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Abstract. We give a sufficient condition for curves on a plane
or on a sphere such that if these give the boundary of a Willmore
surface touching tangentially along the boundary the plane or the
sphere respectively, the surface is necessarily a piece of the plane or
a piece of the sphere. The condition we require is that the curves
bound a strictly star-shaped domain with respect to the Euclidean
geometry in the plane and with respect to the spherical geometry
in the sphere, respectively.
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1. Introduction

A Willmore surface is a critical point for the Willmore functional,
that for an immersed surface f : Σ →֒ R

n is given by

W(f) =

∫

Σ

| ~H|2 dµg ,

with ~H the mean-curvature vector and dµg the area form induced by
the canonical metric in R

n. The Willmore functional appeared already
at the beginning of the 19-th century as a measure for the elastic energy
of thin plates. Nowadays it has applications also in the modeling of
biological membranes and in image processing. An important feature is
that, for closed surfaces without boundary, the Willmore functional is
invariant under conformal transformations (see Willmore, Ch.7.3 [23] or
Weiner [22]). The Euler-Lagrange equation (called Willmore equation)
is

∆⊥ ~H + gikgjlA◦

ij〈A◦

kl, ~H〉 = 0 (1.1)

with ∆⊥ the Laplace in the normal bundle and A◦ the trace-free part
of the second fundamental form (see the end of this section for the
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notation). In codimension one, one may write ~H = −H~n with ~n a
normal vector field andH = 1

2
(κ1+κ2) where κ1 and κ2 are the principal

curvatures of the surface. Then equation (1.1) can be rewritten as

∆gH + 2H(H2 −K) = 0 , (1.2)

with ∆g the Laplace-Beltrami operator and K the Gauss curvature.
(For surfaces with boundary we consider only interior variations.) The
Willmore equation (1.1) is a system of quasilinear elliptic equations of
fourth order. Moreover, the ellipticity is not uniform.
Existence of closed (without boundary) Willmore surfaces of pre-

scribed genus has been proved in [20] and [1]. Concerning regularity in
[18] it is proven that any Willmore surface is real analytic. In all these
works the conformal invariance of the Willmore functional plays a key
role.
We are interested in studying Willmore surfaces with boundary sat-

isfying prescribed boundary conditions. The first to study boundary
value problems for Willmore surfaces was Nitsche in [15]. He describes
several choices of boundary value problems for the Willmore equation
and established existence results for small data. Most of the works in
the literature concerns Dirichlet boundary data. By this we mean that
the boundary of the surface is fixed and also that the tangent spaces
of the surface along the boundary are fixed. (See [3], [4] and [8] for
results on natural boundary conditions.)
The studies on Willmore surfaces with boundary in the literature fol-

low two streams. On one side, there are existence results under special
symmetries. In [6] and [7] existence of Willmore surfaces of revolution
generated by graphs satisfying arbitrary symmetric Dirichlet boundary
conditions has been proved. In this case, the boundary consists of two
circles with the same radius and center on the axis with respect to
which we rotate. The second boundary condition prescribes the deriv-
ative of the function at the boundary. One has existence of Willmore
surfaces for all choices of the radius and for all values of the deriva-
tive at the boundary. This is in great contrast with the corresponding
results for minimal surfaces, where there is a critical value of the ra-
dius under which there do not exist minimal surfaces having the two
circles as boundary. A more general approach is in [19]. Schätzle in
[19] proves existence of Willmore immersions in S

n satisfying Dirich-
let boundary conditions. Under certain smallness assumptions on the
energy, he can then project these surfaces into R

n to get embedded
Willmore surfaces. This is the only result known at the moment which
is valid in any codimension.
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Palmer in [17] proves (among other results) the following uniqueness
result. A Willmore surface of disk type which has its boundary on a
circle and which intersects the plane of the circle in a constant angle
is a spherical cap or a flat disk. In this work we wish to extend this
result, allowing the curve to be more general than a circle. The main
result of the present paper is the following.

Theorem 1.1. Let P be a plane in R
3 and Ω ⊂ P be a smooth strictly

star-shaped bounded domain. Let D denote the unit disk in R
2 and let

f : D →֒ R
3 be a smooth Willmore immersion so that:

1. the boundary of the surface is given by ∂Ω;
2. the surface touches tangentially the plane P along the boundary.

Then, f(D) = Ω ⊂ P .

Remark 1.2. If the surface admits a parametrisation as the graph of
a smooth function u : Ω → R, the boundary conditions require that
u|∂Ω = 0 and ∇u|∂Ω = 0. The result states that u has to be identically
zero.

Via an inversion we get the corresponding result for curves on the
sphere. Before stating the result we need to explain what we mean by
saying that a curve is strictly star-shaped with respect to the spherical

geometry. It is convenient first to recall the definition of strictly star-
shaped domain in the plane. A smooth domain Ω in the plane is called
strictly star-shaped if there exists a point p ∈ Ω (called ‘star-center’)
such that (p−x) ·ν > 0 for every x ∈ ∂Ω with ν the interior normal (to
∂Ω in x). In other words, at each point x of the boundary the tangent
vector to the boundary curve does not have the same direction as p−x
which is the line segment (a geodesic in the euclidean geometry) from
x to p. Here we use the smoothness of Ω. There is a transversality
between the boundary curve and the geodesics going through the star-
center. In this spirit, we give the following definition.

Definition 1.3. We say that a closed smooth curve on S
2 is strictly

star-shaped with respect to the spherical geometry if the following holds.
There exists a point p ∈ S

2 such that if a geodesic in S
2 going through

p meets the curve, the tangent vector to the curve in the point of
intersection does not have the same direction as the tangent vector to
the geodesic in the same point.

Remark 1.4. Notice that if a curve on S
2 satisfies the definition of

strictly star-shaped with respect to the spherical geometry with a point
p, so it does also with respect to −p. Further, via inversions boundary
curves of strictly star-shaped domains in the plane are sent to curves in
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S
2 that are strictly star-shaped with respect to the spherical geometry

and vice versa. See Figure 1.

The result corresponding to Theorem 1.1 for Willmore immersions
in the unit sphere is now as follows.

Corollary 1.5. Let D denote the unit disk in R
2 and let f : D →֒ R

3

be a smooth Willmore immersion so that:

1. the boundary of the surface is a closed smooth curve on S
2 which

is strictly star-shaped with respect to the spherical geometry;

2. the surface touches tangentially S
2 along the boundary.

Then, f(D) is a spherical cap.

p

P

Figure 1. On the left: strictly star-shaped domain on
the plane. On the right: Curve on S

2 which is strictly
star-shaped with respect to the spherical geometry and
with respect to the North Pole.

In general we do not expect uniqueness for the Willmore Dirich-
let boundary value problems, not even in the presence of some extra
symmetries. Indeed, in the case of surfaces of revolution generated by
symmetric graphs with symmetric boundary data, for certain values
of the parameters, one can numerically find two different minimisers.
So there is numerical evidence not only of two solutions of the Euler-
Lagrange equation but also of two different surfaces with the same
Willmore energy.
The proof of Theorem 1.1 consists of two steps. In the first we

prove that, under the assumptions, f being a Willmore immersion im-
plies that the mean curvature is zero at the boundary and also that
A(X,X) = 0 at the boundary for any tangential vector field X. Here
A denotes the second fundamental form. We achieve this by choosing
in the first variation of the Willmore functional as a test function the
Willmore immersion itself. This uses the scaling invariance of the prob-
lem and is inspired by the proof of the Pohozaev identity. This first
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result is valid in any codimension and is presented in Section 2. The
second step is as in the work of Palmer [17]. By a result of Bryant [2] we
may associate to the Willmore surface a holomorphic function. By the
first step of the proof this function is zero at the boundary and there-
fore identically zero. Then a classification theorem of Bryant yields the
result. For sake of completeness we present the argument in Section
3 together with the proof of Corollary 1.5. In Section 4 we present
some generalisations of the argument used in Section 2 based on the
Pohozaev identity. More precisely, we derive other integral identities
containing only boundary integrals using the other invariances of the
problem and we comment on a slightly more general functional that
could be considered.

1.1. Notation. In local coordinates (x1, x2) on D the first fundamen-
tal form and the area element are given by

gij = 〈∂if, ∂jf〉 and dµg =
√
det(g)dx1dx2 ,

with det(g) := det(gij). Here and in the following 〈·, ·〉 denotes the
standard scalar product in R

n. In order to introduce the mean cur-
vature vector we introduce first the projections onto the tangent and
normal space. For a vector field V along f (V : D → R

n) we denote
by V ⊤ and V ⊥ the tangential and normal component of V along f ,
respectively. Then the mean curvature vector is given by

~H =
1

2
gijAij ,

with (gij) the inverse of the matrix (gij) and Aij the second fundamental
form defined by Aij = (∂i∂jf)

⊥. Notice the factor 1
2
in our definition

of the mean curvature vector. Here and in the following we use the
convention of summing over repeated indices. The trace free part of
the second fundamental form is given by A◦

ij = Aij−gij ~H. For a normal

vector ~φ the Laplace in the normal bundle is defined as

∆⊥~φ = gij∇i∇j
~φ ,

with ∇i the connection in the normal bundle.
In codimension one, the shape operator or Weingarten map is given

by −gik〈∂k∂jf, ~n〉 where ~n is a locally defined normal vector field. The
mean curvature and Gauss curvature are defined as 1

2
times the trace of

the shape operator and the determinant of the shape operator respec-
tively. Further, the mean curvature vector and Laplace in the normal
bundle have the simpler form

~H = −H~n and ∆⊥ ~H = −(∆H)~n
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with ∆ the Laplace-Beltrami operator given by

∆f =
1√

det(g)
∂i

(√
det(g)gij∂jf

)
.

Moreover,

gikgjlA◦

ij〈A◦

kl, ~H〉 = 2 ~H(| ~H|2 −K) .

2. A third condition at the boundary

Many proofs of uniqueness for elliptic equations of second order
are based on comparison principles that do hot hold in general for
higher order elliptic equations as the Willmore equation. Another ap-
proach to uniqueness was used by Pohozaev in the proof of the so-called
Pohozaev-identity. The main idea is to use the invariances of the prob-
lem. This leads to equations involving only boundary integrals from
which, under suitable assumptions, new informations at the boundary
can be gained. This is the approach we shall follow in this section to
prove the following result.

Proposition 2.1. Let P be a plane in R
n and Ω ⊂ P be a smooth

strictly star-shaped bounded domain. Let D be the unit disk in R
2 and

let f : D →֒ R
n, n ≥ 3, be a smooth Willmore immersion so that:

1. the boundary of the surface is given by ∂Ω;
2. the surface touches tangentially the plane P along the boundary.

Then, the second fundamental form of f satisfies A(X, Y ) = 0 at the

boundary for any X, Y smooth tangential vector fields.

Thanks to this result we have a third boundary condition. Being
the Willmore problem of fourth order, this is not enough to obtain
uniqueness via a unique continuation kind of result. For that we would
need a fourth condition at the boundary. In the next section we will
present how, in codimension one, Theorem 1.1 follows from Proposition
2.1 and the classification theorem of Bryant following an argument of
Palmer [17]. Notice that Proposition 2.1, which we now prove, holds
in any codimension.
We first observe that the boundary conditions immediately give the

result in Proposition 2.1 under the additional hypothesis that one of
the two vector fields is tangential to the boundary curve.

Lemma 2.2. Assume the hypothesis of Proposition 2.1 and let τ be

a smooth tangential vector field that is also tangential to the boundary

curve ∂Ω. Then for any smooth tangential vector field X we have

A(τ,X) = 0 .
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Proof. By definition,

A(τ,X) = (DτDXf)
⊥ = (Dτ (Df ·X))⊥ = 0 ,

since Dτ (Df ·X) is a tangent vector, due to the boundary conditions.
�

Remark 2.3. When the surface admits a parametrisation as the graph
of a function u : Ω → R (see Remark 1.2), this lemma states the well
known fact that the zero Dirichlet boundary conditions imply that uττ

and uτν are zero on ∂Ω. Here τ denotes the tangent to the boundary
(planar) curve and ν the normal to it.

We prove Proposition 2.1 using the first variation of the Willmore
functional and by choosing, inspired by the invariances of the problem,
the right test-function. This is the point where we need the assumption
that the domain Ω is strictly star-shaped. Let Σ be a compact surface
with boundary ∂Σ. For a smooth family of immersions h : Σ×I →֒ R

n,
h(·, t) with t ∈ I ⊂ R and φ = ∂

∂t
h, the first variation of the Willmore

functional is given by

d

dt
W(h) =

∫

Σ

〈∆⊥ ~H + gikgjlA◦

ij〈A◦

kl, ~H〉, φ〉 dµg (2.1)

+

∫

∂Σ

(
2〈φ, (Dη

~H)⊥〉 − d
(
〈φ, ~H〉

)
(η)− | ~H|2〈φ,Dh · η〉

)
dsg ,

with Dh · η the interior conormal to the boundary and dsg the length
element of the boundary curve. The formula can be found in [14, Thm.
2.1]. In codimension one, the first integral can be rewritten as

−
∫

Σ

(∆H + 2H(H2 −K))φ⊥ dµg .

Proof of Proposition 2.1. Without loss of generality we assume that
P = {x ∈ R

n : xi = 0 for i ≥ 3} and that Ω is strictly star-shaped
with respect to zero. Since f is tangential along the boundary we may
write f = Df · ξ on ∂D and for the interior conormal to the boundary
Df · η. The fact that Ω is star-shaped with respect to zero gives that

〈f,Df · η〉 = 〈Df · ξ,Df · η〉 = g(ξ, η) < 0 on ∂D .

Due to Lemma 2.2 it is sufficient to show that A(η, η) = 0. In the
formula for the first variation (2.1) we choose Σ = D and h(·, t) = tf(·).
Then, h(·, 1) = f and ∂

∂t
h = f . By this choice, the scaling invariance of

the Willmore functional and the fact that f is a Willmore immersion
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we find

0 =
d

dt
W(h)

∣∣∣∣
t=1

(2.2)

=

∫

∂D

(
2〈f, (Dη

~H)⊥〉 − d
(
〈f, ~H〉

)
(η)− | ~H|2〈f,Df · η〉

)
dsg .

Making use of the boundary conditions we simplify further these bound-
ary integrals. First of all, since f is tangential along the boundary

〈f, (Dη
~H)⊥〉 = 0 . (2.3)

To study the second term it is convenient to write f⊤ = Df · ξ. Notice
that f = f⊤ at the boundary. Then,

d〈f, ~H〉(η) = d〈f⊥, ~H〉(η)
= 〈Dη(f

⊥), ~H〉+ 〈f⊥, Dη
~H〉 .

Since f⊥ = 0 on ∂D, we find

d〈f, ~H〉(η) = 〈Dη(f −Df · ξ), ~H〉
= −〈Dη(Dξf), ~H〉 = −〈(DηDξf)

⊥, ~H〉
= −〈A(η, ξ), ~H〉 . (2.4)

Writing ξ = g(ξ, τ)τ + g(ξ, η)η with Df · τ the tangential vector to the
boundary curve, we find

A(ξ, η) = g(ξ, τ)A(τ, η) + g(ξ, η)A(η, η)

= g(ξ, η)A(η, η) = 2g(ξ, η) ~H , (2.5)

where we have used Lemma 2.2. Then combining (2.4) and (2.5) we
obtain

d〈f, ~H〉(η) = −2g(ξ, η)| ~H|2 .
From this equation, (2.2) and (2.3) it follows

0 =

∫

∂D

| ~H|2g(ξ, η) dsg .

Since Ω is strictly star-shaped, g(ξ, η) < 0 on ∂D and hence necessarily
H ≡ 0 and A(η, η) ≡ 0 on the boundary. �

Remark 2.4. In the proof we have used the invariance with respect
to rescaling. Using the other invariances we would get other bound-
ary integrals from which it is possible to get other informations by
making some extra assumptions. We comment on that and on other
generalisations in Section 4.
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Remark 2.5. Proposition 2.1 is true also on arbitrary compact sur-
faces with boundary whenever the term g(ξ, η) is strictly positive (or
strictly negative) at the boundary. This is for instance the case in an
annulus when the interior conormal at the boundary points in the same
direction at points on the same ray.

3. Proof of the main result

Here we have to restrict to the case of codimension one, that is to
n = 3. In the previous section we have proved that the boundary of
the surface consists of umbilic points. Theorem 1.1 follows from this
observation using the classification result of Bryant (Theorem C.3 be-
low; see [2] and [9]) as done by Palmer in [17, page 1587]. We present
the proof for the sake of completeness. The restriction to the case
of codimension one is due to the need of the classification theorem of
Bryant to close the argument. An important point is that, Bryant
in [2, Thm. B] shows that to Willmore surfaces one can associate a
holomorphic function q (see (3.3) below). This result is analogous to
the characterisation of surfaces with constant mean curvature via the
observation that their Hopf function (see (3.1) below) is holomorphic
(see [13, Chap.4]). To get his result Bryant uses the conformal Gauss
map (see [9, Sect. 3]) through which a Willmore surface in R

3 corre-
sponds to a minimal surface in S

4
1 (that is the unit sphere in R

4
1). This

construction goes back to Thomsen [21]. We present in the appendix
a brief survey of the concepts and results we need.

Proof of Theorem 1.1. We follow [17, page 1587].
By a reparametrization we may assume that f : D →֒ R

3 is confor-
mal. Let (x1, x2) denote the coordinates in D and z = x1 + ix2 be the
associated complex structure. Let ~n : D → R denote a unit normal
vector field to the surface. Let ϕ denote the Hopf function associated
to f , i.e.

ϕ =
1

2
((fx1x1 , ~n)− (fx2x2 , ~n)− 2i(fx1x2 , ~n)) = 2(fzz, ~n) , (3.1)

with ∂z =
1
2
(∂x1 − i∂x2) and ∂z̄ =

1
2
(∂x1 + i∂x2).

By Proposition 2.1 we know that the Hopf function and the mean cur-
vature are zero at the boundary. Then, differentiating both functions
along the boundary ∂D in the tangential direction one finds 0 = ∂θϕ
and 0 = ∂θH. Since ∂θ = i(z∂z − z̄∂z̄) we get

zϕz = z̄ϕz̄ and zHz = z̄Hz̄ on ∂D. (3.2)

Bryant in [2, Thm. B] (see Lemma B.4 and Proposition B.5 in the
appendix and also [9, Sect.5, Prop.1]) proves that the function q defined
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by

q =

{
1
4
ϕ2(H2 +∆ logϕ) if ϕ 6= 0 ,

−ϕzHz if ϕ = 0 ,
(3.3)

is a holomorphic function if f is a Willmore immersion. Here, ∆ =
4e−µ∂z∂z̄ and eµ denotes the conformal factor (i.e. eµ = 2fz · fz̄ =
fu · fu = fv · fv).
Since ϕ = 0 on ∂D using (3.2) we have

−q = ϕzHz = zz̄ϕzHz = (z̄)2ϕz̄Hz on ∂D .

By the Codazzi equation ϕz̄ = eµHz (see (B3) in the appendix) and
using (3.2) we get

−q = (z̄)2eµHzHz = (z̄)3eµzHzHz = (z̄)4eµHz̄Hz on ∂D .

Hence, z4q is a holomorphic function that is real valued on ∂D. By the
maximum principle, z4q = a ∈ R in D. Since q is holomorphic, we get
that necessarily a = 0 and hence q ≡ 0 in D.
The classification theorem of Bryant [2, Thm. D and E] (see Theorem

C.3 in the appendix and also [9, Sect. 6, Prop.]) yields then that f
is a piece of a sphere or, after a Möbius transformation, a piece of a
minimal surface.
Due to the boundary conditions, the surface cannot be a piece of

a proper sphere. Then, there exists a conformal transformation h in
R

3 such that h ◦ f is a minimal surface with a boundary component
made of umbilic points. Here we use that the set of umbilic points is
a conformal invariant, see [2, page 32] or [12, Lemma P6.7]. Then, the
Hopf function of h◦f is holomorphic. Being also zero at the boundary,
it is necessarily identically zero. Here we use that the Hopf function of
surfaces with constant mean curvature is holomorphic (see (B3)). The
claim follows. �

Proof of Corollary 1.5. Let p ∈ S
2 be a point with respect to which

the boundary curve is star-shaped in the spherical geometry. Notice
that the curve is also star-shaped with respect to −p. We may than
assume that f−1({−p}) = ∅. Let Φ : R3 → R

3 be the inversion with
respect to the sphere of radius

√
2 and center −p. By the assumptions,

Φ ◦ f : D →֒ R
3 satisfies the hypotheses of Theorem 1.1. The claim

follows. �

4. Generalisations

In Section 2, in the proof of Proposition 2.1 we use the scaling in-
variance of the Willmore functional. One could use also the invariance
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with respect to translations and rotations. We give here the bound-
ary integrals one would get. Here f : Σ →֒ R

3 is a smooth Willmore
immersion, Σ is compact and has boundary ∂Σ. For completeness we
recall the formula one gets using the scaling invariance. Choosing in
(2.1) h(·, t) = tf(·) and computing the derivative at t = 1 we find

0 =

∫

∂Σ

(
2〈f, (Dη

~H)⊥〉 − d
(
〈f, ~H〉

)
(η)− | ~H|2〈f,Dh · η〉

)
dsg .

To use the invariance with respect to translation we choose in (2.1)

h(·, t) = f(·) + t~V with ~V a fixed vector in R
3. Then, for t = 0

0 =

∫

∂Σ

(
2〈~V , (Dη

~H)⊥〉 − d
(
〈~V , ~H〉

)
(η)− | ~H|2〈~V ,Df · η〉

)
dsg .(4.1)

We consider rotations choosing h(·, t) = R(t)f(·) in (2.1) with R(t) ∈
SO(n) smooth and such that R(0) = Id. Then, for t = 0

0 =

∫

∂Σ

(
2〈R′(0)f, (Dη

~H)⊥〉 − d
(
〈R′(0)f, ~H〉

)
(η)

−| ~H|2〈R′(0)f,Df · η〉
)

dsg .

Not only in the case of Dirichlet boundary conditions, but also for other
choices of boundary conditions these equations together with some ex-
tra assumptions yield new informations at the boundary. For instance,
with the result of Proposition 2.1, under the same assumptions and
taking n = 3, (4.1) gives

0 =

∫

∂Σ

〈~V , ~n〉DηH dsg ,

from which, under additional hypotheses (as a fixed sign for 〈~V , ~n〉 and
also assuming that H has a fixed sign in Ω), DH = 0 on ∂Σ can be
derived. That for fourth order problems one needs a sign condition in
order to derive via the Pohozaev identity uniqueness is well established
in the literature, see for instance [16] and [10, Sec. 7.5.1].
Our uniqueness result can be directly generalised to critical points

of the functional

W̃(f) =

∫

Σ

(| ~H|2 − cK) dµg ,

defined on smooth immersions f : Σ →֒ R
n. Here K denotes the Gauss

curvature and c is some real constant. Notice that one needs 0 ≤
c ≤ 1 so that W̃(f) is bounded below. Our result applies immediately

since the functional W̃ has the same critical points as the Willmore
functional. Similarly the extensions discussed above apply also to this
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functional. Notice that, the difference between W(f) and W̃(f) is
a fixed constant for surfaces satisfying the same Dirichlet boundary
conditions and of the same topological type.

Appendix A. The conformal Gauss map

The conformal Gauss map associates to each point of a two-dimensional
surface its central sphere which can be considered as a point in the unit
sphere S4

1 in the five dimensional Minkowski space. This map is impor-
tant in the study of Willmore surfaces since by this transformation, a
Willmore surface corresponds (away from its umbilic points) to a min-
imal surface in S

4
1. This observation goes back to Thomsen, [21]. In

this section we describe the geometric constructions that lead to the
definition of the conformal Gauss map. We follow the presentation in
[9].
Let f : Σ → R

3 be a smooth immersion of a two-dimensional ori-
entable surface Σ. Let n : Σ → S

2 be a normal vectorfield. We consider
the central sphere of f at f(s), s ∈ Σ. This is the 2-dimensional sphere
in R

3 going through f(s) ∈ R
3 and with mean curvature equal to the

mean curvature of f in f(s). We denote the central sphere by Sr(p)
with r = r(s) ∈ R ∪ {±∞} the ‘radius’ and p = p(s) ∈ R

3 the center.
If H(s) denotes the mean curvature of f in f(s), then r = 1/H(s) and
p = f(s) + rn(s).
Let Φ denote the inverse of the stereographic projection into R3 given

by Φ : R3 → S
3 \ {(0, 0, 0, 1)t} with

Φ((y1, y2, y3)t) =
1

1 + ‖y‖2 (2y
1, 2y2, 2y3, ‖y‖2 − 1)t .

Since Φ is conformal, Φ(Sr(p)) ⊂ S
3 is a two-dimensional sphere. There

exists a unique three-dimensional sphere that intersects S3 orthogonally
along Φ(Sr(p)). We denote its center by Z(Φ(Sr(p))). In this way we
get a mapping

f1 : Σ → R
4 ∪ {∞} ,

s 7→ Z(Φ(Sr(p))) = (2p, ‖p‖2 − r2 − 1)
1

‖p‖2 − r2 + 1
, (A1)

where, as before, r = r(s) = 1/H(s) and p = p(s) = f(s)+ rn(s) ∈ R
3.

Here ‖·‖ is the Euclidean norm in R
3. (For this formula it is convenient

to see Φ as the restriction to R
3 of G : R4 → R

4 with G the inversion
with respect to the 3-sphere of radius

√
2 and center (0, 0, 0, 1)t. If

Φ(Sr(p)) is an equatorial sphere in S
3, then f1(s) = ∞. This is the

case if ‖p‖2 + 1 = r2.)
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Notice that in (A1) we write a vector in R
4 via two components. The

first is a vector in R
3, while the second is a real number. Similarly, in

the following we write elements in R
5 via three components. The first

is a vector in R
3, while the other two components are real numbers.

The formulas become nicer with this convention.
Now, to take care of the points sent to ∞, we look at R

4 as the
subset {[y, 1] : y ∈ R

4} of RP4. We get then the map

f2 : Σ → RP
4 ,

s 7→
[
p,

1

2
(‖p‖2 − r2 − 1),

1

2
(‖p‖2 − r2 + 1)

]
.

As a final step we consider as a target R5 with the Lorentzian metric

g(X, Y ) =
4∑

i=1

X iY i −X5Y 5 , X, Y ∈ R
5, (A2)

signature (+,+,+,+,−), and the map

Y : Σ → (R5, g) ,

s 7→ 1

r

(
p,

1

2
(‖p‖2 − r2 − 1),

1

2
(‖p‖2 − r2 + 1)

)
.

This is the conformal Gauss map associated to f : Σ → R
3. The

normalisation factor 1/r is chosen in such a way that

Y (Σ) ⊂ S
4
1 := {Y ∈ (R5, g) : g(Y, Y ) = 1} ,

i.e. the image of Y is a subset of the unit sphere in (R5, g). Since
r = r(s) = 1/H(s) and p = p(s) = f(s) + rn(s) we have

Y (s) = H(s)

(
f(s),

1

2
(‖f(s)‖2 − 1),

1

2
(‖f(s)‖2 + 1)

)

+(n(s), (f(s), n(s)), (f(s), n(s))) ,

with (·, ·) the Euclidean scalar product in R
3. It is convenient to write

the conformal Gauss map as

s 7→ Y (s) = H(s)X(s) + T (s) with

X(s) =

(
f(s),

1

2
(‖f(s)‖2 − 1),

1

2
(‖f(s)‖2 + 1)

)
(A3)

and T (s) = (n(s), (f(s), n(s)), (f(s), n(s))) .

Notice that g(X(s), X(s)) = 0 while g(T (s), T (s)) = 1.
We will see in the next section that the conformal Gauss map is (in-

deed) conformal with degeneracies at the umbilic points of Σ. Further,
we study the properties of the conformal Gauss map associated to a
Willmore surface.
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Remark A.1. Notice that if f : Σ → R
3 is a sphere than the image of

the associated conformal Gauss map is a fixed point in S
4
1.

Remark A.2. The name conformal Gauss map has been used by
Bryant. Thomsen in [21] used instead the concept of sphere congruence.
A sphere congruence is a smooth mapping S : Σ → {spheres in R

3}
with Σ a two-dimensional manifold. This mapping induces a new map-
ping Y : Σ → S

4
1 which assigns to each sphere in R

3 a point in S
4
1 with

the same construction as above. That is, to a sphere in R
3 with center

p and radius r we associate the vector

1

r
(p,

1

2
(‖p‖2 − r2 − 1),

1

2
(‖p‖2 − r2 + 1)) ∈ R

5 . (A4)

In the same way we may associate to points in R
3 a vector in R

5.
Renormalizing (A4) by multiplying it by r and taking r → 0 we see
that

R
3 ∋ x 7→ X = (x,

1

2
(‖x‖2 − 1),

1

2
(‖x‖2 + 1)) ∈ R

5 . (A5)

Notice that the images of points in R
3 are X ∈ L with L := {X ∈

R
5 such that g(X,X) = 0 and X5 − X4 = 1}. The mapping given in

(A5) is an isometry from R
3 to L.

We need also the concept of enveloping surface of a sphere congru-
ence S. This is a map f : Σ → R

3 such that for all s ∈ Σ it holds

f(s) ∈ S(s) and df(s)(TsΣ) ⊂ Tf(s)S(s) . (A6)

Equivalent relations may be stated in (R5, g). Indeed, denoting by
X(s) the representative in R

5 of f(s) according to (A5), the formulas
in (A6) are equivalent to

g(X(s), Y (s)) = 0 and g(X(s), dY (s)) = 0 . (A7)

In the proof of the classification theorem of Bryant in Appendix C
we will see that if f is a Willmore surface and a certain holomorphic
differential is identically zero, then f is an enveloping surface for its
own conformal Gauss map.
For more informations on sphere congruence and conditions on the

existence of a enveloping surface we refer to [12] and the references
therein.

Appendix B. A holomorphic differential for Willmore
surfaces

The results we collect here are due to Thomsen [21] and Bryant [2].
We follow the presentation in [9].
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Let f : Σ → R
3 (with the standard scalar product) be a smooth

immersion of an orientable surface. We have thus fixed a conformal
structure on Σ. Locally there exists conformal coordinates. Let denote
this conformal coordinates by u and v. We associate a complex coor-
dinate to this conformal structure by considering z = u+ iv. The first
fundamental form of f is given by I = eµdzdz̄ with eµ the conformal
factor. Let n be a unit normal field along the surface. For the second
fundamental form we have the representation

II = Re{ϕdz2 +Heµdzdz̄}
with H the mean curvature of f , eµ the conformal factor and ϕ the
Hopf differential given by

ϕ =
1

2
((fuu, n)− (fvv, n)− 2i(fuv, n)) = 2(fzz, n) . (B1)

Notice that ∂z =
1
2
(∂u − i∂v) and ∂z̄ =

1
2
(∂u + i∂v).

We also have

fzz = µzfz +
1
2
ϕn , fzz̄ =

1
2
Heµn ,

and nz = −Hfz − ϕe−µfz̄ ,
(B2)

and the integrability conditions

ϕz̄ = eµHz (Equation of Codazzi),

|ϕ|2e−2µ = H2 −K (Equation of Gauss),
(B3)

with K the Gaussian curvature of f .
With the same choice of complex coordinate, we find for the confor-

mal Gauss map associated to f as given in (A3) that

Yz = HzX − ϕe−µXz̄,

g(Yz, Yz) = 0 and g(Yz, Yz̄) = (H2 −K)(fz, fz̄) ,
(B4)

with g the metric given in (A2). Here we have used the formula for nz

in (B2) and (B3). The induced metric is given by ds2Y = (H2 −K)ds2f .
Thus Y is a conformal map (with degeneracies at the umbilic points of
f) with respect to the conformal structure induced on Σ by f and an
immersion away from the umbilic points of f .
For Willmore immersions (i.e. solutions to (1.2)) the formulas in

(B4) imply immediately the following.

Proposition B.1. Let f : Σ → R
3 be a Willmore surface and Y : Σ →

S
4
1 be the conformal Gauss map associated to f . Then,

Area(Y ) =

∫

Σ

ds2Y =

∫

Σ

(H2 −K) ds2f .
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Moreover, if Y is a minimal surface, then f : Σ → R
3 is a Willmore

immersion.

Remark B.2. We call Willmore surface a solution to equation (1.2).
Notice that these are also critical points for the functional

∫
(H2−K) dS

with respect to interior variations. In our setting,
∫
K dS is equal to a

constant. See the discussion in the introduction.

Further, the converse of Proposition B.1 is also true.

Proposition B.3. An immersion f : Σ → R
3 is a Willmore immersion

if and only if the associated conformal Gauss map is an harmonic map.

Idea of the proof. One first shows that

∆Y + 2(H2 −K)Y = (∆H + 2(H2 −K)H)X . (B5)

with X as defined in (A3). Since Y ∈ S
4
1, Y is normal to S

4
1 and

therefore taking the tangential component in (B5) we find

(∆Y )TQ = [(∆H + 2(H2 −K)H)X]TQ .

If f is Willmore, we directly get (∆Y )TQ = 0 and so Y is a harmonic
map. On the other hand if Y is an harmonic map, Y is a critical point
for the Dirichlet energy. Being Y conformal, it is also a critical point
for the area functional. Proposition B.1 yields that f is a Willmore
immersion. �

We consider now the quartic differential

Q : g(Yzz, Yzz)dz
4 .

Lemma B.4. The quartic differential g(Yzz, Yzz)dz
4 can be written as

qdz4 with

q =

{
1
4
ϕ2(H2 +∆f logϕ) where ϕ 6= 0 ,

−ϕzHz where ϕ = 0,

with ∆f = 4e−µ∂z∂z̄ and ϕ the Hopf differential given in (B1).

Proof. Starting from the formula for Yz given in (B4) and differentiating
it once again we find

Yzz = HzzX +HzXz − (ϕe−µ)zXz̄ − ϕe−µXzz̄ . (B6)

For the last term starting from the formula for X given in (A3) and
using (B2) one gets

Xzz̄ =
1

2
HeµT +

eµ

2
(0, 1, 1) . (B7)
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Using that g(X,X) = 0, g(X,Xz) = 0, g(Xz, Xz) = 0, g(Xz, Xz̄) =
1
2
eµ, g(X,T ) = 0 and g(Xz, T ) = 0, formulas (B6) and (B7) yield

g(Yzz, Yzz) = ϕHzz −Hz(ϕe
−µ)ze

µ +
1

4
H2ϕ2 .

The claim follows using the equation of Codazzi (B3). �

Proposition B.5. If f : Σ → R
3 is a Willmore surface, then Q is a

holomorphic quartic differential.

Proof. Let Y : M → S
4
1 be the conformal Gauss map associated to f .

Recalling (B4) we have

g(Yz, Yz) = 0 and g(Yz, Yz̄) =
1

2
(H2 −K)eµ .

Let α denote the second fundamental form of Y , i.e. αij = (Yij)
⊥ and

η denote the mean curvature vector, i.e.

η =
α11 + α22

2E
with E = (H2 −K)eµ .

Being f a Willmore immersion, Proposition B.3 gives us that Y is an
harmonic map. On the other hand,

Yzz̄ =
1

2
Eη

and so we get that the mean curvature vector η is normal to S
4
1 ⊂ R

5.
Since S

4
1 is the unit sphere in (R5, g), η = βY for some β ∈ R and, by

a direct computation, one finds η = −Y . Therefore, we have

Yzz̄ = −1

2
EY .

This is the crucial information for showing that Q is holomorphic. In-
deed,

∂z̄g(Yzz, Yzz) = 2g((Yzz̄)z, Yzz)

= −Ezg(Y, Yzz)− Eg(Yz, Yzz) = 0 ,

since g(Y, Yz) = 0 and g(Yz, Yz) = 0. �

Appendix C. The classification theorem of Bryant

We follow once again the presentation in [9].
Let f : Σ → R

3 be a Willmore surface that is not totally umbilic.
By Theorem C in [2] the set of umbilic points of f is closed and it
has no interior. Let Σ \ Σ′ be the preimages of the umbilic points
of f . Eschenburg, Tribuzy [11] prove that one can smoothly define
on each point of Y (Σ) the tangent space. More precisely, the map



18 ANNA DALL’ACQUA

Σ′ ∋ s 7→ dYs(TsΣ) can be smoothly extended to all of Σ. Therefore
the normal bundle is defined everywhere. The induced metric on the
normal bundle has signature (+,−) and so we may find two real normal
vectors N1 and N2 such that

g(Ni, Ni) = 0 , i = 1, 2, and g(N1, N2) = 1 . (C1)

Lemma C.1. One has

g(Yzz, Yzz) = 2g(Yzz, N1)g(Yzz, N2) ,

and ∂z̄g(Yzz, Ni) = (−1)i−1g(N1,z̄, N2)g(Yzz, Ni) ,
(C2)

for i = 1, 2.

Proof. Since g(Yz, Y ) = 0 and g(Yz, Yz) = 0 one sees that Yzz lies in
the span of Yz, N1 and N2. The first claim follows from (B4) and (C1).
For the second equality one first notices that

∂z̄g(Yzz, Ni) = g(Yzz, Ni,z̄) ,

and that Ni,z̄ lies in the span of Yz and Ni. �

Notice that this lemma gives another proof of Proposition B.5. The
next result gives a crucial observation for the proof of Bryant’s classi-
fication theorem.

Proposition C.2. If g(Yzz, Yzz) ≡ 0, then g(Yzz, Nj) ≡ 0 and Njz =
λ(z)Nj for j = 1 or 2 and some scalar function λ.

Proof. Since the functions g(Yzz, Nj) satisfy the differential equation
given in (C2) and g(N1,z̄, N2) is bounded on compact subsets of Σ, it
follows from Carleman’s theorem [5] that each g(Yzz, Nj) has isolated
zeroes or it is identically zero. Therefore from the first equality in
Lemma C.1 and g(Yzz, Yzz) ≡ 0, we infer that g(Yzz, Nj) ≡ 0 for j =
1 or 2. This implies that g(Yz, Nj,z) = 0. Further, g(Y,Nj,z) = 0,
g(Nj,z, Yz̄) = 0 and g(Nj, Nj,z) = 0. The claim follows. �

We are now ready to state the classification theorem of Bryant.

Theorem C.3 (Bryant classification theorem). Let f : Σ → R
3 be a

Willmore immersion and Y : Σ → S
4
1 the associated conformal Gauss

map. Assume further that g(Yzz, Yzz) ≡ 0. Then f is either totally

umbilic or f is the Möbius transform of a minimal immersion.

Proof. If f is not totally umbilic, by the discussion at the beginning
of the section we have two real normal vectors N1 and N2 such that
g(Ni, Ni) = 0, g(Ni, Y ) = 0, g(Ni, Yz) = 0 = g(Ni, Yz̄), for i = 1, 2, and
g(N1, N2) = 1. According to the definition given in Remark A.2 and
the characterisation in (A7) [N1] and [N2] ([Ni] ∈ RP

4) are enveloping
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surfaces for the conformal Gauss map associated to f . Even more, we
may choose

N1(s) = X(s) = (f(s),
1

2
(‖f(s)‖2 − 1),

1

2
(‖f(s)‖2 + 1)) .

That is, one of the enveloping surfaces is the Willmore immersion itself.
The other normal direction N2 = X̂ is called the conformal transform
of X.
Since g(Yzz, Yzz) ≡ 0, N2,z = λ(z)N2 by Proposition C.2. This differ-

ential equation and the fact that N2 is a real vector imply that [N2] is

a well defined fixed vector. Therefore [N2] = [X̂] can be identified with
a point in S

3 and as such it is the image of a fixed point x̂ in R
3∪{∞}.

Via an inversion h in R
3 we can send x̂ to infinity. Accordingly all the

spheres that passes through x̂ are sent to planes. These planes are,
by construction, the central spheres of the immersion h ◦ f : Σ → R

3.
Therefore h ◦ f is a minimal immersion. �
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