′(Ω) ∩W 2,q′

0 (Ω), ‖ϕ‖W 4,q′ (Ω) ≤ 1
}

≤ c8 sup
{
〈Dβu, ϕ〉Ω

∣∣∣ϕ ∈W 4,q′(Ω) ∩W 2,q′

0 (Ω), ‖ϕ‖W 4,q′ (Ω) ≤ 1
}

= . . . .

Here c8 = c8( 1
2−q ,M, ρ−1

Ω , RΩ).
The last step is an integration by part. We do not have any contribution

from the boundary since u and ϕ and their first derivative are zero on ∂Ω. Hence
one finds

. . . = c8 sup
{
〈u,Dβϕ〉Ω

∣∣∣ϕ ∈W 4,q′(Ω) ∩W 2,q′

0 (Ω), ‖ϕ‖W 4,q′ (Ω) ≤ 1
}

≤ c8 sup
{
〈u, ϕ̃〉Ω

∣∣∣ ϕ̃ ∈W 4−|β|,q′(Ω) ∩Wmin{2,4−|β|},q′
0 (Ω),

‖ϕ‖W 4−|β|,q′ (Ω) ≤ 1
}

≤ c8 sup
{
〈u, ϕ̃〉Ω

∣∣∣ ϕ̃ ∈W 1,q′(Ω), ‖ϕ‖
W 1,q′

0 (Ω)
≤ 1
}

= c8 ‖u‖�W 1,q′
0 (Ω)

�′ .

The claim follows for εR = 4R. For ε ∈ (0, εR] one may repeat the same
construction with a refinement of the partition of unity ψi, i ∈ I.

Remark 4.1.1 The hypothesis Ω simply connected is required in order to use
Theorem D.13. The result can be proved also for general connected domains
using a generalization of Theorem D.13.
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4.2 Green function estimates

In this section we prove Theorem 1.1 and we give optimal estimates from below
for the Green function of a two-dimensional domain Ω with ∂Ω ∈ C16. In this
section we have to assume more regularity on the boundary of Ω in order to use
[8, Th.2.6]. As before, GΩ denotes the Green function associated to problem
(1) on Ω.

We first present some preliminary lemmas.

Lemma 4.2 Assume that Ω is a bounded domain in R2 with ∂Ω ∈ C16. Then

GΩ ∈W 3,p(Ω2) for any p ∈ [1, 2).

Proof. In [8] one finds

∣∣DβGΩ(x, y)
∣∣ � |x− y|−1 min

{
1,

d(y)
|x− y|

}2

for any β ∈ N2 with |β| ≤ 3.

(35)
The result follows directly from (35).

Lemma 4.3 Let Ω be a bounded domain in R2 with ∂Ω ∈ C16. Then for every
γ ∈ (0, 1)

GΩ ∈ C15,γ({(x, y) ∈ Ω̄2 : x 6= y}) and GΩ ∈ C1,γ(Ω̄2) ∩ C1
0 (Ω̄2).

Proof. From general regularity results for elliptic partial differential equations
(see [2]) it is well known that GΩ ∈ C15,γ({(x, y) ∈ Ω̄2 : x 6= y}) for any
γ ∈ (0, 1). Indeed, in general, given l ∈ N, β ∈ [0, 1) and a bounded domain
D ∈ Cl,β then the regularity of GD on {(x, y) ∈ D̄2 : x 6= y} is as follows:

if β = 0 : GD ∈ Cl−1,γ
(
{(x, y) ∈ D̄2 : x 6= y}

)
for any γ ∈ (0, 1) ;

if β 6= 0 : GD ∈ Cl,β
(
{(x, y) ∈ D̄2 : x 6= y}

)
.

The result that GΩ ∈ C1,γ(Ω̄2) follows directly from Lemma 4.2 via the Sobolev
imbedding Theorem ([1, Th.4.12 Part 2]). Hence GΩ ∈W 3,p(Ω2)∩C1,γ(Ω̄2) for
p ∈ [1, 2) and γ ∈ (0, 1) . Moreover the function and its first derivatives are zero
on ∂Ω × Ω and on Ω × ∂Ω. Hence, by continuity and Theorem IX.17 in [4] it
follows that GΩ ∈ C1

0 (Ω̄2) (and also GΩ ∈W 2,p
0 (Ω2) for p ∈ [1, 2)).

Proof of Theorem 1.1. Following the construction in Theorem 4.1, see (33),
one may write the solution of problem (1) as

u(x) = ũ(x) +
∫

Ω

GΩ(x, z)
∑
i∈I

(
∆2(χi(z)Ri(z))− χi(z)∆2Ri(z)

)
dz

=
∑
i∈I

χi(x)
∫
Ej(i)

GEj(i)(x, z)ψi(z)f(z)dz +

+
∫

Ω

GΩ(x, z)
∑
i∈I

(
∆2(χi(z)Ri(z))− χi(z)∆2Ri(z)

)
dz,



May 4, 2005 32

where

Ri(z) =
∫
Ej(i)

GEj(i)(z, z
′)
(
∆2(ψi(z′)u(z′))− ψi(z′)∆2u(z′)

)
dz′,

and j(i) denotes the j ∈ J such that supp(ψi) ⊂ Ej . Considering formally
f(x) = δy(x) we get

GΩ(x, y) =
∑
i∈I

χi(x)GEj(i)(x, y)ψi(y) +

+
∫

Ω

GΩ(x, z)
∑
i∈I

(
∆2(χi(z)Ri(z, y))− χi(z)∆2Ri(z, y)

)
dz,

where

Ri(z, y) =
∫
Ej(i)

GEj(i)(z, z
′)
(
∆2(ψi(z′)GΩ(z′, y))− ψi(z′)∆2GΩ(z′, y)

)
dz′.

We define

Gsing
Ω (x, y) :=

∑
i∈I

χi(x)GEj
(x, y)ψi(y), (36)

Greg
Ω (x, y) := GΩ(x, y)−Gsing

Ω (x, y). (37)

From the definition it follows that Greg
Ω ∈ C15,γ(Ω̄2) for any γ ∈ (0, 1) .

Indeed, writing explicitly Ri and looking at the support of the term inside the
integral, we find

Greg
Ω (x, y) =

=
∑
i∈I

∑
|α+β|=4,

|α′+β′|=4,

|β|,|β′|≤3

nα,β,α′,β′

∫
Bi

GΩ(x, z)Dαχi(z) · (38)

·
(
Dβ

∫
Ai

GEj(i)(z, z
′)Dα′ψi(z′)Dβ′GΩ(z′, y)dz′

)
dz,

with nα,β,α′,β′ some positive coefficients and

Bi = {z ∈ Ω : ∇χi(z) 6= 0} and Ai = {z ∈ Ω : ∇ψi(z) 6= 0} . (39)

Since Ai ∩Bi = ∅ one always has z 6= z′ in (38). Hence GEj
(z, z′) ∈ C∞(Bj ×

Aj). Since the term Dα′ψi(z′)Dβ′GΩ(z′, y) is integrable it follows that Greg
Ω is

as regular as we want in the interior. The regularity up to the boundary is given
by the fact that ∂Ω ∈ C16.

The positivity of Gsing
Ω follows from the positivity of GEj

. Furthermore by
Lemma 4.3, the definition of Gsing

Ω and since Greg
Ω ∈ C15,γ(Ω̄2) for any γ ∈ (0, 1)

holds, it follows that Gsing
Ω ∈ C1,γ(Ω̄2) ∩ C1

0 (Ω̄2) and moreover that Gsing
Ω ∈

C15,γ(
{
(x, y) ∈ Ω̄2 : x 6= y

}
) for any γ ∈ (0, 1). Notice that by the boundary

condition satisfied by GΩ and Gsing
Ω we also have that Greg

Ω ∈ C1
0 (Ω̄2).
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Remark 4.3.1 The functions Greg
Ω and Gsing

Ω defined in the proof of Theorem
1.1 are not yet symmetric. In order to get symmetric functions one may consider
G···Ω,new(x, y) := 1

2G
···
Ω (x, y) + 1

2G
···
Ω (y, x).

Optimal estimates from above for the Green function as well as estimates
for the absolute value are known. We refer to [18], [13] and [8]. We will next
prove optimal estimates from below for GΩ.

First we prove the following lemma.

Lemma 4.4 Let Ω be a bounded domain in R2 with ∂Ω ∈ C16. Then GΩ

satisfies

‖∇GΩ(·, y)‖Lp(Ω) ≤ c
′
p,Ωd(y)

2 for every y ∈ Ω and p ∈ [1, 2).

Proof. Via [8, Th.2.6] one finds

‖∇GΩ(·, y)‖pLp(Ω) ≤ cΩ

∫
Ω

d(y)p min
{

1,
d(y)
|x− y|

}p
min

{
1,

d(x)
|x− y|

}p
dx

≤ cΩd(y)2p
∫

Ω

1
|x− y|p

dx ≤ c′p,Ωd(y)2p,

for p ∈ [1, 2).

Theorem 4.5 Let Ω be a bounded domain in R2 with ∂Ω ∈ C16. Then there
exists cΩ > 0 such that GΩ satisfies:

GΩ(x, y) ≥ −cΩd(x)2d(y)2 for every x, y ∈ Ω.

Proof. Since GΩ(x, y) = Gsing
Ω (x, y) + Greg

Ω (x, y), with Gsing
Ω and Greg

Ω defined
in (36) and (37) respectively, and Gsing

Ω is positive it holds

GΩ(x, y) ≥ − |Greg
Ω (x, y)| for every x, y ∈ Ω.

Hence in order to prove the result it is sufficient to get an estimate of the
absolute value of Greg

Ω .
We first study the W 4,p-norm of Greg

Ω (·, y) for p ∈ (1,∞).
Let Ai and Bi as defined in (39). From (38) and elliptic regularity theory

(see Theorem D.5) it follows that

‖Greg
Ω (·, y)‖W 4,p(Ω) ≤ c

∑
i∈I

∑
|α+β|=4,
|β|≤3

nα,β
∥∥Dαχi(·)DβRi(·, y)

∥∥
Lp(Bi)

.

We study separately the term
∥∥Dαχi(·)DβRi(·, y)

∥∥
Lp(Bi)

. One has∥∥Dαχi(·)DβRi(·, y)
∥∥
Lp(Bi)

≤ cΩ
∑

|α′+β′|=4,

|β′|≤3

nα′,β′

∥∥∥∥Dβ

∫
Ai

GEj
(·, z′)Dα′ψi(z′)Dβ′GΩ(z′, y)dz′

∥∥∥∥
Lp(Bi)

.
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We first observe thatGEj is non singular inBi×Ai. Indeed since Āi∩B̄i = ∅,
the function GEj (z, z

′) is in C∞(Bj × Aj) and all its derivatives are bounded
by a constant depending only on Ω.

The next step consists in an integration by part. There are no contribution
from the boundary since in ∂Ai ∩Ω the function ψi and its derivatives are zero,
while in ∂Ai ∩ ∂Ω both GEj and GΩ and their first derivatives are zero.

Let β′′ ∈ N2 denote a multi-index such that β′′ < β′, |β′′| = |β′| − 1. We
obtain∥∥Dαχi(·)DβRi(·, y)

∥∥
Lp(Bi)

≤ cΩ
∑

|α′+β′|=4,

|β′|≤3

nα′,β′

∥∥∥∥Dβ

∫
Ai

Dβ′′
(
GEj

(·, z′)Dα′ψi(z′)
)
Dβ′−β′′GΩ(z′, y)dz′

∥∥∥∥
Lp(Bi)

≤ cΩ,p
∑

|α′+β′|=4,

|β′|=2,3

nα′,β′

∫
Ω

∣∣∣Dβ′−β′′GΩ(z′, y)
∣∣∣ dz′ ≤ c′Ω,pd(y)2.

In the last step we used Lemma 4.4.
Since Greg

Ω (x, y) ∈W 4,p(Ω)∩W 2,p
0 (Ω) for any p ∈ (1,∞) , from [6, Lem.5] it

follows that
|Greg

Ω (x, y)|
d(x)2

≤ cΩ ‖Greg
Ω (·, y)‖W 4,p(Ω) .

Hence we obtain
|Greg

Ω (x, y)| ≤ c′′Ωd(y)2d(x)2.
The claim follows.

Remark 4.5.1 In [6, Lemma 5] the authors consider a bounded domain Ω with
∂Ω smooth. One can consider a weaker assumption on the boundary. Indeed, in
order to apply the Rellich-Kondrachov Theorem, [1, Th.6.3], it is sufficient that
Ω is bounded and satisfies the strong Lipschitz condition, [1, Def.4.9]. Notice
that if Ω satisfies the uniform Cl regularity condition with l ≥ 2 then Ω satisfies
also the strong Lipschitz condition.

Appendices

A Improved ε-closeness to the disk

In [12, Prop.2.6] the authors show that C2m,γ-closeness to the disk (Definition
2.3) implies the existence of a conformal map that satisfies the C2m−1-closeness
condition. This result can be improved. Indeed from C2m,γ-closeness to the disk
one gets the existence of a conformal map that also satisfies the C2m,γ′ -closeness
condition for γ′ ∈ (0, γ). We state the result in the following proposition. The
proof follows the main steps of the one in [12] except in the last part.
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Proposition A.1 Let γ ∈ (0, 1) and m ∈ N be given. Then there exist ε0 =
ε0(m) > 0 and c > 0 such that for ε ∈ [0, ε0] and γ′ ∈ (0, 1) with γ′ < γ we
have the following.

If Ω∗ is ε-close in C2m,γ-sense to the disk B, then there exists a biholomor-
phic mapping ϕ : B̄ → Ω̄∗, with ϕ ∈ C2m,γ′(B̄) and ϕ−1 ∈ C2m,γ′(Ω̄∗), such
that

‖ϕ− Id‖C2m,γ′ (B̄) ≤ cε
γ−γ′ .

Proof. Let f : B̄ → Ω̄∗ be a mapping such that ‖f − Id‖C2m,γ(B̄) ≤ ε with
ε ≤ ε0 small enough. According to [5] (see also [22, Sec.4.2]), a holomorphic
mapping ϕ−1 : Ω∗ → B, that has the desired qualitative properties, may be
constructed in the following way. First set

ω(x) := 2πG(x, 0).

Here G is the Green function for −∆ in Ω∗ under homogeneous Dirichlet bound-
ary condition. Next define the conjugate harmonic function

ω∗(x) :=
∫ x

1/2

(
− ∂

∂ξ2
ω(ξ) dξ1 +

∂

∂ξ1
ω(ξ) dξ2

)
,

where the integral is taken with respect to any curve from 1
2 to x in Ω∗ \ {0}.

The function ω∗ is well defined up to multiples of 2π. One finds that ϕ−1 is
uniquely defined by

ϕ−1(x) := exp(−ω(x)− iω∗(x)) for x ∈ Ω̄∗,

where R2 and C are identified. The function ϕ−1 maps 0 onto 0 and the point 1
2

somewhere into the positive real half-axis. Moreover, for x ∈ ∂Ω∗ we find that
|ϕ−1(x)| = | exp(−iw∗(x)| = 1 and hence ϕ−1(∂Ω∗) ⊂ ∂B. For x ∈ Ω∗ \ {0} we
have ω(x) > 0 and hence |ϕ−1(x)| < 1 implying ϕ−1(Ω∗) ⊂ B.

Setting r(x) = 2πG(x, 0) + log |x| one has that r satisfies{
−∆r = 0 in Ω∗,
r(x) = θ(x) := log |x| on ∂Ω∗.

(40)

In order to have that ‖ϕ−1 − Id‖C2m,γ′ (Ω̄∗) = O(εγ−γ
′
) (and consequently ‖ϕ−

Id‖C2m,γ′ (B̄) = O(εγ−γ
′
)) it would be sufficient that

‖r‖C2m,γ′ (Ω̄∗) = O(εγ−γ
′
), (41)

since
ϕ−1(x) = x exp(−r(x)− ir∗(x)) for x ∈ Ω̄∗,

again identifying R2 and C. The estimate in (41) follows from the extension of
the boundary data θ|∂Ω∗ to some θ̂ on Ω̄∗ with

‖θ̂‖C2m,γ′ (Ω̄∗) = O(εγ−γ
′
). (42)
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Indeed, the estimate for ‖r‖C0(Ω̄∗) is immediate by the maximum principle ap-
plied to (40). Furthermore, by means of elliptic estimates for second order equa-
tions (see [2, Th.7.3] and [11, Chap.6.3-6.4]), we find ‖r‖C2m,γ′(Ω̄∗) = O(εγ−γ

′
).

Note that due to the closeness of Ω∗ to B in C2m,γ-sense, according to Definition
2.3, the constants in these estimates may be chosen independently of Ω∗.

It remains to show the existence of some θ̂ that satisfies (42). This is
done as follows. Since Ω∗ is ε−close to B in C2m,γ-sense one may show that
(θ ◦ f) |∂B can be extended to θf on B̄ with ‖θf‖C2m,γ′(B̄) = O(εγ−γ

′
), provided∥∥∥(θ ◦ f) |∂B

∥∥∥
C2m,γ′ (∂B)

= O(εγ−γ
′
). That means we only have to estimate the

tangential derivatives of (θ ◦ f) |∂B .
Set ϑ(t) := θ(f(cos(t), sin(t))). We are done, if we have shown that

max
j=0,...,2m

max
t∈[0,2π]

∣∣∣∣∣
(
d

dt

)j
ϑ

∣∣∣∣∣ = O(εγ), (43)[(
d

dt

)2m

ϑ

]
γ′

= O(εγ−γ
′
). (44)

Notice that (43) was already proved in [12]. The improvement here is that also
(44) holds.

We observe that ϑ(t) = O(ε) since it holds that

log |f(cos(t), sin(t))| = log (1 +O(ε)) = O(ε).

Let us denote f̃(t) := f(cos(t), sin(t)). Then f̃ = (f̃1, f̃2) : R→ R2 and(
d

dt

)j
ϑ =

(
d

dt

)j (
θ ◦ f̃

)

=
j∑

|α|=1,

α∈N2

(
(Dαθ) ◦ f̃

)  ∑
p1+···+p|α|=j

1≤pi

dj,α,~p

|α|∏
l=1

f̃
(pl)
βl

 ,

with some suitable coefficients dj,α,~p and with βl = 1 if 1 ≤ l ≤ α1 and βl = 2
otherwise.

We want to compare this with the corresponding expression with f replaced
by Id . Writing f̃0(t) = Id ◦ (cos(t), sin(t)) we find(

d

dt

)j
ϑ =

j∑
|α|=1,

α∈N2

((
(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0

)
+ (Dαθ) ◦ f̃0

)

×

 ∑
p1+···+p|α|=j

1≤pi

dj,α,~p

|α|∏
l=1

((
f̃

(pl)
βl
− f̃ (pl)

0,βl

)
+ f̃

(pl)
0,βl

) .
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Since θ(f̃0(t)) = log |(cos(t), sin(t))| ≡ 0, all expressions containing f̃0 only (and
not a difference), sum up to zero. In the remaining sum, every term contains at
least one factor of the form

(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0 or f̃
(pl)
βl
− f̃ (pl)

0,βl
,

with |α| , pl ∈ {1, . . . , 2m}. For ε small, each of this factors is at most O(εγ).
Choosing ε0 sufficiently small, the other factors remain uniformly bounded with
respect to ε ∈ [0, ε0). This shows (43). In order to verify (44) we remark that[
f̃

(pl)
βl
− f̃ (pl)

0,βl

]
γ

= O(ε) for pl ∈ {1, . . . , 2m} by the definition of ε-closeness. It

remains to study the term
[
(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0

]
γ′

for |α| ∈ {1, . . . , 2m} .
One finds[

(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0
]
γ′

= sup
t,s∈[0,2π],
|t−s|>ε

∣∣∣(Dαθ) ◦ f̃(t)− (Dαθ) ◦ f̃0(t)− (Dαθ) ◦ f̃(s) + (Dαθ) ◦ f̃0(s)
∣∣∣

|t− s|γ
′

+ sup
t,s∈[0,2π],
|t−s|<ε

∣∣∣(Dαθ) ◦ f̃(t)− (Dαθ) ◦ f̃0(t)− (Dαθ) ◦ f̃(s) + (Dαθ) ◦ f̃0(s)
∣∣∣

|t− s|γ
′ = . . . .

Since Dαθ ∈ Cγ for |α| ≤ 2m,
∥∥∥f̃ − f̃0∥∥∥

C1(0,2π)
= O(ε) and f̃ , f̃0 ∈ C1 [0, 2π] ,

we get

. . . ≤ c sup
t,s∈[0,2π],
|t−s|>ε

∣∣∣f̃(t)− f̃0(t)
∣∣∣γ +

∣∣∣f̃(s)− f̃0(s)
∣∣∣γ

|t− s|γ
′

+c sup
t,s∈[0,2π],
|t−s|<ε

∣∣∣f̃(t)− f̃(s)
∣∣∣γ +

∣∣∣f̃0(t)− f̃0(s)∣∣∣γ
|t− s|γ

′

≤ 2c sup
t,s∈[0,2π],
|t−s|>ε

εγ

|t− s|γ
′ + 2c′ sup

t,s∈[0,2π],
|t−s|<ε

|t− s|γ−γ
′
≤ O(εγ−γ

′
).

B Previously known estimates for GΩa

For easy reference we recall here some results from [7] and [8].
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Proposition B.1 For every limacon Ωa with a ∈ [0, ā] the following two-sided
estimate holds for (x, y) ∈ Ω2

a:

GΩa
(x, y) ∼ dΩa

(x)dΩa
(y) min

{
1,
dΩa(x)dΩa(y)
|x− y|2

}
.

Proposition B.2 Let k ∈ N2 with 1 ≤ |k| ≤ 3. For every limacon Ωa with
a ∈ [0, ā] the following estimates hold for x, y ∈ Ωa :

when |k| = 3 :
∣∣Dk

xGΩa
(x, y)

∣∣ � |x− y|−1 min
{

1,
dΩa

(y)
|x− y|

}2

,

when |k| = 2 :
∣∣Dk

xGΩa
(x, y)

∣∣ � log

(
1 +

dΩa
(y)2

|x− y|2

)

∼ log
(

2 +
dΩa

(y)
|x− y|

)
min

{
1,
dΩa

(y)
|x− y|

}2

,

when |k| = 1 :
∣∣Dk

xGΩa(x, y)
∣∣ � dΩa(y) min

{
1, dΩa (x)dΩa (y)

|x−y|2

}
.

Remark B.2.1 We refer to [8, Th.2.6] for estimates of the derivatives of the
Green function associated to polyharmonic Dirichlet boundary value problems in
domains Ω ⊂ Rn with n ≥ 2. There it is assumed that Ω is bounded and that
∂Ω ∈ Cr with r > 4m+ 2.

C Technical lemmas

In this section we give the proof of some results needed in the proof of Theorem
3.2. We assume the same hypothesis and we use the same notation as in the
proof of this theorem. In particular, we recall that the domain Ω satisfies the
uniform C4,α regularity condition with constant M .

C.1 The mapping is close to identity

C.1.1 The effect of the scaling: proof of Proposition 3.4

In the following lemma we give the effect on the norms of the scaling defined in
(17).

Lemma C.1 Let Ω be a subset of Rn and let f : Ω̄ → Ω̄′ be a C2,γ-function.
Let fR be the f scaled as in (17). Then it holds

∥∥fR − Id
∥∥
C2,γ(R−1Ω̄) =

1
R
‖f − Id‖C0(Ω̄) +

n∑
i=1

∥∥∥∥ ∂

∂xi
(f − Id)

∥∥∥∥
C0(Ω̄)

+R
n∑

i,j=1

∥∥∥∥ ∂2

∂xixj
f

∥∥∥∥
C0(Ω̄)

+R1+γ
n∑

i,j=1

[
∂2

∂xixj
f

]
Cγ(Ω̄)

.(45)
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The proof is obvious and will be skipped.
Proof of Proposition 3.4. We estimate separately the terms in the right-
hand side of (45) for f = fa,R and Ω = Ωa,R.

1. Since −y ≤ R and ka,R − gδ ≡ 0 for |x| ∈ [Rx∗a, Rxa] we find

‖fa,R − Id‖C0(Ω̄a,R) ≤ 4R
∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

.

2. We also have

2∑
i=1

∥∥∥∥ ∂

∂xi
(fa,R − Id)

∥∥∥∥
C0(Ω̄a,R)

≤
∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 4R
∥∥∥∥ ∂∂x ka,R − gδ

3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

.

3. From the definition of the function fa,R in (21) we get

2∑
i,j=1

∥∥∥∥ ∂2

∂xixj
fa,R

∥∥∥∥
C0(Ω̄a,R)

≤
∥∥∥∥ ∂∂x ka,R − gδ

3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 4R
∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

.

4. One finds

2∑
i,j=1

[
∂2

∂xixj
fa,R

]
Cγ(Ω̄a,R)

=
[
(x, y) 7→ (y − 3R)

∂2

∂x2

ka,R(x)− gδ (x)
3R− ka,R (x)

]
Cγ(Ω̄a,R)

+

+
[
∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

= . . . . (46)

Since it holds that

[(x, y) 7→ f(x)g(y)]Cα[a,b]2 ≤ ‖f‖C0[a,b] [g]Cα[a,b] + ‖g‖C0[a,b] [f ]Cα[a,b]

one gets from (46) that

· · · ≤ 3R1−γ
∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+4R
[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

+ 2R1−γ
∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

,

and the claim follows.
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C.1.2 Proof of Proposition 3.5

We divide the rather technical proof of Proposition 3.5 in several lemmas. Using
the result of Proposition 3.4, to bound

∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1) it is sufficient to

get the estimates of the terms in the right hand side of (26) separately. We will
do so in the next lemmas.

In the following Ci = Ci(M) > 0, for i = 1, . . . , 9. The constants Ni, i = 1, 2
are defined in (23) and (24).

Lemma C.2 For ka,R and gδ respectively as in (5) and (20) it holds that∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C1δR.

Proof. By the definition of gδ in (20), and (25) one has

‖ka,R − gδ‖C0[−Rx∗a,Rx∗a] ≤ ‖ka,R − g‖C0[−δ,δ] +

+
∑
σ=±

∥∥∥ϕa,R (·)
∑2
i=0

1
i! (g − ka,R)(i)

∣∣∣
σδ

(· − σδ)i
∥∥∥
C0[σδ,σRx∗a]

+

+
∑
σ=±

∥∥∥ψa,δ (·)
∑4
i=3

1
i! (g − ka,R)(i)

∣∣∣
σδ

(· − σδ)i
∥∥∥
C0[σδ,σ2δ]

≤ N1δ
3 + 2

∑2

i=0

1
i!N1δ

3−iRi + 2
3!N1δ

3 + 2
4!N2δ

4 ≤ C1δR
2.

The claim follows since |ka,R| ≤ 2R.

Lemma C.3 Let ka,R and gδ be given respectively as in (5) and (20). Then it
holds ∥∥∥∥ ∂∂x ka,R − gδ

3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C2δ.

Proof. Using Lemma C.2 and (7) one finds directly∥∥∥∥ ∂∂x ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ 1
R

∥∥∥∥ ∂∂x (ka,R − gδ)
∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ C1δb1 ≤ . . . .

By the definition of gδ and the choice of the cut-off functions ϕa,R and ψa,δ we
get

. . . ≤ N1
R δ

2 + 2
R

2∑
i=1

1
(i−1)!N1δ

3−iRi−1 + 2
R
D1,0
R

2∑
i=0

1
i!N1δ

3−iRi

+ 1
2!

2
RN1δ

2 + 1
3!

2
R

D′
1,0
δ N1δ

3 + 1
3!

2
RN2δ

3 + 1
4!

2
R

D′
1,0
δ N2δ

4 + C1b1δ ≤ C2δ.

Here we used (25) and that δ < R and δ < 1.
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Lemma C.4 For ka,R and gδ respectively as in (5) and (20) it holds that∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C3
δ

R
.

Proof. Since
(
α
β

)′′
= 1

βα
′′ − 2β

′

β

(
α
β

)′
− β′′

β
α
β , using Lemmas C.2 and C.3 and

(7) one finds∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ 1
R

∥∥∥∥ ∂2

∂x2
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 2
Rb1C2δ + 1

R
b2
RC1δR ≤ . . . .

By the definition of gδ in (20) one gets

. . . ≤ 1
RN1δ + 2

RN1δ + 4
R
D1,0
R

2∑
i=1

1
(i−1)!N1δ

3−iRi−1 + 2
R
D2,0
R2

2∑
i=0

1
i!N1δ

3−iRi

+ 2
RN1δ + 2

R
1
22D

′
1,0
δ N1δ

2 + 2
R

1
3!N1δ

3D
′
2,0
δ2 + 2

R
1
2N2δ

2

+ 2
R

2
3!

D′
1,0
δ N2δ

3 + 2
R

1
4!

D′
2,0
δ2 N2δ

4 + 1
R (2b1C2 + b2C1) δ ≤ C3

δ

R
.

The constant C3 depends on Ω through N1 and N2.

Remark C.4.1 Notice that the proof also implies that∥∥∥∥ ∂2

∂x2
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C4δ.

Lemma C.5 For ka,R and gδ respectively as in (5) and (20) it holds that[
∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

≤ C5δ
1−γ .

Proof. Writing explicitly the function gδ yields[
∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

≤ 2N1δ
1−γ

+2

[
∂2

∂x2

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cγ [δ,Rx∗a]

+2

[
∂2

∂x2

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cγ [δ,2δ]

.(47)
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It is convenient to study separately the terms on the right-hand side of (47). In
the following C̃i = C̃i(M) > 0, i = 1, 2.

1. By (25) one has[
∂2

∂x2

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cγ [δ,Rx∗a]

≤
2∑
i=0

1
i!N1δ

3−i
[
(· − δ)i ∂

2

∂x2
ϕa,R

]
Cγ [δ,Rx∗a]

+ 2
2∑
i=1

1
(i−1)!N1δ

3−i
[
(· − δ)i−1 ∂

∂x
ϕa,R

]
Cγ [δ,Rx∗a]

+N1δ [ϕa,R]Cγ [δ,Rx∗a] ≤ . . . .

Via the definition of the cut-off function ϕa,R we get

. . . ≤
2∑
i=1

1
(i−1)!N1δ

3−iRi−1R1−γ D2,0
R2 +

2∑
i=0

1
i!
N1δ

3−i D2,γ

R2+γ R
i + 2N1δR

1−γ D1,0
R

+ 2
2∑
i=1

1
(i−1)!N1δ

3−i D1,γ

R1+γ R
i−1 +N1δ

D0,γ

Rγ ≤ C̃1δ
1−γ .

2. Since [
∂2

∂x2

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cγ [δ,2δ]

≤
4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i ∂

2

∂x2
ψa,δ(·)

]
Cγ [δ,2δ]

+
4∑
i=3

2
(i−1)! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i−1 ∂

∂x
ψa,δ(·)

]
Cγ [δ,2δ]

+
4∑
i=3

1
(i−2)! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i−2

ψa,δ(·)
]
Cγ [δ,2δ]

≤ . . . ,

from (25) and the choice of ψa,δ one obtains

. . . ≤
4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ

(
δi
D′

2,γ

δ2+γ + iδi−1δ1−γ
D′

2,0
δ2

)
+

4∑
i=3

2
(i−1)! (g − ka,R)(i)

∣∣∣
δ

(
δi−1D

′
1,γ

δ1+γ + (i− 1) δi−2δ1−γ
D′

1,0
δ

)
+

4∑
i=3

1
(i−2)! (g − ka,R)(i)

∣∣∣
δ

(
δi−2D

′
0,γ

δγ + (i− 2) δi−3δ1−γ
)
≤ C̃2δ

1−γ .

The claim follows.
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Lemma C.6 Let ka,R and gδ be given respectively in (5) and (20). Then it
holds [

∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤ C9

R
δ1−γ .

Proof. We have[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤
[

1
3R− ka,R

∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

+

+ 2
[

1
3R− ka,R

∂

∂x
ka,R

∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

+

[
ka,R − gδ

(3R− ka,R)2
∂2

∂x2
ka,R

]
Cγ [−Rx∗a,Rx∗a]

. (48)

We study the terms in the right-hand side of (48) separately.
1. From (7), Remark C.4.1 and Lemma C.5 it follows that[

1
3R− ka,R

∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

≤ 1
R2 b12R1−γC4δ+C5

R δ
1−γ ≤ C6

R
δ1−γ .

2. Using (7) and Lemmas C.3 and C.4 one obtains[
1

3R− ka,R
∂

∂x
ka,R

∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤ b1C2δ

[
1

3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

+ 1
RC2δ

[
∂

∂x
ka,R

]
Cγ [−Rx∗a,Rx∗a]

+b1 1
R

[
∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤ 1
R2 b12R1−γC2b1δ + b2

R 2R1−γ C2
R δ + C3

δ
R2R1−γ b1

R ≤
C7

R
δ1−γ .

3. Since[
ka,R − gδ

(3R− ka,R)2
∂2

∂x2
ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤
[
ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

1
R
b2
R +

[
1

3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

b2
RC1δR+

+
[
∂2

∂x2
ka,R

]
Cγ [−Rx∗a,Rx∗a]

1
RC1δR ≤ . . . ,

applying (7) and Lemmas C.2 and C.3 one finds

· · · ≤ C2δ2R1−γ b2
R2 + 1

R2 2b1R1−γb2C1δ + b3
R2 2R1−γC1δ ≤

C8

R
δ1−γ .
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The claim follows directly from (48) using the results of the previous points
1, 2 and 3.

The proof of Proposition 3.5 follows from Lemmas C.2, C.3, C.4 and C.6.

C.2 Bounded third and fourth derivative of the mapping

C.2.1 The effect of the scaling: proof of Proposition 3.6

Proof of Proposition 3.6. Let fa,R,1 and fa,R,2 be respectively the first and
the second component of fa,R. From the definition of fa,R we find: fa,R,1 (x, y) =
x and fa,R,2 (x, y) = 3R−gδ(x)

3R−ka,R(x) (y − 3R)+3R. Hence ‖fa,R,1‖C4,α(Ω̄a,1) ≤ xa+1
and Lemma C.1 yields

∥∥fRa,R,2∥∥C4,α(Ω̄a,1) ≤
4∑

|β|=0,

β∈N2

R|β|−1
∥∥Dβfa,R,2

∥∥
C0(Ω̄a,R)

+R3+α
∑
|β|=4,

β∈N2

[
Dβfa,R,2

]
Cα(Ω̄a,R) ≤ . . . .

By observing that

1
R
‖fa,R,2‖C0(Ω̄a,R) ≤ 3 + 4

∥∥∥∥ 3R− gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

,

using that fa,R,2 is linear in y one finds

. . . ≤ 3 + 5
3∑
i=0

Ri
∥∥∥∥ ∂i∂xi 3R− gδ

3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+

+6R4

∥∥∥∥ ∂4

∂x4

3R− gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+R3+α

[
(x, y) 7→ (y − 3R)

∂4

∂x4

3R− gδ
3R− ka,R

]
Cα(Ω̄a,R)

.

The claim follows from Lemmas C.2, C.3 and C.4 since 3R−gδ

3R−ka,R
= 1 +

ka,R−gδ

3R−ka,R
.

C.2.2 Proof of Proposition 3.7

We also divide the technical proof of Proposition 3.7 in several lemmas.
In the following Ci = Ci(M) > 0, for i = 12, . . . , 18. The constants Ni,

i = 1, 2 are defined in (23) and (24).
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Lemma C.7 For ka,R and gδ respectively as in (5) and (20) it holds that∥∥∥∥ ∂3

∂x3
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C12.

Proof. By the definition of gδ we have∥∥∥∥ ∂3

∂x3
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤
∥∥∥∥ ∂3

∂x3
(ka,R − g)

∥∥∥∥
C0[−δ,δ]

+

+2

∥∥∥∥∥ ∂3

∂x3

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

+2

∥∥∥∥∥ ∂3

∂x3

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

. (49)

It is convenient to study the terms on the right-hand side of (49) separately. In
the following C̄i = C̄i(M) > 0 for i = 1, 2.

1. It follows directly from (25) that
∥∥∥ ∂3

∂x3 (ka,R − g)
∥∥∥
C0[−δ,δ]

≤ N1.

2. Via (25) and the definition of the cut-off function ϕa,R we get∥∥∥∥∥ ∂3

∂x3

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

≤
2∑
i=0

1
i!N1δ

3−i D3,0
R3 R

i + 3
2∑
i=1

1
(i−1)!N1δ

3−i D2,0
R2 R

i−1 + 3N1δ
D1,0
R ≤ C̄1

R δ < C̄1.

3. One finds∥∥∥∥∥ ∂3

∂x3

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

≤

≤
4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ

D′
3,0
δ3 δi + 3

4∑
i=3

1
(i−1)! (g − ka,R)(i)

∣∣∣
δ

D′
2,0
δ2 δi−1 +

+ 3
4∑
i=3

1
(i−2)! (g − ka,R)(i)

∣∣∣
δ

D′
1,0
δ δi−2 +

4∑
i=3

(g − ka,R)(i)
∣∣∣
δ
δi−3 ≤ C̄2.

The claim follows.

Lemma C.8 For ka,R and gδ respectively as in (5) and (20) it holds that∥∥∥∥ ∂3

∂x3

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ C13

R
.
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Proof. Since (
α

β

)′′′
=
α′′′

β
− 3

β′

β

(
α

β

)′′
− 3

β′′

β

(
α

β

)′
− β′′′

β

α

β
,

using Lemma C.7, (7) and Lemmas C.4, C.3, C.2 we get∥∥∥∥ ∂3

∂x3

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ 1
RC12 + 3 b1R

C3δ
R + 3 b2

R2C2δ + b3
R3C1δR ≤

C13

R
.

Lemma C.9 For ka,R and gδ respectively as in (5) and (20) it holds that∥∥∥∥ ∂4

∂x4
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C14

δ
.

Proof. From the definition of gδ it follows∥∥∥∥ ∂4

∂x4
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤
∥∥∥∥ ∂4

∂x4
(ka,R − g)

∥∥∥∥
C0[−δ,δ]

+

+2

∥∥∥∥∥ ∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

+

+2

∥∥∥∥∥ ∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

. (50)

It is convenient to study the terms on the right-hand side of (50) separately.
Here C̃i = C̃i(M) > 0 for i = 1, 2.

1. From (25) it follows directly that
∥∥∥ ∂4

∂x4 (ka,R − g)
∥∥∥
C0[−δ,δ]

≤ N2.

2. By (25) and the definition of the cut-off function ϕa,R we get that∥∥∥∥∥ ∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

≤
2∑
i=0

1
i!N1δ

3−i D4,0
R4 R

i + 4
2∑
i=1

1
(i−1)!N1δ

3−i D3,0
R3 R

i−1 + 6N1δ
D2,0
R2 ≤ C̃1

R2 δ <
C̃1

R
.
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3. From (25) and the choice of ψa,δ one obtains∥∥∥∥∥ ∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

≤
4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ

D′
4,0
δ4 δi + 4

4∑
i=3

1
(i−1)! (g − ka,R)(i)

∣∣∣
δ

D′
3,0
δ3 δi−1

+6
4∑
i=3

1
(i−2)! (g − ka,R)(i)

∣∣∣
δ

D′
2,0
δ2 δi−2 + 4

4∑
i=3

(g − ka,R)(i)
∣∣∣
δ

D′
1,0
δ δi−3

+ (g − ka,R)(4)
∣∣∣
δ
≤ C̃2

δ
.

The claim follows.

Lemma C.10 Let ka,R and gδ be given respectively in (5) and (20). Then it
holds that ∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ C15

δR
.

Proof. From(
α

β

)(iv)

=
α(iv)

β
− 4

β′

β

(
α

β

)′′′
− 6

β′′

β

(
α

β

)′′
− 4

β′′′

β

(
α

β

)′
− β(iv)

β

α

β
, (51)

using Lemma C.9, (7) and Lemmas C.8, C.4, C.3, C.2 we get∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ 1
R
C14
δ + 4 b1R

C13
R + 6 b2

R2C3
δ
R + 4 b3

R3C2δ

+ b4
R4C1δR ≤

C15

δR
.

Lemma C.11 For ka,R and gδ respectively as in (5) and (20) it holds that[
∂4

∂x4
(ka,R − gδ)

]
Cα[−Rx∗a,Rx∗a]

≤ C16

δ1+α
.

Proof. From the definition of gδ one finds[
∂4

∂x4
(ka,R − gδ)

]
Cα[−Rx∗a,Rx∗a]

≤
[
∂4

∂x4
(ka,R − g)

]
Cα[−δ,δ]

+

+2

[
∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cα[δ,Rx∗a]

+2

[
∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cα[δ,2δ]

. (52)
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It is convenient to study the terms on the right-hand side of (52) separately. In
the following C̃i = C̃i(M) > 0 for i = 1, 2, 3.

1. Since Ω is a C4,α domain with constant M we have[
∂4

∂x4
(ka,R − g)

]
Cα[−δ,δ]

≤
[
∂4

∂x4
ka,R

]
Cα[−δ,δ]

+M ≤ C̃1.

Notice that the constant C̃1 depends only on M .
2. One has[

∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cα[δ,Rx∗a]

≤
2∑
i=0

1
i! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i ∂

4

∂x4
ϕa,R(·)

]
Cα[δ,Rx∗a]

+4
2∑
i=1

1
(i−1)! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i−1 ∂3

∂x3
ϕa,R(·)

]
Cα[δ,Rx∗a]

+6 (g − ka,R)(2)
∣∣∣
δ

[
∂2

∂x2
ϕa,R

]
Cα[δ,Rx∗a]

≤ . . . .

Via (25) and the definition of the cut-off function ϕa,R we get

. . . ≤
2∑
i=0

1
i!N1δ

3−i D4,α

R4+αR
i +

2∑
i=1

1
(i−1)!N1δ

3−i D4,0
R4 R

i−1R1−α

+4
2∑
i=1

1
(i−1)!N1δ

3−i D3,α

R3+αR
i−1 + 4N1δ

D3,0
R3 R

1−α + 6N1δ
D2,α

R2+α ≤
C̃2

R2+α
δ.

3. Since [
∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ
(· − δ)i

)]
Cα[δ,2δ]

≤
4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i ∂4

∂x4ψa,δ(·)
]
Cα[δ,2δ]

+
4∑
i=3

4
(i−1)! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i−1 ∂3

∂x3ψa,δ(·)
]
Cα[δ,2δ]

+
4∑
i=3

6
(i−2)! (g − ka,R)(i)

∣∣∣
δ

[
(· − δ)i−2 ∂2

∂x2ψa,δ(·)
]
Cα[δ,2δ]

+4
4∑
i=3

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i−3 ∂

∂xψa,δ(·)
]
Cα[δ,2δ]

+ (g − ka,R)(4)
∣∣∣
δ
[ψa,δ]Cα[δ,2δ] ≤ . . . ,
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from (25) and the choice of ψa,δ one obtains

. . . ≤
4∑
i=3

1
i! (g − ka,R)(i)

∣∣∣
δ

(
δi
D′

4,α

δ4+α + iδi−1δ1−α
D′

4,0
δ4

)
+

4∑
i=3

4
(i−1)! (g − ka,R)(i)

∣∣∣
δ

(
δi−1D

′
3,α

δ3+α + (i− 1) δi−2δ1−α
D′

3,0
δ3

)
+

+
4∑
i=3

6
(i−2)! (g − ka,R)(i)

∣∣∣
δ

(
δi−2D

′
2,α

δ2+α + (i− 2) δi−3δ1−α
D′

2,0
δ2

)
+4

4∑
i=3

(g − ka,R)(i)
∣∣∣
δ

(
δi−3D

′
1,α

δ1+α + (i− 3) δi−4δ1−α
D′

1,0
δ

)
+ (g − ka,R)(4)

∣∣∣
δ

D′
0,α

δα ≤ C̃3

δ1+α
.

The claim follows.

Lemma C.12 For ka,R and gδ respectively as in (5) and (20) it holds that[
∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα[−Rx∗a,Rx∗a]

≤ C17

Rδ1+α
.

Proof. From (51) by Lemma C.9, (7) and Lemmas C.11, C.8, C.4, C.3, C.2
one obtains[

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

≤
[

1
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

C14
δ + 1

R
C16
δ1+α +

+4
[

1
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b1
C13
R + 4

[
∂

∂x
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
R
C13
R

+4
[
∂3

∂x3

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b1
R + 6

[
1

3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b2
RC3

δ
R

+6
[
∂2

∂x2
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
RC3

δ
R + 6

[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b2
R2

+4
[

1
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b3
R2C2δ + 4

[
∂3

∂x3
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
RC2δ

+4
[
∂

∂x

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b3
R3 +

[
1

3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b4
R3C1δR

+
[
∂4

∂x4
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
RC1δR+

[
ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b4
R4
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≤ b1
R2 2R1−α C14

δ + 1
R

C16
δ1+α + 4 b1

R2 2R1−αb1
C13
R + 4 b2

R2 2R1−α C13
R

+4C15
δR 2R1−α b1

R + 6 b1
R2 2R1−α b2

RC3
δ
R + 6 b3

R2 2R1−α 1
RC3

δ
R

+6C13
R 2R1−α b2

R2 + 4 b1
R2 2R1−α b3

R2C2δ + 4 b4
R3 2R1−α 1

RC2δ

+ b5
R4 2R1−α 1

RC1δR+ 4C3
δ
R2R1−α b3

R3 + b1
R2 2R1−α b4

R3C1δR

+C2δ2R1−α b4
R4 ≤ C16

1
Rδ1+α

.

The claim follows.

Lemma C.13 For ka,R and gδ respectively as in (5) and (20) it holds that[
(x, y) 7→ (y − 3R)

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(Ω̄a,R)

≤ C18

δ1+α
.

Proof. Since

[(x, y) 7→ f (x) g (y)]Cα[a,b]2 ≤ [f ]Cα[a,b] ‖g‖C0[a,b] + ‖f‖C0[a,b] [g]Cα[a,b] ,

one finds[
(x, y) 7→ (y − 3R)

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(Ω̄a,R)

≤ 3R1−α
∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+ 4R
[
∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

≤ . . . .

By Lemma C.10 and Lemma C.12 we get

· · · ≤ 3R1−α C15
δR + 4R C17

Rδ1+α <
C18

δ1+α
.

The boundedness of fa,R in C4,α-norm follows directly from Proposition 3.6
and Lemmas C.8, C.10 and C.13.

C.3 Partition of unity

In this section we present a general result about partition of unity that we will
use in the proof of Theorem 4.1.

Lemma C.14 (Partition of unity with boundary) Let Ω ⊂ Rn be a bounded
domain and let {Dj}j∈J ⊂ Ω be a finite open covering of Ω such that ∂Ω ⊂⋃
j∈J (∂Dj ∩ ∂Ω)◦,∂Ω. For every δ > 0 there exist finitely many smooth func-

tions ψi ∈ C∞
(
Ω̄
)
, i ∈ I, such that:

1. ψi ≥ 0 for all i ∈ I and
∑
i∈I ψi (x) = 1 for all x ∈ Ω̄;

2. for every i ∈ I there exists j = j (i) such that supp (ψi) ⊂ Dj∪(∂Dj ∪ ∂Ω)◦,∂Ω,

3. diam(supp(ψj)) ≤ δ for all i ∈ I.
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D Elliptic regularity and interpolation

Elliptic regularity results for linear equations can be found in numerous places.
However, if one goes beyond second order and if one needs to know how the
constants depend on the domain there is no easy reference. For that reason
we will collect such type of results in the present section. For the explicit
dependence of these constants we will go back to the original source of Agmon,
Douglis and Nirenberg ([2]).

This section is organized as follows. First we recall some classical results and
the Calderon-Zygmund inequality for n = 2. Then we consider a strong and a
weak formulation of problem (1). Finally we study three intermediate versions
(between strong and weak) of problem (1).

Throughout this section the following condition will appear..

Condition D.1 The number α lies in (0, 1) and Ω is a bounded simply con-
nected domain (open subset) in R2 satisfying the uniform C4,α regularity con-
dition with constant M.

D.1 Classical results

In this section we recall some results from [11]. For sake of brevity we do not
give the most general statements.

Theorem D.2 [11, Th.9.13] Let Ω be a bounded domain in Rn satisfying the
uniform C1,1 regularity condition with constant M . Then it holds

‖u‖W 2,2(Ω) ≤ C
(
‖u‖L2(Ω) + ‖∆u‖L2(Ω)

)
for every u ∈W 2,2 (Ω) ∩W 1,2

0 (Ω),

with C = C(n,M, ρ−1
Ω , RΩ).

Remark D.2.1 The dependence of the constant can be deduced from the proof
in [11, Th.9.13].

We will use the Calderon-Zygmund inequality for n = 2. This inequality is
usually proved by contradiction. Since we are interested in the dependence of
the constant on the domain, we give here a direct proof.

Lemma D.3 Let Ω be a bounded domain in R2. Then there is C = C(RΩ)
such that

‖u‖L2(Ω) ≤ C ‖∆u‖L2(Ω) for every u ∈W 2,2 (Ω) ∩W 1,2
0 (Ω) .

Proof. Let u ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω). For n = 2 Aleksandrov’s maximum

principle ([11, Th.9.1]) implies that supΩ |u| ≤ C ‖∆u‖L2(Ω) for some C =

C(RΩ). Hence we find ‖u‖L2(Ω) ≤ C ‖∆u‖L2(Ω) |Ω|
1
2 .
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Corollary D.4 Suppose Ω is a bounded domain in R2 satisfying the uniform
C1,1 regularity condition with constant M . Then there is C = C(M,ρ−1

Ω , RΩ)
such that

‖u‖W 2,2(Ω) ≤ C ‖∆u‖L2(Ω) for every u ∈W 2,2 (Ω) ∩W 1,2
0 (Ω) .

Proof. The claim follows directly from Theorem D.2 and Lemma D.3.

D.2 Regularity for strong solutions

The classical regularity result that we like to recall in an explicit statement is
the following.

Theorem D.5 Assume Condition D.1. For every f ∈ Lp(Ω) with p ∈ (1,∞)
there exists a unique solution u ∈W 4,p(Ω) ∩W 2,p

0 (Ω) of (1).
Moreover the solution satisfies

1
2 ‖f‖Lp(Ω) ≤ ‖u‖W 4,p(Ω) ≤ Cs ‖f‖Lp(Ω) , (53)

with Cs = Cs(p, p′,M, ρ−1
Ω , RΩ) where Cs satisfies the convention of Notation

1.4.

Before proving Theorem D.5 we present some estimates.

Lemma D.6 Let Ω be a bounded domain in R2 satisfying the uniform C1,1

regularity condition with constant M and let p ∈ (1,∞) . Then there is C =
C(p, p′,M, ρ−1

Ω , RΩ) such that:

‖u‖Lp(Ω) ≤ C
∥∥∆2u

∥∥
Lp(Ω)

for every u ∈W 4,p(Ω) ∩W 2,p
0 (Ω).

Proof. Since n = 2 we find by Sobolev inequalities that

‖u‖Lp(Ω) ≤ C1 ‖u‖W 2,2(Ω) and ‖u‖Lp′ (Ω) ≤ C2 ‖u‖W 2,2(Ω) .

Notice that C1 = C1(p,M, ρ−1
Ω , RΩ) and C2 = C2(p′,M, ρ−1

Ω , RΩ). Hence we
have by Corollary D.4, by integrating by parts and by Hölder that

‖u‖Lp′ (Ω) ‖u‖Lp(Ω) ≤ C1C2 ‖u‖2W 2,2(Ω) ≤ C3

∫
Ω

|∆u|2 dx =

= C3

∫
Ω

u ∆2u dx ≤ C3

∥∥∆2u
∥∥
Lp(Ω)

‖u‖Lp′ (Ω) ,

with C3 = C3(p, p′,M, ρ−1
Ω , RΩ). The claim follows.

Lemma D.7 Assume Condition D.1. Then for 1 < p < ∞ there exists C =
C(p, p′,M, ρ−1

Ω , RΩ) such that

‖u‖W 4,p(Ω) ≤ C
∥∥∆2u

∥∥
Lp(Ω)

for every u ∈W 4,p(Ω) ∩W 2,p
0 (Ω).
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Remark D.7.1 Usually Lemma D.7 is proved by contradiction and this does
not explain what the constant depends on. However by using Lemma D.6 we
find the explicit quantities.

Proof. The result follows from [2, Th.15.2] and Lemma D.6. The proof of [2,
Th.15.2] shows that the dependence of the constant is as given in the statement.

Proof of Theorem D.5.

• Uniqueness follows by a standard integration by parts. Indeed, if ∆2u = 0
then ∫

Ω

|∆u|2 dx =
∫

Ω

u ∆2u dx = 0,

and with the boundary condition one finds u ≡ 0.

• Estimate: By definition of the norm in W 4,p(Ω) one finds 1
2

∥∥∆2u
∥∥
Lp(Ω)

≤
‖u‖W 4,p(Ω) . The other side of inequality (53) follows from Lemma D.7.

• Existence: For f ∈ Cα (Ω) the existence of a solution u ∈ C4,α (Ω)∩C1
0 (Ω̄)

is given by [2, Th.12.7]. Such a solution satisfies (53), ([2, Th.9.3]). By
an approximation argument the existence in W 4,p (Ω) ∩W 2,p

0 (Ω) follows.

Remark D.7.2 The hypothesis ∂Ω ∈ C4,α is needed in order to use Theorem
12.7 in [2]. For the rest of the paper it would be sufficient to assume ∂Ω ∈ C4.

For 1 < p <∞ we formally fix the operator T4,p by

D(T4,p) := W 4,p (Ω) ∩W 2,p
0 (Ω) ,

T4,pu := ∆2u for u ∈ D(T4,p).
(54)

The operator T4,p is the inverse of the solution operator.
The following result is a consequence of Theorem D.5.

Corollary D.8 Let 1 < p < ∞. Assuming Condition D.1 the operator T4,p

defined in (54) gives an isomorphism from W 4,p (Ω) ∩W 2,p
0 (Ω) onto Lp (Ω) .

Moreover one has

1
Cs
≤ ‖T4,p‖(W 4,p(Ω)∩W 2,p

0 (Ω)→Lp(Ω)) ≤ 2,

where Cs is the constant appearing in Theorem D.5.
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D.3 Regularity for weak solutions

In the following section we give the explicit definition of what we will call a
weak solution for problem (1) and we recall the classical regularity result in this
setting.

Definition D.9 Let p ∈ (1,∞) and F ∈
(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′

. We call
u ∈ Lp(Ω) a weak solution of problem (1) with right hand side F if the following
holds ∫

Ω

u(x) ∆2v(x) dx = F (v) for every v ∈W 4,p′(Ω) ∩W 2,p′

0 (Ω).

Theorem D.10 Assume Condition D.1 and let p ∈ (1,∞) . Then for every

F ∈
(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′

there exists a unique u weak solution of problem
(1) with right hand side F .

Moreover u satisfies

1
2 ‖F‖�W 4,p′ (Ω)∩W 2,p′

0 (Ω)
�′ ≤ ‖u‖Lp(Ω) ≤ Cw ‖F‖�W 4,p′ (Ω)∩W 2,p′

0 (Ω)
�′ ,

with Cw = Cw(p, p′,M, ρ−1
Ω , RΩ).

Proof. Let ip be the canonical isometry Lp(Ω)→
(
Lp

′
(Ω)
)′
, that is, ip(u)(v) =∫

Ω

u(x) v(x) dx for every v ∈ Lp′(Ω).

Existence of u follows by a duality argument. Indeed, by Corollary D.8 we
may define

U(f) := F (T−1
4,p′(f)) for every f ∈ Lp

′
(Ω).

The solution u is given by u := i−1
p (U). Uniqueness and the estimate follow

from Corollary D.8.

For 1 < p <∞ let us formally fix the operator T0,p by

D(T0,p) := Lp(Ω),

(T0,p(u))(v) := ip(u)(T4,p′(v)) for every v ∈W 4,p′(Ω) ∩W 2,p′

0 (Ω).
(55)

From Theorem D.10 it follows:

Corollary D.11 Let 1 < p <∞ and assume Condition D.1. The operator T0,p

defined in (55) gives an isomorphism from Lp(Ω) onto
(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′

.
Moreover one has

1
Cw
≤ ‖T0,p‖�Lp(Ω)→

�
W 4,p′ (Ω)∩W 2,p′

0 (Ω)
�′� ≤ 2,

where Cw is the constant appearing in Theorem D.10.
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D.4 Regularity between weak and strong

In the following section we consider via interpolation solutions between the
‘strong’ and the ‘weak’ ones defined in the previous sections.

We first give the three intermediate notions of solution.

Definition D.12 Let p ∈ (1,∞).

1. Let F ∈
(
W 1,p′

0 (Ω)
)′

. We say that u ∈ W 3,p(Ω) ∩W 2,p
0 (Ω) is a “one-

quarter weak solution” of problem (1) with right hand side F if it satisfies

−
∫

Ω

(∇∆u(x)). (∇v(x)) dx = F (v) for every v ∈W 1,p′

0 (Ω).

2. Let F ∈
(
W 2,p′

0 (Ω)
)′

. We say that u ∈ W 2,p
0 (Ω) is a “one-half weak

solution” of problem (1) with right hand side F if it satisfies∫
Ω

(∆u(x)) (∆v(x)) dx = F (v) for every v ∈W 2,p′

0 (Ω).

3. Let F ∈
(
W 3,p′(Ω) ∩W 2,p′

0 (Ω)
)′

. We say that u ∈ W 1,p
0 (Ω) is a “three-

quarter weak solution” of problem (1) with right hand side F if it satisfies

−
∫

Ω

(∇u(x)). (∇∆v(x)) dx = F (v) for every v ∈W 3,p′(Ω) ∩W 2,p′

0 (Ω).

Theorem D.13 Assume Condition D.1 and let 1 < p <∞.

1. Then for every F ∈
(
W 1,p′

0 (Ω)
)′

there exists a unique u “one-quarter
weak solution” of problem (1) with right hand side F .

Moreover u satisfies

1
C1
‖F‖�

W 1,p′
0 (Ω)

�′ ≤ ‖u‖W 3,p(Ω) ≤ C1 ‖F‖�W 1,p′
0 (Ω)

�′ ,

with C1 = C1(p, p′,M, ρ−1
Ω , RΩ).

2. Then for every F ∈
(
W 2,p′

0 (Ω)
)′

there exists a unique u “one-half weak
solution” of problem (1) with right hand side F .

Moreover u satisfies

1
C2
‖F‖�

W 2,p′
0 (Ω)

�′ ≤ ‖u‖W 2,p(Ω) ≤ C2 ‖F‖�W 2,p′
0 (Ω)

�′ ,

with C2 = C2(p, p′,M, ρ−1
Ω , RΩ).
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3. Then for every F ∈
(
W 3,p′(Ω) ∩W 2,p′

0 (Ω)
)′

there exists a unique u “three-
quarter weak solution” of problem (1) with right hand side F .

Moreover u satisfies

1
C3
‖F‖�

W 3,p′ (Ω)∩W 2,p′
0 (Ω)

�′ ≤ ‖u‖W 1,p(Ω) ≤ C3 ‖F‖�W 3,p′ (Ω)∩W 2,p′
0 (Ω)

�′ ,

with C3 = C3(p, p′,M, ρ−1
Ω , RΩ).

Remark D.13.1 Theorem D.13 part 2 has been studied in [21, Chap.7].

Our aim in giving the proof of Theorem D.13 is to show how the constants in
the estimates depend on the domain. We proceed through interpolation: [·, ·]θ
denotes the complex interpolation with parameter θ ∈ (0, 1).

For sake of conciseness we fix the following notation:

A0,p := Lp(Ω) A4,p := W 4,p(Ω) ∩W 2,p
0 (Ω),

B0,p := (A4,p′)
′
B4,p := Lp(Ω)(∼= (A0,p′)′),

and for θ ∈ (0, 1)

A4θ,p := [A0,p, A4,p]θ and B4θ,p := [B0,p, B4,p]θ .

With this notation we have T0,p : A0,p → B0,p and T4,p : A4,p → B4,p,
where T0,p is defined in (55) and T4,p is defined in (54).

Lemma D.14 Assume Condition D.1 and let 1 < p < ∞. The operator T4,p

is a restriction of T0,p to A4,p in the sense that for every u ∈ A4,p

T0,p(u) ∈ (B4,p′)
′ and T0,p(u) = ip(T4,p(u)).

Proof. Let u ∈ A4,p. For every v ∈ A4,p′ we have

(T0,p(u))(v) =
∫

Ω

u ∆2v dx =
∫

Ω

v ∆2u dx =
∫

Ω

v T4,p(u) dx.

The claim follows.

As a consequence of Lemma D.14 in the following lemma we find via inter-
polation a family of isomorphisms which are extensions of T4,p and restrictions
of T0,p.

Lemma D.15 Assume Condition D.1 and fix θ ∈ (0, 1). Consider the operator
T4θ,p such that D(T4θ,p) := A4θ,p and T4θ,p(u) := T0,p(u) for u ∈ D(T4θ,p) and
1 < p <∞.

Then T4θ,p is an isomorphism from A4θ,p onto B4θ,p and moreover

1
max {Cs, Cw}

≤ ‖T4θ,p‖(A4θ,p→B4θ,p) ≤ 2, (56)

where Cs and Cw are the constants appearing in Theorems D.5 and D.10 re-
spectively.
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Proof. The claim follows from Corollaries D.8 and D.11 since the complex
interpolation functor is exact and of type θ ([23, Th.1.9.3a]).

Remark D.15.1 Notice that (56) implies that for every u ∈ A4θ,p it holds

1
2‖T4θ,p(u)‖B4θ,p

≤ ‖u‖A4θ,p
≤ max {Cs, Cw}‖T4θ,p(u)‖B4θ,p

.

In the following we consider the operators T1,p, T2,p and T3,p; i.e. the op-
erators T4θi,p defined in Lemma D.15 with θi = 1

4 i and i = 1, 2, 3. Notice that
the solution operator for the “three-quarter weak solution” of problem (1) is
the inverse of T1,p. Analogously the solution operator for the “one-half weak
solution” of problem (1) is the inverse of T2,p and the solution operator for the
“one-quarter weak solution” of problem (1) is the inverse of T3,p.

For these operators we have that

Ai,p = W i,p(Ω) ∩Wmin {i,2},p
0 (Ω) with equivalent norms, (57)

whereAi,p = D(Ti,p). Identity (57) can be found in Triebel for C∞-domains. We
first show that in order (57) to hold it is sufficient that ∂Ω ∈ C4,α. Furthermore
we give the dependence on the domain of the constants D1,p,i and D2,p,i that
appear in

D1,p,i‖u‖W i,p(Ω)∩Wmin {i,2},p
0 (Ω)

≤ ‖u‖Ai,p ≤ D2,p,i‖u‖W i,p(Ω)∩Wmin {i,2},p
0 (Ω)

,

for u ∈W i,p(Ω) ∩Wmin {i,2},p
0 (Ω).

We first recall a classical result from [23].

Proposition D.16 [23, Th.4.3.3] Let B denote the unit ball in Rn. Then for
i = 1, 2, 3 and 1 < p <∞ one has[

Lp(B),W 4,p(B) ∩W 2,p
0 (B)

]
1
4 i

= W i,p(B) ∩Wmin {i,2},p
0 (B)

as Banach spaces (same elements, equivalent norms). Hence there exist con-
stants C1,p,i and C2,p,i such that for every u ∈ W i,p(B) ∩Wmin {i,2},p

0 (B) one
has

C1,p,i‖u‖W i,p(B) ≤ ‖u‖[Lp(B),W 4,p(B)∩W 2,p
0 (B)] 1

4 i

≤ C2,p,i‖u‖W i,p(B).

Theorem D.17 Let assume Condition D.1. Then for 1 < p <∞ and i = 1, 2, 3
it holds

[A0,p, A4,p] 1
4 i

= W i,p(Ω) ∩Wmin {i,2},p
0 (Ω).

Hence there exist constants D1,p,i and D2,p,i such that for every u ∈W i,p(Ω) ∩
W

min {i,2},p
0 (Ω) one has

D1,p,i‖u‖W i,p(Ω) ≤ ‖u‖[A0,p,A4,p] 1
4 i
≤ D2,p,i‖u‖W i,p(Ω),

with Dj,p,i = Dj,p,i(p,M, ρ−1
Ω , RΩ) for j = 1, 2.
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Proof. Let S denote a C4,α transformation from Ω̄ onto B̄.
Considering the operator

Ep : Lp(Ω)→ Lp(B) such that Ep(f) := f ◦ S−1,

one finds that the following properties hold:

• Ep is an isomorphism;

• for i = 1, . . . , 4 the restriction of Ep to W i,p(Ω) ∩ Wmin {i,2},p
0 (Ω) is an

isomorphism onto W i,p(B) ∩Wmin {i,2},p
0 (B);

• there are constants C̄1,p and C̄2,p such that

C̄1,p‖Ep(u)‖W i,p(B) ≤ ‖u‖W i,p(Ω) ≤ C̄2,p‖Ep(u)‖W i,p(B), (58)

for every i = 0, 1, . . . , 4 and u ∈ W i,p(Ω) ∩Wmin {i,2},p
0 (Ω). Furthermore

the constants C̄1,p and C̄2,p depend only on p, RΩ, ρ−1
Ω and the M of

Condition D.1.

For θ ∈ (0, 1) the operator Ep induces isomorphisms

Ep,θ : A4θ,p →
[
Lp(B),W 4,p(B) ∩W 2,p

0 (B)
]
θ
,

and since the complex interpolation functor is exact ([23, Th.1.9.3a]) one has

C̄1,p‖Ep,θ(u)‖[Lp(B),W 4,p(B)∩W 2,p
0 (B)]

θ

≤ ‖u‖A4θ,p
≤ C̄2,p‖Ep,θ(u)‖[Lp(B),W 4,p(B)∩W 2,p

0 (B)]
θ

, (59)

(See Theorem 1.2.4 in [23]).
Hence, by (59) and Proposition D.16, we have that

Ai,p =
[
Lp(Ω),W 4,p(Ω) ∩W 2,p

0 (Ω)
]

1
4 i

=
(
Ep, 14 i

)−1
([
Lp(B),W 4,p(B) ∩W 2,p

0 (B)
]

1
4 i

)
=

(
Ep, 14 i

)−1 (
W i,p(B) ∩Wmin {i,2},p

0 (B)
)

= W i,p(Ω) ∩Wmin {i,2},p
0 (Ω).

Furthermore we explicitly find the constants that give the equivalence of the
norms. Indeed from (58), (59) and Proposition D.16 it follows

‖u‖Ai,p
≤ C̄2,p‖Ep, 14 i(u)‖[Lp(B),W 4,p(B)∩W 2,p

0 (B)] 1
4 i

≤ C̄2,pC2,p,i‖Ep, 14 i(u)‖W i,p(B) ≤
C̄2,p

C̄1,p
C2,p,i‖u‖W i,p(Ω),
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and

‖u‖W i,p(Ω) ≤ C̄2,p‖Ep, 14 i(u)‖W i,p(B)

≤ C̄2,p

C1,p,i
‖Ep, 14 i(u)‖[Lp(B),W 4,p(B)∩W 2,p

0 (B)] 1
4 i

≤ C̄2,p

C̄1,p

1
C1,p,i

‖u‖Ai,p
.

Remark D.17.1 The existence of the C4,α transformation from Ω̄ onto B̄ de-
pends upon the regularity of Ω and the fact that Ω is simply connected. This
technical assumption can be removed.

Corollary D.18 Let assume Condition D.1. Then for 1 < p < ∞ and i =
1, 2, 3 it holds

[B0,p, B4,p] 1
4 i

=
(
W 4−i,p′(Ω) ∩Wmin {4−i,2},p′

0 (Ω)
)′
.

Moreover there exist constants D̄j,p,i = D̄j,p,i(p′,M, ρ−1
Ω , RΩ) for j = 1, 2 such

that

D̄1,p,i‖u‖�W 4−i,p′ (Ω)∩Wmin {4−i,2},p′
0 (Ω)

�′

≤ ‖u‖[B0,p,B4,p] 1
4 i
≤ D̄2,p,i‖u‖�W 4−i,p′ (Ω)∩Wmin {4−i,2},p′

0 (Ω)
�′ ,

holds for every u ∈
(
W 4−i,p′(Ω) ∩Wmin {4−i,2},p′

0 (Ω)
)′

.

Proof. The result follows from Theorem D.17 through duality results for com-
plex interpolation spaces ([23, Th.1.11.3]).

Corollary D.19 Assume Condition D.1 and let 1 < p <∞.
Then for i = 1, 2, 3 there exist isomorphisms

Ti,p : W i,p(Ω) ∩Wmin {i,2},p
0 (Ω)→

(
W 4−i,p′(Ω) ∩Wmin {4−i,2},p′

0 (Ω)
)′
,

which are restrictions of T0,p and extensions of T4,p.
Moreover there exists constants Ci = Ci(p, p′,M, ρ−1

Ω , RΩ) such that for
every u ∈W i,p(Ω) ∩Wmin {i,2},p

0 (Ω) it holds

1
Ci
‖Ti,p(u)‖�W 4−i,p′ (Ω)∩Wmin {4−i,2},p′

0 (Ω)
�′

≤ ‖u‖W i,p(Ω) ≤ Ci‖Ti,p(u)‖�W 4−i,p′ (Ω)∩Wmin {4−i,2},p′
0 (Ω)

�′ .

Proof. The result follows from Lemma D.15, Theorem D.17 and Corollary
D.18.

Theorem D.13 follows directly from the previous corollary.
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Vaillant), Mèm. Sav. Etrang. 33, 1907.
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